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Abstract

Meta-learning has been demonstrated to be useful to improve the sampling effi-1

ciency of Bayesian optimization (BO) and surrogate-assisted evolutionary algo-2

rithms (SAEAs) when solving expensive optimization problems (EOPs). However,3

existing studies focuses on only single-objective optimization, leaving other ex-4

pensive optimization scenarios unconsidered. We propose a generalized few-shot5

evolutionary optimization (FSEO) framework and focus on its performance on two6

common expensive optimization scenarios: multi-objective EOPs (EMOPs) and7

constrained EOPs (ECOPs). We develop a novel meta-learning modeling approach8

to train surrogates for our FSEO framework, an accuracy-based update strategy is9

designed to adapt surrogates during the optimization process. The surrogates in10

FSEO framework combines neural network with Gaussian Processes (GPs), their11

network parameters and some parameters of GPs represent useful experience and12

are meta-learned across related optimization tasks, the remaining GPs parameters13

are task-specific parameters that represent unique features of the target task. We14

demonstrate that our FSEO framework is able to improve sampling efficiency on15

both EMOP and ECOP. Empirical conclusions are made to guide the application of16

our FSEO framework.17

1 Introduction18

Expensive optimization problems (EOPs) aim to find as good as possible solutions within a budget19

of limited solution evaluations. Conventional Bayesian optimization (BO) and surrogate-assisted20

evolutionary algorithms (SAEAs) have been widely used to solve EOPs, but they train surrogate21

models from the scratch. To further improve the sampling efficiency and optimization performance,22

many efforts have been made to pre-train surrogates with the prior experience gain from related23

optimization tasks, resulting in experience-based optimization algorithms [1, 21, 36, 35].24

This work considers solving EOPs on the context of few-shot problems [5, 41], where plenty of25

expensive related tasks are available and each of them can provide a small dataset for experience26

learning. Therefore, many experience-based optimization approaches such as multi-tasking optimiza-27

tion [43, 2, 47], transfer optimization [35, 17, 16] are not considered as they cannot learn experience28

from small related tasks (A discussion is available in Appendix A). In comparison, meta-learning29

[14] has been proved to be powerful in solving few-shot problems, leading to a new subcategory of30

experience-based optimization, namely few-shot optimization (FSO) [46].31

Existing studies on FSO are mainly few-shot Bayesian optimization (FSBO) where meta-learning32

approaches are combined with BO to solve EOPs with only one objective. In this paper, we propose33

a generalized few-shot evolutionary optimization (FSEO) framework to address EOPs from the34
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perspective of SAEAs and consider two expensive optimization scenarios which have been limited35

studied: multi-objective EOPs (EMOPs) and constrained EOPs (ECOPs). Major contributions are36

summarized as follows.37

• A novel meta-learning method, namely Meta Deep Kernel Learning (MDKL), is developed38

to gain prior experience from related expensive tasks. Our model architecture and parameter39

designs make it possible to generate a regression-based surrogate on the prior experience40

and then continually adapt the surrogate to approximate the target task.41

• We propose a FSEO framework to solve EOPs from the perspective of SAEAs. FSEO42

framework is applicable to regression-based SAEAs since FSEO embed our meta-learning43

models in these SAEAs as their surrogates. In addition, an update strategy is designed to44

adapt surrogates constantly during the optimization. Note that our FSEO framework is a45

general framework but we focus on its performance on EMOPs and ECOPs in this paper.46

• Experiments are conducted on EMOPs and ECOPs to show our FSEO framework is effec-47

tive. Our comprehensive ablation studies discover the influence of some factors on FSEO48

performance and provide empirical guidance to the application of FSEO framework.49

2 Related Work50

Experience-based optimization can be divided into several subcategories according to the techniques51

of learning prior experience from related tasks. A detailed classification and discussion on these52

subcategories is available in Appendix A. This subsection focuses on related work on FSO.53

FSO studies in the literature can be classified based on their model architectures. Most studies meta-54

learn parameters for Gaussian Processes (GPs) [44], namely FSBO or Meta Bayesian Optimization55

(MBO) [32, 42, 26, 38]. In addition, [23] meta-learns with transformer neural processes and [46, 6]56

meta-learn parameters for the architecture of deep kernel learning (DKL) [45]. The MDKL model in57

our FSEO belongs to the last category as its model architecture is relevant to DKL.58

Our work is different from existing studies in three points: Firstly, many studies [46] use existing59

meta-learning models [27] as their surrogates. No further adaptations are made to these surrogates60

during optimization since they are not originally designed for optimization. In comparison, we try to61

develop a meta-learning model, MDKL, for optimization purpose. MDKL has explicit task-specific62

parameters, which allows continually model adaptations during the optimization. Secondly, existing63

work investigated only global optimization, leaving other optimization scenarios such as EMOP and64

ECOP still awaiting for investigation. As our MDKL is designed for optimization and is capable of65

continually adaptation, we pay attention on EMOPs and ECOPs which require more effective models66

than global optimization. Our work widens the scope of existing FSO research and it focuses on the67

perspective of SAEAs instead of BO. Lastly, in-depth ablation studies are lacking in the literature,68

making it unclear which factors affect the performance of FSO. Our extensive ablation studies fill69

this gap and we conclude some empirical rules to improve the performance of FSO.70

3 Background71

This section gives preliminaries about meta-learning and DKL. The former is the method of experience72

learning, the latter is the underlying structure of experience representation.73

3.1 Meta-Learning in Few-Shot Problems74

In the context of few-shot problems, we have plenty of related tasks, each task T contributes a couple75

of small datasets D = {(S,Q)}, namely support dataset S and query dataset Q, respectively. After76

learning from datasets of random related tasks, a support set S∗ from new unseen task T∗ is given77

and one is asked to estimate the labels or values of a query set Q∗. The problem is called 1-shot or78

5-shot when only 1 data point or 5 data points are provided in S∗. A comprehensive definition of79

few-shot problems is available in [5, 41].80

Meta-learning methods have been widely used to solve few-shot problems [41]. They learn domain-81

specific features that are shared among related tasks as experience, such experience is used to82

understand and interpret the data collected from new tasks encountered in the future.83
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3.2 Deep Kernel Learning (DKL)84

DKL aims at constructing kernels that encapsulate the expressive power of deep architectures for GPs.85

To create expressive and scalable closed form covariance kernels, DKL combines the non-parametric86

flexibility of kernel methods and the structural properties of deep neural networks. In practice, a deep87

kernel k(xi, xj |γ) transforms the inputs x of a base kernel k(xi, xj |θ) through a non-linear mapping88

given by a deep architecture φ(x|w,b):89

k(xi, xj |γ) = k(φ(xi|w,b), φ(xj |w,b)|θ), (1)

where θ and (w,b) are parameter vectors of the base kernel and the deep architecture, respectively.90

γ = {θ,w,b} is the set of all parameters in this deep kernel. Note that in DKL, all parameters γ of a91

deep kernel k(xi, xj |γ) are learned jointly by using the log marginal likelihood function of GPs as a92

loss function. Such a jointly learning strategy has been shown to make a DKL algorithm outperform93

a combination of a deep neural network and a GP model, where a trained GP model is applied to the94

output layer of a trained deep neural network [45].95

3.3 Meta-Learning on DKL96

An important distinction between DKL algorithms and the applications of meta-learning to DKL is97

that DKL algorithms learn their deep kernels from single tasks instead of collections of related tasks.98

Such a difference alleviates two drawbacks of single task DKL [39]: First, the scalability of deep99

kernels is no longer an issue as datasets in meta-learning are small. Second, the risk of overfitting is100

decreased since diverse data points are sampled across tasks.101

4 Few-Shot Evolutionary Optimization (FSEO) Framework102

In this paper, T∗ denotes the target optimization task, and plenty of small datasets Di sampled from103

related tasks Ti are available for experience learning. A complete list of notations is available at the104

beginning of Appendix.105

4.1 Overall Working Mechanism106

Figure 1: Diagram of our FSEO framework.

As illustrated in Fig. 1, all modules covering the optimization of target task T∗ are included in a107

grey block. The modules beyond the grey block are associated with related tasks Ti and experience108

learning, which distinguishes our FSEO framework from conventional SAEAs and BO. The MDKL109

surrogate modeling method consists of two procedures: meta-learning procedure and adaptation110

procedure. The former learns prior experience from Ti, the latter uses experience to adapt surrogates111

to fit T∗. The framework of FSEO is depicted in Alg. 1, it consists of the following major steps.112

1. Experience learning: Before expensive optimization starts, a meta-learning procedure is113

conducted to train task-independent parameters γe for MDKL surrogates (line 2). Nm114

datasets {Dm1, . . . , DmNm} collected from N related tasks {T1, . . . , TN} are used to train115

γe. γe is the experience that represents the domain-specific features of related tasks.116

2. Initialize surrogates with experience: Optimization starts when a target optimization task117

T∗ is given. An initial dataset S∗ is sampled (line 3) to adapt task-specific parameters γ∗ on118

the basis of experience γe. After that, MDKL surrogates are updated (line 4).119
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3. Reproduction: MDKL surrogates h(γ∗) are combined with a SAEA optimizer Opt to120

search for optimal solution(s) x∗ on h(γ∗) (line 7). This is implemented by replacing the121

original (regression-based) surrogates in a SAEA with h(γ∗).122

4. Update archive and surrogates: New optimal solution(s) x∗ is evaluated on target task T∗123

(line 8). The evaluated solutions will be added to dataset S∗ (line 9) which serves as an124

archive. Then, surrogate adaptation is triggered, surrogates h(γ∗) are updated (line 10).125

5. Stop criterion: Once the evaluation budget has run out, the evolutionary optimization will126

be terminated and the optimal solutions in dataset S∗ will be outputted. Otherwise, the127

algorithm goes back to step 3.128

Algorithm 1 FSEO Framework.

1: Input: Di: Datasets collected from related tasks Ti, i={1, . . . , N}; Nm: Number of subsets Dm

for meta-learning; |Dm|: Size of subsets Dm. |Dm| ≤ |Di| due to Dm ⊆ Di; Batch size B;
Surrogate learning rates α, β; Target task T∗; A SAEA optimizer Opt; Fitness evaluation budget
FEmax.

2: Experience γe ←Meta-learning(Di, Nm, |Dm|, B, α). /∗Alg. 2.∗/
3: S∗ ← Sampling 1d solutions from T∗.
4: h(γ∗)← Adaptation(γe, S∗, β). /∗Initialize surrogate.∗/
5: Set evaluation counter FE = |S∗|.
6: while FE < FEmax do
7: Candidate solution(s) x∗ ← Surrogate-assisted optimization (Opt, h(γ∗)).
8: f(x∗)← Evaluate x∗ on T∗.
9: S∗ ← S∗ ∪ {(x∗, f(x∗))}.

10: h(γ∗)← Update(γ∗, S∗, β). /∗Alg. 4.∗/
11: Update FE.
12: end while
13: Output: Optimal solutions in S∗.

