

000 SMARTSAM: SEGMENT AMBIGUOUS OBJECTS LIKE 001 SMART ANNOTATORS 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Segment Anything Model (SAM) often encounters ambiguity in interactive seg-
011 mentation, where insufficient user interaction leads to inaccurate segmentation
012 of the target object. Existing approaches primarily address ambiguity through
013 repeated human-model interactions, which are time-consuming due to the inherent
014 latency of human responses. To reduce human efforts, we propose a novel inter-
015 active segmentation framework that leverages the model’s inherent capabilities
016 to effectively segment ambiguous objects. Our key idea is to create an annotator-
017 like agent to interact with the model. The resulting SmartSAM method mimics
018 intelligent human annotators, resolving ambiguity with a single click and one
019 reference instance. The agent generates multiple prompts around the initial click to
020 simulate diverse annotator behaviors and refines the output masks by iteratively
021 adding click chains in uncertain regions, thereby producing a set of candidate
022 masks. Finally, the agent selects the mask that most closely aligns with the user’s
023 intent, as indicated by the reference instance. Furthermore, we formalize the
024 agent’s behavior as a fuzzy regression problem by quantifying ambiguity using
025 fuzzy entropy. We demonstrate that our agent yields lower entropy than traditional
026 methods, and we establish robustness and sufficiency theorems to ensure effective,
027 human-like decision-making within a bounded range of actions. We evaluate our
028 approach on multiple segmentation benchmarks and demonstrate its superiority
029 over state-of-the-art methods.

030 031 1 INTRODUCTION

032 Interactive segmentation typically rely on single-turn (Boykov and Jolly, 2001; Zhang et al., 2024b;
033 Liu et al., 2024b) or multi-turn (Huang et al., 2023; Lee et al., 2024) human guidance to predict
034 accurate masks for desired objects. Among them, the Segment Anything Model (SAM) (Kirillov
035 et al., 2023; Ravi et al., 2025) and subsequent works (Huang et al., 2024c; Zhao et al., 2024) have
036 made significant progress in high-quality segmentation and show potential in medical care (Li et al.,
037 2025), autonomous driving (Fan et al., 2023), and remote sensing (Shan et al., 2025).

038 A key issue with these methods is ambiguous predictions caused by insufficient interactions, where
039 models often misinterpret the user’s intent, leading to undesired segmentation masks. As illustrated
040 in Fig. 1, when a user clicks or gazes at the target object, the model may produce an incorrect mask of
041 the dress due to ambiguous intent, prompting the user to provide additional interactions to clarify the
042 intent. In large-scale annotation scenarios, repeated interactions may appear feasible but can result in
043 significant cumulative time costs due to user refinement. Recent methods (Huang et al., 2023; 2024c)
044 have reduced inference latency to the millisecond level, a time span typically negligible compared to
045 human actions. This suggests that the primary time cost in the scenarios mentioned above lies outside
046 the model, and we refer to the interactions between the user and the model as **outer interactions**.
047 Moreover, this issue is particularly pronounced in Augmented Reality and Virtual Reality (AR/VR)
048 scenarios (Zeng et al., 2025), where a user’s gaze faces challenges in facilitating multiple interactions,
049 thereby amplifying the significance of this problem for SAM-based methods.

050 Previous methods (Zhao et al., 2024; Huang et al., 2024c; Chen et al., 2022; Du et al., 2023; Ke
051 et al., 2023) often overlook the ambiguity of a single click and focus on segmenting target instances
052 through multiple turns of outer interactions, leading to significant time consumption. In fact, using
053 as less amount of human interactions (*e.g.*, reference instances in Reference Segmentation methods

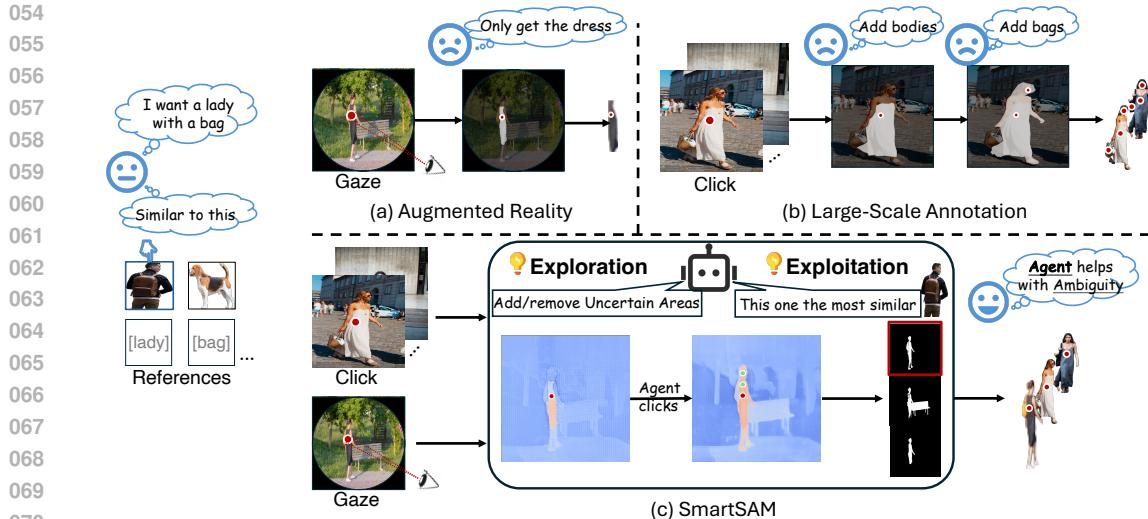


Figure 1: Ambiguity is a common obstacle for interactive segmentation methods including SAM, resulting in expensive multi-turn human interactions or imprecise single-turn human interactions. Our strategy uses an agent to overcome this by automatically interacting with itself, saving human cost.

(Zhang et al., 2024b; Liu et al., 2024b; Sun et al., 2024)) to address ambiguity can effectively improve interaction efficiency. An agent that utilizes “low response time interactions” can reduce outer interactions by automatically acting in place of humans. In contrast to outer interactions, we refer to this automatic behavior as **inner interactions**, as it occurs within the model between the agent and the segmentation model. Thus, the question arises of *how to replace the heavy outer interactions with the lighter inner interactions*. A potential solution is to have the agent behave like a human.

We observe that human interactions follow spatial patterns that can guide the agent. Specifically, the oracle outer interactions tend to fall in the middle of uncertain areas, where the model’s predictions are not confident. As shown in Fig. 1, the model is confident that the dress is within the user’s desired mask, while backgrounds such as the road and woods are not part of the intent. However, the predicted scores for the lady and the bags fall within the uncertain range, suggesting that the model considers them as potential instances. Therefore, we can use this pattern to build an agent and address the aforementioned question.

Therefore, we propose a training-free SmartSAM method to resolve ambiguity with a single click and one optional reference in either visual or textual form., functioning like intelligent human annotators. After clicking on the image, the agent generates diverse initial prompts based on the provided input, simulating various human annotators confronting the same image. The agent then processes each initial prompt through a series of inner interactions in the aforementioned uncertain areas to mimic human refinement, resulting in a set of candidate masks. Finally, the agent either uses the reference to select the mask that best aligns with the human intent, or just provides the mask of highest quality from the set.

Notably, Few-Shot Segmentation (FSS) (Liu et al., 2024b; Zhang et al., 2024a) and Open-Vocabulary Segmentation (OVS) (Cuttano et al., 2025) methods also utilize visual or textual references. However, these methods are inherently non-interactive and lack the capability to automatically refine predictions based on user feedback. In contrast, SmartSAM is explicitly designed to perform intelligent inner interactions while also enabling user-driven outer interactions, and can be seamlessly integrated with existing SAM-based interactive segmentation methods.

The behavior of the agent in finding and selecting can also be formalized as a fuzzy regression problem (Zadeh, 1965). We translate a model’s ability to handle ambiguity into a quantitative form of fuzzy entropy. We prove that the entropy of inner interactions is always less than that of corresponding outer interactions and derive the robustness theorem for ambiguity. Furthermore, to enable the agent to effectively mimic human behavior with fewer inner interactions, we prove the sufficiency theorem of our strategy, demonstrating that the total number of the agent’s inner interactions can be kept within an acceptable range.

108 Our contributions can be summarized as follows:
 109

110 • Unlike previous work focused on outer interactions, we are the first to overcome the challenges
 111 from the perspective of inner interactions. Additionally, we propose a training-free SmartSAM
 112 method to resolve ambiguity, functioning like intelligent human annotators.
 113 • We provide a solid theoretical analysis, including two theorems for our method from the perspective
 114 of fuzzy statistics. The first theorem focuses on the ability to deal with ambiguity, while the latter
 115 illustrates the strategy’s efficiency.
 116 • We evaluate our approach on multiple segmentation benchmarks and achieve superior performance
 117 compared to state-of-the-art methods.

118 **2 RELATED WORKS**
 119

120 **Interactive Segmentation.** Interactive segmentation aims to segment objects in images by leveraging
 121 user interactions, such as clicks, scribbles, or bounding boxes. Traditional approaches formulate
 122 this task as an optimization problem (Adams and Bischof, 1994; Boykov and Jolly, 2001; Grady,
 123 2006), while early deep learning-based methods integrate user interactions as auxiliary guidance
 124 channels (Xu et al., 2017; Lin et al., 2022). Subsequent research has concentrated on designing model
 125 architectures (Chen et al., 2022; Huang et al., 2023; Liu et al., 2023) to better encode user feedback.
 126 These advancements have yielded improvements across multiple dimensions, including inference
 127 efficiency (Huang et al., 2023; Du et al., 2023; Liu et al., 2024a), segmentation granularity (Zhao
 128 et al., 2024; Li et al., 2018; Liew et al., 2019), and output stability (Huang et al., 2024c; Lee et al.,
 129 2024). Despite this progress, interactive segmentation continues to face a fundamental challenge:
 130 inherent ambiguity in user intent. This often necessitates iterative refinement of user inputs to achieve
 131 satisfactory segmentation results.

132 **Segment Anything Model.** Recently, SAM (Kirillov et al., 2023) has advanced the field by intro-
 133 ducing a large-scale pretrained model with promptable capabilities. SAM accommodates diverse
 134 input prompts to generate high-quality segmentation outputs. This flexibility has catalyzed several
 135 new research directions. Some studies aim to enhance performance by refining their architectural
 136 components and training strategies (Ravi et al., 2025; Zhao et al., 2024; Ke et al., 2023; Huang et al.,
 137 2024c). Others extend SAM to broader applications by incorporating multi-modal and multi-prompt
 138 interactions (Wang et al., 2024; Zhang et al., 2024c; Ye et al., 2024; Zhao et al., 2023; Li et al., 2024;
 139 Cuttano et al., 2025). A parallel line of work investigates alternative inference procedures to better
 140 exploit SAM’s capabilities (Sun et al., 2024; Liu et al., 2024b; Zhang et al., 2024b). For instance,
 141 Graco (Zhao et al., 2024) introduces granularity control to allow users to adjust the precision of
 142 segmentation masks. Despite these advances, many of these approaches still depend on iterative user
 143 input for refinement. Therefore, our objective is to minimize the interaction burden ideally requiring
 144 only a single click without compromising segmentation quality.

