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ABSTRACT

Segment Anything Model (SAM) often encounters ambiguity in interactive seg-
mentation, where insufficient user interaction leads to inaccurate segmentation
of the target object. Existing approaches primarily address ambiguity through
repeated human-model interactions, which are time-consuming due to the inherent
latency of human responses. To reduce human efforts, we propose a novel inter-
active segmentation framework that leverages the model’s inherent capabilities
to effectively segment ambiguous objects. Our key idea is to create an annotator-
like agent to interact with the model. The resulting SmartSAM method mimics
intelligent human annotators, resolving ambiguity with a single click and one
reference instance. The agent generates multiple prompts around the initial click to
simulate diverse annotator behaviors and refines the output masks by iteratively
adding click chains in uncertain regions, thereby producing a set of candidate
masks. Finally, the agent selects the mask that most closely aligns with the user’s
intent, as indicated by the reference instance. Furthermore, we formalize the
agent’s behavior as a fuzzy regression problem by quantifying ambiguity using
fuzzy entropy. We demonstrate that our agent yields lower entropy than traditional
methods, and we establish robustness and sufficiency theorems to ensure effective,
human-like decision-making within a bounded range of actions. We evaluate our
approach on multiple segmentation benchmarks and demonstrate its superiority
over state-of-the-art methods.

1 INTRODUCTION

Interactive segmentation typically rely on single-turn (Boykov and Jolly, 2001; Zhang et al., 2024b;
Liu et al., 2024b) or multi-turn (Huang et al., 2023; Lee et al., 2024) human guidance to predict
accurate masks for desired objects. Among them, the Segment Anything Model (SAM) (Kirillov
et al., 2023; Ravi et al., 2025) and subsequent works (Huang et al., 2024c; Zhao et al., 2024) have
made significant progress in high-quality segmentation and show potential in medical care (Li et al.,
2025), autonomous driving (Fan et al., 2023), and remote sensing (Shan et al., 2025).

A key issue with these methods is ambiguous predictions caused by insufficient interactions, where
models often misinterpret the user’s intent, leading to undesired segmentation masks. As illustrated
in Fig. 1, when a user clicks or gazes at the target object, the model may produce an incorrect mask of
the dress due to ambiguous intent, prompting the user to provide additional interactions to clarify the
intent. In large-scale annotation scenarios, repeated interactions may appear feasible but can result in
significant cumulative time costs due to user refinement. Recent methods (Huang et al., 2023; 2024c)
have reduced inference latency to the millisecond level, a time span typically negligible compared to
human actions. This suggests that the primary time cost in the scenarios mentioned above lies outside
the model, and we refer to the interactions between the user and the model as outer interactions.
Moreover, this issue is particularly pronounced in Augmented Reality and Virtual Reality (AR/VR)
scenarios (Zeng et al., 2025), where a user’s gaze faces challenges in facilitating multiple interactions,
thereby amplifying the significance of this problem for SAM-based methods.

Previous methods (Zhao et al., 2024; Huang et al., 2024c; Chen et al., 2022; Du et al., 2023; Ke
et al., 2023) often overlook the ambiguity of a single click and focus on segmenting target instances
through multiple turns of outer interactions, leading to significant time consumption. In fact, using
as less amount of human interactions (e.g., reference instances in Reference Segmentation methods

1
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Figure 1: Ambiguity is a common obstacle for interactive segmentation methods including SAM,
resulting in expensive multi-turn human interactions or imprecise single-turn human interactions. Our
strategy uses an agent to overcome this by automatically interacting with itself, saving human cost.

(Zhang et al., 2024b; Liu et al., 2024b; Sun et al., 2024)) to address ambiguity can effectively improve
interaction efficiency. An agent that utilizes “low response time interactions” can reduce outer
interactions by automatically acting in place of humans. In contrast to outer interactions, we refer to
this automatic behavior as inner interactions, as it occurs within the model between the agent and
the segmentation model. Thus, the question arises of how to replace the heavy outer interactions with
the lighter inner interactions. A potential solution is to have the agent behave like a human.

We observe that human interactions follow spatial patterns that can guide the agent. Specifically, the
oracle outer interactions tend to fall in the middle of uncertain areas, where the model’s predictions
are not confident. As shown in Fig. 1, the model is confident that the dress is within the user’s
desired mask, while backgrounds such as the road and woods are not part of the intent. However, the
predicted scores for the lady and the bags fall within the uncertain range, suggesting that the model
considers them as potential instances. Therefore, we can use this pattern to build an agent and address
the aforementioned question.

Therefore, we propose a training-free SmartSAM method to resolve ambiguity with a single click and
one optional reference in either visual or textual form., functioning like intelligent human annotators.
After clicking on the image, the agent generates diverse initial prompts based on the provided input,
simulating various human annotators confronting the same image. The agent then processes each
initial prompt through a series of inner interactions in the aforementioned uncertain areas to mimic
human refinement, resulting in a set of candidate masks. Finally, the agent either uses the reference
to select the mask that best aligns with the human intent, or just provides the mask of highest quality
from the set.

Notably, Few-Shot Segmentation (FSS) (Liu et al., 2024b; Zhang et al., 2024a) and Open-Vocabulary
Segmentation (OVS) (Cuttano et al., 2025) methods also utilize visual or textual references. However,
these methods are inherently non-interactive and lack the capability to automatically refine predictions
based on user feedback. In contrast, SmartSAM is explicitly designed to perform intelligent inner
interactions while also enabling user-driven outer interactions, and can be seamlessly integrated with
existing SAM-based interactive segmentation methods.

The behavior of the agent in finding and selecting can also be formalized as a fuzzy regression
problem (Zadeh, 1965). We translate a model’s ability to handle ambiguity into a quantitative form of
fuzzy entropy. We prove that the entropy of inner interactions is always less than that of corresponding
outer interactions and derive the robustness theorem for ambiguity. Furthermore, to enable the agent
to effectively mimic human behavior with fewer inner interactions, we prove the sufficiency theorem
of our strategy, demonstrating that the total number of the agent’s inner interactions can be kept
within an acceptable range.
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Our contributions can be summarized as follows:

• Unlike previous work focused on outer interactions, we are the first to overcome the challenges
from the perspective of inner interactions. Additionally, we propose a training-free SmartSAM
method to resolve ambiguity, functioning like intelligent human annotators.

• We provide a solid theoretical analysis, including two theorems for our method from the perspective
of fuzzy statistics. The first theorem focuses on the ability to deal with ambiguity, while the latter
illustrates the strategy’s efficiency.

• We evaluate our approach on multiple segmentation benchmarks and achieve superior performance
compared to state-of-the-art methods.