4.2 Learning and Using Experience by MDKL129

In MDKL, the domain-specific features of related tasks are used as experience, which are represented130

by the task-independent parameters γe learned across related tasks. To make MDKL more capable of131

expressing complex domain-specific features, the base kernel k(xi, xj | θ) in GP is combined with a132

neural network φ(w,b) to construct a deep kernel (see Eq.(1)). The modeling of a MDKL model133

consists of two procedures: meta-learning procedure and adaptation procedure. To make a clear134

illustration, we introduce frameworks of two procedures and then explain them in detail.135

Meta-learning procedure: Learning experience136

Our MDKL model uses the kernel in [18] as its base kernel:137

k(xi, xj |θ,p) = exp(−
d∑

k=1

θk|xik − x
j
k|

pk). (2)

Therefore, the deep kernel will be:138

k(xi, xj |γ) = exp(−
d∑

k=1

θk|φ(xik)− φ(xjk)|pk), (3)

where γ = {w,b,θ,p} is a set of deep kernel parameters. φ,w and b are neural network and its139

parameters (see Eq.(1)). Details about alternative base kernels are available in [44].140

The aim of meta-learning procedure is to learn experience γe from related tasks {T1, . . . , TN},141

including neural network parameters w,b, and task-independent base kernel parameters θe,pe. The142

pseudo-code of meta-learning procedure is given in Alg. 2. Ideally, the experience γe is learned from143

plenty of (Nm) small datasets Dm collected from different related tasks. However, in practice, the144

number of available related tasks N may be much smaller than Nm. Hence, the meta-learning is145

conducted gradually over U update iterations (line 3). During each update iteration, a small batch of146
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related tasks contribute
B small datasets
{Dm1, . . . , DmB} for
meta-learning purpose
(lines 5 and 7). Note that
if N < Nm, a related task
Ti can be used multiple
times in the meta-learning
procedure.
For a given dataset Dmi,
we denote θi = θe + ∆θi

and pi = pe + ∆pi as
the task-specific kernel pa-
rameters, where ∆θi,∆pi

are the distance we need
to move from the task-
independent parameters to
the task-specific parame-
ters (line 9). The loss func-
tion L of MDKL is the like-
lihood function defined as
follows [18]:

Algorithm 2 Meta-learning(Di, Nm, |Dm|, B, α)

1: Input: Di: Datasets collected from related tasks Ti, i={1, . . . , N}; Nm:
Number of subsets Dm for meta-learning; |Dm|: Size of subsets Dm.
|Dm| ≤ |Di| due to Dm ⊆ Di; Batch size B; Learning rate for priors α.

2: Randomly initialize w,b,θe,pe.
3: Set the number of update iterations U = Nm/B.
4: for j = 1 to U do
5: {D′1, . . . , D′B} ← Randomly select a batch of datasets from

{D1, . . . , DN}.
6: for all D′i in the batch do
7: Dmi ← A subset of size |Dm| from D′i.
8: Initialize task-specific increment ∆θi,∆pi.
9: Compute task-specific parameters: θi = θe + ∆θi,pi = pe + ∆pi.

10: Obtain deep kernel k(xi, xj |γ) based GP: h(γ), where γ =
{w,b,θi,pi} (Eq.(3)).

11: Compute the loss function L(Dmi, h(γ)) (Eq.(4)).
12: end for
13: Update w,b,θe,pe via gradient descent: α5 L(Dmi, h(γ)) (Eq.(5)).
14: end for
15: Output: Task-independent parameters: γe = {w,b,θe,pe}.

147

1

(2π)n/2(σ2)n/2|R|1/2
exp[− (y− 1µ)T R−1(y− 1µ)

2σ2
], (4)

where |R| is the determinant of the correlation matrix R, each element in the matrix is computed148

through Eq.(3). y is the fitness vector of Dmi. µ and σ2 are the mean and the variance of the prior149

distribution, respectively. Experience γe = {w,b,θe,pe} is updated by gradient descent (line 13),150

take θe as an example:151

θe ← θe − α

B

B∑
i=1

5θeL(Dmi, h(γ)). (5)

After U iterations, γe has been trained sufficiently by Nm small datasets Dm and will be used in152

target task T∗ later.153

Adaptation procedure: Using experience154

The meta-learning of experience γe enables MDKL to handle a family of related tasks in general. To155

approximate a specific task T∗ well, surrogate h(γe) needs to adapt task-specific increments ∆θ∗156

and ∆p∗ in the way described in Alg. 3. A diagram of the deep kernel implemented in our MDKL157

model is illustrated in Fig. 2.158

Algorithm 3 Adaptation(γ∗, S∗, β)

1: Input: Current surrogate parameters γ∗; A dataset S∗ sam-
pled from target task T∗ (Archive); Learning rate for adap-
tation β.

2: if γ∗ == γe then
3: Initialize task-specific increments ∆θ∗,∆p∗.
4: Compute task-specific parameters: θ∗ = θe + ∆θ∗,

p∗ = pe + ∆p∗.
5: Obtain deep kernel k(xi, xj |γ∗) based GP: h(γ∗), where

γ∗ = {w,b,θ∗,p∗} (Eq.(3)).
6: end if
7: Compute the loss function L(S∗, h(γ∗)) (Eq.(4)).
8: Update ∆θ∗,∆p∗ using gradient descent: β5
L(S∗, h(γ∗)).

9: Output: Adapted MDKL h(γ∗).

Figure 2: Diagram of our deep
kernel implementation. The solid
lines depict the training process,
the dotted lines depict the infer-
ence process. Q∗ denotes query
samples to be evaluated on our
surrogates.

159
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Surrogate prediction. Due to the nature of a GP, when predicting the fitness of a solution x∗, a160

MDKL surrogate produces a predictive Gaussian distribution N (ŷ(x∗), ŝ2(x∗)) , the predicted mean161

ŷ(x∗) and covariance ŝ2(x∗) are specified as [18]:162

ŷ(x∗) = µ+ r′R−1(y− 1µ), (6)
163

ŝ2(x∗) = σ2(1− r′R−1r), (7)

where r is a correlation vector consisting of covariances between x∗ and S∗, other variables are164

explained in Eq.(4).165

4.3 Surrogate Update Strategy166

In this subsection, we describe the update strategy in our FSEO framework. To properly integrate167

experience and data from T∗, our update strategy is designed to determine whether a MDKL surrogate168

should be adapted in the current iteration or not, ensuring an optimal update frequency of surrogates.169

As illustrated in Alg. 4, the surrogate update starts
when a new optimal solution(s) has been evaluated on
expensive functions and an updated archive S∗ is avail-
able. For a given surrogate h(γ∗), its mean squared
error (MSE) on S∗ is selected as the update criterion:
If the MSE after an adaptation e1 (line 4) is larger than
the MSE without an adaptation e0 (line 2), then the sur-
rogate will roll back to the status before the adaptation.
This indicates the surrogate update has been refused
and h(γ∗) will not be adapted in the current iteration.
Otherwise, the adapted surrogate will be chosen (line
6). Note that no matter whether surrogate adaptations
are accepted or refused, the resulting surrogates will
be treated as updated surrogates, which are employed
to assist the SAEA optimizer in the next iteration.

Algorithm 4 Update(γ∗, S∗, β)

1: Input:
Current surrogate parameters γ∗;
Updated archive S∗;
Learning rate for further adaptations β.

2: e0 ←MSE(h(γ∗), S∗).
3: h(γ′)← Adaptation(γ∗, S∗, β).
/∗Temporary surrogate, Alg. 3.∗/

4: e1 ←MSE(h(γ′), S∗).
5: if e0 > e1 then
6: update γ∗ = γ′, obtain new h(γ∗).
7: end if
8: Output: Surrogate h(γ∗).

170

5 Computational Studies171

Our computational studies can be divided into three parts: (1). Appendix D evaluates the effectiveness172

of learning experience through a synthetic problem and a real-world engine modeling problem. (2).173

Sections 5.1 to 5.2 use EMOPs as examples to investigate the performance of our FSEO framework174

in depth. Empirical evidence is provided to guide the use of our FSEO framework. (3). Section175

5.3 investigates the performance of our FSEO framework on a real-world ECOP. The source code176

is available online1 For all meta-learning methods used in our experiments, their basic setups are177

listed in Table 1. The neural network structure is suggested by [10, 27], and the learning rates are the178

default values that have been widely used in many meta-learning methods [13, 27].179

5.1 Performance on EMOPs180

In the following subsections, we aim to demonstrate the effectiveness of our FSEO framework. The181

experiment in this subsection is designed to answer the question below: With the experience learned182

from related tasks, can our FSEO framework helps a SAEA to save 9d solutions without a loss of183

optimization performance?184

The computational study is conducted on the DTLZ test problems [8]. All the DTLZ problems have185

d = 10 decision variables and 3 objectives, as the setups that have been widely used in [25, 33].186

The details of generating DTLZ variants (related tasks) are provided in Appendix C. We test our187

FSEO framework using an instantiation on MOEA/D-EGO, resulting MOEA/D-FS. Details of the188

comparison algorithms are given in Appendix E.1.189

1A link will be disclosed here once the paper is accepted.
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Table 1: Parameter setups for meta-learning
methods.

Module Parameter Value
Meta-learning Number of meta-learning datasets Nm 20000

Number of update iterations U 2000
Batch size B 10

Neural network Number of hidden layers 2
Number of units in each hidden layer 40
Learning rates α, β 0.001, 0.001
Activation function ReLU

Table 2: Parameter setups for DTLZ optimiza-
tion.

Parameter MOEA/D-FS Comparisons
Number of related tasks N 20000 (Nm in Table 1) -
Size of datasets from related tasks |Di| 20 (2d) -
Size of datasets for meta-learning |Dm| |Di| -
Evaluations for initialization 10 (1d) 100 (10d)
Evaluations for further optimization 50 50
Total evaluations 60 150

5.1.1 Experimental setups190

The parameter setups for this multi-objective optimization experiment are listed in Table 2. During191

the optimization process, an initial dataset S∗ is sampled using Latin-Hypercube Sampling (LHS)192

method [24], then extra evaluations are conducted until the evaluation budget has run out. Note that193

we aim to use related tasks to save 9d evaluations without a loss of SAEA optimization performance.194

Hence, the total evaluation budgets for MOEA/D-FS and comparison algorithms are different.195

Since the test problems have 3 objectives, we employ inverted generational distance plus (IGD+) [15]196

as our performance indicator, where smaller IGD+ values indicate better optimization results. 5000197

reference points are generated for computing IGD+ values, as suggested in [25]. More results in IGD198

[4] and HV [55] metrics are reported in Appendix E.3.199

5.1.2 Results and analysis200

The statistical test results are reported in Fig. 3 and Appendix E.2 (Table 5). It can be seen from Fig. 3201

that, although 90 fewer evaluations are used in surrogate initialization, MOEA/D-FS can still achieve202

competitive or even smaller IGD+ values than MOEA/D-EGO on all DTLZ problems except for203

DTLZ7. In addition, the IGD+ values obtained by MOEA/D-FS drop rapidly, especially during the204

first few evaluations, implying the experience learned from DTLZ variants are effective. Therefore,205

in most situations, our FSEO framework is able to assist MOEA/D-EGO in reaching competitive206

or even better optimization results, with the number of evaluations used for surrogate initialization207

reduced from 10d to only 1d.

Figure 3: IGD+ curves averaged over 30 runs on the DTLZ problems. Solid lines are mean values,
while shadows are error regions. Upper: DTLZ1, DTLZ2, DTLZ3, DTLZ4. Lower: DTLZ5,
DTLZ6, DTLZ7. MOEA/D-FSs and comparison algorithms initialize their surrogates with 10, 100
samples, respectively. X-axis denotes the extra 50 evaluations allowed in the further optimization.
Note that ‘FS(out)’ indicates the target task is excluded from the range of related tasks during the
meta-learning procedure) (see Appendix F).