145 **Agent Prompting.** Agent-based methods have garnered increasing attention in computer vision
 146 due to their flexible and interactive nature (Carion et al., 2020; Anderson et al., 2018; Park et al.,
 147 2020). These methods typically involve decision-making policies that iteratively refine predictions
 148 or explore spatial representations. Depending on the design of the decision-making policy, agents
 149 can be broadly categorized into rule-based and LLM-based paradigms. Recently, researchers have
 150 begun to explore the integration of agents with the SAM to improve its performance in complex
 151 scenarios. Several works have proposed agent-based strategies to adapt or optimize prompts during
 152 inference (Huang et al., 2024a; Ren et al., 2024; Xie et al., 2024; 2025). While LLM-based agents
 153 offer strong generalization and reasoning capabilities, they typically require high-quality trajectory
 154 data or reinforcement learning, both of which demand substantial training. Therefore, we propose a
 155 training-free rule-based agent that autonomously performs internal interactions following a single
 156 user click, thereby minimizing user involvement while maintaining segmentation accuracy.

157 **3 METHODOLOGY**
 158

159 **3.1 PRELIMINARIES**
 160

161 The Segment Anything Model (SAM) (Kirillov et al., 2023) is a foundation model for image
 162 segmentation, comprising three components: an image encoder (E_{img}), a prompt encoder (E_{pr}), and a

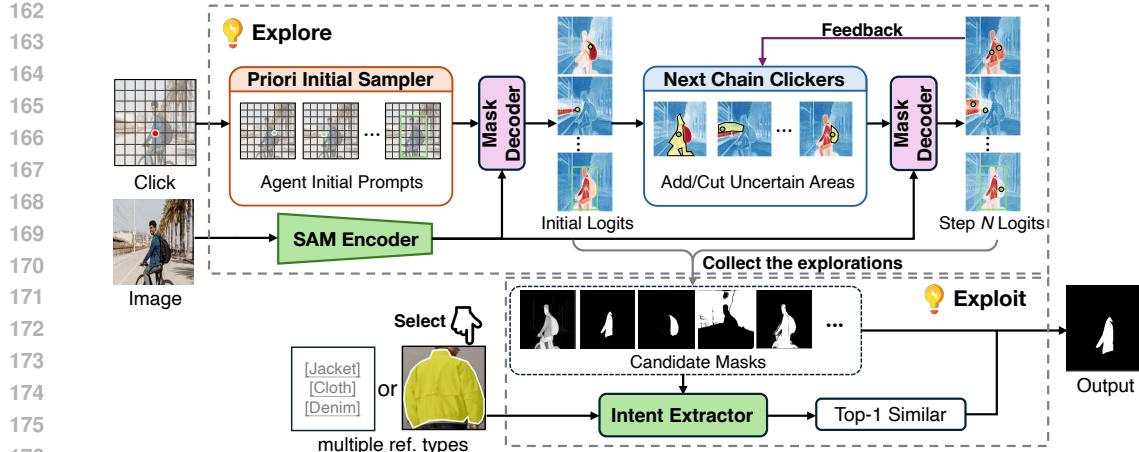


Figure 2: The framework of SmartSAM. The user clicks on the image and provides a reference instance (i.e., an image with a mask). The agent explores and generates mask candidates. The final mask is selected according to the similarity between candidates and the reference.

mask decoder (D_{mask}). First, E_{img} extracts features from the input image, while user prompts—such as points, boxes, or masks—are processed by E_{pr} to generate prompt embeddings. Then, D_{mask} decodes the image and prompt embeddings to produce one or three segmentation masks, each accompanied by an estimated IoU score. In interactive settings, user prompts typically consist of positive or negative point clicks. The above process is considered a single interaction turn.

3.2 SMARTSAM

The agent resolves ambiguity through an explore-and-exploit strategy (see Fig. 2): it first explores a set of candidate masks, then exploits the one that best matches the user’s intent. This leads to two central questions: (1) *how can the agent effectively and efficiently incorporate the user’s intent during exploration*, and (2) *how can it leverage the exploration results to accurately identify the intended mask?*

Explore the candidates. Although the Everything Mode of SAM can explore diverse mask proposals by uniformly placing point prompts across the entire image, the process is time-consuming and does not leverage the user’s click for targeted guidance. In ambiguous scenarios, SAM often fails when the user’s click lands on a suboptimal region. As illustrated in Fig. 3, SAM returns a full-body mask even when the user intends to segment only the jacket. However, placing the click on a more appropriate nearby region can yield the correct mask. Motivated by this observation, we introduce fewer but more proper prompts to balance efficiency and segmentation accuracy.

Specifically, the geometric centers of the agent’s prompts satisfy the following criteria: Let $\vec{w} := (x_1 - x_0, y_1 - y_0)$ denote the displacement vector between the user’s input point (x_0, y_0) and the agent-sampled point (x_1, y_1) , satisfying:

$$\|\vec{w}\|_2 \sim \beta \cdot \Gamma(2, 1), \quad \theta \sim \text{Unif}(0, 2\pi) \quad (1)$$

where $\beta > 0$ is a scaling factor, θ is the angle satisfying $\vec{w} = \|\vec{w}\|_2 \cdot (\cos \theta, \sin \theta)$, and Γ , Unif are the Gamma and Uniform Distributions. In addition, human annotators often use box prompts during annotation. Thus, motivated by early anchor-based methods (Redmon et al., 2016), which generate multiple boxes of varying shapes (aspect ratio: 0.67, 1 or 1.5), and sizes (longest side length: 200-800 pixels), we also randomly sample box prompts to explore a broader set of candidate masks, as illustrated in Fig. 3.

Moreover, the Everything Mode does not support follow-up operations to add or remove unintended regions for refinement. Consequently, the agent lacks the ability to determine where and how to refine the mask without user guidance. Fortunately, as previously discussed, most rational human segmentation behaviors can be broadly categorized as follows:

- When the mask overshoots, users typically refine it using negative clicks. Accordingly, we define **Action Cut**: placing negative points on uncertain regions inside the current mask.

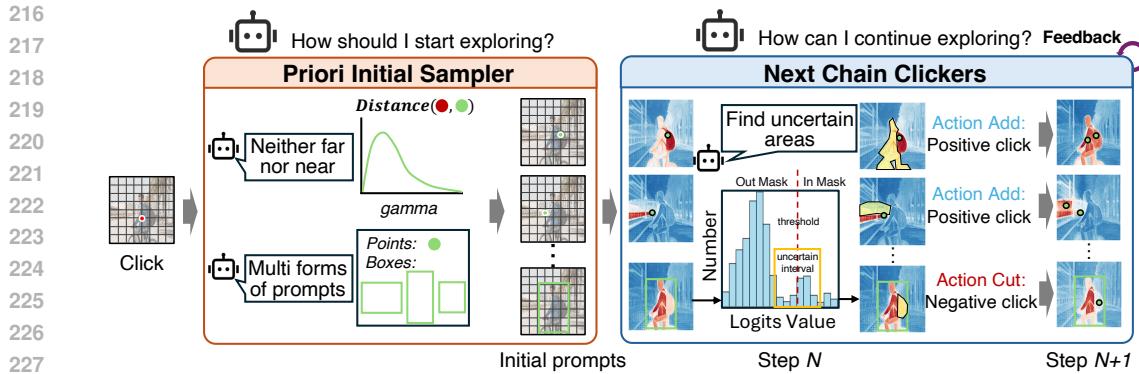


Figure 3: The framework of our agent strategy. First, the agent samples several initial prompts. Then, the agent clicks positive points on the uncertain areas outside the mask to add-on and negative points inside the mask to cut-off for refinement.

- When the mask under-segments, users typically expand it using positive clicks. Accordingly, we define **Action Add**: placing positive points on uncertain regions outside the current mask.

We use the scores of the IoU predicted head in SAM as the standard of evaluating whether current mask is "overshooting" or not. When the score of a mask is relatively low across the current candidates, it's more likely to need an extra positive click to add on the potential missing parts. Otherwise, when the score is high, both Cut and Add are rational. Thus, the Next Chain Clickers (NCC) decides to click positive clicks (0) or negative clicks (1) based on distribution $Bernoulli(h_{iou})$, where h_{iou} is the IoU score.

These actions are organized into multiple parallel search chains, and a set of candidate masks $\mathcal{M} = \{m_i\}$ is obtained by iteratively applying the agent for refinement—mimicking the iterative behavior of human annotators.

Exploit the candidates. SAM can generate multiple candidate masks (i.e., multi-mask mode) but requires annotators to manually scan and select the appropriate one—introducing additional manual effort. To alleviate this burden, researchers (Liu et al., 2024b) commonly employ off-the-shelf pre-trained semantic encoders (Oquab et al., 2024; Radford et al., 2021) as the intent selector (F_{sel}) to infer the user's intent. Specifically, a reference feature is pre-extracted by F_{sel} , and the mask with the highest cosine similarity is selected. To formalize:

$$m_{out} = \arg \max_{m_i \in \mathcal{M}} \text{Cos-Sim}[F_{sel}(\text{img}, m_i), F_{sel}(\text{ref})] \quad (2)$$

When F_{sel} receives an image–mask pair as input, it outputs the masked average-pooled semantic feature. When provided with only a text caption or an image, it instead outputs the corresponding class token.

3.3 THEORETICAL ANALYSIS

From a fuzzy-entropy perspective, we show our method surpasses the backbone because the fuzzified candidate set exhibits lower uncertainty. We first recall key notions in fuzzy statistics, then cast the ambiguity in interactive segmentation as a fuzzification problem (Zadeh, 1965). This yields a one-dimensional Fuzzy Number representation with tractable analysis; leveraging fuzzy-entropy tools, we establish a quantitative performance-improvement theorem. Finally, we recast the agent's radial search as a graph problem and derive an Efficiency Theorem.

Definition 3.1 (Fuzzy Set and Regression (Zadeh, 1965)). *If Ω is some set, then a fuzzy subset \bar{A} of Ω is defined by its membership function, written $\bar{A}(x)$, which produces values in $[0, 1]$ for all $x \in \Omega$, and thus in our work representing the probability of x belongs to A . Similar to classic regression tasks, the target is also to optimize a model f_θ that projects x to y from a distribution $P(X, Y)$ based on a set of sampled data (x_i, y_i) . The main difference is that the regressed y_i is no longer a fixed number but a variable with randomness.*

A critical fuzzification bridges the set of masks into a fuzzy set can be formalized as follows.

270 **Assumption 3.2** (Discrete Fuzzification Assumption). *Human interaction can turn a set of candidate*
 271 *masks into a fuzzy set based on human preference. Besides, for SAM-based methods, we acknowledge*
 272 *an experimental observation (see Appendix for details): the set of potential masks A is a subset of*
 273 *$\{\cup_{i_1, i_2, \dots, i_k} \{Area_{i_j}\}_{j=1}^k \mid Area_{i_j} \in \mathcal{L}\}$, where \mathcal{L} is the Logits areas divided by different thresholds*
 274 *and gapping edges.*

275 Based on this, the ambiguity problem can be transformed as:

277 **Definition 3.3** (Problem Setting). *For interactive segmentation methods including SAM with points*
 278 *prompts $\{p_i = (crd_{h_i}, crd_{w_i})\}$, the all potential masks that contains $\{p_i\}$ is denoted as crisp subset*
 279 *$A(\{p_i\})$. The goal of disambiguation is to fuzzify A into $\bar{A}(\{p_i\})$ with uncertainty.*

280 Note that the uncertainty of fuzzy set is evaluated by the fuzzy entropy, we give

281 **Lemma 3.4** (Entropy Metric for Subjective Uncertainty (Wang and Chiu, 1999)). *let*

$$h(u) \triangleq \begin{cases} 2u & \text{if } u \in [0, \frac{1}{2}], \\ 2(1-u) & \text{if } u \in [\frac{1}{2}, 1], \end{cases}$$

285 then for triangular fuzzy number, the global entropy $H(\bar{A}) := \int_{x \in X} h(\bar{A}(x))p(x) dx \propto |\text{Supp}(\bar{A})|$,
 286 where $|\text{Supp}|$ is the support size of \bar{A} .

