

PTCG: PERSONA-GUIDED TREE-BASED COUNTERARGUMENT GENERATION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

The ability to generate counterarguments is important for fostering critical thinking, balanced discourse, and informed decision-making. However, existing approaches typically produce only a single counterargument, thereby overlooking the diversity and persuasiveness required in real-world debates. This limitation is critical, as the same topic may persuade different individuals only when framed from distinct perspectives. To address this limitation, we propose Persona-guided Tree-based Counterargument Generation (PTCG), a framework that combines Tree-of-Thoughts-inspired step-wise generation and pruning with speaker persona selection. By estimating the author’s persona from the original argument and incorporating speaker personas representing distinct perspectives, the framework operationalizes perspective-taking, enabling reasoning from multiple standpoints and supporting the generation of diverse counterarguments. We propose a tree-based procedure that generates plans, selects the best, and produces multiple speaker persona-specific counterarguments, from which the most effective are chosen. We evaluate PTCG through a comprehensive multi-faceted setup, combining LLM(Large Language Model)-as-a-Judge, classifier-based assessment, and human evaluations. Our experimental results show that PTCG substantially improves both the diversity and persuasiveness of counterarguments compared to baselines. These findings highlight the effectiveness of adaptive persona integration in boosting diversity and strengthening persuasiveness.

1 INTRODUCTION

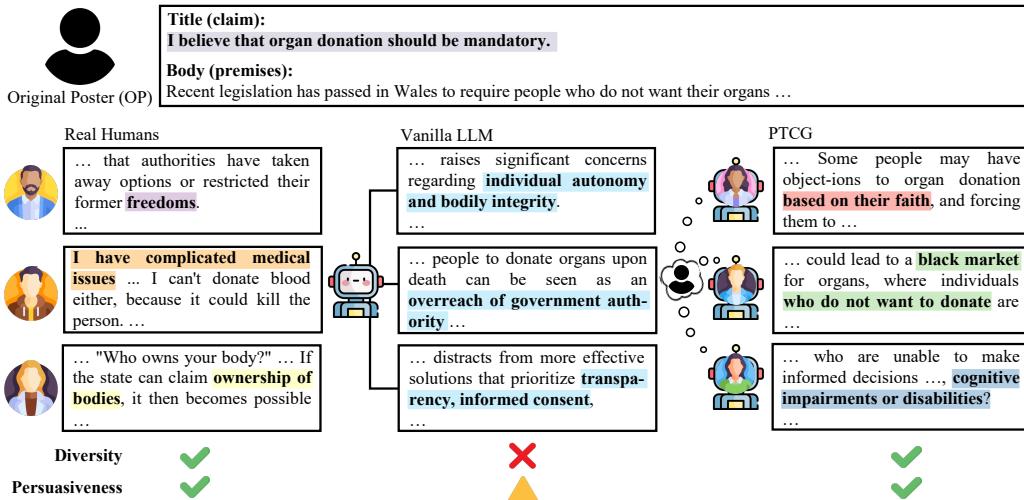


Figure 1: Comparison of LLM-generated counterarguments with and without Persona-guided Tree-based Counterargument Generation (PTCG). While vanilla LLMs tend to produce theoretical and superficial responses that revolve around similar content, PTCG generates counterarguments that reflect diverse perspectives and stronger persuasiveness, more akin to how real people argue. Each color represents a distinct perspective on the topic.

054 The ability to generate effective counterarguments is a growing area of interest in computational
 055 argumentation (Wang et al., 2023). A counterargument is not merely an expression of disagree-
 056 ment but a reasoned response that challenges an argument, exposing assumptions, logical gaps, or
 057 alternative perspectives. Engaging with counterarguments is widely recognized as a key mechanism
 058 for fostering critical thinking, as it encourages individuals to evaluate evidence, weigh competing
 059 viewpoints, and refine reasoning (Ennis, 2015; Dekker, 2020). The ability to generate effective
 060 counterarguments is especially important in contexts such as political debates, legal reasoning, and
 061 online discussions, where opposing views promote balanced discourse and better-informed decision-
 062 making (Li et al., 2020a; Behrendt et al., 2025; Zhang & Ashley, 2025; Gray et al., 2025).

063 Existing counterargument generation approaches suffer from two critical limitations: First, most
 064 methods generate a counterargument focusing on a single point, failing to capture diverse perspec-
 065 tives on the subject. This limitation stems from their reliance on a single strategy, such as attacking a
 066 weak premise (Alshomary et al., 2021), directly refuting the conclusion (Alshomary & Wachsmuth,
 067 2023), or pointing out logical flaws (Lin et al., 2023). Second, counterarguments produced by
 068 existing approaches, including those generated with large language models (LLMs), often lack per-
 069 suasiveness. While Chen et al. (2024) demonstrate the potential of LLMs in argument generation,
 070 subsequent studies (e.g. Lu et al. 2025, Plenz et al. 2025) reveal that generated arguments often
 071 lack value-based reasoning and scenario-driven perspectives essential for persuasiveness in human
 072 argumentation. In addition, the aforementioned issue of narrow perspective also negatively impacts
 073 the overall persuasiveness of the counterargument. This suggests that persuasiveness across diverse
 074 audiences depends on presenting arguments from multiple perspectives, making the resolution of
 075 this limitation a central challenge for counterargument generation.

076 To address these issues, we propose Persona-guided Tree-based Counterargument Generation
 077 (PTCG), a framework grounded in the theory of perspective-taking. Perspective-taking, widely stud-
 078 ied in social psychology, refers to the practice of imaginatively adopting others' standpoints when
 079 evaluating or constructing arguments. It has been shown to foster empathy, reduce bias, and encour-
 080 age reasoning from viewpoints different from one's own (Batson et al., 1997; Green & Brock, 2000).
 081 PTCG operationalize perspective-taking by guiding counterargument generation with pre-defined
 082 personas. Specifically, after estimating the original author's persona from their argument, the frame-
 083 work selects personas from both similar and contrasting predefined persona clusters and uses them to
 084 guide counterargument generation. The predefined persona clusters were created to organize about
 085 50,000 personas, reducing redundancy and enabling efficient selection of diverse perspectives. This
 086 design enables models to move beyond default stances and generate counterarguments that reflect
 087 a wider range of perspectives. In addition, PTCG incorporates a Tree-of-Thoughts (ToT)-inspired
 088 reasoning procedure (Yao et al., 2023). Multiple candidate reasoning paths called *plans* for generat-
 089 ing counterarguments are first generated, evaluated, and pruned. Only the most promising plans are
 090 then expanded into full counterarguments. This iterative process of generation and selection allows
 091 for diverse and persuasive reasoning paths. As illustrated in Figure 1, employing PTCG can improve
 092 the diversity and persuasiveness of generated counterarguments. By combining persona condition-
 093 ing with a step-wise reasoning process inspired by Tree-of-Thoughts (ToT) (Yao et al., 2023), the
 094 framework iteratively generates and selects candidate plans and counterarguments, ultimately pro-
 095 ducing multiple counterarguments that capture both diversity and persuasiveness.

096 To evaluate PTCG, we conduct experiments with multiple LLMs using 847 discussion threads from
 097 the ChangeMyView subreddit, which cover a diverse range of real-world topics. We combine LLM-
 098 as-a-Judge to assess the diversity and persuasiveness—general and targeted—as well as the stance
 099 and quality of the generated counterarguments. We further incorporate classifier-based metrics for
 100 the key dimension of persuasiveness, providing a more comprehensive evaluation. In addition,
 101 we conduct human evaluation, which not only complements the LLM-as-a-Judge results but also
 102 demonstrates persuasiveness across a diverse pool of evaluators, providing further evidence of appli-
 103 cability to the real audience. Across these evaluations, PTCG consistently outperforms the baselines,
 104 producing counterarguments that are more diverse, persuasive, and higher in overall quality.

105 2 RELATED WORK

106 **Argument Generation** Early work on argument generation framed the task as a largely symbolic or
 107 rule-driven process. Sato et al. (2015) proposed a debating system that generates arguments through

108 a pipeline of rule-based modules, such as topic analysis, evidence retrieval, and template-based sur-
 109 face realization. While this line of work demonstrates that fully automatic argument generation is
 110 feasible, the resulting systems tend to be brittle and difficult to scale beyond predefined domains
 111 and templates. Wachsmuth et al. (2018) moved toward more flexible generation while still relying
 112 on explicitly modeled rhetorical strategies. Their system composes arguments using hand-crafted
 113 rhetorical patterns, showing that explicit control over argumentative structure can improve coherence
 114 and persuasiveness. Hua & Wang (2018) introduced neural argument generation augmented
 115 with retrieved evidence, combining neural text generation with external document retrieval to ground
 116 arguments in factual content. Together, these approaches laid important groundwork for argument
 117 and counterargument generation. However, they provide limited control over who is speaking (per-
 118 sona) and offer little support for generating diverse perspectives across outputs.

119 **Counterargument Generation** Recent studies on counterargument generation have mainly focused
 120 on explicit argument structures or strategies. For example, Alshomary et al. (2021) propose attacking
 121 weak premises, while Alshomary & Wachsmuth (2023) guide generation by simultaneously
 122 modeling the conclusion of the original post. Lin et al. (2023) instead operate at the sentence level,
 123 producing concise counterarguments for each statement. However, these approaches rely on a sin-
 124 gle strategy, offering limited opportunities to reason from the opponent’s perspective and typically
 125 producing only one counterargument. In contrast, we propose a method that overcomes these limita-
 126 tions by generating multiple counterarguments that reflect diverse perspectives of the opponent. Hu
 127 et al. (2025) proposes a persona-driven multi-agent framework in which multiple artificial personas
 128 engage in a debate and their discussion is merged into a single argumentative essay. In contrast, our
 129 task formulation is fundamentally different: instead of synthesizing multiple voices into one unified
 130 output, our framework generates multiple independent and persona-conditioned counterarguments,
 131 with controlled diversity across personas being a core objective rather than a byproduct of debate.

132 **Perspective-Taking** Psychological studies highlight the persuasive power of perspective-taking and
 133 narrative immersion. Batson et al. (1997) show that imagining how others feel fosters empathy
 134 and altruistic motivation. Green & Brock (2000) and Mar & Oatley (2008) suggest that narrative
 135 “transportation” enables simulated experience, which can influence attitudes more deeply than fac-
 136 tual exposition. More recently, Bullock et al. (2021) argue that narratives are persuasive partly
 137 because they are processed more fluently than non-narrative formats. These findings motivate our
 138 use of perspective-taking-based generation to induce perspectival engagement and simulate mean-
 139 ingful disagreement. Moreover, perspective-taking enables the incorporation of diverse viewpoints,
 140 making it possible to generate multiple counterarguments for a single post.