208

MOEA/D-FS is less effective on DTLZ7 than on other DTLZ problems, which might be attributed to209

the discontinuity of the Pareto front on DTLZ7. Note that MOEA/D-FS learns experience from small210

datasets such as Dm and S∗. The solutions in these small datasets are sampled at random, hence, the211

7



probability of having optimal solutions being sampled is small. However, it is difficult to learn the212

discontinuity of the Pareto front from the sampled non-optimal solutions. As a result, the knowledge213

of ‘there are four discrete optimal regions’ cannot be learned from such small datasets (|Dm| = 20)214

collected from related tasks. The performance analysis between MOEA/D-FS and other comparison215

algorithms are available in Appendix E.2.216

5.1.3 More comparison experiments217

We also compared the performance of our FSEO framework when only 10 evaluations are used for218

surrogate initialization for comparison algorithms. The results are reported in Table 8 in Appendix219

E.4. In addition, the performance of our FSEO framework in the context of extremely expensive220

optimization has been investigated in Appendix H (Table 11 and Fig. 7).221

The question raised at the beginning of this subsection can be answered by the results discussed so222

far. Due to the integration of the experience learned from related tasks (DTLZ variants), although the223

evaluation cost of surrogates initialization has been reduced from 10d to 1d, our FSEO framework is224

still capable of assisting regression-based SAEAs to achieve competitive or even better optimization225

results in most situations.226

5.2 Ablation Studies227

We conduct two ablation studies to investigate the influence of task similarity and that of the dataset228

size used in meta-learning, results and analysis are reported in Appendixes F and G, respectively.229

5.3 Performance on Real-World ECOPs230

The experiments on EMOPs have investigated the performance of our FSEO framework in depth. In231

this subsection, we evaluate our FSEO framework on a real-world gasoline motor engine calibration232

problem, which is an ECOP.233

The calibration problem has 6 adjustable engine parameters, namely the throttle angle, waste gate234

orifice, ignition timing, valve timings, state of injection, and air-fuel-ratio. The calibration aims at235

minimizing the BSFC while satisfying 4 constraints in terms of temperature, pressure, CA50, and236

load simultaneously [53].237

5.3.1 Comparison algorithms238

Since the comparison algorithms in the DTLZ optimization experiments are not designed for handling239

constrained optimization, our comparison is conducted with 3 state-of-the-art constrained optimization240

algorithms used in industry: A variant of EGO designed to handle constrained optimization problems241

(cons_EGO) [53], a GA customized for this calibration problem (adaptiveGA) [53], and a bilevel242

constrained SAEA (SAB-DE) [50]. The settings of the comparison algorithms are the same as243

suggested in the literature. In this experiment, we apply our FSEO framework to cons_EGO and244

investigate its optimization performance. The GP surrogates in cons_EGO are replaced by our MDKL245

surrogates to conduct the comparison, and the resulting algorithm is denoted as cons_FS.246

5.3.2 Experimental setups247

The setup of related tasks (N,Di) is the same as described in Appendix D. In the meta-learning248

procedure, both the support set and the query set contain 6 data points, thus |Dm| = 12. The total249

evaluation budget for all algorithms is set to 60. For adaptiveGA, all evaluations are used in the250

optimization process as it is not a SAEA. For cons_EGO and SAB-DE, 40 samples are used to251

initialize the surrogates and 20 extra evaluations are used in the optimization process. For cons_FS,252

only 6 samples are used to initialize MDKL surrogates, and the remaining evaluations are used for253

further optimization.254

5.3.3 Optimization results and analysis255

The left side and right side of Fig. 4 plot the normalized BSFC results and the number of feasible256

solutions found over the number of used evaluations, respectively. Solid lines are mean lines, while257

shadows are error regions. From the left side of Fig. 4, it can be observed that the minimal BSFC258
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Figure 4: Results of 30 runs on the real-world engine calibration problem, all BSFC values are
normalized. Solid lines are mean values, while shadows are error regions. Left figure shows how
BSFC varies with the number of evaluations. The star markers highlight the results achieved when 20
evaluations are used in the optimization process. Right figure illustrates how the number of feasible
solutions varies with the number of evaluations.

obtained by cons_FS decreases drastically in the first few evaluations, implying that the experience259

learned from related tasks is effective. In comparison, the minimal BSFC obtained by adaptiveGA260

and cons_EGO drops in a relatively slow rate, even though cons_EGO has used 34 more samples261

to initialize its surrogates. The star marker denotes the point at which cons_FS has evaluated 20262

samples after surrogate initialization. It is worth noting that when 20 samples have been evaluated263

in the optimization, cons_FS achieves a smaller BSFC value than cons_EGO. After the star marker,264

the decrease of BSFC becomes slow as cons_FS has reached the optimal region. Therefore, further265

improvement in the normalized BSFC value is not significant and thus hard to be observed. The266

advantages of our FSEO framework can also be observed in constraint handling. In the right side of267

Fig. 4, cons_FS finds more feasible solutions than the 3 comparison algorithms. These results indicate268

that our FSEO framework improves the performance of cons_EGO on both objective function and269

constraint functions. Meanwhile, only 1d evaluations are used to initialize surrogates.270

5.3.4 Discussion on runtime271

It should be noted that real engine performance evaluations on engine facilities are very costly in272

terms of both time and financial budget [49]. Since a single real engine performance evaluation can273

cost several hours [22, 49], the time cost of the meta-learning procedure is negligible as it takes only274

a few minutes. Savings from reduced real engine performance evaluations on engine facilities and the275

reduced development cycle due to our FSEO framework could amount to millions of dollars [49]. our276

FSEO framework is an effective and efficient method to solve this real-world calibration problem.277

6 Conclusion and further work278

Conclusion. In this paper, we present a FSEO framework to address EMOPs and ECOPs from the279

perspective of SAEAs. A novel meta-learning approach MDKL is proposed to learn prior experience280

from related expensive tasks. Our MDKL model is designed for optimization and has explicit281

task-specific parameters, which allows continually update of task-specific parameters during the282

optimization process. Our empirical experiments show that the FSEO framework is able to improve283

the sampling efficiency and thus save expensive evaluations for existing regression-based SAEAs.284

Ablation studies reveal the influence between optimization performance and solutions similarity as285

well as the size of datasets for meta-learning.286

Limitation and further work. The limitations of this work can be summarized as the following287

two points: First, we do not have a mathematical definition of related tasks. Second, the proposed288

framework is currently for regression-based SAEAs only.289
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A Discussion on Experience-based Optimization445

In the past decade, experience-based optimization has attracted much attention as it uses the experience446

gained from other optimization problems to improve the optimization efficiency of target problems,447

which mimics human capabilities of cognitive and knowledge generalization [12]. The optimization448

problems that provide experience or knowledge are regarded as source tasks, while the target449

optimization problems are regarded as target tasks. To obtain useful experience, the tasks that are450

related to target tasks are chosen as source tasks since they usually share domain-specific features451

with target tasks. Diverse experience-based optimization methods have been proposed to use the452

experience gained from related tasks to tackle target tasks. They can be divided into two categories453

based on the direction of experience transformation.454

In the first category, experience is transformed mutually. Every considered optimization problem is a455

target task and also is one of the source tasks of other optimization problems. In other words, the456

roles of source task and target task are compatible. One representative tributary is EMTO that aims to457

solve multiple optimization tasks concurrently [9, 43, 20, 2, 47]. In EMTO, experience is learned,458

updated, and spontaneously shared among target tasks through multi-task learning techniques. A459

variant of EMTO is multiforms optimization [12, 52, 11]. In multiforms optimization, multi-task460

learning methods are employed to learn experience from distinct formulations of a single target task.461

In the second category, experience is transformed unidirectionally. The roles of source task and462

target task are not compatible, an optimization problem cannot serve as a source task and a target463

task simultaneously. One popular tributary is transfer optimization which employs transfer learning464

techniques to transform experience from source tasks to target tasks [35, 17, 16, 40]. In transfer465

learning, experience can be transformed from a single source task, multiple source tasks, or even466

source tasks from a different domain [54]. However, these transfer learning techniques pay more467

attention to experience transformation instead of experience learning. Despite diverse and complex468

situations of experience transformation have been studied [29, 30], the difficult of learning experience469

from small (expensive) source tasks has not been well studied. Actually, a common scenario in470

transfer learning is that the source task(s) is/are large enough such that useful experience can be471

obtained easily through solving source task(s) [54]. In contrast to transfer optimization, recently, some472

experience-based optimization algorithms attempted to use meta-learning methods to learn experience473

from small source tasks, which are known as few-shot optimization (FSO)[46]. Since meta-learning474

only works for related tasks in the same domain, the situations of experience transformation are less475

complex than that of transfer learning. As a result, meta-learning pays more attention to experience476

learning instead of experience transformation. Domain-specific features are extracted as experience477

and no related task needs to be solved.478

Our work belongs to the FSO in the second category discussed above since our experience is479

transformed unidirectionally. More importantly, our experience is learned across many related480

expensive tasks, rather than gained through solving more or less source tasks. Therefore, our work is481

different from transfer optimization.482

B Discussion on Framework Compatibility and Limitation483

Our FSEO framework is applicable to regression-based SAEAs as our MDKL surrogates can be484

embedded in these SAEAs directly. Classification-based SAEAs are not compatible with our FSEO485

framework. The classification surrogates in these SAEAs are employed to learn the relation between486

pairs of solutions, or the relation between solutions and a set of reference solutions. The class labels487

used for surrogate training can be fluctuating during the optimization and thus hard to be learned488

over related tasks. Similarly, in ordinal-regression-based SAEAs, the ordinal relation values to be489

learned are not as stable as the fitness of expensive functions. So ordinal-regression-based SAEAs are490

also not compatible with our FSEO framework. In this paper, we focus on FSO for regression-based491

SAEAs, while other SAEA categories are left to be discussed in future work.492
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C Generation of DTLZ variants493

Our DTLZ optimization experiments generate m-objective DTLZ variants in the following ways:494

DTLZ1:495

f1 = (a1 + g)0.5

m−1∏
i=1

xi, (8)

496

fj=2:m−1 = (aj + g)(0.5

m−j∏
i=1

xi)(1− xm−j+1), (9)

497
fm = (am + g)0.5(1− x1), (10)

498

g = 100

(
k +

k∑
i=1

(
(zi − 0.5)2 − cos (20π(zi − 0.5))

))
, (11)

where z is a vector consisting of the last k = d − m + 1 variables in x. In other words,499

z = {z1, . . . , zk} = {xm, . . . , xd}. The variants of DTLZ1 introduce only one variable500

a ∈ [0.1, 5.0]m in Eq.(8), Eq.(9), and Eq.(10), where a = 1 in the original DTLZ1. For out-of-range501

test, a ∈ [1.5, 5.0]m.502

503

DTLZ2:504

f1 = (a1 + g)

m−1∏
i=1

cos(
xiπ

b1
), (12)

505

fj=2:m−1 = (aj + g)

(
m−j∏
i=1

cos(
xiπ

bj
)

)
sin(

xm−j+1π

bj
), (13)

506

fm = (am + g)sin(
x1π

bm
), (14)

507

g =

k∑
i=1

(zi − 0.5)2. (15)

The variants of DTLZ2 introduce two variables a ∈ [0.1, 5.0]m and b ∈ [0.5, 2.0]m in Eq.(12),508