288 With the lemma, we prove a theorem that demonstrates its quantitative performance gains compared
 289 to the backbone.

290 **Theorem 3.5** (Theorem of Inner-Interaction Robustness on Ambiguity). *Let P_M be the distribution*
 291 *of human favor and M_0 the sampled candidate mask. We can project the mask space into real*
 292 *number space through $f_d(M_i) := \frac{IoU(M_i, M_0)}{e^{N_0 - N_i}}$, where N_i is the number of points-prompt for SAM*
 293 *to get M_i . Then $\bar{A}(x; 0, 1, e^{N_{max}})$ is a triangular fuzzy number. Similarly, the related concepts*
 294 *can be extended to the backbone SAM and lead to a fuzzy number \bar{B} . Moreover, the fuzzy entropy*
 295 *$\int H(\bar{A})d(P_M) \leq \int H(\bar{B})d(P_M)$.*

297 However, in interactive scenarios, inference time is also an important consideration. The following
 298 theorem demonstrates that our method balances both efficiency and performance.

299 **Theorem 3.6** (Efficiency Theorem). *With $\sqrt{N_{max}}$ branches and $\sqrt[4]{N_{max}}$ iters per branch, our*
 300 *strategy can search out the full set A_{all} .*

302 4 EXPERIMENTS

304 4.1 EXPERIMENTAL SETUP

306 **Datasets.** Following prior work, we evaluate our method on the DAVIS (Perazzi et al., 2016) and
 307 PartImageNet (He et al., 2022) datasets. In addition, we construct a novel dataset to explicitly address
 308 ambiguity issues, as highlighted in SAM (Kirillov et al., 2023). Amb-Occ, targets occlusion-based
 309 ambiguity by selecting COCO (Lin et al., 2014) categories that are occluded by small objects in the
 310 LVIS (Gupta et al., 2019) dataset. We filter out densely clustered instances of the same category to
 311 remain within our research scope.

312 **Evaluation Metrics.** (1) *1st click IoU (mIoU@1):* mIoU@1 refers to the IoU (Intersection over
 313 Union) after the first click. In our ambiguity-aware design, we primarily focus on the IoU of the
 314 first click. mIoU@1 holds the most significant importance in our evaluation because as the number
 315 of clicks grows, user input no longer exhibits ambiguity. (2) *Ratio of masks greater than IoU k*
 316 (*Ratio@K*): In addition, we introduce a complementary metric as the proportion of samples where
 317 the desired IoU is achieved with only one user click. This metric provides a direct measure of our
 318 method's effectiveness in low-interaction scenarios. (3) *Number of Click (NoC):* NoC refers to the
 319 number of clicks required in interactive segmentation to achieve a specified IoU. We adopt this
 320 evaluation metric to stay in line with previous methods (Huang et al., 2024c; Chen et al., 2022; Huang
 321 et al., 2023). For example, NoC@75 indicates the average number of clicks needed to achieve an IoU
 322 of 75%.

323 **Implementations.** Our agent first initializes 9 prompts containing 6 points and 3 boxes. For every
 324 prompt, the agent will do a sequence of 3 following actions. We adopt DINOV2-B (without register

324 Table 1: Comparison experiments with SOTA interactive segmentation models. We report the 1st
 325 Click IoU (mIoU@1) and the ratio of masks meeting the given IoU threshold (Ratio@75). Results
 326 show that our strategy can effectively enhance SAMs' ability to resolve ambiguity.

328 Methods	329 Backbone	330 DAVIS		331 PartImageNet		332 Amb-Occ	
		333 mIoU@1	334 Ratio@75	335 mIoU@1	336 Ratio@75	337 mIoU@1	338 Ratio@75
FocalClick (Chen et al., 2022) _{CVPR_{22}}	SegFB3-S2	71.07	-	-	-	-	-
InterFormer (Huang et al., 2023) _{ICCV_{23}}	-	76.84	-	-	-	-	-
SimpleClick (Liu et al., 2023) _{ICCV_{23}}	ViT-H	72.50	-	-	-	-	-
HQ-SAM (Ke et al., 2023) _{NeurIPS_{23}}	ViT-B	39.38	25.51	32.85	21.18	34.40	14.69
+SmartSAM	ViT-B	57.86	37.39	59.06	43.19	42.18	22.52
HQ-SAM (Ke et al., 2023) _{NeurIPS_{23}}	ViT-H	45.82	30.83	45.53	37.41	41.02	23.14
+SmartSAM	ViT-H	59.35	36.65	65.01	54.69	48.12	30.54
SAM (Kirillov et al., 2023) _{ICCV_{23}}	ViT-B	39.53	25.80	33.35	21.47	34.35	15.12
+SmartSAM	ViT-B	58.75	35.94	59.23	43.85	42.35	22.01
SAM (Kirillov et al., 2023) _{ICCV_{23}}	ViT-H	45.97	31.59	45.53	37.25	37.81	22.67
+SmartSAM	ViT-H	58.57	40.13	64.53	53.57	47.19	30.54
FocSAM (Huang et al., 2024c) _{CVPR_{24}}	ViT-H	74.62	64.35	28.47	20.31	37.98	24.16
+SmartSAM	ViT-H	78.32	74.20	63.60	51.24	43.78	25.07
HRSAM (Huang et al., 2024b) _{Arxiv_{24}}	ViT-H	79.19	71.30	65.93	55.77	38.59	16.07
+SmartSAM	ViT-H	80.72	74.20	70.33	56.65	41.24	19.93
SAM2.1 (Ravi et al., 2025) _{ICLR_{25}}	ViT-B+	62.25	52.17	51.57	49.04	44.57	30.17
+SmartSAM	ViT-B+	76.80	69.27	77.31	72.21	51.85	36.15

346 Table 2: Comparison on 1st Click IoU for
 347 SOTA FSS/OVS. SmartSAM outperforms
 348 on both datasets.

349 Method	350 Intent	351 Selector	352 Backbone	353 Davis	354 Amb-Occ
FSS					
PerSAM	-		ViT-H	53.77	27.64
Matcher	DINOv2-L		ViT-H	46.41	46.75
GF-SAM	DINOv2-L		ViT-H	68.21	39.19
OVS					
SAMWISE	RoBERTa		ViT-L	44.35	37.04
SAM	-		ViT-H	45.97	37.81
+SmartSAM	DINOv2-B		ViT-H	58.57	47.19
+SmartSAM	DINOv2-L		ViT-H	70.74	46.64
+SmartSAM	CLIP-B		ViT-L	50.62	42.41

349 Table 3: Multi-mask evaluation (ViT-H). We report
 350 the Best IoU (denoted as IoU_{best} , higher is better) and
 351 NoC_{90} (denoted as NoC_{90} , lower is better).

352 Baseline	353 DAVIS		354 PartImageNet		355 Amb-Occ	
	356 $\text{IoU}_{\text{best}} \uparrow$	357 $\text{NoC}_{90} \downarrow$	358 $\text{IoU}_{\text{best}} \uparrow$	359 $\text{NoC}_{90} \downarrow$	360 $\text{IoU}_{\text{best}} \uparrow$	361 $\text{NoC}_{90} \downarrow$
SAM	42.97	5.73	50.92	6.14	37.81	12.73
+SmartSAM	85.38	5.56	84.08	5.48	74.92	10.62
FocSAM	74.62	5.29	28.64	4.97	28.07	7.93
+SmartSAM	84.14	5.24	83.22	4.51	73.19	7.31
HQSAM	45.82	5.10	41.02	5.64	45.53	12.14
+SmartSAM	87.42	4.86	86.30	5.40	75.01	10.30

352 tokens) as the semantic encoder. All experiments are conducted on a single NVIDIA RTX 4090 GPU.
 353 For reference image preparation, we apply background removal and cropping to ensure the reference
 354 occupies approximately 70% of the original image size. When compared with FSS and OVS methods,
 355 the inputs are controlled the same since we additionally add the user clicks as the point supervision.
 356

357 4.2 MAIN RESULTS

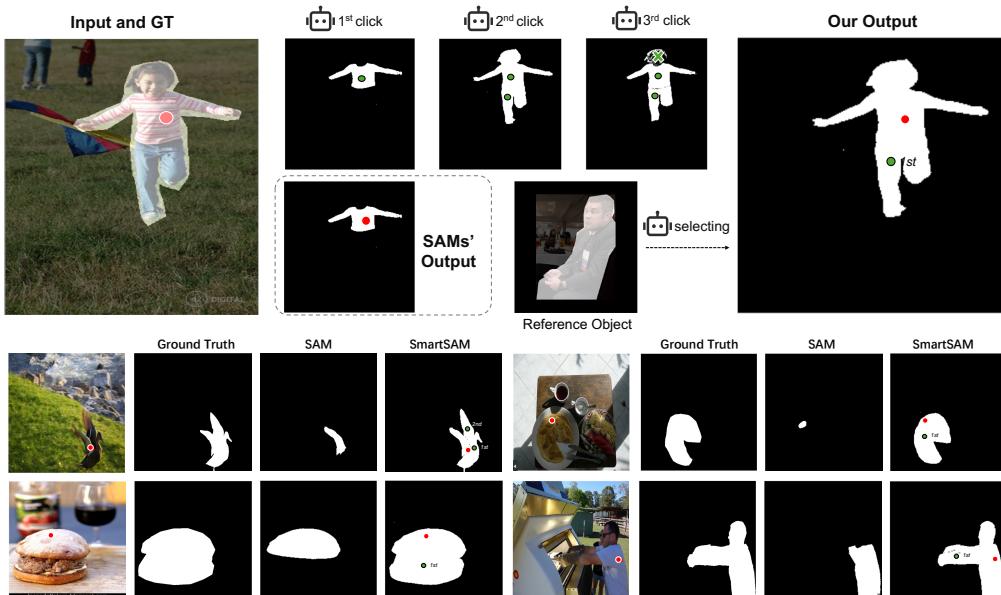
358 To evaluate the effectiveness of our strategy in addressing ambiguity, mIoU@1, Ratio@75, Ratio@85,
 359 and NoC. For DAVIS and PartImageNet datasets, we follow the click-simulating settings in (Huang
 360 et al., 2024c; Zhao et al., 2024) **where the 1st clicks are placed in the middle of the ground truth**
 361 **masks (see the left picture in Fig. 19)**. To simulate the ambiguous situation of Amb-Occ, **we randomly**
 362 **select one of the smaller occluding objects' ground truth as the 1st click area and regarding the whole**
 363 **object as the target ground truth.** All reported results are averaged over five independent trials to
 364 ensure statistical robustness.