141 **Diverse-Audience Persuasion** Lukin et al. (2017) show that persuasiveness depends on audience
 142 traits, motivating the use of personality-based analysis in argumentation. Building on this, studies
 143 have explored personalization in persuasive dialogue: Wang et al. (2019) adapt strategies based
 144 on user traits, and Al Khatib et al. (2020) incorporate debaters’ characteristics to improve persua-
 145 siveness prediction. Recent work further demonstrates that LLMs can generate more persuasive
 146 messages when tailored to psychological profiles (Matz et al., 2024), modulate linguistic features
 147 according to personality cues (Mieleszczenko-Kowszewicz et al., 2024), and role-play personas to
 148 enhance empathy and strategy distribution (Yang et al., 2025b). Building on this line of research,
 149 our work develops an approach that generates diverse counterarguments with awareness of audience
 150 diversity, aiming for greater persuasiveness.

151

152

3 PERSONA-GUIDED TREE-BASED COUNTERARGUMENT GENERATION

153

154

3.1 TASK DESCRIPTION

155

156

157

158

159

160

161

We define the task of **multiple distinct counterargument generation** to evaluate the ability to generate persuasive counterarguments that cover a broad spectrum of perspectives on a given argument. Specifically, the input is an *argument* consisting of a claim and one or more premises supporting it, and the output is a set of *counterarguments*, each presenting a distinct perspective that challenges the original argument. We detail the evaluation criteria in Section 4.3

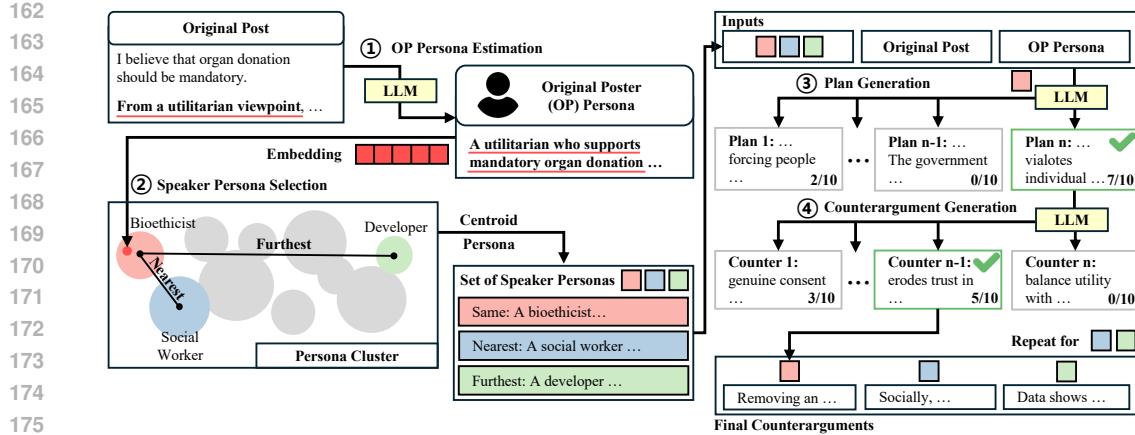


Figure 2: Persona-guided Tree-based Counterargument Generation (PTCG). An LLM first extracts the author’s persona and conditions on distinct personas to produce multiple candidate reasoning plans. These plans are evaluated and pruned in a tree-based step-wise manner, and the most promising ones are expanded into three final counterarguments, each grounded in a different persona.

3.2 PERSPECTIVE TAKING: PERSONA SELECTION

To realize perspective-taking in counterargument generation, we draw on the notion of personas as proxies for diverse viewpoints. Prior work has shown that incorporating personas into dialogue models allows them to go beyond generic language modeling, producing responses that are more consistent, human-like, and reflective of underlying experiences or viewpoints (Zhang et al., 2018; Moon et al., 2024). We adopt the PersonaHub dataset (Ge et al., 2024), a large-scale repository of about 50,000 personas. Since using all personas is redundant and costly, we cluster similar ones into groups. Each persona is embedded using OpenAI’s text-embedding-3-large (OpenAI 2024; 3,072-dimensional), reduced to a 50-dimensional representation via UMAP (McInnes et al., 2018), and clustered into 39 groups¹ using HDBSCAN (McInnes et al., 2017). Subsequently, we leverage inter-cluster distances to select counterargument speakers from distinct groups, ensuring that the generated counterarguments embody genuinely different perspectives. To help readers better understand the semantic coherence and diversity encoded in these clusters, we provide representative persona examples from several clusters in Section A2. These examples illustrate how grouping similar personas enables systematic selection of viewpoints that truly differ in background, expertise, and worldview—an essential property for perspective-taking in counterargument generation.

3.3 PERSONA-GUIDED TREE-BASED COUNTERARGUMENT GENERATION (PTCG) FRAMEWORK

Our method, which we call Persona-guided Tree-based Counterargument Generation (PTCG; See Figure 2 and Algorithm 1), integrates the Original Poster (OP) persona estimation, clustering-based speaker persona selection, and a Tree-of-Thoughts (ToT) (Yao et al., 2023)-inspired step-wise generation process (Plan and Counterargument Generation and Selection). For all stages, we employ *Llama-3.1-8B-Instruct* as the underlying language model.

Step 1: Original Poster (OP) Persona Estimation Given an original post, we estimate the OP persona using an LLM-based estimation prompt. Here, the OP refers to the author of the original post. This estimated persona represents the OP’s beliefs, values, and worldview, and conditions subsequent counterargument generation. The detailed prompt is provided in Appendix Figure A3.

Step 2: Speaker Persona Selection To balance diversity with interpretability, we set the number of personas to three, supported by observations from the CMV dataset where posts with multi-

¹As shown in Appendix Table A8, the configuration with 39 clusters was selected as it achieves the highest Silhouette Score (Rousseeuw, 1987) while also maintaining a strong Calinski–Harabasz Index (Caliński & Harabasz, 1974), indicating the best balance between cohesion and separation.

216 **Algorithm 1** Persona-guided Tree-based Counterargument Generation (PTCG)

217 **Require:** Original post x , persona cluster centroids \mathcal{C}

218 **Ensure:** Final counterarguments $\mathcal{Y} = \{y_1, y_2, y_3\}$

219 1: **Step 1: Original Poster (OP) Persona Estimation**

220 2: $p_{\text{op}} \leftarrow \text{LLM_Estimate_Persona}(x)$ ▷ Prompt: Figure A3

221 3: $c_{\text{op}} \leftarrow \text{Nearest_Centroid}(p_{\text{op}}, \mathcal{C})$

222 4:

223 5: **Step 2: Speaker Persona Selection**

224 6: Select three speaker personas from \mathcal{C} :

225 $p_{\text{same}} = \text{centroid persona from } c_{\text{op}}$ ▷ Same cluster

226 $p_{\text{nearest}} = \text{centroid persona from nearest cluster}$

227 $p_{\text{furthest}} = \text{centroid persona from furthest cluster}$

228 7: $\mathcal{P}^* = \{p_{\text{same}}, p_{\text{nearest}}, p_{\text{furthest}}\}$

229 8:

230 9: **Step 3: Plan Generation and Selection**

231 10: **for** each $p \in \mathcal{P}^*$ **do**

232 11: $\{r_1, r_2, r_3\} \leftarrow \text{LLM_Generate_Plans}(x, p_{\text{op}}, p)$ ▷ Prompt: Figure A4

233 12: $r_p^* \leftarrow \text{LLM_Select_Plan}(\{r_1, r_2, r_3\}, p, p_{\text{op}})$ ▷ Prompt: Figure A5

234 13: **end for**

235 14:

236 15: **Step 4: Counterargument Generation and Selection**

237 16: **for** each $p \in \mathcal{P}^*$ **do**

238 17: $\{y_1^p, y_2^p, y_3^p\} \leftarrow \text{LLM_Generate_Counters}(x, p_{\text{op}}, p, r_p^*)$ ▷ Prompt: Figure A4

239 18: $y_p^* \leftarrow \text{LLM_Select_Counter}(\{y_1^p, y_2^p, y_3^p\}, p, p_{\text{op}})$ ▷ Prompt: Figure A5

240 19: Add y_p^* to \mathcal{Y}

241 20: **end for**

242 21:

243 22: **return** \mathcal{Y}

244
245 ple delta-awarded comments—indicating diverse, high-quality counterarguments—rarely exceeded
246 three (see Appendix Figure A2). We select personas based on their cluster distance from the OP:
247 one from the *same* cluster, one from the *nearest* cluster, and one from the *furthest* cluster. For
248 each cluster, no persona exactly matched the centroid; therefore, we used the closest in embedding
249 space. This setup ensures that the three chosen personas collectively reflect perspectives ranging
250 from highly aligned to markedly divergent, thereby systematically probing how cluster distance in-
251 fluences counterargument generation and persuasiveness.

252 **Step 3: Plan Generation and Selection** Once the OP persona and speaker personas are de-
253 termined, the generation process proceeds in a tree-based step-wise manner inspired by Tree-of-
254 Thoughts (Yao et al., 2023). For each persona, the LLM generates three candidate plans, each
255 outlining a persuasive strategy for counterargument generation. A voting procedure then eval-
256 uates these candidates in terms of whether they effectively use the contrast between personas, apply
257 a strong strategy, and present their reasoning clearly and logically. The most promising plan is
258 selected among the three, resulting in one best plan per persona. For each speaker persona, one
259 finalized plan is thus determined and passed to the subsequent generation stage. The prompts used
260 for plan generation and selection can be found in Figure A4 and Figure A5, respectively.