2 RELATED WORKS

Interactive Segmentation. Interactive segmentation aims to segment objects in images by leveraging
user interactions, such as clicks, scribbles, or bounding boxes. Traditional approaches formulate
this task as an optimization problem (Adams and Bischof, 1994; Boykov and Jolly, 2001; Grady,
2006), while early deep learning-based methods integrate user interactions as auxiliary guidance
channels (Xu et al., 2017; Lin et al., 2022). Subsequent research has concentrated on designing model
architectures (Chen et al., 2022; Huang et al., 2023; Liu et al., 2023) to better encode user feedback.
These advancements have yielded improvements across multiple dimensions, including inference
efficiency (Huang et al., 2023; Du et al., 2023; Liu et al., 2024a), segmentation granularity (Zhao
et al., 2024; Li et al., 2018; Liew et al., 2019), and output stability (Huang et al., 2024c; Lee et al.,
2024). Despite this progress, interactive segmentation continues to face a fundamental challenge:
inherent ambiguity in user intent. This often necessitates iterative refinement of user inputs to achieve
satisfactory segmentation results.

Segment Anything Model. Recently, SAM (Kirillov et al., 2023) has advanced the field by intro-
ducing a large-scale pretrained model with promptable capabilities. SAM accommodates diverse
input prompts to generate high-quality segmentation outputs. This flexibility has catalyzed several
new research directions. Some studies aim to enhance performance by refining their architectural
components and training strategies (Ravi et al., 2025; Zhao et al., 2024; Ke et al., 2023; Huang et al.,
2024c). Others extend SAM to broader applications by incorporating multi-modal and multi-prompt
interactions (Wang et al., 2024; Zhang et al., 2024c; Ye et al., 2024; Zhao et al., 2023; Li et al., 2024;
Cuttano et al., 2025). A parallel line of work investigates alternative inference procedures to better
exploit SAM’s capabilities (Sun et al., 2024; Liu et al., 2024b; Zhang et al., 2024b). For instance,
Graco (Zhao et al., 2024) introduces granularity control to allow users to adjust the precision of
segmentation masks. Despite these advances, many of these approaches still depend on iterative user
input for refinement. Therefore, our objective is to minimize the interaction burden ideally requiring
only a single click without compromising segmentation quality.

Agent Prompting. Agent-based methods have garnered increasing attention in computer vision
due to their flexible and interactive nature (Carion et al., 2020; Anderson et al., 2018; Park et al.,
2020). These methods typically involve decision-making policies that iteratively refine predictions
or explore spatial representations. Depending on the design of the decision-making policy, agents
can be broadly categorized into rule-based and LLM-based paradigms. Recently, researchers have
begun to explore the integration of agents with the SAM to improve its performance in complex
scenarios. Several works have proposed agent-based strategies to adapt or optimize prompts during
inference (Huang et al., 2024a; Ren et al., 2024; Xie et al., 2024; 2025). While LLM-based agents
offer strong generalization and reasoning capabilities, they typically require high-quality trajectory
data or reinforcement learning, both of which demand substantial training. Therefore, we propose a
training-free rule-based agent that autonomously performs internal interactions following a single
user click, thereby minimizing user involvement while maintaining segmentation accuracy.

3 METHODOLOGY

3.1 PRELIMINARIES

The Segment Anything Model (SAM) (Kirillov et al., 2023) is a foundation model for image
segmentation, comprising three components: an image encoder (Eimg), a prompt encoder (Epr), and a
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Figure 2: The framework of SmartSAM. The user clicks on the image and provides a reference
instance (i.e., an image with a mask). The agent explores and generates mask candidates. The final
mask is selected according to the similarity between candidates and the reference.

mask decoder (Dmask). First, Eimg extracts features from the input image, while user prompts—such
as points, boxes, or masks—are processed by Epr to generate prompt embeddings. Then, Dmask
decodes the image and prompt embeddings to produce one or three segmentation masks, each
accompanied by an estimated IoU score. In interactive settings, user prompts typically consist of
positive or negative point clicks. The above process is considered a single interaction turn.

3.2 SMARTSAM

The agent resolves ambiguity through an explore-and-exploit strategy (see Fig. 2): it first explores a
set of candidate masks, then exploits the one that best matches the user’s intent. This leads to two
central questions: (1) how can the agent effectively and efficiently incorporate the user’s intent during
exploration, and (2) how can it leverage the exploration results to accurately identify the intended
mask?

Explore the candidates. Although the Everything Mode of SAM can explore diverse mask proposals
by uniformly placing point prompts across the entire image, the process is time-consuming and does
not leverage the user’s click for targeted guidance. In ambiguous scenarios, SAM often fails when the
user’s click lands on a suboptimal region. As illustrated in Fig. 3, SAM returns a full-body mask even
when the user intends to segment only the jacket. However, placing the click on a more appropriate
nearby region can yield the correct mask. Motivated by this observation, we introduce fewer but more
proper prompts to balance efficiency and segmentation accuracy.

Specifically, the geometric centers of the agent’s prompts satisfy the following criteria: Let w⃗ :=
(x1 − x0, y1 − y0) denote the displacement vector between the user’s input point (x0, y0) and the
agent-sampled point (x1, y1), satisfying:

∥w⃗∥2 ∼ β · Γ(2, 1), θ ∼ Unif(0, 2π) (1)
where β > 0 is a scaling factor, θ is the angle satisfying w⃗ = ∥w⃗∥2 · (cos θ, sin θ), and Γ, Unif
are the Gamma and Uniform Distributions. In addition, human annotators often use box prompts
during annotation. Thus, motivated by early anchor-based methods (Redmon et al., 2016), which
generate multiple boxes of varying shapes (aspect ratio: 0.67, 1 or 1.5), and sizes (longest side length:
200-800 pixels), we also randomly sample box prompts to explore a broader set of candidate masks,
as illustrated in Fig. 3.

Moreover, the Everything Mode does not support follow-up operations to add or remove unintended
regions for refinement. Consequently, the agent lacks the ability to determine where and how to
refine the mask without user guidance. Fortunately, as previously discussed, most rational human
segmentation behaviors can be broadly categorized as follows:

• When the mask overshoots, users typically refine it using negative clicks. Accordingly, we define
Action Cut: placing negative points on uncertain regions inside the current mask.
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Figure 3: The framework of our agent strategy. First, the agent samples several initial prompts. Then,
the agent clicks positive points on the uncertain areas outside the mask to add-on and negative points
inside the mask to cut-off for refinement.

• When the mask under-segments, users typically expand it using positive clicks. Accordingly, we
define Action Add: placing positive points on uncertain regions outside the current mask.

We use the scores of the IoU predicted head in SAM as the standard of evaluating whether current
mask is "overshooting" or not. When the score of a mask is relatively low across the current candidates,
it’s more likely to need an extra positive click to add on the potential missing parts. Otherwise, when
the score is high, both Cut and Add are rational. Thus, the Next Chain Clickers (NCC) decides to
click positive clicks (0) or negative clicks (1) based on distribution Bernoulli(hiou), where hiou is
the IoU score.

