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Figure 1: Excerpt from the Chicks4FreeID dataset.

Abstract

To address the need for well-annotated datasets in the field of animal re-1

identification, and particularly to close the existing gap for chickens, we intro-2

duce the Chicks4FreeID dataset. This dataset is the first publicly available re-3

identification resource dedicated to the most farmed animal in the world. It in-4

cludes top-down view images of individually segmented and annotated chickens,5

along with preprocessed cut-out crops of the instances. The dataset comprises6

1215 annotations of 50 unique chicken individuals, as well as a total of 55 an-7

notations of 2 roosters and 2 ducks. In addition to re-identification, the dataset8

supports semantic and instance segmentation tasks by providing corresponding9

masks. Curation and annotation were performed manually, ensuring high-quality,10

nearly pixel-perfect masks and accurate ground truth assignment of the individuals11

using expert knowledge. Additionally, we provide context by offering a compre-12

hensive overview of existing datasets for animal re-identification. To facilitate13

comparability, we establish a baseline for the re-identification task testing dif-14

ferent approaches. Performance is evaluated based on mAP, Top-1, and Top-515

accuracy metrics. Both the data and code are publicly shared under a CC BY16

4.0 license, promoting accessibility and further research. The dataset can be ac-17

cessed at https://huggingface.co/datasets/dariakern/Chicks4FreeID and the code at18

https://github.com/DariaKern/Chicks4FreeID.19
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1 Introduction20

1.1 Motivation21

Chickens struggle to recognize other individuals after visible changes are applied to the comb or22

plumage [1]. Much like chickens are able to use visual cues to differentiate each other, artificial23

intelligence (AI) is capable of utilizing image or video inputs for re-identification purposes. AI-driven24

re-identification and tracking systems hold great potential for enhancing animal husbandry and25

livestock farming. These systems may allow for the observation of social structures and behavior,26

enhance welfare, and potentially lead to more efficient animal management with minimal disruption27

to the livestock [2]. They also may help assess health and well-being, i.e., by providing crucial28

traceability during disease outbreaks. Furthermore, they offer a cost-effective and non-invasive29

alternative to manual tagging methods.30

Despite the significant potential, there is a notable gap in publicly available datasets for such31

technologies, especially for chickens — the most farmed animal globally. Remarkably, to our32

knowledge, no publicly available dataset for chicken re-identification exists, highlighting an urgent33

need for development in this field. Public datasets for the task of individual animal re-identification34

in general are scarce [3, 2]. In particular, well-annotated datasets [4]. The practice of openly sharing35

data and code should be encouraged to enhance result comparability, yet not all research data are36

currently made public. In their work, [5] emphasize the importance of creating and sharing publicly37

available and well-annotated benchmark datasets for the task of animal re-identification.38

Establishing a benchmark dataset involves evaluating how well existing methods solve the dataset.39

The reported metrics serve as a baseline for future researchers to report their improvements. Given the40

diverse nature of research, it is important for the baseline to cover common approaches and common41

metrics. This ensures that the achievements of future researchers can be effectively compared,42

facilitating a standardized assessment of advancements in the field.43

1.2 Contribution44

We address the existing gap and present our Chicks4FreeID dataset, which does not only support45

the task of re-identification but also semantic and instance segmentation. We make this thoroughly46

documented dataset freely accessible to the research community and the public. The dataset includes47

54 individuals, of which 50 are chickens. Each occurrence is nearly pixel-perfectly segmented,48

resulting in 1270 instance masks. Based on the cut-out crops of 1215 chicken instance masks,49

we provide an initial baseline for the task of closed set re-identification. This allows the research50

community to compare their methods and results effectively. In summary:51

i We provide a comprehensive overview of publicly available datasets for animal re-52

identification.53

ii We introduce the first publicly available dataset for chicken re-identification.54

iii We establish a baseline for closed set re-identification on the introduced dataset.55