261
262 **Step 4: Counterargument Generation and Selection** Building on the selected plans, the final-
263 ized plan for each speaker persona is explicitly used, along with the original post, OP persona, and
264 the designated speaker persona, to guide counterargument generation. The LLM then generates
265 three candidate counterarguments per persona, each following the selected plan while reflecting the
266 persona’s distinct perspective. A voting procedure evaluates these candidates based on whether they
267 leverage the contrast between personas, directly challenge the original argument, and are specific,
268 persuasive, and logically consistent. Among the three candidates, the most persuasive counterargu-
269 ment is selected as the final output for that persona. This process is repeated for each persona, with
one best counterargument selected per persona, yielding three diverse counterarguments from the

270 same, nearest, and furthest clusters that collectively capture multiple perspectives. The prompts for
 271 this step are identical to those in Step 3, shown in Figure A4 and Figure A5, respectively.
 272

273 4 EXPERIMENTS

274 4.1 DATASET

275 To assess the ability to generate diverse and persuasive counterarguments, we constructed a dataset
 276 of 847 *ChangeMyView* (CMV) subreddit² posts (i.e., arguments), each paired with three comments
 277 (i.e., counterarguments) that have successfully persuaded the original poster as gold-standard per-
 278 suasive counterarguments. On CMV, each post consists of a title summarizing the main claim and a
 279 body providing the premises supporting the claim. Original posters award a delta (Δ) to comments
 280 that successfully change their view, which we treat as quality counterarguments. We first collected
 281 72,999 posts from CMV, spanning the years 2013 to 2023. Then, to ensure diversity, we filter for
 282 posts with three delta-awarded comments, yielding a dataset of 847 post-comments pairs.
 283

284 4.2 BASELINES

285 To establish meaningful points of comparison, we adopt baselines from both prior counterargument
 286 generation research and representative LLMs.
 287

288 **Argument Undermining (Alshomary et al., 2021)** This method identifies weak premises in the
 289 original post and generates counterarguments by attacking them. For fair comparison, we first em-
 290 ploy a weak-premise identification model to select the top three weak premises, then generate one
 291 counterargument per premise, resulting in three outputs.
 292

293 **Joint One-seq (Alshomary & Wachsmuth, 2023)** This method infers multiple conclusions from
 294 the premises in the original post and uses them as the basis for counterargument generation. We
 295 sample three alternative conclusions and generate a counterargument for each.
 296

297 **DeepSeek-R1 (Guo et al., 2025)** A reasoning-optimized model trained with reinforcement learning
 298 to improve logical consistency. It serves as a comparison to test whether explicit reasoning alone,
 299 without persona guidance, improves argumentative coherence. For counterargument generation, we
 300 prompt the model to produce three outputs in one pass, as shown in Figure A6.
 301

302 **Llama 3.1 (Grattafiori et al., 2024)** An instruction-tuned model from the Llama 3.1 family trained
 303 on large-scale publicly available datasets. It is widely employed as a general-purpose baseline for
 304 zero-shot inference due to its balance between model size and reasoning capability. We use the
 305 *Llama-3.1-8B-Instruct* model, which also serves as the backbone for our proposed method. For
 306 comparability, we follow the same prompting strategy as DeepSeek-R1.
 307

308 4.3 EVALUATION METRICS

309 We evaluate our method across four complementary dimensions: Persuasiveness, Perspective Diver-
 310 sity, and Stance. We employ *LLM-as-a-Judge* (Zheng et al., 2023; Gu et al., 2024), as it provides
 311 more reliable evaluations than traditional lexical-overlap-based metrics such as BLEU and ROUGE,
 312 which often diverge from human judgment (Celikyilmaz et al., 2020; Hu et al., 2024). For targeted
 313 persuasiveness, which measures how well the counterarguments resonate with the original poster,
 314 we additionally use data-driven *classifier-based scores*.
 315

316 **Persuasiveness** While general persuasiveness is important, it is equally crucial for counterargu-
 317 ments to be persuasive with respect to the original poster’s context. To capture both, we evaluate
 318 *general persuasiveness* using only the title (claim) of the original post, and *targeted persuasiveness*
 319 using both the title and body (premises), which assesses resonance with the original poster’s con-
 320 text and simulates realistic dialogue. Since each input yields multiple counterarguments, we report
 321 the average persuasiveness score to reflect overall persuasiveness. The prompts used for these two
 322 evaluations are provided in Appendix Figures A7 and A8.
 323

²<https://www.reddit.com/r/changemyview/>

324 Table 1: Evaluation results of baselines and PTCG measured by GPT-4o-mini. Reported scores
 325 have been averaged over five runs. PTCG (Ours) is implemented on top of the Llama-3.1-8B-
 326 Instruct model. *Persuasiveness* is reported for general and targeted settings, scored on a 1–10 scale.
 327 *Perspective diversity* evaluates the variety of viewpoints reflected in generated counterarguments,
 328 using a 1–5 scale. For *quality*, we report appropriateness (App.), clarity (Cla.), grammaticality
 329 (Gra.), and relevance (Rel.), each on a 1–5 scale. *Stance* measures alignment with the opposite
 330 stance, reported on a 0–100 scale. Best scores are shown in bold.

Approach	Persuasiveness		Perspective Diversity	Quality				Stance
	General	Targeted		App.	Cla.	Gra.	Rel.	
Argument Undermining	3.48	2.85	1.84	1.72	1.55	1.60	1.59	82.12
Joint One-seq	3.51	2.85	1.86	1.74	1.60	1.68	1.55	78.01
DeepSeek-R1	8.05	7.26	4.13	4.43	4.23	4.92	4.65	83.14
Llama 3.1	8.07	7.20	4.21	4.44	4.34	4.98	4.65	84.04
PTCG (Ours)	8.26	7.42	4.27	4.54	4.44	4.98	4.76	85.10

331
 332
 333
 334
 335
 336
 337
 338
 339
 340 **Perspective Diversity** Producing counterarguments that embody genuinely distinct viewpoints—beyond superficial rewordings—is difficult. True diversity requires capturing ideological, emotional, or experiential variation that reflects distinct perspectives. We therefore evaluate whether the outputs move beyond lexical variation and invoke deeper interpretive frames not explicitly given in the input. The prompt for evaluating perspective diversity is provided in Appendix Figure A9.

341
 342
 343
 344
 345 **Quality** Generating counterarguments that are grammatically correct, logically coherent, and contextually appropriate remains a fundamental challenge, as large language models often produce
 346 verbose or vague content that undermines clarity and argumentative strength. To comprehensively
 347 assess this dimension, we adopt four established criteria grounded in prior research on argumentation
 348 quality: *grammaticality*, *appropriateness*, *relevance*, and *clarity*. The rationale and further
 349 details for selecting these dimensions are provided in Appendix Section A3. The prompt used for
 350 evaluating quality is provided in Appendix Figure A10.

351 **Stance** Ensuring that all generated counterarguments clearly oppose the original post is essential.
 352 However, LLMs may sometimes produce neutral or contradictory outputs unless properly guided,
 353 particularly when generating multiple responses. We therefore measure how reliably each method
 354 produces outputs that both contradict the original post and remain contextually appropriate. The
 355 prompt used for evaluating stance is provided in Appendix Figure A11.

358 5 RESULTS AND ANALYSIS

360 5.1 RATING-SCALE EVALUATION

362 The reported scores were determined by averaging across five runs to control for random variation.
 363 Table 1 shows that PTCG consistently outperforms all baselines across all evaluation dimensions.
 364 The general and targeted persuasiveness scores demonstrate that the counterarguments generated
 365 by PTCG are effective for a general audience, as well as the particular original poster. The out-
 366 come for perspective diversity confirms the ability to produce counterarguments that reflect diverse
 367 viewpoints. The performance on the quality metrics shows improved overall textual quality. Lastly,
 368 the results on stance indicate that the generated counterarguments more clearly oppose the respec-
 369 tive original posts. Overall, PTCG consistently outperforms the baselines across persuasiveness,
 370 perspective diversity, textual quality, and stance clarity.

372 5.2 CLASSIFIER-BASED EVALUATION

374 To complement LLM-based judgments, we use a Delta classifier trained on CMV delta-award anno-
 375 tations to assess targeted persuasiveness. Results are shown in Table A9. Table 2 shows that PTCG
 376 achieves the highest delta score of 0.82, clearly outperforming all baseline models. This superi-
 377 ority extends to both strong LLMs and earlier counterargument generation methods, underscoring the
 consistent advantage of our approach.

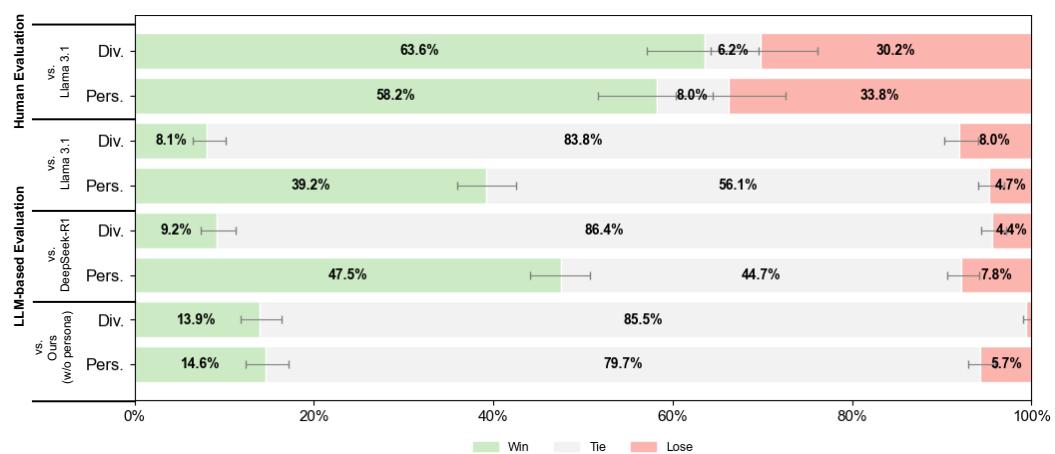


Figure 3: Win/Tie/Lose analysis of diversity (Div.) and persuasiveness (Pers.) across Human Evaluation (top) and LLM-based Evaluation using GPT-4o-mini (bottom). The figure compares our method (PTCG) with baselines, showing the proportion of cases where each system’s counterarguments were judged as more diverse or persuasive (Win), equivalent (Tie), or less effective (Lose).

These results confirm that our approach generates counterarguments that are consistently more persuasive. Notably, this evaluation is conducted through a classifier trained on real-world data. The results are well aligned with those from the LLM-based targeted persuasiveness evaluation, further validating the robustness of our findings.

5.3 PAIRWISE EVALUATION

To assess our framework’s effectiveness, we conduct human and LLM-based pairwise evaluations, focusing on the persuasiveness and diversity of generated counterarguments.

For the human evaluation, we randomly sampled 95 inputs and asked five human evaluators to rate the outputs from PTCG and the baselines. Details are in Appendix Section A4. As shown in As shown in As shown in Figure 3, human judges consistently rated PTCG higher than the baseline across both evaluation dimensions.³ Since both PTCG and the baseline rely on the same Llama 3.1 model, this constitutes a fair comparison and demonstrates that the performance gains come directly from our framework rather than differences in model capacity or training data. In particular, PTCG generated counterarguments that reflected a wider variety of perspectives, which contributed to greater diversity. This diversity, in turn, suggests an enhanced capacity to appeal to and persuade a broader range of audiences. Moreover, the persuasiveness gains observed in PTCG indicate the evaluators found the generated counterarguments not only more varied but also more compelling. Taken together, these results reinforce that diversity and persuasiveness are complementary rather than competing qualities: by incorporating multiple perspectives, PTCG achieves persuasive power that resonates with different evaluators.

We also conducted pairwise comparisons using GPT-4o-mini as the evaluator, assessing persuasiveness and diversity. To mitigate potential ordering effects (Zheng et al., 2023), we presented the counterargument sets in both orders: if the evaluation was first conducted in the AB order, it was also repeated in the BA order, and the final scores were aggregated accordingly. We also allowed for *Tie*, which capture cases where the evaluator either explicitly selected a “Hard” option or produced

Table 2: Targeted persuasiveness (Delta score) is evaluated using the delta classifier. The score ranges from -1 to 1 and represents the predicted probability of receiving a delta. For clarity, the best results are highlighted in bold.