These actions are organized into multiple parallel search chains, and a set of candidate masks
M = {mi} is obtained by iteratively applying the agent for refinement—mimicking the iterative
behavior of human annotators.

Exploit the candidates. SAM can generate multiple candidate masks (i.e., multi-mask mode) but
requires annotators to manually scan and select the appropriate one—introducing additional manual
effort. To alleviate this burden, researchers (Liu et al., 2024b) commonly employ off-the-shelf
pre-trained semantic encoders (Oquab et al., 2024; Radford et al., 2021) as the intent selector (Fsel)
to infer the user’s intent. Specifically, a reference feature is pre-extracted by Fsel, and the mask with
the highest cosine similarity is selected. To formalize:

mout = arg max
mi∈M

Cos-Sim [Fsel(img, mi), Fsel(ref)] (2)

When Fsel receives an image–mask pair as input, it outputs the masked average-pooled semantic
feature. When provided with only a text caption or an image, it instead outputs the corresponding
class token.

3.3 THEORETICAL ANALYSIS

From a fuzzy-entropy perspective, we show our method surpasses the backbone because the fuzzified
candidate set exhibits lower uncertainty. We first recall key notions in fuzzy statistics, then cast
the ambiguity in interactive segmentation as a fuzzification problem (Zadeh, 1965). This yields a
one-dimensional Fuzzy Number representation with tractable analysis; leveraging fuzzy-entropy
tools, we establish a quantitative performance-improvement theorem. Finally, we recast the agent’s
radial search as a graph problem and derive an Efficiency Theorem.
Definition 3.1 (Fuzzy Set and Regression (Zadeh, 1965)). If Ω is some set, then a fuzzy subset A of
Ω is defined by its membership function, written A(x), which produces values in [0, 1] for all x ∈ Ω,
and thus in our work representing the probability of x belongs to A. Similar to classic regression
tasks, the target is also to optimize a model fθ that projects x to y from a distribution P (X,Y ) based
on a set of sampled data (xi, yi). The main difference is that the regressed yi is no longer a fixed
number but a variable with randomness.

A critical fuzzification bridges the set of masks into a fuzzy set can be formalized as follows.
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Assumption 3.2 (Discrete Fuzzifization Assumption). Human interaction can turn a set of candidate
masks into a fuzzy set based on human preference. Besides, for SAM-based methods, we acknowledge
an experimental observation (see Appendix for details): the set of potential masks A is a subset of
{∪i1,i2,...,ik{Areaij}kj=1|Areaij ∈ L}, where L is the Logits areas divided by different thresholds
and gapping edges.

Based on this, the ambiguity problem can be transformed as:
Definition 3.3 (Problem Setting). For interactive segmentation methods including SAM with points
prompts {pi = (crdhi

, crdwi
)}, the all potential masks that contains {pi} is denoted as crisp subset

A({pi}). The goal of disambiguity is to fuzzify A into A({pi}) with uncertainty.

Note that the uncertainty of fuzzy set is evaluated by the fuzzy entropy, we give
Lemma 3.4 (Entropy Metric for Subjective Uncertainty (Wang and Chiu, 1999)). let

h(u) ≜

{
2u if u ∈ [0, 1

2 ],

2(1− u) if u ∈ [ 12 , 1],

then for triangular fuzzy number, the global entropy H(A) :=
∫
x∈X

h(A(x))p(x) dx ∝ |Supp(A)|,
where |Supp| is the support size of A.

With the lemma, we prove a theorem that demonstrates its quantitative performance gains compared
to the backbone.
Theorem 3.5 (Theorem of Inner-Interaction Robustness on Ambiguity). Let PM be the distribution
of human favor and M0 the sampled candidate mask. We can project the mask space into real
number space through fd(Mi) :=

IoU(Mi,M0)
eN0−Ni

, where Ni is the number of points-prompt for SAM
to get Mi. Then A(x; 0, 1, eNmax) is a triangular fuzzy number. Similarly, the related concepts
can be extended to the backbone SAM and lead to a fuzzy number B. Moreover, the fuzzy entropy∫
H(A)d(PM ) ≤

∫
H(B)d(PM ).

However, in interactive scenarios, inference time is also an important consideration. The following
theorem demonstrates that our method balances both efficiency and performance.
Theorem 3.6 (Efficiency Theorem). With

√
Nmax branches and 4

√
Nmax iters per branch, our

strategy can search out the full set Aall.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following prior work, we evaluate our method on the DAVIS (Perazzi et al., 2016) and
PartImageNet (He et al., 2022) datasets. In addition, we construct a novel dataset to explicitly address
ambiguity issues, as highlighted in SAM (Kirillov et al., 2023). Amb-Occ, targets occlusion-based
ambiguity by selecting COCO (Lin et al., 2014) categories that are occluded by small objects in the
LVIS (Gupta et al., 2019) dataset. We filter out densely clustered instances of the same category to
remain within our research scope.

Evaluation Metrics. (1) 1st click IoU (mIoU@1): mIoU@1 refers to the IoU (Intersection over
Union) after the first click. In our ambiguity-aware design, we primarily focus on the IoU of the
first click. mIoU@1 holds the most significant importance in our evaluation because as the number
of clicks grows, user input no longer exhibits ambiguity. (2) Ratio of masks greater than IoU k
(Ratio@K): In addition, we introduce a complementary metric as the proportion of samples where
the desired IoU is achieved with only one user click. This metric provides a direct measure of our
method’s effectiveness in low-interaction scenarios. (3) Number of Click (NoC): NoC refers to the
number of clicks required in interactive segmentation to achieve a specified IoU. We adopt this
evaluation metric to stay in line with previous methods (Huang et al., 2024c; Chen et al., 2022; Huang
et al., 2023). For example, NoC@75 indicates the average number of clicks needed to achieve an IoU
of 75%.

Implementations. Our agent first initializes 9 prompts containing 6 points and 3 boxes. For every
prompt, the agent will do a sequence of 3 following actions. We adopt DINOv2-B (without register

6
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Table 1: Comparison experiments with SOTA interactive segmentation models. We report the 1st
Click IoU (mIoU@1) and the ratio of masks meeting the given IoU threshold (Ratio@75). Results
show that our strategy can effectively enhance SAMs’ ability to resolve ambiguity.