Eq.(13), and Eq.(14), where a = 1 and b = 2 in the original DTLZ2. For out-of-range test,509

a ∈ [1.5, 5.0]m,b ∈ [0.5, 1.5]m.510

511

DTLZ3: The variants of DTLZ3 are generated using the same way as described in DTLZ2, except512

the equation g from Eq.(15) is replaced by the one from Eq.(11).513

514

DTLZ4: The variants of DTLZ4 are generated using the same way as described in DTLZ2, except515

all xi are replaced by x100i .516

517

DTLZ5: The variants of DTLZ5 are generated using the same way as described in DTLZ2, except518

all x2, . . . , xm−1 are replaced by 1+2gxi

2(1+g) .519

520

DTLZ6:521

g =

k∑
i=1

z0.1i . (16)

The variants of DTLZ6 are generated using the same way as described in DTLZ5, except the equation522

g from Eq.(15) is replaced by the one from Eq.(16).523

524

DTLZ7:525

fj=1:m−1 = xj + aj , (17)
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526

fm = (1 + g)

(
m−

m−1∑
i=1

(
fi

1 + g
(1 + sin(3πfi))

))
, (18)

527

g = am + 9

k∑
i=1

zi
k
. (19)

The variants of DTLZ7 introduce one variable a ∈ [0.1, 5.0]m in Eq.(17) and Eq.(19), where528

aj=1:m−1 = 0 and am = 1 in the original DTLZ7. For out-of-range test, a ∈ [1.5, 5.0]m.529

D Effectiveness of Learning Experience530

Evaluating the effectiveness of learning experiences aims to demonstrate that our MDKL model can531

learn experience from related tasks and outperforms other meta-learning models. For this reason, the532

experiment is designed to answer the following questions:533

• Given a small dataset S∗ from target task T∗, can MDKL learn experience from related tasks534

and then generate a model that has the smallest MSE?535

• If yes, which components of MDKL contribute to the effectiveness of learning experience?536

Meta-learning or/and deep kernel learning? If not, why not?537

To answer the two questions above, we consider two experiments to evaluate the effectiveness538

of learning experience: amplitude prediction for unknown periodic sinusoid functions, and fuel539

consumption prediction for a gasoline motor engine. The former is a few-shot regression problem540

that motivates many meta-learning studies [10, 13, 39, 27], while the latter is a real-world regression541

problem [53].542

D.1 Effectiveness of Learning Experience: Sinusoid Function Regression543

In the sinusoid regression experiment, we learn experience from a series of 1-dimensional sinusoid544

functions:545

y = Asin(wx+ b) + ε, (20)

where the amplitude A and phase w of sine waves are varied between functions. The target is to546

approximate an unknown sinusoid function with a small support dataset S∗ and the learned experience.547

Clearly, by integrating experience with S∗, we estimate parameters (A,w, b) for an unknown sinusoid548

function. As a result, the output y of the given sinusoid function can be predicted once a query data x549

is inputted.550

D.1.1 Generation of Sinusoid Function Variants551

As suggested in [10, 13], we set amplitude A ∈ [0.1, 5.0], frequency w ∈ [0.999, 1.0], phase b ∈ [0,552

π], and Gaussian noise ε ∼ (0, 0.1). Therefore, a sinusoid function can be generated by sampling553

three parameters (A,w, b) from their ranges uniformly. In total, Nm = N = 20000 related sinusoid554

functions are generated at random.555

D.1.2 Experimental Setups556

All data points x are sampled from the range ∈ [-5.0, 5.0]. In the meta-learning procedure, both557

support set and query set contain 5 data points. Hence, a dataset Di is sampled from each (related)558

sinusoid function Ti, and |Di| = |Dm| = 10. Six experiments are conducted where |S∗| =559

{2, 3, 5, 10, 20, 30} data points are sampled from the target function. Considering Gaussian noise ε560

could be relatively large when amplitude A is close to 0.1, normalized mean squared error (NMSE) is561

chosen as a performance indicator. NMSE is measured using a dataset that contains 100 data points562

sampled uniformly from the x range.563
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Table 3: Mean NMSE and standard deviation (in parentheses) of 30 runs on the amplitude regression
of sinusoid function. GP [34] is a widely used surrogate in SAEAs, MAML [10], ALPaCA [13], and
DKT [27] are meta-learning methods. GP_Adam is a GP model fitted by Adam optimizer. DKL
is a deep kernel learning algorithm that adds a neural network to GP_Adam. MDKL_NN applies
meta-learning to DKL, but no task-independent base kernel parameters are shared between related
tasks. Support data points are used to train non-meta surrogates or adapt meta-learning surrogates.
‘+’, ‘≈’, and ‘−’ denote MDKL is statistically significantly superior to, almost equivalent to, and
inferior to the compared modelling methods in the Wilcoxon rank sum test (significance level is 0.05),
respectively. The last row counts the total win/tie/loss results. It shows that MDKL and DKT have
lower NMSE than other models. The effectiveness of meta-learning on both the neural network and
the base kernel has been demonstrated on this example.

Support data GP GP_Adam DKL MDKL_NN MDKL (ours) DKT MAML ALPaCA
points |S∗| [34] [27] [10] [13]
2 1.63e-1(9.18e-2)≈ 1.93e-1(9.72e-2)+ 1.63e-1(9.05e-2)≈ 1.57e-1(9.26e-2)≈ 1.56e-1(9.49e-2) 1.56e-1(9.49e-2)≈ 2.09e-1(3.63e-1)≈ 1.07e+0(2.57e+0)≈
3 1.27e-1(6.04e-2)≈ 1.62e-1(6.53e-2)+ 1.21e-1(5.96e-2)≈ 1.16e-1(5.95e-2)≈ 1.10e-1(6.20e-2) 1.10e-1(6.20e-2)≈ 2.09e-1(3.60e-1)≈ 4.36e-1(8.57e-1)≈
5 6.76e-2(4.62e-2)≈ 1.09e-1(5.61e-2)+ 7.52e-2(4.40e-2)+ 6.38e-2(3.91e-2)≈ 4.79e-2(3.73e-2) 4.79e-2(3.70e-2)≈ 2.08e-1(3.59e-1)+ 4.31e-1(8.04e-1)≈
10 1.70e-2(1.87e-2)≈ 6.13e-2(4.58e-2)+ 2.87e-2(1.89e-2)+ 1.89e-2(1.61e-2)+ 1.07e-2(1.16e-2) 1.09e-2(1.17e-2)≈ 2.08e-1(3.58e-1)+ 6.59e-1(2.14e+0)+
20 5.42e-3(7.64e-3)+ 3.92e-2(4.29e-2)+ 9.64e-3(1.02e-2)+ 5.24e-3(6.57e-3)+ 2.57e-3(4.53e-3) 2.63e-3(4.61e-3)≈ 2.08e-1(3.58e-1)+ 1.13e-1(3.39e-1)+
30 3.97e-3(7.40e-3)+ 3.32e-2(4.18e-2)+ 4.81e-3(6.68e-3)+ 3.20e-3(5.85e-3)+ 1.68e-3(3.61e-3) 1.60e-3(3.39e-3)≈ 2.08e-1(3.58e-1)+ 7.59e-2(2.01e-1)+
+/ ≈ /− 2/4/0 6/0/0 4/2/0 3/3/0 -/-/- 0/6/0 4/2/0 3/3/0

D.1.3 Comparison methods564

In this experiment, three families of modeling methods are compared with our MDKL model:565

• Meta-learning methods that were proposed for regression tasks: MAML [10], ALPaCA566

[13], and DKT [27]. The configurations of MAML, ALPaCA, and DKT are the same as567

suggested in the original literature.568

• Non-meta-learning method that is widely used for regression tasks: the GP model. We569

choose a GP as a baseline since it is effective and more relevant to MDKL than other570

non-meta-learning modeling methods. We set the range of base kernel parameters in the GP571

model as θ ∈ [10−5, 10] and p ∈ [1, 2].572

• MDKL related methods that are designed to investigate which components of MDKL573

contribute to the modeling performance: GP_Adam, DKL, and MDKL_NN. GP_Adam is a574

GP model fitted by Adam optimizer. The combination of GP_Adam and a neural network575

results in a kind of DKL algorithm. MDKL_NN is a meta-learning version of DKL, but it576

learns only neural network parameters through meta-learning and has no task-independent577

base kernel parameters.578

D.1.4 Results and Analysis579

Table 3 reports the statistical test results of the NMSE values achieved by comparison algorithms580

in sinusoid function regression experiments. Each row lists the results obtained when the same581

number of fitness evaluations |S∗| are used to train models. The results of Wilcoxon rank sum test582

between MDKL and other compared algorithms are listed in the last row. It can be observed that both583

MDKL and DKT have achieved the smallest NMSE values on all tests in the comparison with other584

meta-learning and non-meta-learning modeling methods.585

Contributions of MDKL components are analyzed through statistical tests between MDKL related586

methods. The statistical test results between DKL and GP_Adam are 5/1/0, showing that DKL is587

preferable to GP_Adam when only a few data points are available for modeling. Hence, using a588

neural network to build a deep kernel for GP is able to enhance the performance of modeling. When589

meta-learning technique is applied to DKL, the statistical test results between MDKL_NN and DKL590

are 3/3/0. The meta-learning of neural network parameters is necessary since it contributes to the591

performance of MDKL. Further statistical test between MDKL and MDKL_NN gives results of 3/3/0,592

indicating that the meta-learning of base kernel parameters is effective on this regression problem.593

D.2 Effectiveness of Learning Experience: Engine Performance Regression594

In this subsection, we focus on a Brake Special Fuel Consumption (BSFC) regression task for a595

gasoline motor engine [53], where BSFC is evaluated on a gasoline engine simulation (denoted by596

T∗).597
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Table 4: Mean MSE and standard deviation (in parentheses) of 30 runs on the regression of engine
fuel consumption. Support data points are used to train non-meta surrogates or adapt meta-learning
surrogates. All results are normalized since the actual engine data is unable to be disclosed. The
symbols ‘+’, ‘≈’, ‘−’ denote the win/tie/loss result of Wilcoxon rank sum test (significance level is
0.05) between MDKL and comparison modeling methods, respectively. The last row counts the total
win/tie/loss results.