2 Related work56

2.1 Animal re-identification57

Animal re-identification, the task of identifying individual animals within one (or sometimes several)58

species, finds applications in various fields. Particularly in wildlife conservation efforts, where59

monitoring endangered species is crucial [6–9]. But also in livestock management, notably cattle60

[10–14] and yak [15]. Honeybees [4] and bumblebees [16, 17] have also been subject to investigation.61

Re-identification falls into one of two categories: closed set and open set. In closed set re-62

identification, all individuals are known from the beginning, and those to be identified can be63

matched with identities of a predefined set. In open set re-identification, the identity of the individual64
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in question may not necessarily be part of a predefined set. It is possible to encounter completely65

new, undocumented individuals. Such individuals must be annotated as a new identity and, upon66

subsequent encounters, accurately matched.67

While facial recognition is a prevalent method for re-identifying humans [18], the faces of animals68

can likewise serve as a means to re-identify individuals, as has previously been demonstrated for69

rhesus macaque [19], chimpanzee [20], cats [21], lions [22], dogs [23], giant pandas [8] and red70

pandas [9]. However, animals frequently exhibit more distinctive visual traits beyond their faces. For71

example, natural markings such as stripes [24–27] and scale patterns [28] can serve as prominent72

identifiers. But also specific body parts can contribute to distinguishing individuals, such as the fins73

of dolphins [29] and sharks [30]. Similarly to how fingerprints differentiate humans, nose prints of74

dogs have been utilized to uniquely identify individual dogs [31]. Conversely, little inter-individual75

variability poses a challenge to the re-identification task. Species exhibiting minimal or subtle visual76

distinctions between individuals are, for instance, (polar) bears [32, 33] or elephants [34]. Visual traits77

play a pivotal role in animal re-identification within computer vision, serving as essential markers78

for distinguishing individuals. However, the task is complex and extends beyond mere visual cues.79

Factors such as lighting, perspective, body changes over time, and partially obscured body parts pose80

additional challenges [5].81

To further advance the field and aid the research community, [35] released the WildlifeDatasets82

toolkit - an open-source toolkit for animal re-identification. It gathers publicly available animal83

re-identification datasets in one place, in an effort to make them more easily accessible and to improve84

usability. Included are various tools, i.e., for data handling and processing, algorithms relevant85

to the task of re-identification, pretrained models, as well as evaluation methods. Therewith, they86

address the prevailing absence of standardization across the literature and facilitate comparability87

and reproducibility of results. Within their work, they also introduce a new state-of-the-art, the88

MegaDescriptor, notably the first foundation model for animal re-identification. Likewise, [36] present89

an open-source re-identification method initially developed for sea stars, which was successfully90

extended to seven mammalian species without adjustments. They also report state-of-the-art results.91

Moreover, [37] introduced Tri-AI, a system designed for the rapid detection, identification, and92

tracking of individuals from a wide range of primate species. The system is capable of processing93

both video footage and still images. The task of re-identification is closely related to tracking, where94

individuals are detected and tracked across various video frames. During tracking, individuals often95

need to be re-identified after leaving and re-entering the field of vision.96

2.2 Re-identification datasets97

A review of existing resources revealed fewer than 40 publicly available datasets for animal re-98

identification. This leads to the conclusion that a significant number of animal species are not yet99

covered, including chickens. Birds in general seem to be underrepresented in this domain, with only a100

couple of datasets available [38, 39]. In fact, a noticeable focus lies on marine life [40–50]. However,101

cattle are the most frequently featured species [11, 51–55], with much of the data collected by the102

same group of researchers.103

Table 1 provides a summary of the publicly accessible datasets found, arranged by year. Each entry104

details the name of the dataset (“Dataset”), the associated publication (“Publ.”), and species focus105

(“Species”). “IDs” denotes the number of unique identities present within the dataset. Additionally,106

the total number of annotated animal instances within all images of each dataset is noted (“Annot.”).107

An indication(*) of whether the data was derived from video sources is given as well. For ease of108

access, a direct link to each dataset is provided (“Avail. at”). Although all of the datasets are publicly109

accessible, some are released under licenses that are relatively restrictive.110
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Table 1: Publicly available animal re-identification datasets, arranged by date of publication. An
asterisk (*) marks data derived from video footage.