365 Our method consistently outperforms existing approaches across all evaluated metrics. In particular,
 366 we observe a substantial improvement in mIoU@1 (see Tab. 1), which underscores the strength of our
 367 ambiguity-aware design in producing accurate masks from minimal user input. Moreover, SmartSAM
 368 consistently surpasses the FSS and OVS methods (see Tab. 2). Interestingly, some methods such as
 369 FocSAM underperform their own backbone models in the early stages of interaction. We attribute this
 370 to a trade-off between segmentation stability and local adaptability: these methods tend to over-focus
 371 on local refinement, which limits generalization when user input is sparse. Comprehensive visual
 372 comparisons and case studies are provided in the supplementary material.

378
379
380
381
Table 4: Time Cost of encoder on 4090 GPU with Batch Size 2.
Results show that the additional encoding time introduced by the
intent selector is negligible, and the peak memory usage remains
within an acceptable range.

Method	Backbone	DINO	Time (s)	VRAM _{pk} (MB)
Matcher	ViT-H	ViT-L	1.36	7476.30
SAM	ViT-H	–	0.84	4490.70
+SmartSAM [*]	ViT-H	ViT-B	0.85	5998.78
+SmartSAM [#]	ViT-H	ViT-B	0.92	5328.98

382
383
384
385
386
* Parallel: forward the SAM encoder and the intent selector.
387
Sequential: forward the SAM encoder, then the intent selector.



408
409
Figure 4: An example for the working flow of the agent. With one click ●, SAM only outputs part of
the target. However, the agent can continue to add clicks ● and find the best matching mask.

410 4.3 EFFICIENCY STUDIES

412
413
414
415
416
417
Agent prompts efficiency. Given that the original SAM framework produces three candidate masks
per interaction, allowing users to manually select the most suitable one as a means to address
segmentation ambiguity, we also evaluate this human-in-the-loop selection paradigm for comparison.
To ensure a fair assessment, we adopt the IoU of the top-1 candidate mask after the first user click
as our evaluation metric, reflecting a realistic usage scenario. The results in Tab. 3 indicate that our
method consistently surpasses the SAM candidate selection approach in terms of the NoC@90 and
top-1 IoU across all datasets.

419
420
421
422
423
424
425
Time and computation cost efficiency. As illustrated in Fig. 2, we only perform a single forward
pass through the encoder. The main additional time and computation come from the intent selector
and multiple calls to the mask decoder. Since the intent selector is executed in parallel with the
encoder, and we utilize batch inference of SAM to generate masks, the extra inference time required
to process both the target and reference images using DINO is less than 10% of the time taken by
SAM inference (see Tab. 5). Furthermore, since we adopt DINOv2-B as the intent selector, the
additional time compared to the baseline SAM is controlled within 2% (see Tab. 4). Compared to the
FSS method Matcher, our approach also achieves a 25% reduction in peak VRAM usage (see Tab. 4).

427 4.4 METHOD ANALYSIS

428
429
430
431
Agent Working Mechanism. The agent is designed according to the statistical priors of the
dataset’s initial distribution provided by SAM (Fig. 5 in (Kirillov et al., 2023)). We evaluate the
effectiveness of our inner-interaction strategy both qualitatively and quantitatively. Qualitatively, we
present failure cases of using a single initial prompt and illustrate how our approach escapes these

Table 5: Time Cost of Decoder on 4090 GPU with Batchsize 2. The number of
initial sampling is referred to as # I.S. for
simplicity.

Method	# I.S.	Time (s)
SAM	1	0.0670
+SmartSAM	2	0.0711
+SmartSAM	6	0.0782
+SmartSAM	9	0.1395

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 6: Ablation studies of agent actions on mIoU@1 metric. Priori Initial Sampler is denoted as PIS and Next Chain Clicker is denoted as NCC.

PIS	NCC	Amb-Occ	PartImageNet
Random	-	49.79	72.90
ours	-	72.91	83.17
-	Random	49.91	75.31
-	ours	70.49	79.04
-	-	37.81	50.92
ours	ours	74.92	84.08

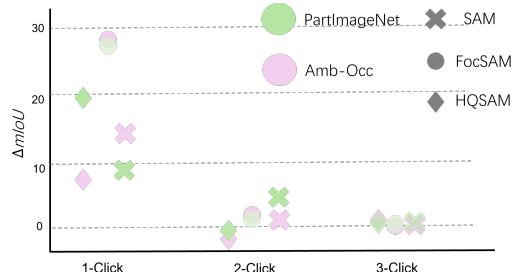


Figure 5: mIoU gains on different datasets with SAM, FocSAM and HQSAM backbones.

“traps.” Quantitatively, we measure performance improvements in terms of mIoU@1, comparing our initialization to standard alternatives.

As illustrated in Fig. 4, the logits generated from a naive user click tend to activate only a partial region of the ground truth, often failing to distinguish the true target from surrounding distractors. In contrast, our method initiates a more effective agent-based sampling process, which successfully escapes these local minima. Furthermore, the quantitative results in Tab. 7 confirm that our approach consistently achieves superior performance. These findings also indicate that such situations are common in ambiguous scenarios.

Agent Action Analysis. We design different agents to handle various scenarios. To evaluate their contributions, we analyze the number of inner interactions required to achieve correct predictions. As illustrated in Tab 7, Action Add generates most of the predictions. Combined with Fig. 4, this implies that SAM exhibits a strong bias toward segmenting a small object encompassing the user’s click location.

Consequently, Action Add can expand the search space step by step, leading to a more accurate mask. Meanwhile, we observe that most predictions are made within the first two inner interactions, with diminishing returns in subsequent interactions. This aligns with our theoretical expectation that ambiguity is typically resolved within the first few clicks.

Table 7: Analysis on diverse actions. We count images whose predicted mask comes from different actions. Action 1 contributes the most, while other actions are necessary for harder cases.

Inner Interaction	PartImageNet					Amb-Occ				
	Number	1	2	3	4	All	1	2	3	4
Type										
Add	1089	888	93	69	2139	944	593	134	83	1754
Cut	–	48	34	3	85	–	44	42	22	108
Add&Cut	–	–	115	139	254	–	–	126	219	345
No Action	–	–	–	–	39	–	–	–	–	23
Ours	1089	1026	342	211	2705	946	637	302	312	2385

4.5 ABLATION EXPERIMENTS

As supported by our theoretical analysis, the proposed strategy is designed to mitigate ambiguity in interactive segmentation. To validate its generality and effectiveness, we conduct ablation studies by integrating our approach with several baseline methods. The results presented in Tab. 6 show that our method consistently improves performance over the baseline models. Notably, according to Fig. 5, the performance gains diminish as the number of clicks increases, approaching zero after 2-3 interactions. This trend aligns with our theoretical expectation: ambiguity tends to be resolved within the first few clicks, making further improvement less pronounced.

In particular, our approach yields substantial improvements when combined with backbones designed to enhance the stability of SAM. Such models typically constrain logits to local regions, which can lead to performance degradation in ambiguous single-click scenarios. Our strategy enables these models to overcome local traps and expand the search space, thereby significantly boosting their robustness in early interactions.

486
487
488
Table 8: FSS, PS, and IS methods on FSS benchmarks (COCO-20i, PASCAL-5i) and IS benchmarks (DAVIS,
Amb-Occ). SmartSAM consistently improves SAM on both FSS-style and IS settings, while specialized FSS
methods remain strongest on FSS benchmarks.

Method	Task Scope	Reference	COCO-20i ^{FSS} *	PASCAL-5i ^{FSS} †	DAVIS ^{IS}	Amb-Occ ^{IS}
ProSAM	FSS	yes	48.74	75.26	-	-
VRP-SAM	FSS	yes	48.10	73.90	-	-
Matcher	FSS	yes	47.61	72.92	46.41	46.75
PerSAM	PS	yes	-	-	53.77	27.64
FocSAM	IS	no	36.22	41.58	74.62	37.98
w/ SmartSAM	IS	optional**	39.04	45.63	78.32	43.78
SAM	IS	no	34.71	40.27	45.97	37.81
w/ SmartSAM	IS	optional**	38.93	45.79	58.57	47.19

* Results on fold-0 of COCO-20i.

† Results on fold-0 of PASCAL-5i.

**SmartSAM has a pure IS mode; here we report the variant with references.

500
501
502
Table 9: SmartSAM in pure IS and reference modes on IS
benchmarks. Pure IS mode of SmartSAM that work without
references still show superiority to the baseline SAM.

Method	Mode	DAVIS	Amb-Occ
SAM	pure IS	45.97	34.35
SmartSAM	pure IS†	59.71	43.94
SmartSAM	textual	44.35	37.04
SmartSAM	visual(DINOv2-B)	58.57	47.19
SmartSAM	visual(DINOv2-L)	70.74	46.64

503
504
505
506
507
508
509
† Select the mask from the candidate set that: 1. contains
510 the user’s 1st click; 2. of the highest IoU score predicted
511 by SAMs’ IoU predict head.

512 4.6 EXTENTED EXPERIMENTAL ANALYSIS.

513
514
515
516
517
518
Why FSS metrics are not suitable for IS evaluation. Table 8 compares FSS, PS, and IS methods on
both FSS and IS benchmarks: specialized FSS methods (ProSAM, VRP-SAM, Matcher) perform best
on COCO-20i and PASCAL-5i, while SmartSAM mainly improves SAM and FocSAM on DAVIS
and Amb-Occ. This indicates that FSS-style metrics are not well aligned with click-based IS behavior
and that SmartSAM should primarily be evaluated under IS protocols.

519
520
521
522
523
Pure IS mode of SmartSAM still works. Table 9 disentangles the effect of references by comparing
SmartSAM in pure IS mode (no text or visual exemplars) and in reference-based modes. Even
without any reference, SmartSAM substantially outperforms SAM on DAVIS and Amb-Occ, while
textual/visual references with a stronger encoder (DINOv2-L) bring additional gains rather than being
the sole source of improvement.

524
525
526
527
528
SmartSAM is robust for real-world annotators. Table 10 studies robustness to non-ideal first
clicks using a TETRIS-style Moskalenko et al. (2024) to simulate real-worl first clicks. SmartSAM
consistently boosts SAM and SAM2 in both clean and “attack” settings, with larger relative gains
under perturbed first clicks, indicating increased tolerance to imperfect user clicks.

530 5 CONCLUSION

531
532
533
534
535
536
537
538
539
SAM provides a powerful backbone for interactive segmentation. However, its stability in real-world
applications is often compromised, particularly in ambiguous scenarios. This limitation arises from
overly fuzzy inputs, where SAM struggles to generate sufficient candidate masks and output the
correct mask based on user preferences. To address these challenges, we propose a training-free
SmartSAM method. SmartSAM leverages multiple chains of agents to automatically introduce points
at appropriate areas, constructing a comprehensive pool of candidate masks. The most matched
mask is then selected through a feature similarity comparison process. As a result, SmartSAM not
only achieves state-of-the-art segmentation quality but also demonstrates remarkable performance in
handling ambiguous scenarios. These advancements underscore SmartSAM’s potential for broader
and convenient real-world applications.

Table 10: Robustness of SAM and SAM2 to
TETRIS-style Moskalenko et al. (2024)
first-click perturbations, with and without
SmartSAM. SmartSAM consistently improves
robustness under attacked first clicks and also
boosts clean performance.

Method	DAVIS	DAVIS (attack)
SAM	39.53	33.27
w/ SmartSAM	58.75	58.52
SAM2	62.25	59.66
SAM2 + SmartSAM	76.80	75.93

All numbers are IoU scores (%). “attack”
denotes TETRIS-style first-click perturbations.