Support data GP GP_Adam DKL MDKL_NN MDKL (ours) DKT MAML ALPaCA
points |S∗| [34] [27] [10] [13]
2 2.23e+1(3.20e+0)+ 2.37e+1(6.30e+0)+ 2.30e+1(5.87e+0)+ 1.73e+1(6.33e+0)≈ 1.72e+1(6.34e+0) 1.81e+1(5.68e+0)≈ 1.87e+1(6.37e+0)≈ 1.91e+1(1.02e+1)≈
3 2.14e+1(3.74e+0)+ 2.41e+1(1.38e+1)+ 2.20e+1(3.74e+0)+ 1.45e+1(7.13e+0)≈ 1.45e+0(7.01e+0) 1.55e+1(6.66e+0)≈ 1.80e+1(4.69e+0)≈ 2.13e+1(1.97e+1)≈
5 2.13e+1(3.27e+0)+ 2.46e+1(1.00e+1)+ 2.07e+1(3.95e+0)+ 1.12e+1(6.65e+0)≈ 1.10e+1(6.58e+0) 1.21e+1(6.49e+0)≈ 1.84e+1(6.05e+0)+ 1.99e+1(2.29e+1)+
10 1.84e+1(1.89e+0)+ 2.06e+1(1.19e+1)+ 2.10e+1(5.79e+0)+ 7.19e+0(4.82e+0)≈ 7.08e+0(4.77e+0) 7.99e+0(4.87e+0)≈ 1.70e+1(5.54e+0)+ 1.38e+1(8.12e+0)+
20 1.56e+1(2.00e+0)+ 2.38e+1(1.05e+1)+ 1.76e+1(2.42e+0)+ 5.03e+0(1.82e+0)≈ 4.86e+0(1.71e+0) 5.74e+0(1.91e+0)+ 1.50e+1(2.59e+0)+ 1.01e+1(5.52e+0)+
40 1.28e+1(2.03e+0)+ 1.48e+1(7.35e+0)+ 1.67e+1(3.73e+0)+ 4.13e+0(7.90e-1)≈ 4.00e+0(8.59e-1) 4.92e+0(1.09e+0)+ 1.45e+1(1.85e+0)+ 8.01e+0(3.35e+0)+
+/ ≈ /− 6/0/0 6/0/0 6/0/0 0/6/0 -/-/- 2/4/0 4/2/0 4/2/0

D.2.1 Experimental setups598

The related tasks Ti used in our experiment are N = 100 gasoline engine models. These engine599

models have different behaviors when compared with T∗, but they share the basic features of gasoline600

engines. All related tasks and the target task have the same six decision variables. Each related task601

Ti provides only 60 solutions, forming a dataset Di. The size of datasets used for meta-learning602

|Dm| is set to 40. Six tests are conducted where |S∗| = {2, 3, 5, 10, 20, 40} data points are sampled603

from the real engine simulation T∗. MSE is chosen as an indicator of modeling accuracy, which is604

measured using a dataset consisting of 12500 data points that are sampled uniformly from the engine605

decision space. The comparison algorithms are the same as described in Appendix D.1.606

D.2.2 Results and analysis607

The statistical test results of the MSE values achieved by comparison algorithms in BSFC regression608

experiments are summarized in Table 4. Each row lists the results obtained when the same number609

of fitness evaluations |S∗| are used to train models. The results of Wilcoxon rank sum test between610

MDKL and other compared algorithms are listed in the last row. It can be observed that MDKL and611

MDKL_NN outperform other comparison modeling methods since they have achieved the smallest612

MSE on all tests.613

Additional Wilcoxon rank sum tests have been conducted between MDKL related algorithms to614

answer our second question (results are not reported in Table 4). The statistical test results between615

DKL and GP_Adam are 1/5/0, indicating that the neural network in DKL makes some contributions616

to the performance of MDKL. The statistical test results between MDKL_NN and DKL are 6/0/0,617

demonstrating that the meta-learning of neural network parameters constructs a useful deep kernel618

and contributes to the improvement of modeling accuracy. However, there is no significant difference619

between the performance of MDKL and that of MDKL_NN, the meta-learning on base kernel620

parameters does not play a critical role on this engine problem. In comparison, the meta-learning on621

base kernel parameters is effective in sinusoid function regression experiments (see Appendix D.1).622

In addition, the statistical test results between MDKL_NN and MAML are 4/2/0. Considering that623

MAML is a neural network regressor learned through meta-learning, we can conclude that GP is an624

essential component of our MDKL. In summary, all components in MDKL are necessary, they all625

contribute to the effectiveness of learning experience.626

The comparison experiments on sinusoid functions and the gasoline motor engine have demonstrated627

the effectiveness of our MDKL modeling method in the learning of experience. Given a small628

dataset of the target task, the model learned through MDKL method has the smallest MSE among629

all comparison models. Additionally, the investigation between MDKL and its variants shows that630

all components in MDKL have made their contributions to the effectiveness of learning experience.631

However, similar to other meta-learning studies [10, 13], we have not defined the similarity between632

tasks. In other words, the boundary between related tasks and unrelated tasks has not been defined.633

This should be a topic of further study on meta-learning. Moreover, the relationship between task634

similarity and modeling performance has not been investigated. Instead, we study the relationship635

between task similarity and SAEA optimization performance in Section F, since our main focus is636

the surrogate-assisted evolutionary optimization.637
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Table 5: Mean IGD+ values and standard deviation (in parentheses) obtained from 30 runs on the
DTLZ problems. MOEA/D-FS and the comparison algorithms initialize their surrogates with 10, 100
samples, respectively. Extra 50 evaluations are allowed in the further optimization.

Problem MOEA/D-EGO MOEA/D-FS (ours) ParEGO K-RVEA KTA2 CSEA OREA ESBCEO KMOEA-TIC
DTLZ1 1.07e+2(2.05e+1)+ 9.70e+1(1.87e+1) 7.82e+1(1.54e+1)− 1.18e+2(2.45e+1)+ 1.01e+2(2.38e+1)≈ 1.10e+2(2.50e+1)+ 1.02e+2(1.97e+1)≈ 8.81e+1(1.18e+1)≈ 1.10e+2(2.29e+1)+
DTLZ2 2.99e-1(7.01e-2)+ 1.43e-1(2.29e-2) 3.17e-1(4.12e-2)+ 2.69e-1(5.97e-2)+ 2.14e-1(3.84e-2)+ 2.98e-1(5.25e-2)+ 1.76e-1(4.69e-2)+ 3.39e-1(3.78e-2)+ 2.10e-1(7.10e-2)+
DTLZ3 3.15e+2 (6.04e+1)+ 1.97e+2 (1.64e+1) 2.30e+2 (5.99e+1)≈ 3.24e+2 (5.90e+1)+ 2.67e+2 (6.70e+1)+ 2.82e+2(6.97e+1)+ 2.72e+2(6.88e+1)+ 2.09e+2(4.23e+1)≈ 2.98e+2(6.14e+1)+
DTLZ4 5.04e-1(8.25e-2)≈ 4.44e-1(1.35e-1) 5.44e-1(7.58e-2)+ 4.57e-1(1.14e-1)≈ 4.51e-1(9.54e-2)≈ 4.75e-1(1.09e-1)≈ 3.18e-1(1.54e-1)− 4.99e-1(7.37e-2)≈ 4.26e-1(9.19e-2)≈
DTLZ5 2.39e-1(7.17e-2)+ 1.13e-1(2.24e-2) 2.58e-1(3.68e-2)+ 1.92e-1 (5.97e-2)+ 1.44e-1(4.60e-2)+ 2.14e-1(4.05e-2)+ 7.84e-2(2.42e-2)− 2.68e-1(3.62e-2)+ 8.73e-2(2.77e-2)−
DTLZ6 1.29e+0(4.74e-1)≈ 1.11e+0(5.71e-1) 1.67e+0(6.77e-1)+ 4.62e+0(6.42e-1)+ 3.37e+0(6.71e-1)+ 6.26e+0(3.40e-1)+ 4.60e+0(1.19e+0)+ 2.41e+0(7.97e-1)+ 2.90e+0(5.34e-1)+
DTLZ7 3.31e-1(3.11e-1)− 2.47e+0(1.89e+0) 3.66e-1(1.31e-1)− 1.74e-1(3.57e-2)− 4.34e-1(2.20e-1)− 4.17e+0(1.13e+0)+ 2.14e+0(1.15e+0)≈ 5.47e-1(2.46e-1)− 9.44e-2(1.23e-2)−
+/ ≈ /− 4/2/1 -/-/- 4/1/2 5/1/1 4/2/1 6/1/0 3/2/2 3/3/1 4/1/2

E Additional Details on Expensive Multi-Objective Optimization638

E.1 Comparison algorithms639

As explained in Section B, our FSEO framework is compatible with regression-based SAEAs. Hence,640

we select MOEA/D-EGO [51] as an example and replace its GP surrogates by our MDKL surrogates.641

The resulting algorithm is denoted as MOEA/D-FS. Note that it is not necessary to specially select a642

newly proposed regression-based SAEA as our example, our main objective is to save evaluations643

with experience and observe if there is any damage to the optimization performance caused by the644

saving of evaluations. Therefore, it does not make any difference which regression-based SAEA645

or BO we choose as our example. Additionally, to demonstrate the improvement of optimization646

performance caused by using experience on DTLZ problems is significant, several state-of-the-art647

SAEAs and MOBO are also compared as baselines, including ParEGO [19], K-RVEA [7], CSEA [25],648

OREA [48], KTA2 [33], ESBCEO [3], and KMOEA-TIC [28]. Among these algorithms, ParEGO,649

K-RVEA, KTA2, KMOEA-TIC use regression-based surrogates, CSEA uses a classification-based650

surrogate, OREA employs an ordinal-regression-based surrogate, and ESBCEO is a recently proposed651

MOBO.652

We implemented the FSEO framework, MOEA/D-EGO, ParEGO, and OREA, while the code of653

K-RVEA, CSEA, KTA2, and ESBCEO [3] is available on PlatEMO [37], an open source MATLAB654

platform for evolutionary multi-objective optimization. The code of KMOEA-TIC [28] is obtained655

from its authors. To make a fair comparison, all comparison algorithms share the same initial dataset656

S∗ in an independent run. We also set θ ∈ [10−5, 100]d and p = 2 for all GP surrogates as suggested657

in [33], these GP surrogates are implemented through DACE [31]. Other configurations are the same658

as suggested in their original literature.659

E.2 Result Table and Analysis of Expensive Multi-Objective Optimization660

The experience learned from related tasks makes MOEA/D-EGO more competitive when compared661

to other SAEAs. The use of MDKL surrogates results in significantly smaller IGD+ values on DTLZ1,662

DTLZ2, DTLZ3, and DTLZ5 than before. As a result, MOEA/D-FS achieves the smallest IGD+663

values on DTLZ2 and DTLZ3, and its optimization results on DTLZ1 and DTLZ5 are much closer664

to the best optimization results (e.g. results obtained by ParEGO and OREA) than MOEA/D-EGO.665

Although MOEA/D-FS does not achieve the smallest IGD+ values on all DTLZ problems, it should666

be noted that MOEA/D-FS is still the best algorithm among comparison SAEAs due to its overall667

performance. Table 5 shows that no comparison SAEA outperforms MOEA/D-FS on three DTLZ668

problems, but MOEA/D-FS outperforms all comparison SAEAs on at least three DTLZ problems.669

Furthermore, the IGD+ values of MOEA/D-FS are achieved with an evaluation budget of 60, while670

the IGD+ values of other SAEAs are reached with a cost of 150 evaluations (see Table 2).671

E.3 Result Tables and Figures in IGD and HV Metrics672

The performance of our method and the comparison algorithms are also evaluated on inverted673

generational distance (IGD) [4] and Hypervolume (HV) [55] metrics.674

Results in IGD values are reported in Table 6 and Fig. 5. A smaller IGD value indicates a better675

optimization result.676

Results in HV values are reported in Table 7 and Fig. 6. A larger HV value indicates a better677

optimization result.678
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Table 6: Mean IGD values and standard deviation (in parentheses) obtained from 30 runs on 7
DTLZ problems. MOEA/D-FS and comparison algorithms initialize their surrogates with 10, 100
samples, respectively. Extra 50 evaluations are allowed in the further optimization. ‘+’, ‘≈’, and ‘−’
denote MOEA/D-FS is statistically significantly superior to, almost equivalent to, and inferior to the
compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last
row counts the total win/tie/loss results.