Methods Backbone DAVIS PartImageNet Amb-Occ

mIoU@1 Ratio@75 mIoU@1 Ratio@75 mIoU@1 Ratio@75

FocalClick (Chen et al., 2022)CVPR22
SegFB3-S2 71.07 - - - - -

InterFormer (Huang et al., 2023)ICCV23
- 76.84 - - - - -

SimpleClick (Liu et al., 2023)ICCV23
ViT-H 72.50 - - - - -

HQ-SAM (Ke et al., 2023)NeurIPS23
ViT-B 39.38 25.51 32.85 21.18 34.40 14.69

+SmartSAM ViT-B 57.86 37.39 59.06 43.19 42.18 22.52
HQ-SAM (Ke et al., 2023)NeurIPS23

ViT-H 45.82 30.83 45.53 37.41 41.02 23.14
+SmartSAM ViT-H 59.35 36.65 65.01 54.69 48.12 30.54

SAM (Kirillov et al., 2023)ICCV23
ViT-B 39.53 25.80 33.35 21.47 34.35 15.12

+SmartSAM ViT-B 58.75 35.94 59.23 43.85 42.35 22.01
SAM (Kirillov et al., 2023)ICCV23

ViT-H 45.97 31.59 45.53 37.25 37.81 22.67
+SmartSAM ViT-H 58.57 40.13 64.53 53.57 47.19 30.54

FocSAM (Huang et al., 2024c)CVPR24
ViT-H 74.62 64.35 28.47 20.31 37.98 24.16

+SmartSAM ViT-H 78.32 74.20 63.60 51.24 43.78 25.07

HRSAM (Huang et al., 2024b)Arxiv24 ViT-H 79.19 71.30 65.93 55.77 38.59 16.07
+SmartSAM ViT-H 80.72 74.20 70.33 56.65 41.24 19.93

SAM2.1 (Ravi et al., 2025)ICLR25
ViT-B+ 62.25 52.17 51.57 49.04 44.57 30.17

+SmartSAM ViT-B+ 76.80 69.27 77.31 72.21 51.85 36.15

Table 2: Comparison on 1st Click IoU for
SOTA FSS/OVS. SmartSAM outperforms
on both datasets.

Method Intend Selector Backbone Davis Amb-Occ

FSS
PerSAM – ViT-H 53.77 27.64
Matcher DINOv2-L ViT-H 46.41 46.75
GF-SAM DINOv2-L ViT-H 68.21 39.19

OVS
SAMWISE RoBERTa ViT-L 44.35 37.04

SAM – ViT-H 45.97 37.81
+SmartSAM DINOv2-B ViT-H 58.57 47.19
+SmartSAM DINOv2-L ViT-H 70.74 46.64
+SmartSAM CLIP-B ViT-L 50.62 42.41

Table 3: Multi-mask evaluation (ViT-H). We report
the Best IoU (denoted as IoUbest, higher is better) and
NoC@90 (denoted as NoC90, lower is better).

Baseline DAVIS PartImageNet Amb-Occ
IoUbest ↑ NoC90 ↓ IoUbest ↑ NoC90 ↓ IoUbest ↑ NoC90 ↓

SAM 42.97 5.73 50.92 6.14 37.81 12.73
+SmartSAM 85.38 5.56 84.08 5.48 74.92 10.62

FocSAM 74.62 5.29 28.64 4.97 28.07 7.93
+SmartSAM 84.14 5.24 83.22 4.51 73.19 7.31

HQSAM 45.82 5.10 41.02 5.64 45.53 12.14
+SmartSAM 87.42 4.86 86.30 5.40 75.01 10.30

tokens) as the semantic encoder. All experiments are conducted on a single NVIDIA RTX 4090 GPU.
For reference image preparation, we apply background removal and cropping to ensure the reference
occupies approximately 70% of the original image size. When compared with FSS and OVS methods,
the inputs are controlled the same since we additionally add the user clicks as the point supervision.

4.2 MAIN RESULTS

To evaluate the effectiveness of our strategy in addressing ambiguity, mIoU@1, Ratio@75, Ratio@85,
and NoC. For DAVIS and PartImageNet datasets, we follow the click-simulating settings in (Huang
et al., 2024c; Zhao et al., 2024) where the 1st clicks are placed in the middle of the ground truth
masks (see the left picture in Fig. 19). To simulate the ambiguous situation of Amb-Occ, we randomly
select one of the smaller occluding objects’ ground truth as the 1st click area and regarding the whole
object as the target ground truth.. All reported results are averaged over five independent trials to
ensure statistical robustness.

Our method consistently outperforms existing approaches across all evaluated metrics. In particular,
we observe a substantial improvement in mIoU@1 (see Tab. 1), which underscores the strength of our
ambiguity-aware design in producing accurate masks from minimal user input. Moreover, SmartSAM
consistently surpasses the FSS and OVS methods (see Tab. 2). Interestingly, some methods such as
FocSAM underperform their own backbone models in the early stages of interaction. We attribute this
to a trade-off between segmentation stability and local adaptability: these methods tend to over-focus
on local refinement, which limits generalization when user input is sparse. Comprehensive visual
comparisons and case studies are provided in the supplementary material.
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Table 4: Time Cost of encoder on 4090 GPU with Batch Size 2.
Results show that the additional encoding time introduced by the
intent selector is negligible, and the peak memory usage remains
within an acceptable range.

Method Backbone DINO Time (s) VRAMpk (MB)

Matcher ViT-H ViT-L 1.36 7476.30
SAM ViT-H – 0.84 4490.70

+SmartSAM* ViT-H ViT-B 0.85 5998.78
+SmartSAM# ViT-H ViT-B 0.92 5328.98

* Parallel: forward the SAM encoder and the intent selector.
# Sequential: forward the SAM encoder, then the intent selector.

Table 5: Time Cost of Decoder on 4090
GPU with Batchsize 2. The number of
initial sampling is referred to as # I.S. for
simplicity.

Method # I.S. Time (s)

SAM 1 0.0670
+SmartSAM 2 0.0711
+SmartSAM 6 0.0782
+SmartSAM 9 0.1395

Ground Truth SAM SmartSAM

1st

2nd

1st
1st

1st

Ground Truth SAM SmartSAM
Reference Object

1st click 2nd click 3rd click

SAMs’
Output

Our Output

selecting

Input and GT

1st

Figure 4: An example for the working flow of the agent. With one click •, SAM only outputs part of
the target. However, the agent can continue to add clicks • and find the best matching mask.

4.3 EFFICIENCY STUDIES

Agent prompts efficiency. Given that the original SAM framework produces three candidate masks
per interaction, allowing users to manually select the most suitable one as a means to address
segmentation ambiguity, we also evaluate this human-in-the-loop selection paradigm for comparison.
To ensure a fair assessment, we adopt the IoU of the top-1 candidate mask after the first user click
as our evaluation metric, reflecting a realistic usage scenario. The results in Tab. 3 indicate that our
method consistently surpasses the SAM candidate selection approach in terms of the NoC@90 and
top-1 IoU across all datasets.