Approach	Delta Score
Argument Undermining	-0.64
Joint One-seq	-0.12
DeepSeek-R1	0.80
Llama 3.1	0.78
PTCG (Ours)	0.82

³Inter-annotator agreement, assessed via Fleiss’ Kappa (0.619) and Krippendorff’s Alpha (0.612), reflects substantial consistency among annotators.

432 inconsistent preferences when the order of the two sets was reversed, reflecting potential ordering
 433 effects inherent in LLM-based pairwise judgments. Figure 3 shows the results comparing PTCG
 434 against both LLM baselines, Llama 3.1 and DeepSeek-R1. Across all comparisons, PTCG shows
 435 consistent improvements in both diversity and persuasiveness. For diversity, while baseline models
 436 show very high tie rates, our method secures substantially higher win rates, indicating that it is able
 437 to broaden the argumentative space beyond what the baselines typically generate. Compared to our
 438 ablation without persona (w/o persona) conditioning, PTCG achieves nearly double the win rate, un-
 439 derscoring the critical role of personas in enhancing diversity by injecting distinct perspectives. For
 440 persuasiveness, the improvements are even more pronounced. Against Llama 3.1, PTCG achieves
 441 nearly an eightfold higher win rate and against DeepSeek-R1 it achieves a sixfold higher win rate.

442 These results suggest that grounding counterarguments in diverse personas significantly enhances
 443 their ability to engage and convince. Compared to the ablation w/o persona conditioning, the win
 444 rate improvement is smaller but remains consistent. This consistency highlights that grounding
 445 counterarguments in diverse personas still plays a meaningful role in enhancing persuasiveness.
 446 Taken together, these findings reinforce that PTCG does not simply generate more varied content but
 447 also produces counterarguments that evaluators consistently judge as more compelling. The high tie
 448 rates across baselines reflect the difficulty of the task and the nuanced nature of pairwise judgments,
 449 but the consistent win margins achieved by our method indicate robust and reliable improvements.

450 5.4 QUALITATIVE ANALYSIS

451 Analysis of the generated counterarguments⁴ reveals that, unlike the LLM baselines, PTCG in-
 452 corporates rich social, cultural, and practical contexts while emphasizing concrete risks and lived
 453 human experiences. This makes the outputs more persuasive and relatable. Baseline outputs often
 454 reiterate high-level ethical tropes such as autonomy, government overreach, or informed consent
 455 without moving beyond abstract formulations. In contrast, PTCG highlights tangible concerns such
 456 as potential inequalities in medical access, the emergence of black markets, and the coercive treat-
 457 ment of bodies against deeply held cultural or spiritual beliefs. A similar pattern is observed in the
 458 movie theater example, where PTCG draws attention to broader social and economic factors—such
 459 as the role of public spaces in family routines, disproportionate burdens on low-income house-
 460 holds, and community-level impacts on local businesses—that baseline models overlook. These
 461 dimensions anchor the counterarguments in scenarios that audiences can more readily imagine and
 462 evaluate, thereby enhancing their real-world salience. Furthermore, PTCG broadens the argumen-
 463 tative space by drawing from diverse personas that introduce distinct vantage points, ranging from
 464 societal fairness to cultural integrity and professional identity. This multiplicity of perspectives not
 465 only increases diversity but also strengthens persuasiveness by appealing to different values and
 466 lived experiences. In some cases, narrative elements — such as imagining marginalized individuals
 467 or communities facing systemic disadvantages — add an additional layer of resonance absent from
 468 baseline generations. Consequently, PTCG achieved stronger performance in both diversity and per-
 469 suasiveness. This improvement stems from not only broadening the range of perspectives but also
 470 grounding its arguments in concrete, human-centered reasoning that baseline models fail to capture.
 471 In addition to these qualitative differences, our framework naturally produces longer outputs due
 472 to its multi-stage, persona-grounded reasoning process.⁵ To illustrate why this occurs, we provide
 473 qualitative examples showing how different personas lead to distinct argumentative framings, lev-
 474 els of elaboration, and domain-specific reasoning styles. These excerpts demonstrate how persona
 475 conditioning influences the depth, structure, and emphasis of each counterargument—ultimately
 476 contributing to richer and more detailed responses compared to baseline models.

477 5.5 ABLATION STUDY

478 We further analyze the contribution of each component through ablation experiments, which eval-
 479 uate each module in isolation and examine how their combination yields complementary performance
 480 gains. Beginning with the baseline Llama 3.1 model, we incrementally add the persona-grounding
 481 module, the tree-based step-wise generation module, and a CoT-based step-wise variant (Table 3).

482
 483
 484
 485 ⁴Please refer to Table A6 and Table A7 examples.

⁵See Table A5 for detailed length statistics.

486
 487 Table 3: Ablation study of PTCG. *Persuasiveness* is reported for general and targeted settings, scored
 488 on a 1–10 scale. *Perspective diversity* evaluates the variety of viewpoints reflected in generated
 489 counterarguments, using a 1–5 scale. For *quality*, we report appropriateness (App.), clarity (Cla.),
 490 grammaticality (Gra.), and relevance (Rel.), each on a 1–5 scale. *Stance* measures alignment with
 491 the opposite stance, reported on a 0–100 scale. For clarity, best results are in bold.

Configuration	Persuasiveness		Perspective Diversity	Quality				Stance
	General	Targeted		App.	Cla.	Gra.	Rel.	
Llama 3.1	8.07	7.20	4.21	4.44	4.34	4.98	4.65	84.04
+ Persona	7.76	6.72	4.20	4.22	4.20	4.92	4.32	83.80
+ CoT-based Gen.	8.03	7.39	4.26	4.52	4.43	4.98	4.74	84.98
+ Tree-based Gen.	8.24	7.50	4.03	4.65	4.56	4.99	4.88	85.51
+ Persona + Tree-based Gen. (PTCG)	8.26	7.42	4.27	4.54	4.44	4.98	4.76	85.10

492
 493
 494
 495
 496
 497
 498 The tree-based generation module has the strongest impact, substantially improving quality metrics
 499 and achieving the highest targeted persuasiveness. Its structured exploration of multiple reasoning
 500 paths enhances coherence and opponent relevance. However, exploring only the most promising
 501 branches reduces perspective diversity, falling below the baseline.

502
 503 The CoT-based variant shows a different trade-off: it moderately improves persuasiveness and quality
 504 while maintaining higher diversity than the tree-based module. This suggests that linear reasoning
 505 encourages elaboration without overly constraining the argumentative trajectory, though it
 506 remains clearly weaker than tree-based generation in targeted persuasiveness and stance alignment.

507
 508 Persona grounding alone decreases persuasiveness and offers limited quality gains, but it preserves
 509 diversity—indicating that persona signals introduce variation but require structured reasoning to
 510 be effective. When paired with tree-based reasoning, persona grounding offsets the diversity loss,
 511 leading to the highest diversity while maintaining competitive persuasiveness.

512
 513 Overall, the full configuration (PTCG) yields the most balanced outcome: the strongest general
 514 persuasiveness, competitive targeted persuasiveness, the highest diversity, and consistently strong
 515 quality and stance alignment. These results show that tree-based reasoning provides structural rigor,
 516 CoT offers lightweight gains, and persona grounding introduces diverse viewpoints—together en-
 517 abling PTCG to produce counterarguments that are both highly persuasive and meaningfully diverse.

518 6 CONCLUSION AND FUTURE WORK

519
 520 In this work, we proposed and addressed the task of generating multiple distinct and persuasive coun-
 521 terarguments grounded in realistic personas. Inspired by Tree-of-Thoughts approach, we adopted a
 522 tree-based step-wise generation with pruning process to enhance the quality of generated content,
 523 while integrating personas based on distance-based selection. This design enables our approach to
 524 overcome the inherent limitations of base LLMs and produce a broader range of compelling counter-
 525 arguments. For evaluation, we combined LLM-based judgments, and classifier-based assessments,
 526 providing a comprehensive multi-faceted validation of our method. The results demonstrate that
 527 our persona-grounded, tree-based step-wise generation approach significantly improves both the
 528 diversity and persuasiveness of counterarguments. Our work provides a new direction for counter-
 529 argument generation research. It also suggests practical applicability in fostering critical thinking,
 530 facilitating balanced debates, and supporting informed decision-making.

531
 532 We show that PTCG improves the generation of diverse and persuasive counterarguments, and there
 533 are several promising directions for future work. First, PTCG focuses on generating counterargu-
 534 ments for a single opinion. However, debates often unfold over multiple rounds, with each round
 535 consisting of an exchange between participants (Durmus & Cardie, 2019; Li et al., 2020b). Ex-
 536 tendsing PTCG to multi-round debates would enable models to engage in interactive and dynamic
 537 exchanges, where counterarguments are refined over multiple turns. This line of research could
 538 further extend to multi-party debates, where multiple participants interact and compete (Sia et al.,
 539 2022). Second, PTCG is limited to text-based personas derived from clustering. Incorporating richer
 540 user signals, such as value-based attributes, may further improve the persuasiveness of generated
 541 counterarguments (Lukin et al., 2017). We plan to explore these directions in our future work.

540
541
ETHICS STATEMENT

542 This study makes use of the publicly available Reddit ChangeMyView dataset, which has also been
 543 widely adopted in prior work on computational argumentation. The dataset was used strictly for
 544 research purposes. We are aware that generating persuasive counterarguments with large language
 545 models raises ethical concerns, particularly the risk of misuse in manipulative or coercive contexts.
 546 To reduce these risks, our work is limited to academic exploration, with the goal of examining
 547 diversity of perspectives rather than promoting adversarial persuasion. In addition, to prevent the risk
 548 of outputs being mistaken for human speech in deceptive ways, we restricted the use of first-person
 549 generation. We also emphasize the need for future work to consider safeguards and responsible use
 550 practices when deploying such systems.

551
552
REPRODUCIBILITY STATEMENT
553

554 For the reviewing process, we have submitted an anonymized supplementary zip file containing
 555 the full source code and data necessary to reproduce our experiments. This package ensures that
 556 reviewers can replicate the reported results, and the code will be made publicly available upon
 557 acceptance.⁶

558
559
REFERENCES
560

561 Khalid Al Khatib, Michael Völske, Shahbaz Syed, Nikolay Kolyada, and Benno Stein. Exploiting
 562 personal characteristics of debaters for predicting persuasiveness. In Dan Jurafsky,
 563 Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting
 564 of the Association for Computational Linguistics*, pp. 7067–7072, Online, July 2020. Association
 565 for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.632. URL <https://aclanthology.org/2020.acl-main.632/>.