Year Publ. Dataset IDs Species Annot. Avail. at

ours Chicks4FreeID 50, 2, 2 chicken, duck, rooster 1215, 40, 15 [56]
2024 [28] SeaTurtleID2022 438 sea turtle 8729 [40]
2023 [3] Mammal Club (IISD) 218 11 terrestrial mammal species* 33612 [57]
2023 [58] Multi-pose dog dataset 192 dog 1657 [59]
2023 [32] PolarBearVidID 13 polar bear* 138363 [60]
2023 [36] Sea Star Re-ID 39, 56 common starfish, Australian cushion star 1204, 983 [41]
2022 [61] Animal-Identification-

from-Video
58, 26, 9 pigeon*, pig*, Koi fish* 12671, 6184,

1635
[39]

2022 n.a. Beluga ID 788 beluga whale 5902 [42]
2022 n.a. Happywhale 15587 30 different species of whales and dolphins 51033 [43]
2022 n.a. Hyiena ID 256 spotted hyena 3129 [62]
2022 n.a. Leopard ID 430 African leopard 6805 [63]
2022 [64] SealID 57 Saimaa ringed seal 2080 [44]
2022 [65] SeaTurtleIDHeads 400 sea turtle 7774 [45]
2022 n.a. Turtle Recall 100 sea turtle 2145 [46]
2021 [66] Cow Dataset 13 cow 3772 [11]
2021 [13] Cows2021 182 Holstein-Friesian cattle* 13784 [51]
2021 [67] Giraffe Dataset 62 giraffe 624 [68]
2021 [8] iPanda-50 50 giant panda 6874 [69]
2020 [26] AAU Zebrafish Dataset 6 zebrafish* 6672 [70]
2020 [37] Animal Face Dataset 1040 41 primate species 102399 [71]
2020 [24] ATRW 92 Amur tiger* 3649 [72]
2020 [73] Lion Face Dataset 94 lion 740 [22]
2020 [74] NDD20 44, 82 bottlenose and white-beaked dolphin,

white-beaked dolphin (underwater)*
2201, 2201 [47]

2020 [73] Nyala Data 237 nyala 1942 [75]
2020 [14] OpenCows2020 46 Holstein-Friesian cattle* 4736 [52]
2019 [76] Bird individualID 30, 10 ,10 sociable weaver, great tit, zebra finch 51934 [38]
2019 [23] Dog Face Dataset 1393 dog 8363 [77]
2018 [21] Cat Individual Images 518 cat 13536 [78]
2018 [79] Fruit Fly Dataset 60 fruit fly* 2592000 [80]
2018 n.a. HumpbackWhaleID 5004 humpback whale 15697 [48]
2018 [19] MacaqueFaces 34 rhesus macaque* 6280 [81]
2017 [12] AerialCattle2017 23 Holstein-Friesian cattle* 46340 [53]
2017 [12] FriesianCattle2017 89 Holstein-Friesian cattle* 940 [54]
2017 [25] GZGC 2056 plains zebra and Masai giraffe 6925 [82]
2016 [20] C-Tai 78 chimpanzee 5078 [83]
2016 [20] C-Zoo 24 chimpanzee 2109 [83]
2016 [10] FriesianCattle2015 40 Holstein-Friesian cattle* 377 [55]
2015 n.a. Right Whale Recognition 447 North Atlantic right whale 4544 [49]
2011 [27] StripeSpotter 45 plains and Grevy’s zebra 820 [27]
2009 [84] Whale Shark ID 543 whale shark 7693 [50]