Time and computation cost efficiency. As illustrated in Fig. 2, we only perform a single forward
pass through the encoder. The main additional time and computation come from the intent selector
and multiple calls to the mask decoder. Since the intent selector is executed in parallel with the
encoder, and we utilize batch inference of SAM to generate masks, the extra inference time required
to process both the target and reference images using DINO is less than 10% of the time taken by
SAM inference (see Tab. 5). Furthermore, since we adopt DINOv2-B as the intent selector, the
additional time compared to the baseline SAM is controlled within 2% (see Tab. 4). Compared to the
FSS method Matcher, our approach also achieves a 25% reduction in peak VRAM usage (see Tab. 4).

4.4 METHOD ANALYSIS

Agent Working Mechanism. The agent is designed according to the statistical priors of the
dataset’s initial distribution provided by SAM (Fig. 5 in (Kirillov et al., 2023)). We evaluate the
effectiveness of our inner-interaction strategy both qualitatively and quantitatively. Qualitatively, we
present failure cases of using a single initial prompt and illustrate how our approach escapes these
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Table 6: Ablation studies of agent actions on
mIoU@1 metric. Priori Initial Sampler is denoted
as PIS and Next Chain Clicker is denoted as NCC.

PIS NCC Amb-Occ PartImageNet

Random - 49.79 72.90
ours - 72.91 83.17

- Random 49.91 75.31
- ours 70.49 79.04

- - 37.81 50.92
ours ours 74.92 84.08 Figure 5: mIoU gains on different datasets with

SAM, FocSAM and HQSAM backbones.

“traps.” Quantitatively, we measure performance improvements in terms of mIoU@1, comparing our
initialization to standard alternatives.

As illustrated in Fig. 4, the logits generated from a naive user click tend to activate only a partial
region of the ground truth, often failing to distinguish the true target from surrounding distractors.
In contrast, our method initiates a more effective agent-based sampling process, which successfully
escapes these local minima. Furthermore, the quantitative results in Tab. 7 confirm that our approach
consistently achieves superior performance. These findings also indicate that such situations are
common in ambiguous scenarios.

Table 7: Analysis on diverse actions. We count images whose
predicted mask comes from different actions. Action 1 contributes
the most, while other actions are necessary for harder cases.
Inner Interaction PartImageNet Amb-Occ

Type
Number 1 2 3 4 All 1 2 3 4 All

Add 1089 888 93 69 2139 944 593 134 83 1754
Cut – 48 34 3 85 – 44 42 22 108
Add&Cut – – 115 139 254 – – 126 219 345

No Action – – – – 39 – – – – 23
Ours 1089 1026 342 211 2705 946 637 302 312 2385

Agent Action Analysis. We
design different agents to han-
dle various scenarios. To eval-
uate their contributions, we an-
alyze the number of inner in-
teractions required to achieve
correct predictions. As illus-
trated in Tab 7, Action Add
generates most of the predic-
tions. Combined with Fig. 4,
this implies that SAM exhibits
a strong bias toward segment-
ing a small object encompass-
ing the user’s click location.
Consequently, Action Add can expand the search space step by step, leading to a more accurate
mask. Meanwhile, we observe that most predictions are made within the first two inner interactions,
with diminishing returns in subsequent interactions. This aligns with our theoretical expectation that
ambiguity is typically resolved within the first few clicks.

4.5 ABLATION EXPERIMENTS

As supported by our theoretical analysis, the proposed strategy is designed to mitigate ambiguity in
interactive segmentation. To validate its generality and effectiveness, we conduct ablation studies
by integrating our approach with several baseline methods. The results presented in Tab. 6 show
that our method consistently improves performance over the baseline models. Notably, according to
Fig. 5, the performance gains diminish as the number of clicks increases, approaching zero after 2-3
interactions. This trend aligns with our theoretical expectation: ambiguity tends to be resolved within
the first few clicks, making further improvement less pronounced.

In particular, our approach yields substantial improvements when combined with backbones designed
to enhance the stability of SAM. Such models typically constrain logits to local regions, which can
lead to performance degradation in ambiguous single-click scenarios. Our strategy enables these
models to overcome local traps and expand the search space, thereby significantly boosting their
robustness in early interactions.
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Table 8: FSS, PS, and IS methods on FSS benchmarks (COCO-20i, PASCAL-5i) and IS benchmarks (DAVIS,
Amb-Occ). SmartSAM consistently improves SAM on both FSS-style and IS settings, while specialized FSS
methods remain strongest on FSS benchmarks.

Method Task Scope Reference COCO-20iFSS ∗ PASCAL-5iFSS † DAVISIS Amb-OccIS

ProSAM FSS yes 48.74 75.26 - -
VRP-SAM FSS yes 48.10 73.90 - -
Matcher FSS yes 47.61 72.92 46.41 46.75
PerSAM PS yes - - 53.77 27.64
FocSAM IS no 36.22 41.58 74.62 37.98
w/ SmartSAM IS optional∗∗ 39.04 45.63 78.32 43.78
SAM IS no 34.71 40.27 45.97 37.81
w/ SmartSAM IS optional∗∗ 38.93 45.79 58.57 47.19

∗ Results on fold-0 of COCO-20i.
† Results on fold-0 of PASCAL-5i.
∗∗SmartSAM has a pure IS mode; here we report the variant with references.

Table 9: SmartSAM in pure IS and reference modes on IS
benchmarks. Pure IS mode of SmartSAM that work without
references still show superiority to the baseline SAM.

Method Mode DAVIS Amb-Occ

SAM pure IS 45.97 34.35
SmartSAM pure IS† 59.71 43.94
SmartSAM textual 44.35 37.04
SmartSAM visual(DINOv2-B) 58.57 47.19
SmartSAM visual(DINOv2-L) 70.74 46.64

† Select the mask from the candidate set that: 1. contains
the user’s 1st click; 2. of the highest IoU score predicted
by SAMs’ IoU predict head.

Table 10: Robustness of SAM and SAM2 to
TETRIS-style Moskalenko et al. (2024)
first-click perturbations, with and without
SmartSAM. SmartSAM consistently improves
robustness under attacked first clicks and also
boosts clean performance.

Method DAVIS DAVIS (attack)

SAM 39.53 33.27
w/ SmartSAM 58.75 58.52
SAM2 62.25 59.66
SAM2 + SmartSAM 76.80 75.93

All numbers are IoU scores (%). “attack”
denotes TETRIS-style first-click perturbations.

4.6 EXTENTED EXPERIMENTAL ANALYSIS.

Why FSS metrics are not suitable for IS evaluation. Table 8 compares FSS, PS, and IS methods on
both FSS and IS benchmarks: specialized FSS methods (ProSAM, VRP-SAM, Matcher) perform best
on COCO-20i and PASCAL-5i, while SmartSAM mainly improves SAM and FocSAM on DAVIS
and Amb-Occ. This indicates that FSS-style metrics are not well aligned with click-based IS behavior
and that SmartSAM should primarily be evaluated under IS protocols.