566 Milad Alshomary and Henning Wachsmuth. Conclusion-based counter-argument generation. In
 567 Andreas Vlachos and Isabelle Augenstein (eds.), *Proceedings of the 17th Conference of the European
 568 Chapter of the Association for Computational Linguistics*, pp. 957–967, Dubrovnik, Croatia,
 569 May 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.67.
 570 URL <https://aclanthology.org/2023.eacl-main.67/>.

571 Milad Alshomary, Shahbaz Syed, Arkajit Dhar, Martin Potthast, and Henning Wachsmuth. Counter-
 572 argument generation by attacking weak premises. In Chengqing Zong, Fei Xia, Wenjie Li,
 573 and Roberto Navigli (eds.), *Findings of the Association for Computational Linguistics: ACL-
 574 IJCNLP 2021*, pp. 1816–1827, Online, August 2021. Association for Computational Linguistics.
 575 doi: 10.18653/v1/2021.findings-acl.159. URL <https://aclanthology.org/2021.findings-acl.159/>.

576 Sher Badshah and Hassan Sajjad. Reference-guided verdict: Llms-as-judges in automatic evaluation
 577 of free-form text. *arXiv preprint arXiv:2408.09235*, 2024.

578 C. Daniel Batson, Shannon Early, and Giovanni Salvarani. Perspective taking: Imagining how
 579 another feels versus imagining how you would feel. *Personality and Social Psychology Bulletin*,
 580 23(7):751–758, 1997.

581 Maike Behrendt, Stefan Sylvius Wagner, Carina Weinmann, Marike Bormann, Mira Warne, and
 582 Stefan Harmeling. Natural language processing to enhance deliberation in political online discussions:
 583 A survey. *arXiv preprint arXiv:2506.02533*, 2025.

584 Olivia M Bullock, Hillary C Shulman, and Richard Huskey. Narratives are persuasive because they
 585 are easier to understand: examining processing fluency as a mechanism of narrative persuasion.
 586 *Frontiers in Communication*, 6:719615, 2021.

587 Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster analysis. *Communications in
 588 Statistics-theory and Methods*, 3(1):1–27, 1974.

593
6 Github Repo: Anonymized during the review process

594 Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. Evaluation of text generation: A survey. *arXiv*
 595 *preprint arXiv:2006.14799*, 2020.

596

597 Guizhen Chen, Liying Cheng, Anh Tuan Luu, and Lidong Bing. Exploring the potential of
 598 large language models in computational argumentation. In Lun-Wei Ku, Andre Martins, and
 599 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 600 putational Linguistics (Volume 1: Long Papers)*, pp. 2309–2330, Bangkok, Thailand, August
 601 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.126. URL
 602 <https://aclanthology.org/2024.acl-long.126/>.

603 John Joon Young Chung, Vishakh Padmakumar, Melissa Roemmele, Yuqian Sun, and Max
 604 Kreminski. Modifying large language model post-training for diverse creative writing. *arXiv*
 605 *preprint arXiv:2503.17126*, 2025.

606

607 Teun J Dekker. Teaching critical thinking through engagement with multiplicity. *Thinking Skills
 608 and Creativity*, 37:100701, 2020.

609

610 Esin Durmus and Claire Cardie. A corpus for modeling user and language effects in argumentation
 611 on online debating. In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of
 612 the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 602–607, Florence,
 613 Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1057. URL
<https://aclanthology.org/P19-1057/>.

614

615 Robert H Ennis. Critical thinking: A streamlined conception. In *The Palgrave handbook of critical
 616 thinking in higher education*, pp. 31–47. Springer, 2015.

617

618 Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data
 619 creation with 1,000,000,000 personas. *arXiv preprint arXiv:2406.20094*, 2024.

620

621 Samuel D Gosling, Peter J Rentfrow, and William B Swann Jr. A very brief measure of the big-five
 622 personality domains. *Journal of Research in personality*, 37(6):504–528, 2003.

623

624 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 625 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 626 of models. *arXiv preprint arXiv:2407.21783*, 2024.

627

628 Morgan Gray, Li Zhang, and Kevin D Ashley. Generating case-based legal arguments with llms. In
 629 *Proceedings of the 2025 Symposium on Computer Science and Law*, pp. 160–168, 2025.

630

631 Melanie C. Green and Timothy C. Brock. The role of transportation in the persuasiveness of public
 632 narratives. *Journal of Personality and Social Psychology*, 79(5):701–721, 2000.

633

634 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
 635 han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint
 636 arXiv:2411.15594*, 2024.

637

638 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 639 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 640 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

641

642 Zhe Hu, Hou Pong Chan, and Yu Yin. AMERICANO: Argument generation with discourse-driven
 643 decomposition and agent interaction. In Saad Mahamood, Nguyen Le Minh, and Daphne Ippolito
 644 (eds.), *Proceedings of the 17th International Natural Language Generation Conference*, pp. 82–
 645 102, Tokyo, Japan, September 2024. Association for Computational Linguistics. doi: 10.18653/
 646 v1/2024.inlg-main.8. URL <https://aclanthology.org/2024.inlg-main.8/>.

647

648 Zhe Hu, Hou Pong Chan, Jing Li, and Yu Yin. Debate-to-write: A persona-driven multi-agent
 649 framework for diverse argument generation. In Owen Rambow, Leo Wanner, Marianna Apidi-
 650 anaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the
 651 31st International Conference on Computational Linguistics*, pp. 4689–4703, Abu Dhabi, UAE,
 652 January 2025. Association for Computational Linguistics. URL <https://aclanthology.org/2025.coling-main.314/>.

648 Xinyu Hua and Lu Wang. Neural argument generation augmented with externally retrieved evidence.
 649 *arXiv preprint arXiv:1805.10254*, 2018.
 650

651 Jialu Li, Esin Durmus, and Claire Cardie. Exploring the role of argument structure in online debate
 652 persuasion. *arXiv preprint arXiv:2010.03538*, 2020a.
 653

654 Jialu Li, Esin Durmus, and Claire Cardie. Exploring the role of argument structure in on-
 655 line debate persuasion. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
 656 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing*
 657 (*EMNLP*), pp. 8905–8912, Online, November 2020b. Association for Computational Linguis-
 658 tics. doi: 10.18653/v1/2020.emnlp-main.716. URL <https://aclanthology.org/2020.emnlp-main.716/>.
 659

660 Jiayu Lin, Rong Ye, Meng Han, Qi Zhang, Ruofei Lai, Xinyu Zhang, Zhao Cao, Xuanjing Huang,
 661 and Zhongyu Wei. Argue with me tersely: Towards sentence-level counter-argument gener-
 662 ation. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language*
 663 *Processing*, pp. 16705–16720, Singapore, December 2023. Association for Computational Lin-
 664 guistics. doi: 10.18653/v1/2023.emnlp-main.1039. URL <https://aclanthology.org/2023.emnlp-main.1039/>.
 665

666 Aixin Liu, DeepSeek-AI, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
 667 Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li,
 668 Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao
 669 Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
 670 Liang, Jianzhong Guo, Jiaqi Ni, Jia Shi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai
 671 Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue
 672 Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming
 673 Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
 674 Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
 675 Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,
 676 Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L.
 677 Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q.
 678 Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang
 679 Chen, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai
 680 Yu, Xinnan Song, Xinyi Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei,
 681 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui
 682 Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao,
 683 Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo, Yuchen Zhu, Yuduan Wang,
 684 Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui
 685 Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong Shao,
 686 Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and
 687 Ziwei Xie. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
 2024. URL <https://arxiv.org/abs/2405.04434>.
 688

689 Yi-Long Lu, Jiajun Song, Chunhui Zhang, and Wei Wang. Mind the gap: The divergence between
 690 human and llm-generated tasks. *arXiv preprint arXiv:2508.00282*, 2025.
 691

692 Stephanie Lukin, Pranav Anand, Marilyn Walker, and Steve Whittaker. Argument strength is in
 693 the eye of the beholder: Audience effects in persuasion. In Mirella Lapata, Phil Blunsom, and
 694 Alexander Koller (eds.), *Proceedings of the 15th Conference of the European Chapter of the As-
 695 sociation for Computational Linguistics: Volume 1, Long Papers*, pp. 742–753, Valencia, Spain,
 696 April 2017. Association for Computational Linguistics. URL <https://aclanthology.org/E17-1070/>.
 697

698 Raymond A Mar and Keith Oatley. The function of fiction is the abstraction and simulation of social
 699 experience. *Perspectives on psychological science*, 3(3):173–192, 2008.
 700

701 Sandra C Matz, Jacob D Teeny, Sumer S Vaid, Heinrich Peters, Gabriella M Harari, and Moran Cerf.
 The potential of generative ai for personalized persuasion at scale. *Scientific Reports*, 14(1):4692,
 2024.

702 L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold Approximation and Projection for
 703 Dimension Reduction. *ArXiv e-prints*, February 2018.

704

705 Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density based clustering.
 706 *Journal of Open Source Software*, 2(11):205, 2017. doi: 10.21105/joss.00205. URL <https://doi.org/10.21105/joss.00205>.

707

708 Wiktoria Mieleszczenco-Kowszewicz, Dawid Płudowski, Filip Kołodziejczyk, Jakub Świdak, Ju-
 709 lian Sienkiewicz, and Przemysław Biecek. The dark patterns of personalized persuasion in large
 710 language models: Exposing persuasive linguistic features for big five personality traits in llms
 711 responses. *arXiv preprint arXiv:2411.06008*, 2024.

712 Suhong Moon, Marwa Abdulhai, Minwoo Kang, Joseph Suh, Widjadewi Soedarmadji, Eran Kohen
 713 Behar, and David M. Chan. Virtual personas for language models via an anthology of backstories.
 714 In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Confer-
 715 ence on Empirical Methods in Natural Language Processing*, pp. 19864–19897, Miami, Florida,
 716 USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 717 emnlp-main.1110. URL <https://aclanthology.org/2024.emnlp-main.1110/>.

718 OpenAI. New embedding models and api updates. [https://openai.com/index/
 719 new-embedding-models-and-api-updates/](https://openai.com/index/new-embedding-models-and-api-updates/), 2024. Accessed: September 23, 2025.

720

721 Moritz Plenz, Philipp Heinisch, Janosch Gehring, Philipp Cimiano, and Anette Frank. From argu-
 722 mentation to deliberation: Perspectivized stance vectors for fine-grained (dis)agreement analysis.
 723 In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational
 724 Linguistics: NAACL 2025*, pp. 1525–1553, Albuquerque, New Mexico, April 2025. Association
 725 for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.
 726 83. URL <https://aclanthology.org/2025.findings-naacl.83/>.

727 Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analy-
 728 sis. *Journal of computational and applied mathematics*, 20:53–65, 1987.