540 ETHICS STATEMENT
541542 All authors have read and agree to abide by the ICLR Code of Ethics. This work does not involve
543 interventions with human participants or personally identifiable information. We use only publicly
544 available datasets under their original licenses and follow the terms of use. Potential risks and our
545 mitigations are summarized below:546
547

- **Privacy & Security.** We do not collect or release any personal data. When showing qualitative
examples, all images/videos are from public datasets; any sensitive content is filtered.
- **Bias & Fairness.** We report results on multiple benchmarks and provide detailed settings to
facilitate external auditing. We acknowledge possible dataset biases and encourage follow-up
evaluation on broader demographics and domains.
- **Dual Use / Misuse.** The method could be misused to enable undesired large-scale labeling or
surveillance. To reduce misuse, we release only research artifacts (code/configs) and exclude any
tools for scraping or re-identifying individuals.
- **Legal Compliance.** We comply with licenses of all third-party assets (code, models, and datasets)
and cite their sources. Any additional third-party terms are respected.
- **Research Integrity.** We document preprocessing, training recipes, and evaluation protocols;
random seeds and hyperparameters are provided to enable reproducibility.

558 Where applicable, institutional review information is withheld for double-blind review and can be
559 provided after acceptance.
560561 REPRODUCIBILITY STATEMENT
562563 We include training and evaluation details in the main paper and Appendix. Concretely: (i) all
564 hyperparameters, optimization settings, and compute budgets; (ii) full data preprocessing and splits;
565 (iii) code structure with scripts to reproduce the main tables and figures; (iv) checkpoints and logs for
566 the primary models will be open-sourced upon paper acceptance.
567568 For theoretical results, we provided the proofs and assumptions in Appendix.
569570 REFERENCES
571

Rolf Adams and Leanne Bischof. Seeded region growing. *TPAMI*, 1994.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real environments. In *CVPR*, 2018.

John Adrian Bondy and Uppaluri Siva Ramachandra Murty. *Graph theory*. Springer Publishing Company, Incorporated, 2008.

Yuri Y Boykov and M-P Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In *ICCV*, 2001.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In *ECCV*, 2020.

Xi Chen, Zhiyan Zhao, Yilei Zhang, Manni Duan, Donglian Qi, and Hengshuang Zhao. Focalclick: Towards practical interactive image segmentation. In *CVPR*, 2022.

Claudia Cuttano, Gabriele Trivigno, Gabriele Rosi, Carlo Masone, and Giuseppe Averta. Samwise: Infusing wisdom in sam2 for text-driven video segmentation. In *CVPR*, 2025.

Fei Du, Jianlong Yuan, Zhibin Wang, and Fan Wang. Efficient mask correction for click-based interactive image segmentation. In *CVPR*, 2023.

Qi Fan, Mattia Segu, Yu-Wing Tai, Fisher Yu, Chi-Keung Tang, Bernt Schiele, and Dengxin Dai. Towards robust object detection invariant to real-world domain shifts. In *ICLR*, 2023.

Leo Grady. Random walks for image segmentation. *TPAMI*, 2006.

594 Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance
 595 segmentation. In *CVPR*, 2019.

596

597 Ju He, Shuo Yang, Shaokang Yang, Adam Kortylewski, Xiaoding Yuan, Jie-Neng Chen, Shuai Liu,
 598 Cheng Yang, Qihang Yu, and Alan Yuille. Partimagenet: A large, high-quality dataset of parts. In
 599 *ECCV*, 2022.

600

601 Duojun Huang, Xinyu Xiong, Jie Ma, Jichang Li, Zequn Jie, Lin Ma, and Guanbin Li. Alignsam:
 602 Aligning segment anything model to open context via reinforcement learning. In *CVPR*, 2024a.

603

604 You Huang, Hao Yang, Ke Sun, Shengchuan Zhang, Liujuan Cao, Guannan Jiang, and Rongrong Ji.
 605 Interformer: Real-time interactive image segmentation. In *ICCV*, 2023.

606

607 You Huang, Wenbin Lai, Jiayi Ji, Liujuan Cao, Shengchuan Zhang, and Rongrong Ji. Hrsam:
 608 Efficiently segment anything in high-resolution images. *arXiv*, 2024b.

609

610 You Huang, Zongyu Lan, Liujuan Cao, Xianming Lin, Shengchuan Zhang, Guannan Jiang, and
 611 Rongrong Ji. Focsam: Delving deeply into focused objects in segmenting anything. In *CVPR*,
 612 2024c.

613

614 Lei Ke, Mingqiao Ye, Martin Danelljan, Yu-Wing Tai, Chi-Keung Tang, Fisher Yu, et al. Segment
 615 anything in high quality. In *NeurIPS*, 2023.

616

617 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 618 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *ICCV*,
 619 2023.

620

621 Chaewon Lee, Seon-Ho Lee, and Chang-Su Kim. Mfp: Making full use of probability maps for
 622 interactive image segmentation. In *CVPR*, 2024.

623

624 Chengyin Li, Rafi Ibn Sultan, Prashant Khanduri, Yao Qiang, Chetty Indrin, and Dongxiao Zhu.
 625 Autoprosam: Automated prompting sam for 3d multi-organ segmentation. In *WACV*, 2025.

626

627 Yuanyuan Li, Chao Liu, Jun Wu, Lei Qu, Haimeng Huang, Chong Tian, Bo Yang, and Chuxiao Lai.
 628 A semi-automatic interactive registration software for 3d biological images. In *ICIPMC*, 2024.

629

630 Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Interactive image segmentation with latent diversity.
 631 In *CVPR*, 2018.

632

633 Jun Hao Liew, Scott Cohen, Brian Price, Long Mai, Sim-Heng Ong, and Jiashi Feng. Multiseg:
 634 Semantically meaningful, scale-diverse segmentations from minimal user input. In *ICCV*, 2019.

635

636 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 637 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014.

638

639 Zheng Lin, Zheng-Peng Duan, Zhao Zhang, Chun-Le Guo, and Ming-Ming Cheng. Focuscut: Diving
 640 into a focus view in interactive segmentation. In *CVPR*, 2022.

641

642 Qin Liu, Zhenlin Xu, Gedas Bertasius, and Marc Niethammer. Simpleclick: Interactive image
 643 segmentation with simple vision transformers. In *ICCV*, 2023.

644

645 Qin Liu, Jaemin Cho, Mohit Bansal, and Marc Niethammer. Rethinking interactive image segmenta-
 646 tion with low latency high quality and diverse prompts. In *CVPR*, 2024a.

647

648 Yang Liu, Muzhi Zhu, Hengtao Li, Hao Chen, Xinlong Wang, and Chunhua Shen. Matcher: Segment
 649 anything with one shot using all-purpose feature matching. In *ICLR*, 2024b.

650

651 Andrey Moskalenko, Vlad Shakhuro, Anna Vorontsova, Anton Konushin, Anton Antonov, Alexander
 652 Krapukhin, Denis Shepelev, and Konstantin Soshin. Tetris: Towards exploring the robustness of
 653 interactive segmentation. In *AAAI*, 2024.

654

655

656

657

648 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 649 Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
 650 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 651 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
 652 mand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without supervision.
 653 *TMLR*, 2024.

654 Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei Efros, and Richard
 655 Zhang. Swapping autoencoder for deep image manipulation. In *NeurIPS*, 2020.

656

657 Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
 658 Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation.
 659 In *CVPR*, 2016.

660 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 661 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 662 models from natural language supervision. In *ICML*, 2021.

663

664 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 665 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
 666 and videos. In *ICLR*, 2025.

667

668 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
 669 real-time object detection. In *CVPR*, 2016.

670

671 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
 672 Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
 673 tasks. *arXiv*, 2024.

674

675 Zhe Shan, Yang Liu, Lei Zhou, Cheng Yan, Heng Wang, and Xia Xie. Ros-sam: High-quality
 676 interactive segmentation for remote sensing moving object. In *CVPR*, 2025.

677

678 Yanpeng Sun, Jiahui Chen, Shan Zhang, Xinyu Zhang, Qiang Chen, Gang Zhang, Errui Ding,
 679 Jingdong Wang, and Zechao Li. Vrp-sam: Sam with visual reference prompt. In *CVPR*, 2024.

680

681 Haoxiang Wang, Pavan Kumar Anasosalu Vasu, Fartash Faghri, Raviteja Vemulapalli, Mehrdad
 682 Farajtabar, Sachin Mehta, Mohammad Rastegari, Oncel Tuzel, and Hadi Pouransari. Sam-clip:
 683 Merging vision foundation models towards semantic and spatial understanding. In *CVPR*, 2024.

684

685 Wen-June Wang and Chih-Hui Chiu. Entropy and information energy for fuzzy sets. *Fuzzy Sets Syst.*,
 686 1999.

687

688 Bin Xie, Hao Tang, Dawen Cai, Yan Yan, and Gady Agam. Self-prompt sam: Medical image
 689 segmentation via automatic prompt sam adaptation. *arXiv*, 2025.

690

691 Zhaozhi Xie, Bochen Guan, Weihao Jiang, Muyang Yi, Yue Ding, Hongtao Lu, and Lei Zhang.
 692 Pa-sam: Prompt adapter sam for high-quality image segmentation. In *ICME*, 2024.

693

694 Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and Thomas Huang. Deep grabcut for object
 695 selection. In *BMVC*, 2017.

696

697 Maoyuan Ye, Jing Zhang, Juhua Liu, Chenyu Liu, Baocai Yin, Cong Liu, Bo Du, and Dacheng Tao.
 698 Hi-sam: Marrying segment anything model for hierarchical text segmentation. *TPAMI*, 2024.

699

700 Lotfi Asker Zadeh. Fuzzy sets. *Inf. Control*, 1965.

701

702 Hongyi Zeng, Wenxuan Liu, Tianhua Xia, Jinhui Chen, Ziyun Li, and Sai Qian Zhang. Foveated
 703 instance segmentation. In *CVPR*, 2025.

704

705 Anqi Zhang, Guangyu Gao, Jianbo Jiao, Chi Harold Liu, and Yunchao Wei. Bridge the points:
 706 Graph-based few-shot segment anything semantically. In *NeurIPS*, 2024a.

707

708 Renrui Zhang, Zhengkai Jiang, Ziyu Guo, Shilin Yan, Junting Pan, Hao Dong, Yu Qiao, Peng Gao,
 709 and Hongsheng Li. Personalize segment anything model with one shot. In *ICLR*, 2024b.

702 Yuxuan Zhang, Tianheng Cheng, Lianghui Zhu, Rui Hu, Lei Liu, Heng Liu, Longjin Ran, Xiaoxin
703 Chen, Wenyu Liu, and Xinggang Wang. Evf-sam: Early vision-language fusion for text-prompted
704 segment anything model. *arXiv*, 2024c.

705
706 Yian Zhao, Kehan Li, Zesen Cheng, Pengchong Qiao, Xiawu Zheng, Rongrong Ji, Chang Liu,
707 Li Yuan, and Jie Chen. Graco: Granularity-controllable interactive segmentation. In *CVPR*, 2024.

708 Yiming Zhao, Tao Zhou, Yunqi Gu, Yi Zhou, Yizhe Zhang, Ye Wu, and Huazhu Fu. Segment
709 anything model-guided collaborative learning network for scribble-supervised polyp segmentation.
710 *CoRR*, 2023.