Pure IS mode of SmartSAM still works. Table 9 disentangles the effect of references by comparing
SmartSAM in pure IS mode (no text or visual exemplars) and in reference-based modes. Even
without any reference, SmartSAM substantially outperforms SAM on DAVIS and Amb-Occ, while
textual/visual references with a stronger encoder (DINOv2-L) bring additional gains rather than being
the sole source of improvement.

SmartSAM is robust for real-world annotators. Table 10 studies robustness to non-ideal first
clicks using a TETRIS-style Moskalenko et al. (2024) to simulate real-worl first clicks. SmartSAM
consistently boosts SAM and SAM2 in both clean and “attack” settings, with larger relative gains
under perturbed first clicks, indicating increased tolerance to imperfect user clicks.

5 CONCLUSION

SAM provides a powerful backbone for interactive segmentation. However, its stability in real-world
applications is often compromised, particularly in ambiguous scenarios. This limitation arises from
overly fuzzy inputs, where SAM struggles to generate sufficient candidate masks and output the
correct mask based on user preferences. To address these challenges, we propose a training-free
SmartSAM method. SmartSAM leverages multiple chains of agents to automatically introduce points
at appropriate areas, constructing a comprehensive pool of candidate masks. The most matched
mask is then selected through a feature similarity comparison process. As a result, SmartSAM not
only achieves state-of-the-art segmentation quality but also demonstrates remarkable performance in
handling ambiguous scenarios. These advancements underscore SmartSAM’s potential for broader
and convenient real-world applications.
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ETHICS STATEMENT

All authors have read and agree to abide by the ICLR Code of Ethics. This work does not involve
interventions with human participants or personally identifiable information. We use only publicly
available datasets under their original licenses and follow the terms of use. Potential risks and our
mitigations are summarized below:

• Privacy & Security. We do not collect or release any personal data. When showing qualitative
examples, all images/videos are from public datasets; any sensitive content is filtered.

• Bias & Fairness. We report results on multiple benchmarks and provide detailed settings to
facilitate external auditing. We acknowledge possible dataset biases and encourage follow-up
evaluation on broader demographics and domains.

• Dual Use / Misuse. The method could be misused to enable undesired large-scale labeling or
surveillance. To reduce misuse, we release only research artifacts (code/configs) and exclude any
tools for scraping or re-identifying individuals.

• Legal Compliance. We comply with licenses of all third-party assets (code, models, and datasets)
and cite their sources. Any additional third-party terms are respected.

• Research Integrity. We document preprocessing, training recipes, and evaluation protocols;
random seeds and hyperparameters are provided to enable reproducibility.

Where applicable, institutional review information is withheld for double-blind review and can be
provided after acceptance.

REPRODUCIBILITY STATEMENT

We include training and evaluation details in the main paper and Appendix. Concretely: (i) all
hyperparameters, optimization settings, and compute budgets; (ii) full data preprocessing and splits;
(iii) code structure with scripts to reproduce the main tables and figures; (iv) checkpoints and logs for
the primary models will be open-sourced upon paper acceptance.

For theoretical results, we provided the proofs and assumptions in Appendix.
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A PROOFS FOR THE THEOREMS

A.1 THEOREM 1

proof of Theorem 1. First, we prove that the defined projection is a fuzzy number by indicating that
it is convex and only attains the maximum value at one point. Since e−x is convex and our transform
inside is a linear projection, the convexity can be ensured. Moreover, since Ni ≥ N0, the maximum
is only reached when Ni = N0. Also, IoU(Mi,M0) is only achieved when Mi = M0. Thus, the
projection has only 1 maximum point.

Since our strategy contains the output of the baseline model, B ∈ A. We denote the favor mask in A
as M0 and in B as m0. Thus, by the extension principle

h(A) =

∫
h(A(x)) dP (x) =

|A|∑
i=1

pαi ·
∫

h(Aαi(x))dP (x) (3)

where |A| denote the cardinality (a.k.a. number of the members) of A and Aαi
denote the hierarchy

α-cut based on projection fd. Also, for B we have,

h(B) =

∫
h(B(x)) dP (x) =

3∑
i=1

1

3
·
∫

h(Bαi
(x))dP (x) (4)

Since our candidate set is a dense expansion of the original 3 masks, each α-cut can be uniquely con-
tained in one of the 3 sub-cuts in B. Therefore, for every sub-cut, by the convexity of a characteristic
function minus a bunch of sub-characteristic functions,

3∑
i=1

1

3
·
∫

h(Bαi
(x))dP (x)−

|A|∑
i=1

pαi
·
∫

h(Aαi
(x))dP (x) (5)

=

|A|∑
i=1

pαi
·
∫
interval(αi)

[h(Bα̃i
(x))− h(Aαi

(x))]dP (x) (6)

≥
|A|∑
i=1

pαi ·
∫
interval(αi)

x dP (x) > 0 (7)

where the first inequality is conducted by Lemma 3.8.

A.2 THEOREM 2

Now we focus on the efficiency of our strategy.
Definition A.1 (Nmax and SAM-subregion). We define the new region gP added by SAM after
applying a prompt P as the SAM-subregion corresponding to P . We denote the set of all SAM-
subregions of an image x as G. For g ∈ G, let Ng denote the number of other SAM-subregions
adjacent to it. Then Nmax := max

g∈G
Ng .

Therefore, consider the G as the vertex set and the adjacent relation as the edge set, G can be regarded
as a graph (Bondy and Murty, 2008).
Lemma A.2 (The Upper Bound of the Minimum Path in a Graph (Bondy and Murty, 2008)). In a
connected graph, if the maximum degree of any vertex is Nmax, and the graph has |G| vertices, then
the length of the minimum path between 2 vertexes gi, gj in G of the graph satisfies the following
inequality:

diam(gi, gj) ≤ ⌈logNmax
|G|⌉

Assumption A.3 (Relations between Nmax and |G|). From experimental results in (Ravi et al., 2025),
we assume that the set of SAM-subregions G is a tree-graph whose root node is in the foreground.
Moreover, we assume the depth of every branch in the tree is no more than 3 and Nmax ≥ 8. Under
this assumption, we conclude that |G| ≤ (Nmax)

3. Thus logNmax
|G| ≤ 1

2
8
√
Nmax.
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Lemma A.4 (Series Expansion Approximation). For gi, gj in a subset of SAM-subregions G, the
length of the minimum path between 2 vertexes diam(gi, gj) ≤ 1

2
8
√
Nmax

proof of Lemma 1.4. If there’s a single Next Chain Clicker from g0 and clicks on subparts G⟩ of G
that contains gi,

diam(gi, g0) ≤ logNi
max

(|G⟩|)

where N i
max is the maximum degree of any vertex on G⟩. Similarly, if gj lies in a single Next Chain