3 The Chicks4FreeID dataset111

3.1 Data112

The Chicks4FreeID dataset contains top-down view images of individually segmented and annotated113

chickens, with some images also featuring roosters and ducks. Each image is accompanied by a114

color-coded semantic segmentation mask that classifies pixel values by animal category (chicken,115

rooster, duck) and background, as well as binary segmentation mask(s) for the animal instance(s)116

depicted. Additionally, the dataset includes preprocessed cut-out crops (detailed in Section 3.5) of117

the respective animal instances. Figure 2 gives a first overview of the dataset.118

Images Preprocessed cut-out crops
for re-identification

Instance 
segmentation

Masks Annotations
Animal category 
chicken, rooster, duck
Identity 
54 unique names
Coop 
1-11 
Visibility rating 
best, good, bad

Semantic 
segmentation

Figure 2: Dataset overview.
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3.2 Collection119

Various coops of private households were visited to photograph chickens. Among these coops, two120

additionally accommodate a rooster each, while another houses two ducks. A total of 677 images121

were captured using two similar models of cameras: the “Sony CyberShot DSC-RX100 VI” and the122

“Sony CyberShot DSC-RX100 I”. The resolution of the images stands at 3648x5472 pixels. Every123

image includes at least one chicken, ensuring no images without chickens are part of the dataset. It124

was collected over the span of one year, however all images of a coop were shot within one day. In125

other words, all photos of a given individual were taken on the same day. The images were captured126

from a top-down view perspective, aiming to capture the plumage. The dataset is not limited to a127

single breed of chicken, ensuring a certain level of variability.128

3.3 Annotation129

We utilized Labelbox [85] under a free educational license for manual data annotation.130

Instances and background For each animal instance appearing within an image, a segmentation131

was meticulously hand-crafted by a human annotator. No AI has been used during the annotation132

process to ensure high-quality, nearly pixel-perfect instance masks. The instance masks include133

the comb, head, beak, and plumage. Feet were excluded as rings could give away the identity.134

Feet and scattered feathers are considered part of the background, along with any visible objects or135

living beings that are not chickens, roosters, or ducks. Compared to conventional bounding boxes,136

instance masks offer the advantage of better supporting the subsequent re-identification process.137

The background can be easily removed as it might contain unwanted clues about the identity of the138

chickens. Furthermore, the provided masks render the dataset well-suited for instance segmentation139

tasks as well.140

Animal categories Each instance of an animal was assigned to one of three animal categories.141

These are “chicken”, “rooster”, and “duck”. Roosters and especially ducks serve as exceptions within142

the predominantly chicken-based collection. This characteristic potentially positions the dataset as a143

resource for anomaly detection as well.144

Identities and coops The identities of the subjects were meticulously studied prior to photography,145

closely monitored throughout the image capture process, and ultimately assigned by a human annota-146

tor. The ground truth annotation was performed without the use of any algorithm. In cases where the147

human annotator could not assign an identity, the instance was labeled as identity “Unknown”. It is148

essential to clarify that the label “Unknown” does not imply the presence of a new individual. Instead,149

it represents an unidentified individual from the closed set, more precisely, from the annotated coop.150

Each image contains one or more chickens, all of which are individually identified by their unique151

names. Roosters and ducks are each also uniquely named. Furthermore, each instance is explicitly152

annotated to indicate the specific coop to which it belongs.153

Visibility rating Acknowledging varying visibility of the subjects (chickens, roosters, ducks) within154

the images, each appearance has been manually assigned a visibility rating, categorized as either155

“bad”, “good”, or “best”. The “best” rating includes segmentation instances that fully display the156

subject from the desired top-down perspective, and those where only an insignificant part is missing,157

such as the very tip of the tail feathers. Instances that include only small parts of the subject and on158

which the subject is difficult to recognize fall under the “bad” rating. All remaining segmentation159

instances, that do not qualify as “bad” or “best”, are rated as “good”.160

3.4 Composition161

The dataset comprises a collection of 677 images, featuring a total of 50 distinct chicken, 2 rooster,162

and 2 duck identities distributed across 11 different coops. A total of 1270 instances were obtained163

by segmenting 1215 appearances (instances) of chickens, alongside 15 roosters and 40 ducks.164
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Each instance is of a certain animal category (“chicken”, “rooster”, “duck”) and was assigned165

the corresponding coop (1-11), visibility (“best”, “good”, “bad”) and identity (1 of 54 names or166