729 Misa Sato, Kohsuke Yanai, Toshinori Miyoshi, Toshihiko Yanase, Makoto Iwayama, Qinghua Sun,
 730 and Yoshiki Niwa. End-to-end argument generation system in debating. In *Proceedings of ACL-
 731 IJCNLP 2015 System Demonstrations*, pp. 109–114, 2015.

732 Suzanna Sia, Kokil Jaidka, Hansin Ahuja, Niyati Chhaya, and Kevin Duh. Offer a different perspec-
 733 tive: Modeling the belief alignment of arguments in multi-party debates. In Yoav Goldberg, Zor-
 734 nitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods
 735 in Natural Language Processing*, pp. 11939–11950, Abu Dhabi, United Arab Emirates, Decem-
 736 ber 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.818.
 737 URL <https://aclanthology.org/2022.emnlp-main.818/>.

738 Henning Wachsmuth, Nona Naderi, Yufang Hou, Yonatan Bilu, Vinodkumar Prabhakaran, Tim Al-
 739 berdingk Thijm, Graeme Hirst, and Benno Stein. Computational argumentation quality assess-
 740 ment in natural language. In Mirella Lapata, Phil Blunsom, and Alexander Koller (eds.), *Pro-
 741 ceedings of the 15th Conference of the European Chapter of the Association for Computational
 742 Linguistics: Volume 1, Long Papers*, pp. 176–187, Valencia, Spain, April 2017. Association for
 743 Computational Linguistics. URL <https://aclanthology.org/E17-1017/>.

744 Henning Wachsmuth, Manfred Stede, Roxanne El Baff, Khalid Al Khatib, Maria Skeppstedt, and
 745 Benno Stein. Argumentation synthesis following rhetorical strategies. In *Proceedings of the 27th
 746 International Conference on Computational Linguistics*, pp. 3753–3765, 2018.

747

748 Xiaou Wang, Elena Cabrio, and Serena Villata. Argument and counter-argument generation: A
 749 critical survey. In *International Conference on Applications of Natural Language to Information
 750 Systems*, pp. 500–510. Springer, 2023.

751 Xuwei Wang, Weiyang Shi, Richard Kim, Yoojung Oh, Sijia Yang, Jingwen Zhang, and Zhou
 752 Yu. Persuasion for good: Towards a personalized persuasive dialogue system for social good.
 753 In Anna Korhonen, David Traum, and Lluís Márquez (eds.), *Proceedings of the 57th Annual
 754 Meeting of the Association for Computational Linguistics*, pp. 5635–5649, Florence, Italy, July
 755 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1566. URL <https://aclanthology.org/P19-1566/>.

756 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 757 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 758 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 759 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 760 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 761 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 762 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 763 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 764 Qiu. Qwen3 technical report, 2025a. URL <https://arxiv.org/abs/2505.09388>.

765 Tao Yang, Yuhua Zhu, Xiaojun Quan, Cong Liu, and Qifan Wang. Psyplay: Personality-infused
 766 role-playing conversational agents. *arXiv preprint arXiv:2502.03821*, 2025b.

767 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 768 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-*
 769 *vances in neural information processing systems*, 36:11809–11822, 2023.

770 Li Zhang and Kevin D Ashley. Mitigating manipulation and enhancing persuasion: A reflective
 771 multi-agent approach for legal argument generation. *arXiv preprint arXiv:2506.02992*, 2025.

772 Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston.
 773 Personalizing dialogue agents: I have a dog, do you have pets too? In Iryna Gurevych and
 774 Yusuke Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association for Com-*
 775 *putational Linguistics (Volume 1: Long Papers)*, pp. 2204–2213, Melbourne, Australia, July
 776 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1205. URL <https://aclanthology.org/P18-1205/>.

777 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 778 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 779 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **A APPENDIX**
811812 **A1 LLM USAGE**
813814 We employed GPT-4o to support the literature review and manuscript preparation process. Spec-
815 ifically, the model was used to assist in identifying relevant prior work and refining the clarity and
816 readability of the draft. This usage was limited to auxiliary scholarly support—such as improving
817 grammar and reducing stylistic inconsistencies.818 **A2 REPRESENTATIVE PERSONA EXAMPLES BY CLUSTER**
819820 To illustrate how the persona clusters are organized, we present representative examples from three
821 clusters: (1) Sports and Physical Education, (2) Finance and Marketing, and (3) Historians. These
822 examples demonstrate the semantic coherence within each cluster, reflecting domain-specific inter-
823 ests, professional backgrounds, and characteristic reasoning patterns.824 **Sports and Physical Education**
825826

- 827 • A high school physical education teacher seeking to incorporate Paralympic history and
828 achievements into the curriculum to inspire and educate students about inclusivity in sports.
- 829 • A sports scientist researching the biomechanics and physics of tennis, focusing on how
830 racket specifications impact performance and injury risks.
- 831 • A sports journalist covering the history of ice hockey and its impact on national identity in
832 Poland.
- 833 • An elementary school teacher who enjoys incorporating diverse sports stories in her cur-
834 riculum to inspire students.
- 835 • A football coach seeking to learn from successful strategies and team management in vari-
836 ous leagues.

837 **Finance and Marketing**
838839

- 840 • A financial analyst specializing in Asian markets and wealthy individuals, interested in
841 tracking the investments and philanthropic activities of billionaires like Gerald Chan.
- 842 • A quantitative analyst with expertise in financial modeling and algorithmic trading, seeking
843 to develop and implement systematic value investment strategies.
- 844 • A digital marketing specialist interested in innovative aggregator models that consolidate
845 search results from multiple sources.
- 846 • A marketing specialist for a tech company, looking for innovative ways to engage with pop
847 culture and fandoms to promote new products and services.
- 848 • A business strategist for Arriva UK Bus, interested in exploring opportunities and chal-
849 lengeres related to subsidiary operations and company restructuring.

850 **Historians**
851852

- 853 • An Iowa historian focusing on the development and growth of townships in Jones County.
- 854 • A historian specializing in 19th-century British architecture, with a focus on the works of
855 notable architects in Lancashire.
- 856 • A local historian specializing in the political and business development of Marlborough,
857 Massachusetts in the 19th century.
- 858 • A historian specializing in the late medieval and early modern history of France and the
859 Iberian Peninsula, with a focus on power dynamics, family strategies, and women's roles
860 in politics.
- 861 • A local historian or genealogist researching the history of small communities and families
862 in Fremont County, Iowa.

864
865

A3 LLM-BASED EVALUATION: QUALITY

866
867
868
869
870
871
872
873

Prior studies have established diverse criteria for evaluating the quality of arguments. Alshomary et al. (2021) consider grammaticality and content richness as key factors in assessing generated arguments, while Lin et al. (2023) emphasize appropriateness, grammaticality, and logic, aligning GPT-based and human evaluation through shared criteria. Moreover, Wachsmuth et al. (2017) provide a comprehensive taxonomy of argument quality, highlighting clarity, appropriateness, and Relevance as core components under effectiveness and reasonableness. Based on these findings, we adopt four criteria for LLM-based evaluation of counterarguments: appropriateness, clarity, grammaticality, and relevance.

874
875
876
877
878
879
880

Appropriateness: Whether the language and tone are suitable for the context and proportional to the issue. Inappropriate tone (e.g., overly aggressive or dismissive) lowers the score.

Clarity: Whether the writing is clear, well-organized, and free from ambiguity or unnecessary complexity, allowing the reader to easily follow the reasoning.

Grammaticality: Whether the text follows standard grammar conventions, including punctuation, sentence structure, and syntax. This ensures the counterargument reads fluently without errors.

Relevance: How directly the counterargument engages with the original post and addresses its key points. Superficial or off-topic content would reduce relevance.

881

882

883

A4 HUMAN EVALUATION

884

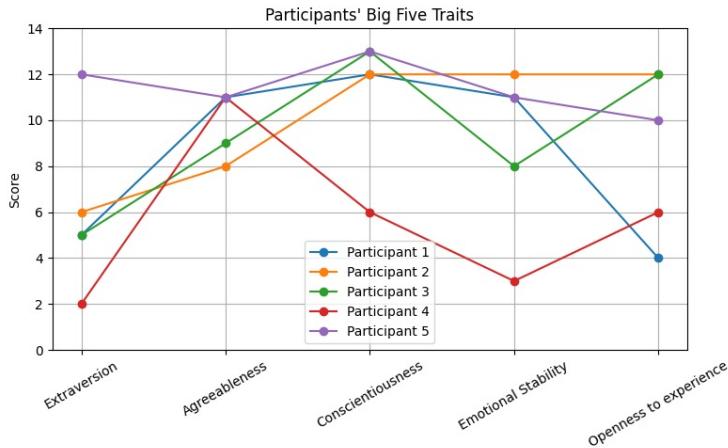
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899

Figure A1: Big Five Personality trait distribution of recruited evaluators. The heterogeneous profiles helped ensure diverse perspectives in human evaluation.

900

901

902

903
904
905
906
907
908
909

Recruitment We recruited five evaluators comprising both undergraduate and graduate students. In selecting participants, we referred to prior work showing that argument persuasiveness can be influenced by individual personality traits (Lukin et al., 2017), particularly as measured by the Big Five Personality framework. To ensure diversity in perspectives, participants completed the Ten Item Personality Inventory (TIPI) survey (Gosling et al., 2003), and we considered the distribution of their scores during recruitment. This ensured a heterogeneous pool of evaluators, encompassing a wide range of personality traits, as illustrated in Figure A1.

910
911
912
913
914
915

Procedure Each participant reviewed several original posts and corresponding counterarguments generated by different methods. Inspired in part by the evaluation setup of Chung et al. (2025), where annotators assessed outputs on quality and diversity in set-based presentations, we adopted a similar approach. Specifically, from the full test set we sampled 95 instances, and participants were asked to perform two tasks:

916
917

In the *persuasiveness task*, participants selected the most persuasive counterargument for each original post. In the *diversity task*, participants compared two sets of counterarguments and judged which set demonstrated greater perspective diversity.

Model	Avg end-to-end latency/OP (s)	Per response (s)	Percentage (%)
Llama 3.1 (n=1)	3.16 ± 0.033	3.16 ± 0.033	100
Llama 3.1 (n=3)	3.27 ± 0.014	1.09 ± 0.011	34.49
Llama 3.1 + PTCG (n=1)	4.94 ± 0.016	4.94 ± 0.016	156.33
Llama 3.1 + PTCG (n=3)	7.84 ± 0.022	2.61 ± 0.007	82.59
Llama 3.1 + PTCG (n=5)	10.59 ± 0.073	3.53 ± 0.024	111.71

Table A1: Latency results (Part 1): End-to-end latency, per-response latency, and relative percentage.