Clicker, we have,
diam(gj , g0) ≤ logNj

max
(|G||)

Then, we have

diam(gi, g0) + diam(gj , g0) ≤ logNi
max

(|G⟩|) + logNj
max

(|G||) (8)

≤ 1

4
8
√
N i

max +
1

4

8

√
N j

max (9)

≤ 1

2
8
√
Nmax (10)

Therefore, we can prove Theorem 2 as follows.

proof of Theorem 2. Let M0 = ∪{gi}Ki=1 denote the output mask of the given user’s click (x0, y0).
G = {gK+1, ..., gN} be the set of erroneous SAM-subregions. Now consider:

(1) If there’s a gk ∈ G cannot be searched out by the
√
Nmax branches with 4

√
Nmax iterations

per branch. Let {gK , gk1
, ...gkt

, gk} be the shortest connection way to G. Then by Lemma 1.4,
kt ≤ 8

√
Nmax. Now consider G as a tree of which the root node is g0. The shortest connection between

{g0, gK , gk1 , ...gkt , gk} and other branches is ≤ 1
2

8
√
Nmax. Therefore, we have 8

√
Nmax > 4

√
Nmax,

which is contradict to the Assumption that Nmax > 1.

(2) Otherwise, the original searching branch can search out the farthest (from the perspective of a
connected graph) gk in G. Then the disambiguous mask M0 = ∪{gi}Ni=1 of the user’s intent could
be conducted in G.

B PRACTICAL APPLICATIONS

Why We Regard Reference Instances Easy to Get. From both the previous work (Liu et al., 2024b;
Zhang et al., 2024b; Sun et al., 2024) and the practice, reference instances are acceptable visual
prompts. In practice, when dealing with a large number of images to annotate without reference
masks, the user can first use the interactive model to get a mask representing the target category.

Potential Applications. For large-scale data annotation tasks, SmartSAM significantly reduces both
interaction time and operational costs. Additionally, it provides enhanced usability for processing
ambiguous images in routine applications.

C DATASETS DETAILS

Statistics of Used Datasets. As shown in Tab. 11, we report the statistics of the three datasets. (1)
DAVIS: The DAVIS dataset, used for the interactive segmentation task, consists of 374 keyframes
extracted from videos. Following FocSAM (Huang et al., 2024c), all instances in each image are
treated as a single instance. Therefore, there are a total of 374 instances. These instances primarily
belong to categories such as humans, animals, and vehicles. (2) PartImageNet: A total of 2,408
ambiguous images were selected from the test set of PartImageNet. The entire object in each image
is treated as the target instance. Since each image in PartImageNet generally contains only one
complete instance, there are a total of 2,408 instances. This dataset includes 30 categories in total. (3)
Amb-Occ: Objects from the 80 base classes in COCO were selected as the target instances. Using
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Table 11: The statistics of the three benchmark datasets. No. Images denotes the number of images in
the dataset. No. Instances denotes the number of instances (also the number of masks) in the dataset.

DAVIS PartImageNet Amb-Occ
No. Images 374 2408 2744

No. Instances 374 2408 4470
Categories - † 30 80
Ambiguity - √ √

† We follow FocSAM in treating all instances in each image of DAVIS as a single instance, and
therefore do not count categories.

Figure 6: Failure cases of SAM dealing with ambiguous input. Users typically have to add more
accurate clicks to get their target masks.

annotations from LVIS and COCO, a dataset comprising 2,744 images and 4,470 instances was
constructed. For more details, see the next subsection.

Why and How We Construct Amb-Occ. We construct Amb-Occ based on the observation that
larger instances are often composed of sub-instances (i.e., a man with a backpack). As shown in Fig.
6 (examples generated using the web demo of SAM), refining the segmentation of whole instances
typically requires more iterations of human clicks. To construct the dataset, we selected the LVIS
(Gupta et al., 2019) and COCO (Lin et al., 2014) datasets, as they share the same image assets but
LVIS provides more detailed annotations. Specifically, we chose the categories in COCO as the target
instances and applied a coarse filtering process to identify images where the segmentation mask of
one instance is fully contained within a larger mask. Subsequently, we manually refined the dataset,
resulting in 2,744 images and 4,470 instance pairs (where one mask contains another). Examples of
these are shown in Fig. 7.

D MORE DETAILS ON THE WORKING MECHANISM

D.1 DETAILS IN SMARTSAM

As shown in Fig. 8, the Priori Initial Sampler generates a number of additional clicks (9 in our
settings). Each click generates 3 masks using the multi-mask mode of SAM, resulting in a set of
initial masks (in our settings, 3 × (9 + 1) = 30 masks). Subsequently, the Next Chain Clickers
iteratively refine the initial masks by adding clicks (3 iterations in our settings). Finally, the agent
computes the cosine similarities between the feature of the reference instance and the candidate
masks. The top-1 candidate with the highest similarity is selected as the output.

D.2 A MORE COMPREHENSIVE INVESTIGATION ON OUR BASIS OBSERVATION

Why We Use Simulator Points. In interactive segmentation, model evaluation is not performed
using actual human clicks. Following (Liu et al., 2023; Huang et al., 2023; 2024c), most interactive
segmentation methods employ a click simulator to mimic human clicking behaviors during evaluation.
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Figure 7: We select from LVIS and COCO datasets to build our Amb-Occ Dataset.

Specifically, this simulation strategy selects a "center" point from erroneous areas, located at a certain
distance from the boundary, to simulate human refinement actions. This center point represents the
statistical average of human click locations.

The Distribution of the Logits of Simulated Oracle Points. We report the logit values of the
ambiguous parts and the entire distribution. As shown in Fig. 9, the left panel presents the box
plot of the logits for the ambiguous parts, while the right panel shows the entire distribution. We
observe a difference between the distributions: the logit values of the ambiguous areas are closer to
the segmentation threshold, indicating that these regions correspond to the uncertain areas discussed
in the main paper.

D.3 A THOROUGH ANALYSIS ON PRIORI INITIAL SAMPLER

Why the Agent Should Add Initial Prompts. As shown in Fig. 11, when processing ambiguous
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Figure 8: The details of mask generation. Generally, the candidate set is generated through a "search-
and-filter" workflow. First, the Priori Initial Sampler samples several masks, and the Next Chain
Clickers iteratively refine these masks. Subsequently, SmartSAM computes the cosine similarities
between the reference feature and the candidate features, outputting the mask with the highest
similarity.

Figure 9: We plot the distributions of the logits for the
ambiguous parts (left) and the whole areas (right). The vi-
sualized box plots indicate significant differences between
the two distributions, with the ambiguous parts exhibiting
higher uncertainty.