“Unknown”). It is important to mention that no “Unknown” instances are present in the “best” or167

“good” subset. The ground truth identity for all instances in these subsets is, therefore, known. Figure168

3 illustrates the number of instances for each individual, as well as the visibility rating of the instances.169

It starts with the individual with the most instances in the “best” subset and is arranged in descending170

order. The most represented chicken in the “best” subset is Mirmir with 27 instances, whereas Isolde171

is the least represented chicken with 4 instances.172
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Figure 3: Visibility distributions for all instances of each individual. Ducks and roosters are marked
with an asterisk (*).

3.5 Preprocessing173

The following steps describe the preprocessing procedure to obtain the cut-out crops for the re-174

identification task. For all individuals captured in an image, a bounding box is created based on the175

instance masks. In the first step, both the image and the mask are cropped (to the area of interest176

contained in the bounding box) to focus solely on the individual (see Figure 4: Step 1). The cropped177

mask is then used to remove the background from the cropped image (Step 2). Finally, the resulting178

image is adjusted to a square shape for ease of use and consistency (Step 3). The resulting resolutions179

remain as is, with no resizing taking place.180

Step 1 Step 2 Step 3

Figure 4: Data preprocessing pipeline for subsequent re-identification.
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4 Experiments181

4.1 Dataset, split and augmentation182

For the closed set re-identification experiments, we utilize preprocessed cut-out crops as described in183

Section 3.5. To focus solely on all 50 chicken identities, the four identities of ducks and roosters were184

excluded. By removing instances of visibility level “good” and “bad”, we ensure that only instances185

with “best” visibility are included. The utilized “best” subset does not contain any “Unknown”186

instances. The number of chicken instances contained in the “best” subset is 793.187

The employed data is split into 630 train pairs and 163 test pairs of cut-out crops and the assigned188

identities. To ensure that the testing set does not introduce any new identities, we include all possible189

identities in the training set. For a fair evaluation on all identities, the train/test split is stratified, i.e.,190

each identity has the same fixed percentage of its cut-out crops allocated to the test set. Consequently,191

identities with a higher total number of crops will contribute more to the test set compared to identities192

with fewer crops, ensuring proportional representation across all identities. The corresponding subset193

on Hugging Face is “chicken-re-id-best-visibility”.194

To avoid data leakage, it is important to apply data augmentation only after a train-test split is195

established. This ensures that augmented versions of the same original image do not appear in196

both sets. We dynamically apply the following data augmentation during training on the “chicken-197

re-id-best-visibility” subset: rotation, flip, RandAugment [86], and random color-jitter. No data198

augmentation is applied to the test set.199

4.2 Baseline approaches200

To establish a baseline for the closed set re-identification task, we test three different approaches on201

our dataset. Each approach involves two steps. First, a feature extractor generates embeddings for the202

cut-out crops. Second, the resulting feature vectors (embeddings) are then passed to a classifier to203

ultimately assign the identities. We test each approach with a variation of two classifiers: k-Nearest204

Neighbor (k-NN) and a linear classifier adapted from the Lightly library [87] (MIT License). All205

feature extractors were fed with images at an input resolution of 384 x 384 pixels and each approach206

was run three times. The baseline results were obtained on 64GB shared memory Apple M3 Max207

Chips (2023) running PyTorch 2.3.0 with MPS acceleration.208

MegaDescriptor The employed MegaDescriptor-L-384 [35] (CC BY-NC 4.0 license [88]) is a209

state-of-the-art feature extractor for animal re-identification from the WildlifeDatasets toolkit (MIT210

license). It is based on the Swin Transformer architecture [89] and was pretrained on diverse datasets211

featuring various animal species. However, it has not been trained on chicken data and we did not212

fine-tune it either. A notable hyperparameter choice made by the MegaDescriptor-L384 authors is the213