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A PROOFS FOR THE THEOREMS
757758 A.1 THEOREM 1
759

760 *proof of Theorem 1.* First, we prove that the defined projection is a fuzzy number by indicating that
761 it is convex and only attains the maximum value at one point. Since e^{-x} is convex and our transform
762 inside is a linear projection, the convexity can be ensured. Moreover, since $N_i \geq N_0$, the maximum
763 is only reached when $N_i = N_0$. Also, $\text{IoU}(M_i, M_0)$ is only achieved when $M_i = M_0$. Thus, the
764 projection has only 1 maximum point.

765 Since our strategy contains the output of the baseline model, $B \in A$. We denote the favor mask in A
766 as M_0 and in B as m_0 . Thus, by the extension principle
767

$$768 h(\bar{A}) = \int h(\bar{A}(x)) dP(x) = \sum_{i=1}^{|A|} p_{\alpha_i} \cdot \int h(A_{\alpha_i}(x)) dP(x) \quad (3)$$

771 where $|A|$ denote the cardinality (a.k.a. number of the members) of A and A_{α_i} denote the hierarchy
772 α -cut based on projection f_d . Also, for B we have,
773

$$774 h(\bar{B}) = \int h(\bar{B}(x)) dP(x) = \sum_{i=1}^3 \frac{1}{3} \cdot \int h(B_{\alpha_i}(x)) dP(x) \quad (4)$$

776 Since our candidate set is a dense expansion of the original 3 masks, each α -cut can be uniquely con-
777 tained in one of the 3 sub-cuts in B . Therefore, for every sub-cut, by the convexity of a characteristic
778 function minus a bunch of sub-characteristic functions,
779

$$780 \sum_{i=1}^3 \frac{1}{3} \cdot \int h(B_{\alpha_i}(x)) dP(x) - \sum_{i=1}^{|A|} p_{\alpha_i} \cdot \int h(A_{\alpha_i}(x)) dP(x) \quad (5)$$

$$783 = \sum_{i=1}^{|A|} p_{\alpha_i} \cdot \int_{\text{interval}(\alpha_i)} [h(B_{\alpha_i}(x)) - h(A_{\alpha_i}(x))] dP(x) \quad (6)$$

$$786 \geq \sum_{i=1}^{|A|} p_{\alpha_i} \cdot \int_{\text{interval}(\alpha_i)} x dP(x) > 0 \quad (7)$$

789 where the first inequality is conducted by Lemma 3.8. \square
790

791 A.2 THEOREM 2
792

793 Now we focus on the efficiency of our strategy.

794 **Definition A.1** (N_{\max} and SAM-subregion). *We define the new region $g_{\mathcal{P}}$ added by SAM after
795 applying a prompt \mathcal{P} as the SAM-subregion corresponding to \mathcal{P} . We denote the set of all SAM-
796 subregions of an image x as \mathcal{G} . For $g \in \mathcal{G}$, let N_g denote the number of other SAM-subregions
797 adjacent to it. Then $N_{\max} := \max_{g \in \mathcal{G}} N_g$.*
798

799 Therefore, consider the \mathcal{G} as the vertex set and the adjacent relation as the edge set, \mathcal{G} can be regarded
800 as a graph (Bondy and Murty, 2008).

801 **Lemma A.2** (The Upper Bound of the Minimum Path in a Graph (Bondy and Murty, 2008)). *In a
802 connected graph, if the maximum degree of any vertex is N_{\max} , and the graph has $|\mathcal{G}|$ vertices, then
803 the length of the minimum path between 2 vertexes g_i, g_j in \mathcal{G} of the graph satisfies the following
804 inequality:*

$$805 \text{diam}(g_i, g_j) \leq \lceil \log_{N_{\max}} |\mathcal{G}| \rceil$$

806 **Assumption A.3** (Relations between N_{\max} and $|\mathcal{G}|$). *From experimental results in (Ravi et al., 2025),
807 we assume that the set of SAM-subregions \mathcal{G} is a tree-graph whose root node is in the foreground.
808 Moreover, we assume the depth of every branch in the tree is no more than 3 and $N_{\max} \geq 8$. Under
809 this assumption, we conclude that $|\mathcal{G}| \leq (N_{\max})^3$. Thus $\log_{N_{\max}} |\mathcal{G}| \leq \frac{1}{2} \sqrt[3]{N_{\max}}$.*

810 **Lemma A.4** (Series Expansion Approximation). *For g_i, g_j in a subset of SAM-subregions \mathcal{G} , the
811 length of the minimum path between 2 vertexes $\text{diam}(g_i, g_j) \leq \frac{1}{2} \sqrt[8]{N_{\max}}$*
812

813 *proof of Lemma 1.4.* If there's a single Next Chain Clicker from g_0 and clicks on subparts \mathcal{G}_i of \mathcal{G}
814 that contains g_i ,

$$815 \quad \text{diam}(g_i, g_0) \leq \log_{N_{\max}^i}(|\mathcal{G}_i|)$$

816 where N_{\max}^i is the maximum degree of any vertex on \mathcal{G}_i . Similarly, if g_j lies in a single Next Chain
817 Clicker, we have,

$$818 \quad \text{diam}(g_j, g_0) \leq \log_{N_{\max}^j}(|\mathcal{G}_j|)$$

819 Then, we have

$$820 \quad \text{diam}(g_i, g_0) + \text{diam}(g_j, g_0) \leq \log_{N_{\max}^i}(|\mathcal{G}_i|) + \log_{N_{\max}^j}(|\mathcal{G}_j|) \quad (8)$$

$$821 \quad \leq \frac{1}{4} \sqrt[8]{N_{\max}^i} + \frac{1}{4} \sqrt[8]{N_{\max}^j} \quad (9)$$

$$822 \quad \leq \frac{1}{2} \sqrt[8]{N_{\max}} \quad (10)$$

□

830 Therefore, we can prove Theorem 2 as follows.

831 *proof of Theorem 2.* Let $M_0 = \cup \{g_i\}_{i=1}^K$ denote the output mask of the given user's click (x_0, y_0) .
832 $\mathcal{G} = \{g_{K+1}, \dots, g_N\}$ be the set of erroneous SAM-subregions. Now consider:

833 (1) If there's a $g_k \in \mathcal{G}$ cannot be searched out by the $\sqrt{N_{\max}}$ branches with $\sqrt[4]{N_{\max}}$ iterations
834 per branch. Let $\{g_K, g_{K_1}, \dots, g_{K_t}, g_k\}$ be the shortest connection way to \mathcal{G} . Then by Lemma 1.4,
835 $k_t \leq \sqrt[8]{N_{\max}}$. Now consider \mathcal{G} as a tree of which the root node is g_0 . The shortest connection between
836 $\{g_0, g_K, g_{K_1}, \dots, g_{K_t}, g_k\}$ and other branches is $\leq \frac{1}{2} \sqrt[8]{N_{\max}}$. Therefore, we have $\sqrt[8]{N_{\max}} > \sqrt[4]{N_{\max}}$,
837 which is contradict to the Assumption that $N_{\max} > 1$.

838 (2) Otherwise, the original searching branch can search out the farthest (from the perspective of a
839 connected graph) g_k in \mathcal{G} . Then the disambiguous mask $M_0 = \cup \{g_i\}_{i=1}^N$ of the user's intent could
840 be conducted in \mathcal{G} . □

841 B PRACTICAL APPLICATIONS

842 **Why We Regard Reference Instances Easy to Get.** From both the previous work (Liu et al., 2024b;
843 Zhang et al., 2024b; Sun et al., 2024) and the practice, reference instances are acceptable visual
844 prompts. In practice, when dealing with a large number of images to annotate without reference
845 masks, the user can first use the interactive model to get a mask representing the target category.

846 **Potential Applications.** For large-scale data annotation tasks, SmartSAM significantly reduces both
847 interaction time and operational costs. Additionally, it provides enhanced usability for processing
848 ambiguous images in routine applications.

849 C DATASETS DETAILS

850 **Statistics of Used Datasets.** As shown in Tab. 11, we report the statistics of the three datasets. (1)
851 *DAVIS*: The DAVIS dataset, used for the interactive segmentation task, consists of 374 keyframes
852 extracted from videos. Following FocSAM (Huang et al., 2024c), all instances in each image are
853 treated as a single instance. Therefore, there are a total of 374 instances. These instances primarily
854 belong to categories such as humans, animals, and vehicles. (2) *PartImageNet*: A total of 2,408
855 ambiguous images were selected from the test set of PartImageNet. The entire object in each image
856 is treated as the target instance. Since each image in PartImageNet generally contains only one
857 complete instance, there are a total of 2,408 instances. This dataset includes 30 categories in total. (3)
858 *Amb-Occ*: Objects from the 80 base classes in COCO were selected as the target instances. Using

864
865 Table 11: The statistics of the three benchmark datasets. *No. Images* denotes the number of images in
866 the dataset. *No. Instances* denotes the number of instances (also the number of masks) in the dataset.
867

	DAVIS	PartImageNet	Amb-Occ
No. Images	374	2408	2744
No. Instances	374	2408	4470
Categories	- †	30	80
Ambiguity	-	✓	✓

871 † We follow FocSAM in treating all instances in each image of DAVIS as a single instance, and
872 therefore do not count categories.
873

888 Figure 6: Failure cases of SAM dealing with ambiguous input. Users typically have to add more
889 accurate clicks to get their target masks.
890

891 annotations from LVIS and COCO, a dataset comprising 2,744 images and 4,470 instances was
892 constructed. For more details, see the next subsection.
893

894 **Why and How We Construct Amb-Occ.** We construct Amb-Occ based on the observation that
895 larger instances are often composed of sub-instances (*i.e.*, a man with a backpack). As shown in Fig.
896 6 (examples generated using the web demo of SAM), refining the segmentation of whole instances
897 typically requires more iterations of human clicks. To construct the dataset, we selected the LVIS
898 (Gupta et al., 2019) and COCO (Lin et al., 2014) datasets, as they share the same image assets but
899 LVIS provides more detailed annotations. Specifically, we chose the categories in COCO as the target
900 instances and applied a coarse filtering process to identify images where the segmentation mask of
901 one instance is fully contained within a larger mask. Subsequently, we manually refined the dataset,
902 resulting in 2,744 images and 4,470 instance pairs (where one mask contains another). Examples of
903 these are shown in Fig. 7.
904

903 D MORE DETAILS ON THE WORKING MECHANISM

904 D.1 DETAILS IN SMARTSAM

905 As shown in Fig. 8, the Priori Initial Sampler generates a number of additional clicks (9 in our
906 settings). Each click generates 3 masks using the multi-mask mode of SAM, resulting in a set of
907 initial masks (in our settings, $3 \times (9 + 1) = 30$ masks). Subsequently, the Next Chain Clickers
908 iteratively refine the initial masks by adding clicks (3 iterations in our settings). Finally, the agent
909 computes the cosine similarities between the feature of the reference instance and the candidate
910 masks. The top-1 candidate with the highest similarity is selected as the output.
911

912 D.2 A MORE COMPREHENSIVE INVESTIGATION ON OUR BASIS OBSERVATION

913 **Why We Use Simulator Points.** In interactive segmentation, model evaluation is not performed
914 using actual human clicks. Following (Liu et al., 2023; Huang et al., 2023; 2024c), most interactive
915 segmentation methods employ a click simulator to mimic human clicking behaviors during evaluation.
916