Problems MOEAD-EGO MOEAD-FS ParEGO K-RVEA KTA2 CSEA OREA ESBCEO KMOEATIC
DTLZ1 1.07e+2(2.05e+1)+ 9.70e+1(1.87e+1) 7.82e+1(1.54e+1)− 1.18e+2(2.41e+1)+ 1.01e+2(2.34e+1)≈ 1.10e+2(2.46e+1)+ 1.02e+2(1.97e+1)≈ 8.81e+1(1.18e+1)≈ 1.10e+2(2.29e+1)+
DTLZ2 3.30e-1(7.23e-2)+ 1.72e-1(2.41e-2) 3.59e-1(2.82e-2)+ 3.08e-1(4.93e-2)+ 2.45e-1(3.57e-2)+ 3.36e-1(3.96e-2)+ 2.14e-1(4.10e-2)+ 3.64e-1(3.29e-2)+ 2.86e-1(6.31e-2)+
DTLZ3 3.15e+2(6.04e+1)+ 1.97e+2(1.64e+1) 2.30e+2(5.99e+1)≈ 3.24e+2(5.80e+1)+ 2.67e+2(6.58e+1)+ 2.82e+2(6.85e+1)+ 2.72e+2(6.88e+1)+ 2.09e+2(4.23e+1)≈ 2.98e+2(6.14e+1)+
DTLZ4 7.51e-1(1.50e-1)≈ 7.96e-1(2.25e-1) 7.65e-1(1.14e-1)≈ 5.94e-1(1.28e-1)− 6.30e-1(1.51e-1)− 7.00e-1(1.48e-1)− 5.64e-1(2.01e-1)− 6.70e-1(8.05e-2)− 5.23e-1(8.60e-2)−
DTLZ5 2.47e-1(7.21e-2)+ 1.17e-1(2.08e-2) 2.83e-1(3.13e-2)+ 2.13e-1(5.55e-2)+ 1.61e-1(4.60e-2)+ 2.33e-1(3.65e-2)+ 8.64e-2(2.48e-2)− 2.83e-1(3.00e-2)+ 1.18e-1(3.17e-2)≈
DTLZ6 1.36e+0(4.10e-1)≈ 1.18e+0(5.35e-1) 1.78e+0(6.29e-1)+ 4.63e+0(6.26e-1)+ 3.37e+0(6.50e-1)+ 6.26e+0(3.28e-1)+ 4.61e+0(1.18e+0)+ 2.45e+0(7.92e-1)+ 2.92e+0(5.35e-1)+
DTLZ7 4.22e-1(3.16e-1)− 2.56e+0(1.86e+0) 5.34e-1(1.25e-1)− 2.55e-1(4.36e-2)− 5.54e-1(2.38e-1)− 4.20e+0(1.11e+0)+ 2.21e+0(1.11e+0)≈ 6.21e-1(2.43e-1)− 1.85e-1(1.81e-2)−
+/ ≈ /− 4/2/1 -/-/- 3/2/2 5/0/2 4/1/2 6/0/1 3/2/2 3/2/2 4/1/2

Figure 5: IGD curves averaged over 30 runs on 7 DTLZ problems. Solid lines are mean values,
while shadows are error regions. Upper: DTLZ1, DTLZ2, DTLZ3, DTLZ4. Lower: DTLZ5,
DTLZ6, DTLZ7. MOEA/D-FSs and comparison algorithms initialize their surrogates with 10,
100 samples, respectively. Extra 50 evaluations are allowed in the further optimization. Note that
‘FS(out)’ indicates the target task is excluded from the range of related tasks during the meta-learning
procedure). X-axis denotes the number of evaluations used after the surrogate initialization.

Table 7: Mean HV values and standard deviation (in parentheses) obtained from 30 runs on 7
DTLZ problems. MOEA/D-FS and comparison algorithms initialize their surrogates with 10, 100
samples, respectively. Extra 50 evaluations are allowed in the further optimization. ‘+’, ‘≈’, and ‘−’
denote MOEA/D-FS is statistically significantly superior to, almost equivalent to, and inferior to the
compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last
row counts the total win/tie/loss results.

Problems MOEAD-EGO MOEAD-FS ParEGO K-RVEA KTA2 CSEA OREA ESBCEO KMOEATIC
DTLZ1 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0) 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈
DTLZ2 2.02e-1(1.28e-1)+ 4.69e-1(3.70e-2) 1.21e-1(4.31e-2)+ 1.93e-1(8.93e-2)+ 3.19e-1(6.49e-2)+ 1.59e-1(5.39e-2)+ 3.80e-1(7.64e-2)+ 1.39e-1(4.55e-2)+ 2.91e-1(1.29e-1)+
DTLZ3 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0) 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈
DTLZ4 6.25e-2(5.53e-2)+ 1.43e-1(7.17e-2) 2.03e-2(2.71e-2)+ 3.81e-2(4.24e-2)+ 6.49e-2(7.42e-2)+ 4.30e-2(5.29e-2)+ 2.11e-1(1.37e-1)≈ 2.27e-2(2.65e-2)+ 6.50e-2(7.07e-2)+
DTLZ5 4.50e-2(4.17e-2)+ 1.63e-1(1.60e-2) 1.29e-2(1.30e-2)+ 4.82e-2(2.78e-2)+ 7.98e-2(3.80e-2)+ 3.08e-2(1.61e-2)+ 1.49e-1(2.88e-2)≈ 1.64e-2(1.42e-2)+ 1.58e-1(3.69e-2)≈
DTLZ6 1.24e-3(3.77e-3)≈ 1.59e-2(3.46e-2) 2.02e-5(1.09e-4)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈
DTLZ7 3.83e-1(8.50e-2)− 1.12e-1(1.27e-1) 2.21e-1(9.60e-2)− 3.79e-1(2.61e-2)− 3.70e-1(3.88e-2)− 3.14e-5(1.69e-4)+ 2.97e-2(4.45e-2)≈ 1.71e-1(8.33e-2)− 4.67e-1(1.27e-2)−
+/ ≈ /− 3/3/1 -/-/- 3/3/1 3/3/1 3/3/1 4/3/0 1/6/0 3/3/1 2/4/1

E.4 Performance on Expensive Multi-Objective Optimization Under the Same Evaluation679

Budget680

The statistical test results reported in the last row of Table 5 show that ParEGO [19] and OREA [48]681

are the best two comparison algorithms when compared with our MOEA/D-FS. In this subsection,682

we evaluate the performance of MOEA/D-FS when no extra evaluation is saved. For this purpose, we683

compare the optimization performance of these three SAEAs under the same evaluation budget: 10684

evaluations (1d) for surrogate initialization and 50 evaluations for further optimization. The statistical685

test results are reported in Table 8. It can be seen that our MOEA/D-FS generally outperforms the686
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Figure 6: HV curves averaged over 30 runs on 7 DTLZ problems. Solid lines are mean values,
while shadows are error regions. Upper: DTLZ1, DTLZ2, DTLZ3, DTLZ4. Lower: DTLZ5,
DTLZ6, DTLZ7. MOEA/D-FSs and comparison algorithms initialize their surrogates with 10,
100 samples, respectively. Extra 50 evaluations are allowed in the further optimization. Note that
‘FS(out)’ indicates the target task is excluded from the range of related tasks during the meta-learning
procedure). X-axis denotes the number of evaluations used after the surrogate initialization.

Table 8: Mean IGD+ values and standard deviation (in parentheses) obtained from 30 runs on DTLZ
problems. MOEA/D-FS is compared with ParEGO and OREA under the same evaluation budget: 10
evaluations for surrogate initialization and 50 evaluations for the optimization process. ‘+’, ‘≈’, and
‘−’ denote MOEA/D-FS is statistically significantly superior to, almost equivalent to, and inferior to
the compared two algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively.
The last row counts the total win/tie/loss results.

Problem MOEA/D-FS ParEGO OREA
DTLZ1 9.70e+1(1.87e+1) 6.70e+1(4.75e+0)− 1.10e+2(3.65e+1)≈
DTLZ2 1.43e-1(2.29e-2) 5.51e-1(5.37e-2)+ 4.28e-1(6.68e-2)+
DTLZ3 1.97e+2 (1.64e+1) 1.84e+2(8.86e+0)≈ 2.72e+2(6.59e+1)+
DTLZ4 4.44e-1(1.35e-1) 6.29e-1(7.99e-2)+ 6.45e-1(1.24e-1)+
DTLZ5 1.13e-1(2.24e-2) 4.32e-1(8.88e-2)+ 3.02e-1(7.63e-2)+
DTLZ6 1.11e+0(5.71e-1) 1.03e+0(4.78e-1)≈ 5.71e+0(6.73e-1)+
DTLZ7 2.47e+0(1.89e+0) 4.38e-1(1.39e-1)− 7.12e+0(1.77e+0)+
+/ ≈ /− -/-/- 3/2/2 6/1/0

compared SAEAs when only 1d evaluations are used to initialize their surrogates. The effectiveness687

of our FSEO framework has been demonstrated. Note that OREA is an evolutionary algorithm688

assisted by ordinal-regression-based surrogates. Currently, our FSEO framework is applicable to the689

SAEAs working with regression-based surrogates. The meta-learning of ordinal-regression models690

can be a topic of further research.691

F Influence of Task Similarity692

In real-world applications, it is optimistic to assume that some related tasks are very similar to the693

target task. A more common situation is that all related tasks have limited similarity to the target task.694

To investigate the relationship between task similarity and FSEO optimization performance, we also695

test the performance in an ‘out-of-range’ situation, where the original DTLZ is excluded from the696

range of DTLZ variants during the MDKL meta-learning procedure. As a result, only the DTLZ697

variants that are quite different from the original DTLZ problem can be used to learn experience. The698

‘out-of-range’ situation eliminates the probability that MDKL surrogates benefit greatly from the699
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Table 9: Mean IGD+ values and standard deviation (in parentheses) obtained from 30 runs on DTLZ
problems. Both MOEA/D-FSs initialize their surrogates with 10 samples, extra 50 evaluations are
allowed in the further optimization. The last two rows count the statistical test results between
MOEA/D-FSs and other compared algorithms.