ArcFace [90] loss function, which aims to aid in building meaningful embeddings. We selected the214

frozen MegaDescriptor-L-384 model over DINOv2 [91] and CLIP [92] due to its better performance215

on unseen animal domains, as reported by the authors. Their evaluation included cattle as an example216

of an unseen domain [35].217

Swin Transformer We utilize the swin_large_patch4_window12_384 architecture [89] as imple-218

mented in [93]. We train it from scratch on the Chicks4FreeID dataset in a fully supervised manner.219

The training process and hyperparameters mirror those used to build the MegaDescriptor-L384, which220

also employs the same Swin Transformer architecture. Unlike the frozen MegaDescriptor-L384,221

which was trained on a variety of animal datasets, we now train the Swin architecture exclusively on222

our own dataset. The Swin Transformer itself is based on the Vision Transformer architecture.223

Vision Transformer Finally, we employ the ViT-B/16 [94] architecture, as implemented in [95],224

and train it on the Chicks4FreeID dataset in a fully supervised manner with a simple cross-entropy loss.225

We adopted the effective hyperparameter settings as used in Lightly’s benchmarks [87], including226

optimizer and scheduler choices, for our experiments. The difference between the Swin Transformer227
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and the Vision Transformer lies in how they handle image data; the Swin Transformer uses a228

hierarchical structure with shifted windows to capture local and global features, while the Vision229

Transformer treats images as sequences of patches, relying on self-attention mechanisms throughout.230

4.3 Evaluation231

For all baselines, we provide three of the most common metrics for closed set animal re-identification.232

These are: mAP (mean Average Precision), Top-1 accuracy (ratio of correct predictions versus total233

predictions), and Top-5 accuracy (accuracy of the correct class being within the top 5 predictions) as234

implemented in TorchMetrics [96].235

4.4 Baseline results and discussion236

The results for all baseline approaches and the respective variations are summarized in Table 2.237

Overall, the experiments yield good results but still leave room for improvement.238

Table 2: Baseline results for the closed set re-identification experiments. The highest scores for each
metric are in blue.

Feature extractor Training Epochs Classifier mAP Top-1 Top-5

MegaDescriptor [35] pretrained, frozen - k-NN 0.649 ± 0.044 0.709 ± 0.026 0.924 ± 0.027
MegaDescriptor [35] pretrained, frozen - linear 0.935 ± 0.005 0.883 ± 0.009 0.985 ± 0.003
Swin Transformer [89] from scratch 200 k-NN 0.837 ± 0.062 0.881 ± 0.041 0.983 ± 0.010
Swin Transformer [89] from scratch 200 linear 0.963 ± 0.022 0.922 ± 0.042 0.987 ± 0.012
Vision Transformer [94] from scratch 200 k-NN 0.893 ± 0.010 0.923 ± 0.005 0.985 ± 0.019
Vision Transformer [94] from scratch 200 linear 0.976 ± 0.007 0.928 ± 0.002 0.990 ± 0.012

Both the Swin Transformer and Vision Transformer architectures, when trained from scratch, outper-239

formed the frozen MegaDescriptor model. Additionally, linear classifiers consistently outperformed240

k-NN classifiers. This indicates that performance scales with the level of supervision, which aligns241

with expectations.242

The gap between the MegaDescriptor, a model from a different domain (trained on different species),243

and those trained from scratch on the target species suggests that the Chicks4FreeID dataset likely244

has unique characteristics not present in the datasets used to pretrain the MegaDescriptor. Thus, our245

dataset could enhance the underlying data distribution used to train general animal re-identification246

models like the MegaDescriptor.247

Additionally, there is a small improvement in scores between the Vision Transformer over the Swin248

architecture, which was used to train the MegaDescriptor. The slightly better performance of the249