Model	Throughput (tokens/s)	Total Time (s)
Llama 3.1 (n=1)	266.33 ± 1.874	2680.95 ± 21.812
Llama 3.1 (n=3)	267.63 ± 2.130	2772.15 ± 14.660
Llama 3.1 + PTCG (n=1)	135.37 ± 0.510	4240.53 ± 14.683
Llama 3.1 + PTCG (n=3)	257.23 ± 0.962	6697.21 ± 19.632
Llama 3.1 + PTCG (n=5)	317.30 ± 2.288	9029.98 ± 62.639

Table A2: Latency results (Part 2): Throughput and total time.

To mitigate ordering effects, the order of the counterargument sets was randomized, and each session was conducted individually. For example, if one evaluation compared the systems in the order A then B (AB), another was conducted in the reverse order B then A (BA) to balance potential bias.

A5 ROBUSTNESS ACROSS MULTIPLE EVALUATORS

To reinforce the robustness of our evaluation and mitigate potential bias from relying on a single judge, we extended the LLM-as-a-Judge framework beyond GPT-based evaluators (Badshah & Sajjad, 2024). In particular, we employed DeepSeek-V2-16B (Liu et al., 2024) and Qwen3-8B (Yang et al., 2025a), which differ substantially from GPT models in both architecture and training data, thereby serving as heterogeneous evaluators.

As reported in Appendix Table A10, the overall trends remained consistent. With DeepSeek-V2-16B, our method (PTCG) achieved the highest targeted persuasiveness score, outperforming both Llama 3.1 and DeepSeek-R1. Under Qwen3-8B, our method performed on par with the baselines: it attained a higher score than Llama 3.1 but was slightly behind DeepSeek-R1. Although absolute scores differed across evaluators, the relative ranking was generally consistent, with our method remaining comparable to or stronger than the baselines.

These findings indicate that our conclusions are not tied to a particular evaluator. By treating different LLMs as diverse judges—analogous to human raters with varying criteria—we approximate evaluation under multiple perspectives. Even when accounting for differences in what each evaluator considers persuasive, our method remained competitive or superior. Furthermore, consistent gains in perspective diversity across evaluators reinforce that our approach not only improves persuasiveness but also broadens the range of viewpoints represented.

A6 SCALABILITY AND EFFICIENCY ANALYSIS

To evaluate the computational implications of our multi-stage reasoning framework, we conducted a detailed latency and throughput analysis across different generation settings. As expected, PTCG introduces additional overhead compared to single-pass Llama 3.1 due to its structured planning, persona integration, and tree-based multi-branch generation steps.

Our results show that the end-to-end runtime increases with the number of branches n , reflecting the inherent cost of generating multiple candidate plans and counterarguments. For instance, PTCG with $n=3$ requires approximately twice the total time of the single-pass Llama baseline (Tables A1, A2). This is consistent with the added computation introduced by the planning stage and the evaluation of multiple branches per input. However, an interesting and non-trivial observation emerges when examining per-response latency. Although PTCG increases total computation time, the average latency per generated counterargument is lower for PTCG ($n=3$) than for vanilla Llama ($n=1$). This occurs because PTCG leverages parallel multi-branch generation, effectively improving batch utilization during decoding. By generating multiple reasoning paths within a single forward pass, the

Ablation	Avg end-to-end latency/OP (s)	Per response (s)	Percentage (%)
Llama 3.1	3.27 ± 0.014	1.09 ± 0.011	100
+ Persona	3.67 ± 0.046	1.22 ± 0.015	111.93
+ Tree-based Gen.	6.90 ± 0.024	2.30 ± 0.008	211.01
+ Persona + Tree-based Gen.	7.84 ± 0.022	2.61 ± 0.007	239.45

Table A3: Ablation results (Part 1): End-to-end latency, per-response latency, and relative percentage.

Ablation	Throughput (tokens/s)	Total Time (s)
Llama 3.1	267.63 ± 2.130	2772.15 ± 14.660
+ Persona	262.47 ± 2.038	3113.87 ± 38.347
+ Tree-based Gen.	237.40 ± 0.854	5899.39 ± 21.210
+ Persona + Tree-based Gen.	257.23 ± 0.962	6697.21 ± 19.632

Table A4: Ablation results (Part 2): Throughput and total time.

model amortizes computational cost and produces more responses without a proportional increase in latency.

Ablation experiments further clarify which components contribute most to computational overhead. The results in Tables A3 and A4 show that adding only the persona module increases latency modestly (about 12%), while tree-based generation contributes the largest increase (about 111%). When combined, the full framework reaches about 239% of the baseline cost. This decomposition confirms that tree-structured exploration and evaluation—rather than persona integration—drive the majority of the additional computation.

In spite of the inherent computational cost introduced by multi-step reasoning, our analysis highlights several opportunities for improving efficiency within the PTCG framework. First, the OP-persona embedding step in the current implementation depends on external API calls, which introduce non-trivial I/O latency. Replacing this component with a locally hosted embedding encoder or caching frequently used embeddings would substantially reduce runtime. Second, the LLM-based evaluator used during branch pruning in the tree-of-thoughts process can be substituted with a lightweight distilled model or domain-specialized classifier. Because this evaluator does not require full generative capabilities, a smaller model can preserve decision quality while significantly improving computational efficiency. Finally, our observation that PTCG improves per-response latency suggests that further gains may be achieved by optimizing batch-aware generation scheduling, particularly during multi-branch expansion stages where parallelism can be more effectively exploited.

Overall, although the proposed PTCG framework entails additional computation due to its structured multi-stage reasoning process, it simultaneously demonstrates favorable per-response efficiency by leveraging parallel multi-branch generation. These findings indicate that much of the overhead originates from engineering factors rather than fundamental limitations of the framework. We plan to incorporate the aforementioned optimizations in future work to enhance scalability while preserving the performance benefits of persona-guided tree-based reasoning.

Model	length_mean	length_std	word_mean	word_std	sent_mean	sent_std
Argument Undermining	338.94	111.28	70.88	22.60	4.27	1.10
Joint One-seq	341.73	195.14	73.01	41.23	3.70	2.57
DeepSeek-R1	1114.82	460.42	169.24	69.95	5.65	2.50
Llama 3.1	1079.50	280.27	174.73	45.74	6.30	1.79
PTCG	2322.74	327.44	394.80	55.78	12.96	2.15

Table A5: Length (characters), word count, and sentence count statistics across models.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

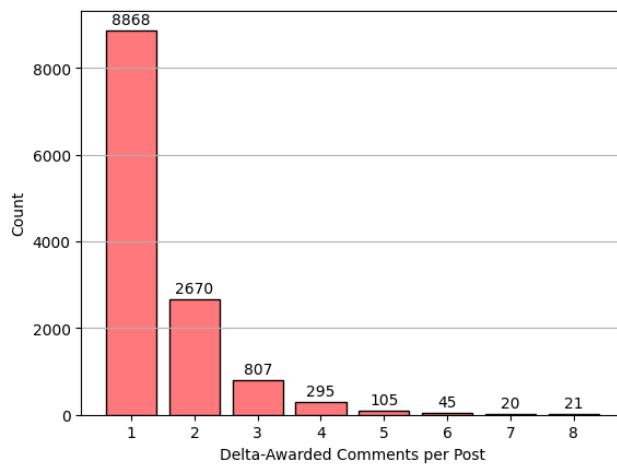


Figure A2: Distribution of delta-awarded comments per post. Most posts receive only one delta-awarded comment, while cases with more than three are rare. Since one or two comments provide limited diversity and instances of four or more are scarce, three was chosen as a practical setting to balance diversity with interpretability.

1080	Title (claim) I believe that organ donation should be mandatory.
1081	
1082	Body (premises)
1083	Recent legislation has passed in Wales to require people who do not want their organs to be donated on their death to opt out of the system rather than the current system where they have to opt in if they do. ... Firstly, from a purely utilitarian viewpoint, I don't see how we can possibly justify not bringing as much good as possible from someone's death. ...
1084	
1085	
1086	
1087	Llama-3.1-8B-Instruct
1088	Counterargument 1: The proposal for mandatory organ donation raises significant concerns regarding individual autonomy and bodily integrity . While it may be argued that donating organs
1089	can bring about considerable benefits to others, it is essential to acknowledge the fundamental right
1090	of individuals to make decisions about their own bodies. ...
1091	Counterargument 2: From an ethical standpoint, requiring people to donate organs upon death
1092	can be seen as an overreach of government authority into personal affairs. Such a policy can be
1093	viewed as paternalistic, with the state making decisions on behalf of citizens without considering
1094	their unique circumstances or values. ...
1095	Counterargument 3: Ultimately, mandatory organ donation policies fail to address the underlying
1096	issues driving organ shortages, such as inadequate public education and a lack of trust in the system
1097	due to past scandals. Focusing on increasing organ availability through coercive means distracts
1098	from more effective solutions that prioritize transparency, informed consent, and public awareness about organ donation. ...
1099	
1100	DeepSeek-R1-8B
1101	Counterargument 1: Mandatory organ donation fundamentally challenges fundamental principles
1102	of individual autonomy and consent , raising significant concerns about respecting personal bodily
1103	integrity even after death. While maximizing available organs is laudable in principle for addressing
1104	critical shortages, this approach risks overriding deeply held personal or religious beliefs regarding
1105	the sanctity of the body post-mortem, which many individuals cherish profoundly. ...
1106	Counterargument 2: Mandatory organ donation presents a substantial challenge to genuine in-
1107	formed consent , even in end-of-life scenarios. ..., this comparison is flawed and ignores the distinct
1108	nature of bodily decisions after death. ...
1109	Counterargument 3: ... Utilitarian calculations based on hypothetical scenarios of maximum ben-
1110	efit are insufficient; a truly ethical system must consider the concrete choices made by individuals
1111	during their lifetime regarding what they value post-mortem. Forcing organs could violate specific
1112	personal wishes documented in advance directives, contradicting legal standards for end-of-life care
1113	that prioritize individual autonomy when possible. ...
1114	PTCG (Ours)
1115	Counterargument 1: Persona A data analyst with an interest in tracking and analyzing demo-
1116	graphic trends in political leadership (Same cluster)
1117	Mandatory organ donation may seem like a straightforward solution to the organ shortage crisis, but
1118	it raises several concerns that cannot be ignored. ... The data shows that opt-in systems have led
1119	to higher donation rates in countries like the United States, where education and awareness about
1120	organ donation have increased, and people are more likely to make informed decisions. ...
1121	Counterargument 2: Persona A data analyst who enjoys exploring patterns in music chart perfor-
1122	mance and the growth of various music genres over time. (Nearest cluster)
1123	Mandatory organ donation may be perceived as a straightforward solution to the shortage of avail-
1124	able organs, but it raises significant concerns regarding individual autonomy and the potential for
1125	unintended consequences. ... Certain cultural or religious groups may have strong objections to
1126	organ donation due to deeply held beliefs, and mandatory donation would force them to go against
1127	their convictions. ...
1128	Counterargument 3: Persona A casting director for TV and film productions, looking for talented
1129	actors to fit specific roles in various projects. (Furthest cluster)
1130	Mandatory organ donation may seem like a straightforward solution to the shortage of available
1131	organs, but it ignores the complexities of human experience and the importance of respecting indi-
1132	vidual autonomy. ... In an industry where people's careers are built on their creative choices and
1133	personal expression, the casting director may recognize that people's bodies are an extension of
	their being, and that forcing them to surrender a part of themselves against their will could be seen
	as a form of coercion. ...