MOEA/D-FSs In-range Out-of-range
DTLZ1 9.70e+1(1.87e+1)≈ 9.11e+1(1.53e+1)
DTLZ2 1.43e-1(2.29e-2)≈ 1.41e-1(1.75e-2)
DTLZ3 1.97e+2 (1.64e+1)≈ 1.98e+1(1.51e+1)
DTLZ4 4.44e-1(1.35e-1)≈ 4.96e-1(8.63e-2)
DTLZ5 1.13e-1(2.24e-2)≈ 1.03e-1(2.39e-2)
DTLZ6 1.11e+0(5.71e-1)≈ 1.17e+0(6.88e-1)
DTLZ7 2.47e+0(1.89e+0)≈ 2.86e+0(1.87e+0)
+/ ≈ /− 0/7/0 -/-/-
vs MOEA/D-EGO 4/2/1 4/2/1
vs 6 Comparisons 26/9/7 27/7/8

DTLZ variants that are very similar to the original DTLZ problem. Detailed definitions of the related700

tasks used in the ‘out-of-range’ situation are given in Appendix C. Apart from the related tasks used,701

the remaining experimental setups are the same as the setups described in Section 5.1. For the sake702

of convenience, we denote the situation we tested in Section 5.1 as ‘in-range’ below.703

The statistical test results reported in Table 9 show that the ‘out-of-range’ situation achieves competi-704

tive IGD+ values to the ‘in-range’ situation on all 7 test instances. This suggests that related tasks705

that are very similar to the target task have a limited impact on the optimization performance of our706

FSEO framework. Useful experience can be learned from related tasks that are not very similar to707

the target task. Crucially, when comparing the performance of the ‘out-of-range’ situation and that708

of MOEA/D-EGO, we can still observe competitive or improved optimization results on 6 DTLZ709

problems (see Table 9, the row titled by ‘vs MOEA/D-EGO’, or Fig. 3). Moreover, it can be seen710

from the last row of Table 9 that the ‘out-of-range’ situation achieves better/competitive/worse IGD+711

values than all compared SAEAs on 27/7/8 test instances. In comparison, the corresponding statistical712

test results for the ‘in-range’ situation are 26/9/7. The difference between these statistical test results713

is not significant.714

A study on the ‘out-of-range’ situation in the context of extremely expensive multi-objective opti-715

mization is presented in Appendix H.2. Consistent results can be observed from Table 12 and Fig.716

7.717

Consequently, related tasks that are very similar to the target task are not essential to the optimization718

performance of our FSEO framework. In the ‘out-of-range’ situation, our MOEA/D-FS can still719

achieve competitive or better optimization results than MOEA/D-EGO while using only 1d samples720

for surrogate initialization.721

G Influence of the Size of Datasets Used in Meta-Learning722

We also investigated the performance of our FSEO framework when different sizes of datasets |Dm|723

are used in the meta-learning procedure. The experimental setups are the same as the setups of724

MOEA/D-FS in Section 5.1 except for |Dm|.725

It is evident from Table 10 that when each DTLZ variant provides |Dm| = 60 samples for the726

meta-learning of MDKL surrogates, the performance of both MOEA/D-FSs are improved on 2 or727

3 DTLZ problems. Particularly, a significant improvement can be observed from the optimization728

results of DTLZ7. As we discussed in Section 5.1, the poor performance of our experience-based729

optimization on DTLZ7 is caused by the small size of Dm. Optimal solutions have few chances to730

be included in a small Dm, which makes Dm fails to provide the experience about the discontinuity731

of optimal regions. In comparison, the experience of ‘optimal regions’ can be learned from large732

datasets Dm and thus the optimization results are improved significantly.733

In conclusion, for our FSEO framework, a large Dm for the meta-learning procedure indicates734

more useful experience can be learned from related tasks, which further improves the performance735

of experience-based optimization. Therefore, when applying our FSEO framework to real-world736
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Table 10: Mean IGD+ values and standard deviation (in parentheses) obtained from 30 runs on DTLZ
problems. 10 samples are used for initialization and extra 50 evaluations are allowed in the further
optimization. |Dm| is the size of the dataset collected from each related task.

Problem In-range Out-of-range
|Dm|=20 |Dm|=60 |Dm|=20 |Dm|=60

DTLZ1 9.70e+1(1.87e+1)≈ 9.77e+1(1.73e+1) 9.11e+1(1.53e+1)≈ 9.93e+1(1.87e+1)
DTLZ2 1.43e-1(2.29e-2)+ 1.24e-1(2.11e-2) 1.41e-1(1.75e-2)+ 1.29e-1(2.36e-2)
DTLZ3 1.97e+2 (1.64e+1)≈ 1.98e+2 (2.21e+1) 1.98e+1(1.51e+1)≈ 1.93e+2(1.19e+1)
DTLZ4 4.44e-1(1.35e-1)≈ 5.17e-1(5.68e-2) 4.96e-1(8.63e-2)≈ 5.17e-1(5.38e-2)
DTLZ5 1.13e-1(2.24e-2)+ 9.96e-2(2.18e-2) 1.03e-1(2.39e-2)≈ 1.05e-1(2.73e-2)
DTLZ6 1.11e+0(5.71e-1)≈ 1.04e+0(6.06e-1) 1.17e+0(6.88e-1)≈ 1.22e+0(6.41e-1)
DTLZ7 2.47e+0(1.89e+0)+ 7.49e-1(2.61e-1) 2.86e+0(1.87e+0)+ 6.96e-1(2.41e-1)
+/ ≈ /− 3/4/0 -/-/- 2/5/0 -/-/-

Table 11: Mean IGD+ values and standard deviation (in parentheses) obtained from 30 runs on the
DTLZ problems. MOEA/D-FS and the comparison algorithms initialize their surrogates with 10,
60 samples, respectively. Extra 30 evaluations are allowed in the further optimization. ‘+’, ‘≈’,
and ‘−’ denote MOEA/D-FS is statistically significantly superior to, equivalent to, and inferior to
the compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively.
The last row is the total win/tie/loss results. Performance improvement can be observed from
the comparisons between MOEA/D-FS and MOEA/D-EGO, while 50 evaluations are saved from
surrogate initialization.

Problems MOEAD-EGO MOEAD-FS (ours) ParEGO K-RVEA KTA2 CSEA OREA ESBCEO KMOEATIC
DTLZ1 1.07e+2(2.73e+1)≈ 1.03e+2(2.34e+1) 8.70e+1(2.53e+1)− 1.22e+2(3.20e+1)+ 1.15e+2(3.03e+1)≈ 1.08e+2(2.64e+1)≈ 1.11e+2(2.25e+1)+ 1.00e+2(2.07e+1)≈ 1.20e+2(2.71e+1)+
DTLZ2 3.49e-1(5.82e-2)+ 1.57e-1(2.29e-2) 3.51e-1(5.01e-2)+ 3.72e-1(4.32e-2)+ 3.57e-1(4.60e-2)+ 3.55e-1(5.14e-2)+ 3.14e-1(3.76e-2)+ 3.83e-1(3.83e-2)+ 3.79e-1(4.46e-2)+
DTLZ3 3.07e+2(5.32e+1)+ 2.03e+2(2.42e+1) 2.16e+2(4.89e+1)≈ 3.53e+2(7.76e+1)+ 3.23e+2(8.67e+1)+ 3.35e+2(6.83e+1)+ 3.39e+2(7.72e+1)+ 2.41e+2(5.51e+1)+ 3.27e+2(8.10e+1)+
DTLZ4 5.45e-1(1.09e-1)≈ 4.91e-1(1.24e-1) 6.36e-1(8.67e-2)+ 5.53e-1(9.79e-2)≈ 5.47e-1(1.02e-1)≈ 5.84e-1(9.59e-2)+ 5.14e-1(1.21e-1)≈ 5.47e-1(7.55e-2)≈ 4.53e-1(1.03e-1)≈
DTLZ5 2.79e-1(5.69e-2)+ 1.18e-1(2.25e-2) 2.78e-1(5.59e-2)+ 2.82e-1(5.42e-2)+ 2.60e-1(5.50e-2)+ 2.77e-1(4.34e-2)+ 1.99e-1(4.53e-2)+ 2.94e-1(4.92e-2)+ 2.69e-1(6.11e-2)+
DTLZ6 2.04e+0(7.33e-1)+ 1.29e+0(6.44e-1) 2.47e+0(7.39e-1)+ 5.23e+0(6.17e-1)+ 4.58e+0(6.36e-1)+ 6.44e+0(3.53e-1)+ 5.79e+0(6.70e-1)+ 3.04e+0(9.46e-1)+ 3.55e+0(6.90e-1)+
DTLZ7 1.90e+0(9.19e-1)− 4.16e+0(2.54e+0) 1.39e+0(1.49e+0)− 3.13e-1(6.07e-2)− 2.05e+0(2.16e+0)− 5.47e+0(1.31e+0)+ 5.51e+0(1.32e+0)+ 9.57e-1(5.40e-1)− 2.68e-1(1.47e-1)−
+/ ≈ /− 4/2/1 -/-/- 4/1/2 5/1/1 4/2/1 6/1/0 6/1/0 4/2/1 5/1/1

optimization problems, it is preferable to collect more data from related tasks for experience learning.737

738

H Experiments on Extremely Expensive Multi-Objective Optimization739

In this section, we investigate the performance of our FSEO framework in the context of extremely740

expensive optimization, where the allowed fitness evaluations on target problems are fewer than that741

in the experiment carried out in Sections 5.1 of the main file and Appendix F.742

H.1 Performance between Comparison Algorithms743

We conduct the experiment described in Section 5.1 of the main file, but with a smaller evaluation744

budget than the budget listed in Table 2. The size of the initial dataset S∗ is set to 10, 60 for our745

MOEA/D-FS and comparison algorithms, respectively. 30 extra evaluations for further optimization746

are allowed. The total evaluation budget is 40, 90 for our MOEA/D-FS and comparison algorithms,747

respectively.748

The aim of this subsection is to answer the question below:749

• Is our FSEO framework more suitable for the optimization problems in which evaluations are750

extremely expensive? In other words, will the advantage of our FSEO framework become751

more prominent if the optimization problems allow a smaller evaluation budget?752

The comparison results reported in Fig. 7 and Table 11 show that MOEA/D-FS has achieved753

competitive or smaller IGD+ values than MOEA/D-EGO on all DTLZ problems except for DTLZ7.754

Meanwhile, 5d evaluations have been saved.755

Consistent with the results discussed in Section 5.1 of the main file, MOEA/D-FS fails to achieve a756

competitive result compared to MOEA/D-EGO on DTLZ7 since experience is learned from small757

datasets collected from related tasks. Although we set a different evaluation budget for all SAEAs,758

the size of datasets for meta-learning |Dm| has not been modified. However, it can be observed from759

the statistical test results (see the last row of Tables 5 and 11) that our MOEA/D-FS outperforms760

the comparison algorithms on 26, 29 test instances when the total evaluation budget of comparison761
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Figure 7: IGD+ curves averaged over 30 runs on 7 DTLZ problems. Solid lines are mean values,
while shadows are error regions. Upper: DTLZ1, DTLZ2, DTLZ3, DTLZ4. Lower: DTLZ5,
DTLZ6, DTLZ7. MOEA/D-FSs and comparison algorithms initialize their surrogates with 10, 60
samples, respectively. Extra 30 evaluations are allowed in the further optimization. Note that ‘FS(out)’
indicates the target task is excluded from the range of related tasks during the meta-learning procedure.
X-axis denotes the number of evaluations used after the surrogate initialization. In comparison to
MOEA/D-EGO, both MOEA/D-FSs achieve smaller or competitive IGD+ values on all DTLZ test
problems except for DTLZ7, while 50 evaluations are saved with the assistance from related tasks.
Moreover, MOEA/D-FSs achieve the smallest IGD+ values on DTLZ2, DTLZ3, DTLZ4, DTLZ5
and DTLZ6.

algorithms is set to 150, 90, respectively. This answers the question we raised before: The advantage762

of our FSEO framework is more prominent in the extremely expensive problems where a smaller763

evaluation budget is allowed. The comparison between the results obtained from Tables 5 and 11 has764

demonstrated that our FSEO framework is preferable when solving optimization problems within a765

very limited evaluation budget.766

H.2 Out-Of-Range Analysis on Extremely Expensive Optimization767

In Section F of the main file, we carried out an experiment to study the influence of task similarity768

on the performance of experience-based expensive multi-objective optimization. The optimization769

results obtained from the ‘in-range’ and the ‘out-of-range’ situations are compared. In this subsection,770

we conduct an experiment to investigate the difference between the ‘in-range’ and the ‘out-of-range’771

situations for extremely expensive multi-objective optimization. The experimental setups are the772

same as the setups described in Section F of the main file, except the allowed fitness evaluation budget773

is the same as described in Appendix H.1.774

Table 12 gives the statistical test results, it can be seen that the ‘out-of-range’ situation achieves775

competitive IGD+ values to the ‘in-range’ situation on all 7 test instances. In comparison to MOEA/D-776

EGO, the experience gained in the ‘out-of-range’ situation leads to competitive or smaller IGD+777

values on 6 DTLZ problems. Furthermore, similar results can be observed in the last row of Table 12,778

the ‘out-of-range’ situation achieves better/competitive/worse IGD+ values than all compared SAEAs779

on 28/9/5 test instances. In comparison, the ‘in-range’ situation achieves better/competitive/worse780

IGD+ values than all compared SAEAs on 29/8/5 test instances. There is only a minor difference781

between the optimization results obtained in two situations. These observations are consistent with782

the conclusions we made in Section F of the main file.783
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Table 12: Mean IGD+ values and standard deviation (in parentheses) obtained from 30 runs on
DTLZ problems. ‘Out-of-range’ indicates the target task is excluded from the range of related tasks
during the meta-learning procedure. Both MOEA/D-FSs initialize their surrogates with 10 samples,
extra 30 evaluations are allowed in the further optimization. ‘+’, ‘≈’, and ‘−’ denote the result
of the ‘out-of-range’ situation is statistically significantly superior to, almost equivalent to, and
inferior to that of the ‘in-range’ situation in the Wilcoxon rank sum test (significance level is 0.05),
respectively. The last two rows count the statistical test results between MOEA/D-FSs and other
compared algorithms.