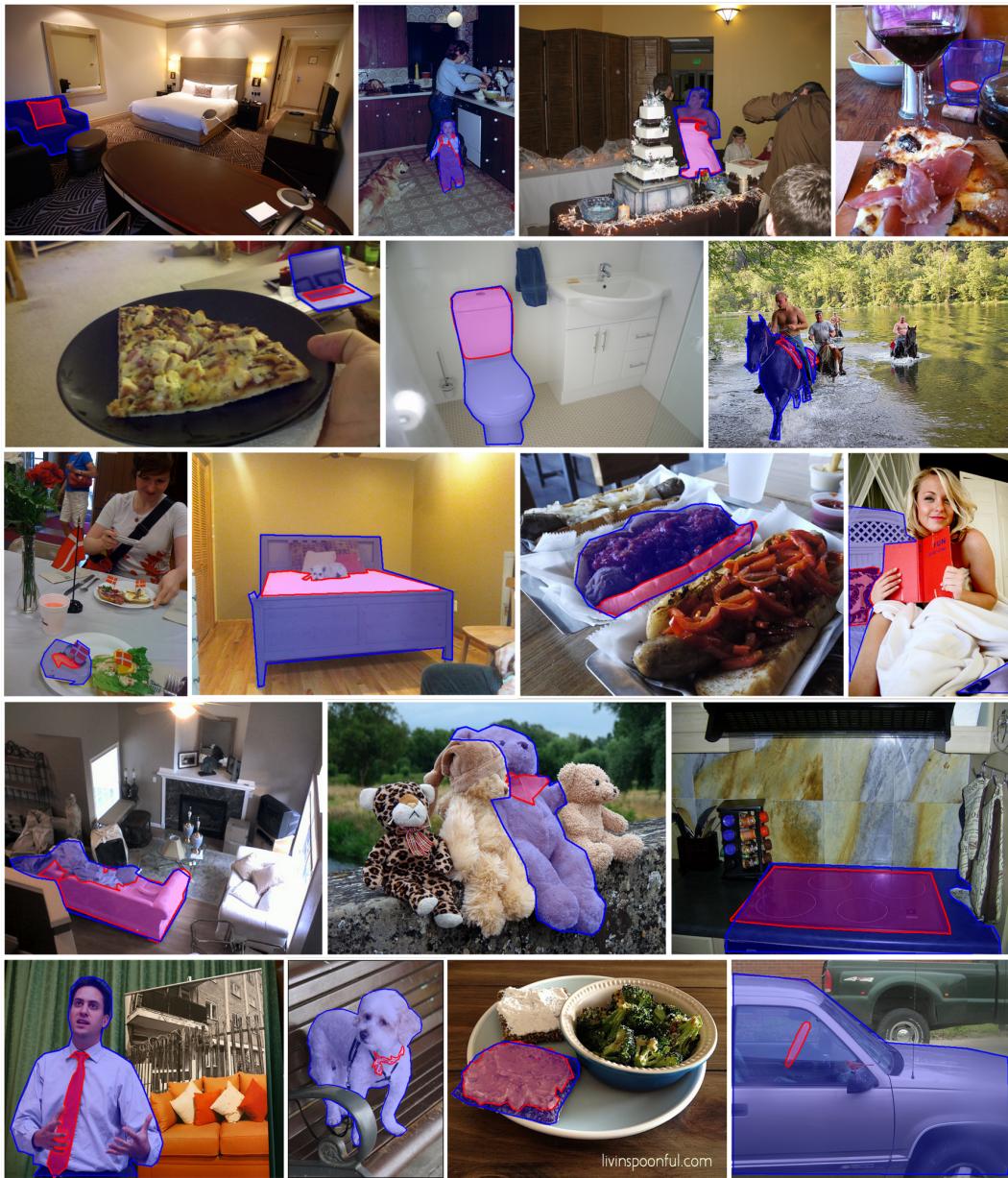


Figure 7: We select from LVIS and COCO datasets to build our Amb-Occ Dataset.

Specifically, this simulation strategy selects a "center" point from erroneous areas, located at a certain distance from the boundary, to simulate human refinement actions. This center point represents the statistical average of human click locations.

The Distribution of the Logits of Simulated Oracle Points. We report the logit values of the ambiguous parts and the entire distribution. As shown in Fig. 9, the left panel presents the box plot of the logits for the ambiguous parts, while the right panel shows the entire distribution. We observe a difference between the distributions: the logit values of the ambiguous areas are closer to the segmentation threshold, indicating that these regions correspond to the uncertain areas discussed in the main paper.

D.3 A THOROUGH ANALYSIS ON PRIOR INITIAL SAMPLER

Why the Agent Should Add Initial Prompts. As shown in Fig. 11, when processing ambiguous

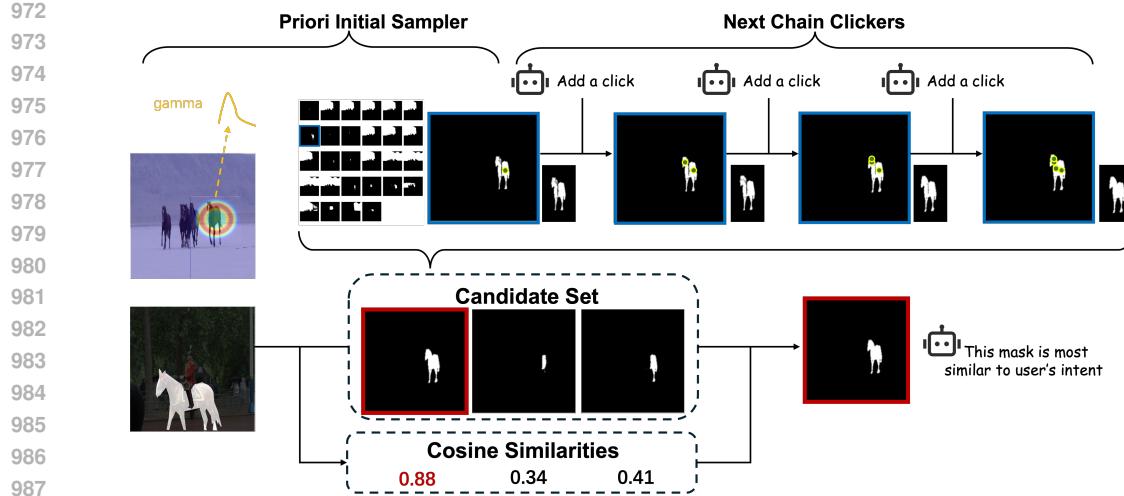


Figure 8: The details of mask generation. Generally, the candidate set is generated through a "search-and-filter" workflow. First, the Priori Initial Sampler samples several masks, and the Next Chain Clickers iteratively refine these masks. Subsequently, SmartSAM computes the cosine similarities between the reference feature and the candidate features, outputting the mask with the highest similarity.

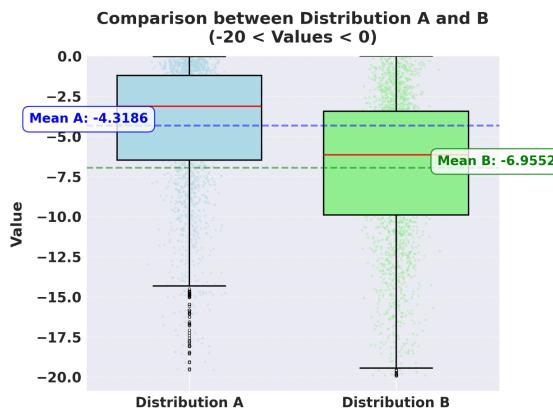


Figure 9: We plot the distributions of the logits for the ambiguous parts (left) and the whole areas (right). The visualized box plots indicate significant differences between the two distributions, with the ambiguous parts exhibiting higher uncertainty.

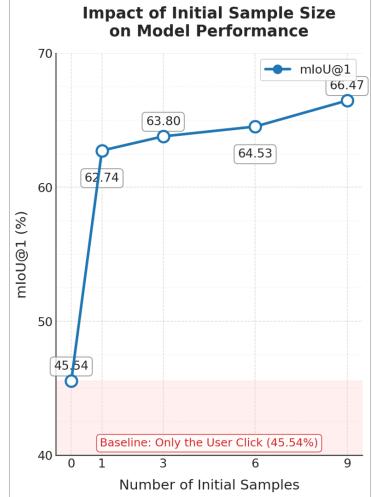


Figure 10: Compared with the baseline SAM, the number of initial prompts exhibits diminishing returns. An excessive number provides limited improvement to performance.

images, a single input may fail to avoid generating unwanted masks. However, by properly sampling additional initial prompts, this issue can be resolved.

Why Choose Gamma. SmartSAM using a Gamma distribution performs better than using a normal distribution (see Tab. 12). As shown in Fig. 12, an intuitive explanation for this is that the normal distribution lacks "skewness," which results in oversampling points that are too close to the user click.

Why the Number of Initial Prompts is Controlled. Intuitively, increasing the number of initial prompts improves performance. However, as shown in Fig. 10 (with the number of Next Chain Clickers' iterations controlled at 3 except for the user's click), this benefit does not consistently lead to improved performance. Furthermore, an excessive number of branches negatively impacts inference time.

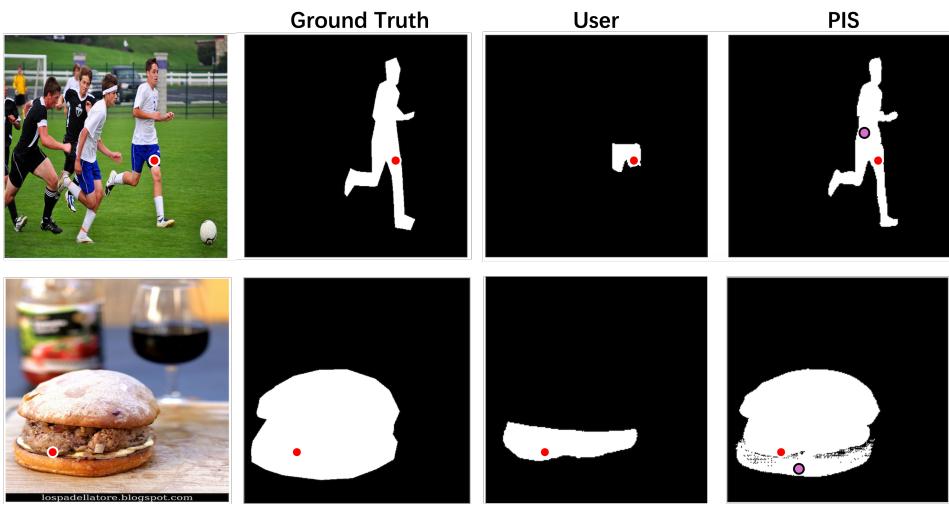


Figure 11: How the Priori Initial Sampler (PIS) works: When users click \bullet ambiguously, PIS searches for more appropriate masks by clicking \circ around users' click.

Table 12: By controlling the peaks to 100 and maintaining the same variations, the results show that when the peaks of the PDFs are controlled identically, the Gamma Distribution is a better choice for SmartSAM.