Vision Transformer might be due to two reasons: First, we observed a more stable training process for250

the Vision Transformer (cross-entropy loss) than for the Swin Transformer (ArcFace loss). Therefore251

we believe that training a more straightforward approach allows for easier convergence on a small252

dataset like ours. Second, we replaced the standard classification head of the Vision Transformer253

with a simple linear layer. Since a simple linear layer has limited discriminative power, achieving254

good overall performance suggests the presence of good embeddings, which was confirmed by the255

embedding evaluation using k-NN.256

5 Conclusion257

5.1 Findings258

The Chicks4FreeID benchmark dataset was introduced. To the best of our knowledge, it is the very259

first publicly available dataset for chicken re-identification. The dataset is well-annotated and released260

under the relatively unrestrictive CC BY 4.0 license. It contains 1270 instance annotations of 54261

individuals - 50 individuals and 1215 of the instances are chicken. The 677 images, which depict262

mainly chickens from 11 different coops and various breeds, were individually captured rather than263
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derived from video. The dataset was created systematically, with manual annotation and instance-to-264

individual assignments based on expert knowledge, without the use of automated methods, ensuring265

reliable ground truth annotations. Instead of providing merely bounding boxes that might include266

parts of the background or other individuals, we offer preprocessed cut-out crops based on precise267

segmentations of the instances. While the main use case of the dataset is the re-identification of268

chickens, it also supports semantic and instance segmentation. In addition to instance and semantic269

segmentation masks, information on identity, animal category, and coop, the dataset also includes270

a visibility rating of the instances, accounting for occlusions. For the task of closed set chicken271

re-identification, we established a baseline on the dataset, achieving Top-1 accuracy scores up to272

0.928, Top-5 accuracy scores up to 0.990, and mAP scores up to 0.976 with the Vision Transformer.273

The experiments suggest that the introduced dataset could be a valuable resource for training more274

robust (general) animal re-identification systems.275

5.2 Limitations276

One clear limitation of the dataset is its size. With 1215 instance annotations of 50 chicken individuals,277

it is comparatively small. There also exists an imbalance within the classes (individuals), with the278

number of instances ranging from 4 to 27 in the "best" visibility subset. For chicken breeds with279

minimal inter-individual variability (e.g., uniform plumage), having more individuals and more280

instances of each individual would likely aid in re-identification. Additionally, all images of a given281

chicken were taken on the same day, so changes in appearance over time were not captured. An open282

question is the dataset’s applicability to industrial farming, where thousands of chickens of a single283

breed are typically kept. A specialized dataset for such breeds could potentially be more suitable for284

commercial applications. Furthermore, the chicken breeds included in the Chicks4FreeID dataset are285

not exhaustive, despite their variability. The specific breeds were not annotated because they could286

not always be accurately determined.287

5.3 Future work288

To further enhance the Chicks4FreeID dataset and address its current limitations, future work could289

focus on several promising directions. Expanding the dataset to include a larger number of individuals290

and an even broader range of breeds would enhance its robustness and generalizability. Enriching291

the metadata with detailed breed-specific information could provide additional context. Methods292

to automatically create new labeled samples from existing data using generative AI, as proposed293

in [97], could be evaluated for their potential to aid in expanding the dataset. To capture changes294

in appearance over time due to factors such as molting, growth, and environmental conditions,295

individuals from the dataset may be photographed again, provided they are still alive. Similarly, new296

individuals added to the dataset could be photographed repeatedly over time. The versioning system297

of the dataset facilitates potential expansions and continuous improvements, ensuring its ongoing298

relevance and applicability for future research. However, the challenge of long-term data collection299

persists, as free-range chickens often fall prey to wild predators (e.g., foxes or raccoons). Another300

interesting direction for future work would be the investigation of models trained on the dataset and301

their applicability to industrial farming settings with crowded conditions and chickens of a single302

breed. On a final note, we envision the Chicks4FreeID dataset being utilized by established and303

aspiring researchers alike, i.e., in future research, contributing to the development of chicken-specific304

and multi-species re-identification systems, as well as being used for practicing purposes.305
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