MOEA/D-FSs In-range Out-of-range
DTLZ1 1.03e+2(2.34e+1)≈ 9.84e+1(2.04e+1)
DTLZ2 1.57e-1(2.29e-2)≈ 1.62e-1(1.90e-2)
DTLZ3 2.03e+2(2.42e+1)≈ 2.06e+2(2.13e+1)
DTLZ4 4.91e-1(1.24e-1)≈ 5.20e-1(6.92e-2)
DTLZ5 1.18e-1(2.25e-2)+ 1.11e-1(2.41e-2)
DTLZ6 1.29e+0(6.44e-1)≈ 1.36e+0(7.36e-1)
DTLZ7 4.16e+0(2.54e+0)≈ 4.94e+0(2.31e+0)
+/ ≈ /− 0/7/0 -/-/-
vs MOEA/D-EGO 4/2/1 4/2/1
vs 6 Comparisons 29/8/5 28/9/5

H.3 Result Tables and Figures in IGD and HV Metrics784

Results in IGD values are reported in Table 13 and Fig. 8. A smaller IGD value indicates a better785

optimization result.

Table 13: Mean IGD values and standard deviation (in parentheses) obtained from 30 runs on 7
DTLZ problems. MOEA/D-FS and comparison algorithms initialize their surrogates with 10, 60
samples, respectively. Extra 30 evaluations are allowed in the further optimization. ‘+’, ‘≈’, and ‘−’
denote MOEA/D-FS is statistically significantly superior to, almost equivalent to, and inferior to the
compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last
row counts the total win/tie/loss results.

Problems MOEAD-EGO MOEAD-FS ParEGO K-RVEA KTA2 CSEA OREA ESBCEO KMOEATIC
DTLZ1 1.07e+2(2.73e+1)≈ 1.03e+2(2.34e+1) 8.70e+1(2.53e+1)− 1.22e+2(3.20e+1)+ 1.15e+2(3.03e+1)≈ 1.08e+2(2.64e+1)≈ 1.11e+2(2.25e+1)+ 1.00e+2(2.07e+1)≈ 1.20e+2(2.71e+1)+
DTLZ2 3.69e-1(5.72e-2)+ 1.91e-1(2.19e-2) 3.95e-1(3.35e-2)+ 3.96e-1(3.55e-2)+ 3.80e-1(4.24e-2)+ 3.84e-1(4.05e-2)+ 3.38e-1(3.44e-2)+ 4.05e-1(3.07e-2)+ 4.07e-1(3.85e-2)+
DTLZ3 3.07e+2(5.32e+1)+ 2.03e+2(2.42e+1) 2.16e+2(4.89e+1)≈ 3.53e+2(7.76e+1)+ 3.23e+2(8.67e+1)+ 3.35e+2(6.83e+1)+ 3.39e+2(7.72e+1)+ 2.41e+2(5.51e+1)+ 3.27e+2(8.10e+1)+
DTLZ4 8.36e-1(1.51e-1)≈ 8.47e-1(1.87e-1) 9.14e-1(1.22e-1)≈ 7.28e-1(1.16e-1)− 7.93e-1(1.49e-1)≈ 8.41e-1(1.48e-1)≈ 7.89e-1(1.67e-1)≈ 7.68e-1(1.21e-1)− 5.97e-1(1.23e-1)−
DTLZ5 2.88e-1(5.64e-2)+ 1.22e-1(2.10e-2) 3.10e-1(4.36e-2)+ 2.99e-1(5.02e-2)+ 2.73e-1(5.06e-2)+ 2.97e-1(3.77e-2)+ 2.12e-1(4.27e-2)+ 3.10e-1(4.29e-2)+ 2.93e-1(5.32e-2)+
DTLZ6 2.08e+0(7.16e-1)+ 1.36e+0(6.03e-1) 2.54e+0(7.09e-1)+ 5.24e+0(6.15e-1)+ 4.58e+0(6.36e-1)+ 6.45e+0(3.51e-1)+ 5.79e+0(6.67e-1)+ 3.10e+0(8.82e-1)+ 3.57e+0(6.85e-1)+
DTLZ7 2.02e+0(8.97e-1)− 4.22e+0(2.52e+0) 1.53e+0(1.42e+0)− 4.03e-1(7.19e-2)− 2.12e+0(2.13e+0)− 5.49e+0(1.31e+0)+ 5.53e+0(1.32e+0)+ 1.02e+0(5.29e-1)− 3.59e-1(1.49e-1)−
+/ ≈ /− 4/2/1 -/-/- 3/2/2 5/0/2 4/2/1 5/2/0 6/1/0 4/1/2 5/0/2

786

Results in HV values are reported in Table 14 and Fig. 9. A larger HV value indicates a better787

optimization result.

Table 14: Mean HV values and standard deviation (in parentheses) obtained from 30 runs on 7
DTLZ problems. MOEA/D-FS and comparison algorithms initialize their surrogates with 10, 60
samples, respectively. Extra 30 evaluations are allowed in the further optimization. ‘+’, ‘≈’, and ‘−’
denote MOEA/D-FS is statistically significantly superior to, almost equivalent to, and inferior to the
compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively. The last
row counts the total win/tie/loss results.

Problems MOEAD-EGO MOEAD-FS ParEGO K-RVEA KTA2 CSEA OREA ESBCEO KMOEATIC
DTLZ1 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0) 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈
DTLZ2 1.63e-1(8.93e-2)+ 4.37e-1(3.48e-2) 9.85e-2(3.44e-2)+ 1.05e-1(4.43e-2)+ 1.25e-1(4.84e-2)+ 1.17e-1(5.59e-2)+ 1.73e-1(4.75e-2)+ 1.25e-1(5.19e-2)+ 9.43e-2(4.62e-2)+
DTLZ3 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0) 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈
DTLZ4 6.44e-2(6.93e-2)≈ 1.00e-1(6.58e-2) 8.65e-3(1.74e-2)+ 2.28e-2(4.11e-2)+ 2.18e-2(3.52e-2)+ 1.01e-2(2.38e-2)+ 5.58e-2(6.13e-2)+ 1.55e-2(2.64e-2)+ 4.77e-2(5.93e-2)+
DTLZ5 2.62e-2(2.46e-2)+ 1.60e-1(1.54e-2) 7.89e-3(1.16e-2)+ 1.51e-2(1.58e-2)+ 2.60e-2(1.91e-2)+ 1.08e-2(1.14e-2)+ 4.57e-2(2.76e-2)+ 1.43e-2(1.32e-2)+ 2.04e-2(2.38e-2)+
DTLZ6 3.82e-4(2.06e-3)≈ 1.07e-2(2.64e-2) 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 8.07e-3(3.02e-2)≈ 0.00e+0(0.00e+0)≈
DTLZ7 6.98e-2(1.00e-1)≈ 4.14e-2(8.25e-2) 8.22e-2(8.32e-2)− 2.65e-1(3.94e-2)− 1.31e-1(1.20e-1)− 0.00e+0(0.00e+0)≈ 0.00e+0(0.00e+0)≈ 8.06e-2(8.74e-2)− 3.58e-1(4.00e-2)−
+/ ≈ /− 2/5/0 -/-/- 3/3/1 3/3/1 3/3/1 3/4/0 3/4/0 3/3/1 3/3/1

788

I Summary of Experiments789

Our computational studies have demonstrated the following: First, we provide empirical evidence to790

show the effectiveness of learning experience: The meta-learning of neural network parameters and791
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Figure 8: IGD curves averaged over 30 runs on 7 DTLZ problems. Solid lines are mean values,
while shadows are error regions. Upper: DTLZ1, DTLZ2, DTLZ3, DTLZ4. Lower: DTLZ5,
DTLZ6, DTLZ7. MOEA/D-FSs and comparison algorithms initialize their surrogates with 10, 60
samples, respectively. Extra 30 evaluations are allowed in the further optimization. Note that ‘FS(out)’
indicates the target task is excluded from the range of related tasks during the meta-learning procedure.
X-axis denotes the number of evaluations used after the surrogate initialization.

Figure 9: HV curves averaged over 30 runs on 7 DTLZ problems. Solid lines are mean values,
while shadows are error regions. Upper: DTLZ1, DTLZ2, DTLZ3, DTLZ4. Lower: DTLZ5,
DTLZ6, DTLZ7. MOEA/D-FSs and comparison algorithms initialize their surrogates with 10, 60
samples, respectively. Extra 30 evaluations are allowed in the further optimization. Note that ‘FS(out)’
indicates the target task is excluded from the range of related tasks during the meta-learning procedure.
X-axis denotes the number of evaluations used after the surrogate initialization.

base kernel parameters are essential to the modeling accuracy of a MDKL model. As a result, our792

MDKL model outperforms the compared meta-learning modeling and non-meta-learning modeling793

methods on both the engine fuel consumption regression task and the sinusoid function regression794

task.795

Second, we demonstrate the main contribution of this work: In most situations, the proposed FSEO796

framework can assist regression-based SAEAs to reach competitive or even better optimization797

26



results, while the cost of surrogate initialization is only 1d samples. Due to the effectiveness of798

saving evaluations, our FSEO framework is preferable to other SAEAs when solving problems within799

a very limited evaluation budget. Moreover, some empirical guidelines are concluded to help the800

application of our FSEO framework. For the influence of task similarity, we find that related tasks that801

are very similar to the target task are not necessary to the application of our approach. The influence802

of these similar tasks on the optimization performance is limited. Our FSEO framework can achieve803

competitive results without datasets from very similar related tasks. Besides, for the related tasks804

used for meta-learning, we have demonstrated that more useful experience can be learned if more805

data points are sampled from related tasks.806

Third, the effectiveness of our FSEO framework is validated on a real-world engine calibration807

problem. Competitive or better results are achieved on the objective and constraint functions, while808

1d samples are used to initialize surrogates. Therefore, our FSEO framework can also be applied to809

optimization scenarios such as single-objective optimization and constrained optimization.810
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