	Ori SAM	Gamma	Norm
PartImageNet	45.53	64.53	62.42
Amb-Occ	37.81	47.19	44.21

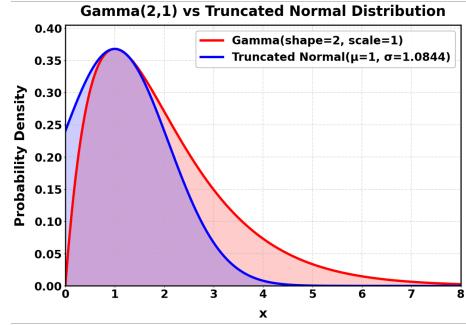


Figure 12: A schematic diagram of a gamma distribution and a normal distribution with the same maximum PDF position.

D.4 A THOROUGH ANALYSIS ON OUR NEXT CHAIN CLICKERS

Why Dynamically Change the Range of Uncertain Areas. From the perspective of definition, "uncertainty" is a concept opposite to "certainty." Thus, the former should be defined in relation to the latter. A certain area in SAM predictions corresponds to the top high (or top low) scores in the logits, meaning that uncertain areas are relatively lower (or higher) than the certain ones. As shown in Fig. 13, the logit distributions of these images span a wide range. Therefore, using an absolute threshold to define "uncertain" is not appropriate.

D.5 WHY THE LENGTH OF THE CHAIN SHOULD BE CONTROLLED?

As mentioned in Section IV, the quality (measured by *Best IoU* and *mIoU@1*) does not improve as the number of NCC iterations increases. To address this, we present evidence in Fig. 15, which shows that when the number of interactions exceeds 3 clicks, the *mIoU@3* reaches nearly 90% on the PartImageNet and DAVIS datasets, indicating the resolution of ambiguity. One may question whether agent-generated clicks perform as well as oracle human interactions and whether the chain length should be extended. We address this concern in Fig. 14. As shown in the figure, after 3 agent-generated clicks, the ambiguous parts become difficult to distinguish from the background.

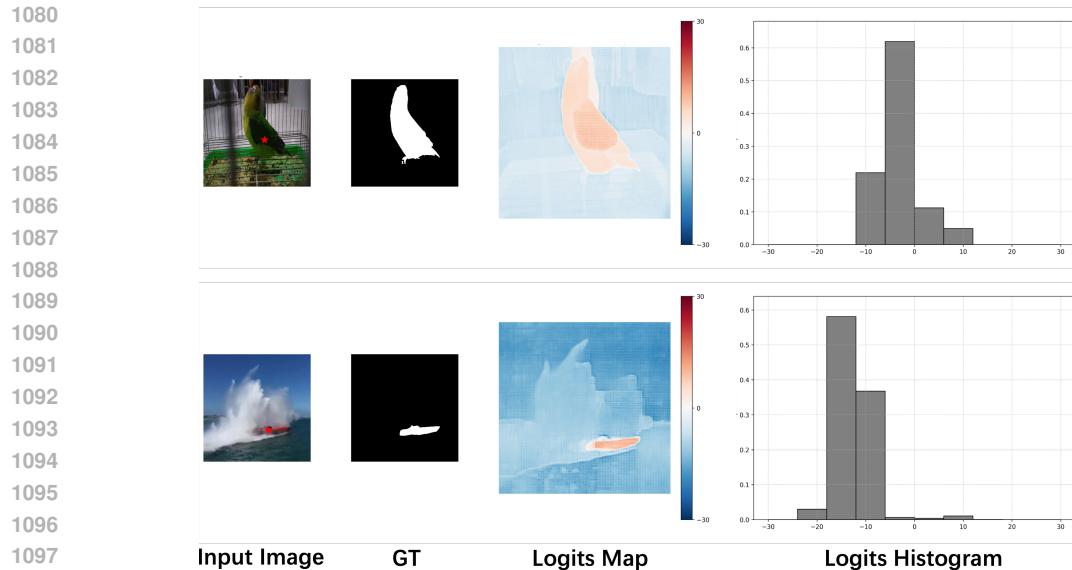


Figure 13: We plot (from left to right) the input image, ground truth, logits, and their distributions in a histogram. The values of uncertain areas vary at the image level. For the upper image of the parrot, the absolute values of the background are lower than those of the boat image.

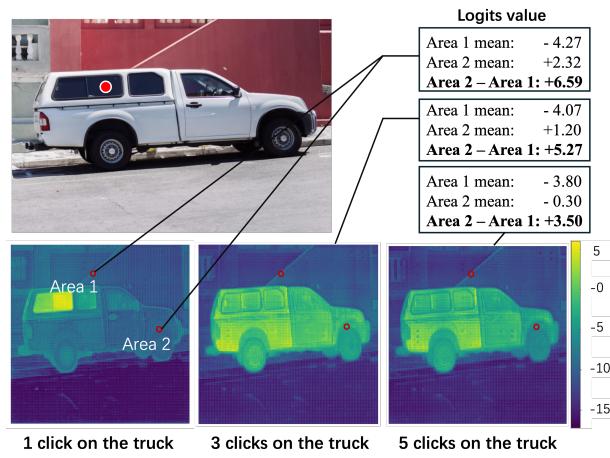


Figure 14: The uncertainty of the ambiguous area does not remain separable as the number of clicks increases. In this figure, when the user adds too many clicks on the windows, the logit scores of the ambiguous area (specifically, other parts of the truck, including Area 2) become indistinguishable from the unrelated background (the red wall, Area 1).

E MORE DETAILS FOR EXPERIMENTS

E.1 WHY FAILED ON FOCSAM AT RATIO@85

General Analysis. One may doubt the main results in Tab. 1 of the main text, where the *Ratio@85* is even worse than the baseline FocSAM. This counterintuitive issue happens because of the candidate selector and the poor separation of FocSAM’s logits between the background and the ambiguous region. As shown in Fig. 16, though the original masks generated by the user’s click are in the candidate set, the semantic image encoder of the candidate selector mistakes the low-quality masks as the best masks. This is mainly because FocSAM ignored the IoU-head of the original SAM, which

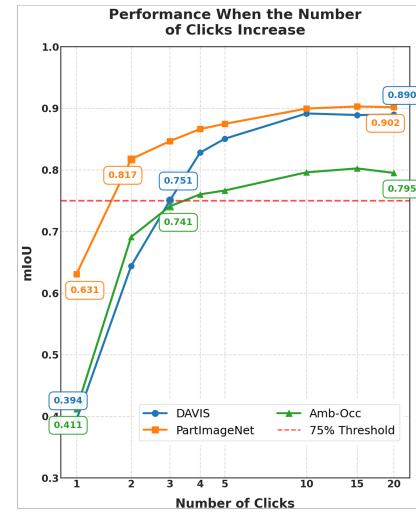


Figure 15: The mIoUs on different datasets as the number of clicks increases are shown. We found that approximately 3 clicks are sufficient to achieve a high level of performance, indicating the resolution of ambiguity.

Figure 16: We plot the images where FocSAM outperforms SmartSAM. There are two main cases. First, SmartSAM outputs more reasonable masks (*i.e.*, a complete rearview mirror, a skating man without ski poles, or a dog without a helmet). Second, since FocSAM disables the IoU-Head, it is unable to merge the candidate masks. As a result, for images where FocSAM already performs well, our method occasionally produces low-quality masks.

will be discussed later. Therefore, our strategy failed to increase the performance of the FocSAM on *Ratio@85*.

Differences Between FocSAM and Other SAMs. The main difference is that FocSAM disables the

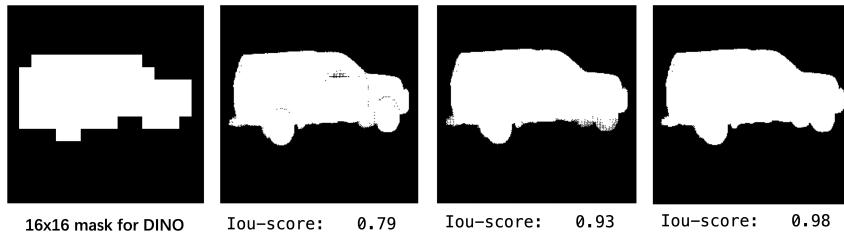


Figure 17: The predicted IoU score can represent the "quality" of the mask. The first example is the interpolated 16×16 mask obtained through mask-average-pooling. The following three examples share the same low-resolution masks but differ significantly in quality (the second and third contain substantial noise, while the last one is much clearer). Due to the absence of the IoU-Head, FocSAM tends to produce low-quality masks.

IoU-Head module, whereas typical baseline SAMs retain this component. This structure is utilized by SmartSAM to evaluate the quality of the candidate set (see Fig. 17). As a result, the absence of the IoU-Head indeed prevents SmartSAM from outputting high-quality masks.

F WHERE WE PLACES THE 1ST CLICKS FOR EXPERIMENTS IN THE REBUTTAL PHASE.

Here is a visualized example (see Fig. ??) of how the first clicks are placed for experiments in the rebuttal phase.

G HOW FOCSAM PREPROCESSES THE DAVIS DATASET.

We follow the preprocess procedure of FocSAM to turn multi-objects DAVIS into single objects (see Fig. 20).

Figure 18: **More Visualized Results Compared with FSS/OVS methods.** Qualitative comparison between SmartSAM and representative methods across three task families: Interactive Segmentation (IS), Point/Prompt-based Segmentation (PS/FSS), and Open-Vocabulary Segmentation (OVS). In the IS scenario, SAM-based baselines tend to over-focus on partial regions of the object, whereas SmartSAM accurately segments the entire object. In the PS/FSS case (e.g., PerSAM), SmartSAM correctly segments the person riding the bike, while SAMWISE produces an incorrect mask on the black bag. In the OVS case (e.g., SAMWISE), SmartSAM successfully identifies the person riding the horse, but SAMWISE fails to locate the correct target due to its lack of support for human-click prompts.

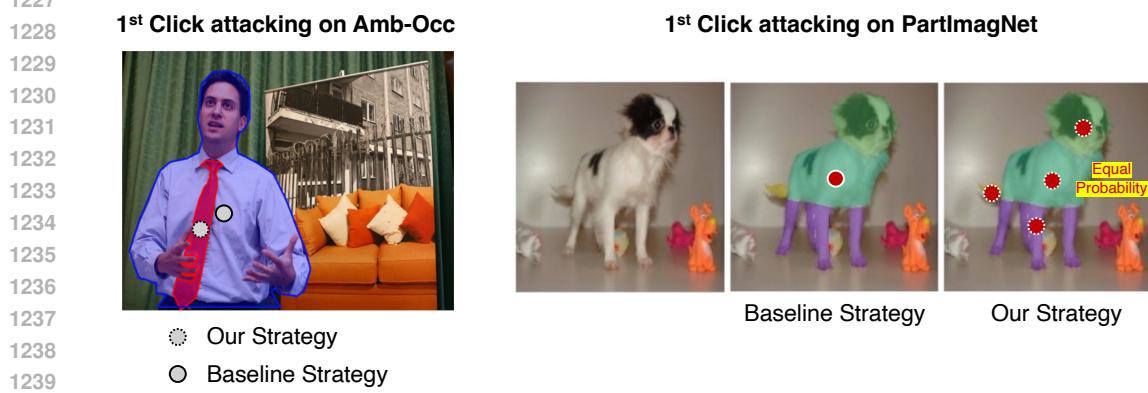


Figure 19: **How we simulate real-world human 1st clicks.**