Figure 10: Compared with the baseline
SAM, the number of initial prompts
exhibits diminishing returns. An ex-
cessive number provides limited im-
provement to performance.

images, a single input may fail to avoid generating unwanted masks. However, by properly sampling
additional initial prompts, this issue can be resolved.

Why Choose Gamma. SmartSAM using a Gamma distribution performs better than using a normal
distribution (see Tab. 12). As shown in Fig. 12, an intuitive explanation for this is that the normal
distribution lacks "skewness," which results in oversampling points that are too close to the user click.

Why the Number of Initial Prompts is Controlled. Intuitively, increasing the number of initial
prompts improves performance. However, as shown in Fig. 10 (with the number of Next Chain
Clickers’ iterations controlled at 3 except for the user’s click), this benefit does not consistently
lead to improved performance. Furthermore, an excessive number of branches negatively impacts
inference time.
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Figure 11: How the Priori Initial Sampler (PIS) works: When users click • ambiguously, PIS searches
for more appropriate masks by clicking • around users’ click.

Table 12: By controlling the peaks to 100 and
maintaining the same variations, the results show
that when the peaks of the PDFs are controlled
identically, the Gamma Distribution is a better
choice for SmartSAM.

Ori SAM Gamma Norm
PartImageNet 45.53 64.53 62.42

Amb-Occ 37.81 47.19 44.21
Figure 12: A schematic diagram of a gamma
distribution and a normal distribution with the
same maximum PDF position.

D.4 A THOROUGH ANALYSIS ON OUR NEXT CHAIN CLICKERS

Why Dynamically Change the Range of Uncertain Areas. From the perspective of definition,
"uncertainty" is a concept opposite to "certainty." Thus, the former should be defined in relation to
the latter. A certain area in SAM predictions corresponds to the top high (or top low) scores in the
logits, meaning that uncertain areas are relatively lower (or higher) than the certain ones. As shown
in Fig. 13, the logit distributions of these images span a wide range. Therefore, using an absolute
threshold to define "uncertain" is not appropriate.

D.5 WHY THE LENGTH OF THE CHAIN SHOULD BE CONTROLLED?

As mentioned in Section IV, the quality (measured by Best IoU and mIoU@1) does not improve
as the number of NCC iterations increases. To address this, we present evidence in Fig. 15, which
shows that when the number of interactions exceeds 3 clicks, the mIoU@3 reaches nearly 90% on
the PartImageNet and DAVIS datasets, indicating the resolution of ambiguity. One may question
whether agent-generated clicks perform as well as oracle human interactions and whether the chain
length should be extended. We address this concern in Fig. 14. As shown in the figure, after 3
agent-generated clicks, the ambiguous parts become difficult to distinguish from the background.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 13: We plot (from left to right) the input image, ground truth, logits, and their distributions in
a histogram. The values of uncertain areas vary at the image level. For the upper image of the parrot,
the absolute values of the background are lower than those of the boat image.

Figure 14: The uncertainty of the ambiguous area does not
remain separable as the number of clicks increases. In this
figure, when the user adds too many clicks on the windows,
the logit scores of the ambiguous area (specifically, other
parts of the truck, including Area 2) become indistinguish-
able from the unrelated background (the red wall, Area 1).

Figure 15: The mIoUs on different
datasets as the number of clicks in-
creases are shown. We found that ap-
proximately 3 clicks are sufficient to
achieve a high level of performance,
indicating the resolution of ambiguity.

E MORE DETAILS FOR EXPERIMENTS

E.1 WHY FAILED ON FOCSAM AT RATIO@85

General Analysis. One may doubt the main results in Tab. 1 of the main text, where the Ratio@85 is
even worse than the baseline FocSAM. This counterintuitive issue happens because of the candidate
selector and the poor separation of FocSAM’s logits between the background and the ambiguous
region. As shown in Fig. 16, though the original masks generated by the user’s click are in the
candidate set, the semantic image encoder of the candidate selector mistakes the low-quality masks
as the best masks. This is mainly because FocSAM ignored the IoU-head of the original SAM, which
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Figure 16: We plot the images where FocSAM outperforms SmartSAM. There are two main cases.
First, SmartSAM outputs more reasonable masks (i.e., a complete rearview mirror, a skating man
without ski poles, or a dog without a helmet). Second, since FocSAM disables the IoU-Head, it is
unable to merge the candidate masks. As a result, for images where FocSAM already performs well,
our method occasionally produces low-quality masks.

will be discussed later. Therefore, our strategy failed to increase the performance of the FocSAM on
Ratio@85.

Differences Between FocSAM and Other SAMs. The main difference is that FocSAM disables the

Figure 17: The predicted IoU score can represent the "quality" of the mask. The first example is the
interpolated 16× 16 mask obtained through mask-average-pooling. The following three examples
share the same low-resolution masks but differ significantly in quality (the second and third contain
substantial noise, while the last one is much clearer). Due to the absence of the IoU-Head, FocSAM
tends to produce low-quality masks.

IoU-Head module, whereas typical baseline SAMs retain this component. This structure is utilized
by SmartSAM to evaluate the quality of the candidate set (see Fig. 17). As a result, the absence of
the IoU-Head indeed prevents SmartSAM from outputting high-quality masks.

F WHERE WE PLACES THE 1ST CLICKS FOR EXPERIMENTS IN THE
REBUTTAL PHASE.

Here is a visulized example (see Fig. ??) of how the first clicks are placed for experiments in the
rebuttal phase.

G HOW FOCSAM PREPROCESSES THE DAVIS DATASET.

We follow the preprocess procedure of FocSAM to turn multi-objects DAVIS into single objects (see
Fig. 20).
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Figure 18: More Visulized Results Compared with FSS/OVS methods. Qualitative comparison
between SmartSAM and representative methods across three task families: Interactive Segmentation
(IS), Point/Prompt-based Segmentation (PS/FSS), and Open-Vocabulary Segmentation (OVS). In
the IS scenario, SAM-based baselines tend to over-focus on partial regions of the object, whereas
SmartSAM accurately segments the entire object. In the PS/FSS case (e.g., PerSAM), SmartSAM
correctly segments the person riding the bike, while SAMWISE produces an incorrect mask on the
black bag. In the OVS case (e.g., SAMWISE), SmartSAM successfully identifies the person riding
the horse, but SAMWISE fails to locate the correct target due to its lack of support for human-click
prompts.

Baseline Strategy Our Strategy

Equal
Probability

Our Strategy
Baseline Strategy

1st Click attacking on Amb-Occ 1st Click attacking on PartImagNet

Figure 19: How we simulate real-world human 1st clicks.
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Image Original Mask Processed Mask

Figure 20: We merge multi-objects DAVIS into single objects.

GT of FSS benchmarks
Figure 21: FSS benchmarks are not suitable for evaluating IS methods. IS focus on segmenting a
single object, while in FSS benchmarks there’s always multi-objects of a single category in the image.
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