Table A6: Comparative Examples of Counterarguments on Mandatory Organ Donation Across Baseline Models and PTCG

1134
 1135 **Title (claim) I believe that kids should not be allowed in a movie theater after a certain time,**
 1136 **whether it's a kid's movie or otherwise.**

1137 **Body (premises)**
 1138 I've always had this opinion, although not as strongly as today. I just came back from watching Epic
 1139 with my girlfriend, and I absolutely could not fully enjoy the movie because of the extreme amounts
 1140 of talking and whispering in that theater. I'm talking: Asking questions in the middle of important
 1141 or emotional scenes, repeating lines from the movie over and over again after the scene has passed,
 1142 and even complete conversations with their parents at normal talking volume. So I think that the
 1143 only solution is to not allow kids below a certain age to enter a theater after a certain time.

1144 **Llama-3.1-8B-Instruct**
 1145 **Counterargument 1:** The notion that children should be barred from movie theaters after a certain
 1146 time is overly simplistic and dismissive of the diverse needs and experiences of families. Allowing
 1147 children in theaters during evening showings can actually **benefit parents who rely on these oppor-**
 1148 **portunities for childcare, socialization, or relaxation.** ...

1149 **Counterargument 2:** The argument against children in movie theaters after dark relies heavily on
 1150 anecdotal evidence and fails to account for the complex factors influencing child behavior during
 1151 films. Research has shown that **children's ability to regulate their own impulses and engage with**
 1152 **quiet, focused activities increases significantly between the ages of five and ten.** ...

1153 **Counterargument 3:** Restricting children from movie theaters after a certain time is a misguided
 1154 attempt to address adult discomfort without considering the broader cultural implications of such
 1155 a policy. **Many families rely on evening outings** as a vital part of their social routine, fostering
 1156 bonding experiences that are essential for **child development and community building.** ...

1157 **DeepSeek-R1-8B**
 1158 **Counterargument 1:** The concern about a noisy atmosphere detracts from the viewing experience
 1159 for adults is understandable, however this perspective risks **overlooking crucial aspects of family**
 1160 **dynamics and developmental learning.** Parents are not merely responsible for ushering children
 1161 into venues; ...

1162 **Counterargument 2:** While loud children may indeed disturb the optimal viewing environment for
 1163 paying adult patrons who wish to immerse themselves in the narrative or experience certain sound
 1164 effects fully, this observation paints an overly broad picture. Not all families are comfortable adhering
 1165 strictly to a "quiet only" rule even before cinema, and imposing such restrictions might actually
 1166 **disadvantage those already practicing responsible volume management with their children.** ...

1167 **Counterargument 3:** Implementing age limits after specific hours restricts access, but this limitation
 1168 does not directly equate to preventing noise; it is often the **young children of families who are**
 1169 **already managing volume issues.** ...

1170 **PTCG (Ours)**
 1171 **Counterargument 1: Persona** A film studies scholar with a focus on modern American dark comedies,
 1172 analyzing narrative structures, character development, and genre conventions. (Same cluster)
 1173 The proposal to ban children from movie theaters after a certain time may seem like a practical solution
 1174 to minimize disruptions, ... The **modern cinematic landscape is characterized by a diverse range of narratives, genres, and audience demographics, and children are an integral part of this cultural tapestry.** ...

1175 **Counterargument 2: Persona** A literature scholar specializing in 20th-century European literature,
 1176 with a focus on the cultural and historical context of British and French narratives. (Nearest cluster)
 1177 Drawing from the works of **thinkers like Walter Benjamin and Hannah Arendt, it can be argued that public spaces like movie theaters serve as crucial sites for the formation of community and civic engagement.** ... Moreover, such a policy would likely have a disproportionate impact
 1178 on families and low-income households who may rely on movie theaters as a rare opportunity for
 1179 affordable entertainment and socialization. ...

1180 **Counterargument 3: Persona** A real estate developer interested in exploring new areas for potential
 1181 residential or commercial development opportunities. (Furthest cluster)
 1182 Limiting access to movie theaters after a certain time may seem like a solution to minimize disruptions,
 1183 but it could ultimately have **unintended consequences that harm the local economy and community.** ... By fostering a welcoming environment that caters to all demographics, you can
 1184 create a more resilient and sustainable business model that benefits both the local economy and the
 1185 community as a whole ...

Table A7: Comparative Examples of Counterarguments on Restricting Children's Access to Movie Theaters at Night Across Baseline Models and PTCG

1188

1189

1190

1191

1192

1193

Table A8: Clustering results under different minimum cluster size settings (dimensionality fixed to 50). Evaluation metrics include the Silhouette Score and Calinski–Harabasz Index.

Dimensionality	Min Cluster Size	# of Clusters	Silhouette Score	Calinski–Harabasz Index
	50	25	0.6255	16008.35
	50	50	0.6416	22752.07
	50	100	0.6251	17977.72
	50	200	0.6513	<u>24054.99</u>
	50	300	0.6081	26879.54

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

Table A9: Performance of the Delta Classifier based on longformer-base-4096, reported in terms of Precision, Recall, F1-score, and Accuracy.

Model	Precision	Recall	F1-score	Accuracy
Longformer	0.63	0.78	0.70	66.17%

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

Table A10: Targeted Persuasiveness Scores evaluated by DeepSeek (DeepSeek-V2-16B) and Qwen (Qwen3-8B). Best results are in bold.

Model	DeepSeek	Qwen
DeepSeek-R1	7.26	8.07
Llama 3.1	7.23	7.90
PTCG (Ours)	7.38	7.98

1237

1238

1239

1240

1241

1242
 1243 **Original Poster (OP) Persona Estimation:**
 1244 Given the following argument, infer the likely persona of the author.
 1245 Respond in exactly one sentence, focusing on the author's likely identity based on the
 1246 argument alone.
 1247 Do not invent any information that is not grounded in the argument.
 1248
 1249 Argument:
 1250 {input}
 1251
 1252 Format your output as follows:
 1253
 1254 Author's Persona:
 1255 [Your response]

1256
 1257 Figure A3: Prompt used for estimating the Original Poster (OP) persona from the given post. Curly-
 1258 braced placeholders (e.g., {}) are replaced with task-specific variables.

1259
 1260
 1261 **Tree-based Step-wise Generation Prompt:**
 1262 Write a persuasive counterargument against the given argument by considering the persona
 1263 of the argument's author and responding from a given persona.
 1264
 1265 Given argument: {input}
 1266
 1267 Persona of the Argument's Author: {author_persona}
 1268 Given Persona: {given_persona}
 1269
 1270 Step 1 – Reasoning Plan
 1271 Explain how the given persona would respond based on their worldview and values.
 1272 The explanation should be clear, concise, and focused.
 1273 Limit your reasoning to 3–4 sentences.
 1274
 1275 Step 2 – Counterargument
 1276 Write a detailed and persuasive counterargument from the given persona's perspective.
 1277 Do not use any first-person language (e.g., "I", "we", "as a").
 1278 Let the persona's worldview emerge through tone, logic, and examples.
 1279 Aim to write in a way that could realistically persuade the original author, while keeping
 1280 the tone respectful and well-reasoned.
 1281 You should consider the author when writing, but remember that the author persona is only
 1282 an inferred estimation and should not be directly included in the content.
 1283 The counterargument must be at least 10 sentences and under 500 tokens.
 1284
 1285 You must format your output as follows:
 1286
 1287 Reasoning Plan:
 1288 [Your explanation here.]
 1289
 1290 Counterargument:
 1291 [Your counterargument here.]

1292
 1293 Figure A4: Prompt used for tree-based step-wise generation of plan and counterarguments. Curly-
 1294 braced placeholders (e.g., {}) are replaced with task-specific variables.

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Tree-based Step-wise Selection Prompt:**Plan Selection:**

You are given a given argument and multiple reasoning plans involving both an author persona and a counter persona.

Given argument:

{input}

Author persona: {author_persona}

Counter persona: {given_persona}

Choose the single plan most likely to yield a persuasive rebuttal.

Judge whether it makes effective use of the contrast between personas, applies a strong strategy, and presents its reasoning clearly and logically.

Do not explain your reasoning. Only output:

The best choice is X

Reasoning plan options:

Counterargument Selection:

You are given a given argument and multiple counterarguments involving both an author persona and a counter persona.

Given argument:

{input}

Author persona: {author_persona}

Counter persona: {given_persona}

Choose the most persuasive counterargument.

Judge whether it leverages the contrast between personas, directly challenges the argument, and is specific, persuasive, and logically consistent.

Do not explain your reasoning. Only output:

The best choice is X

Counterargument options:

Figure A5: Prompt used for tree-based step-wise selection of plan and counterarguments. Curly-braced placeholders (e.g., {}) are replaced with task-specific variables.

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364 Write three diverse and persuasive counterarguments against the given argument.
 1365
 1366 Given argument: {input}
 1367
 1368 Instructions:
 1369 1. The counterargument must be logically sound, respectful in tone, and directly challenge
 1370 the original argument.
 1371 2. Do not use any first-person language (e.g., "I", "we").
 1372 3. Instead, let the reasoning, tone, and examples naturally reflect a broader worldview or
 1373 perspective.
 1374 4. Each counterargument should be at least 10 sentences long but under 500 tokens.
 1375 5. Focus on making the counterargument clear, well-reasoned, and persuasive to the
 1376 original author.
 1377
 1378 Format your response as follows:
 1379
 1380 Counterargument 1:
 1381 [First counterargument]
 1382
 1383 Counterargument 2:
 1384 [Second counterargument]
 1385
 1386 Counterargument 3:
 1387 [Third counterargument]
 1388
 1389 Figure A6: Prompt used with a vanilla LLM to induce the generation of multiple counterarguments.
 1390 Curly-braced placeholders (e.g., {}) are replaced with task-specific variables.
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415 **General Persuasiveness:**
 1416 [INSTRUCTION]
 1417 You are given an original opinion and a counterargument.
 1418 Rate how persuasive the counterargument is on its own. Focus on how effectively it
 1419 introduces a meaningful perspective.
 1420
 1421 Strong counterarguments:
 1422 - Present a clear and coherent point of view
 1423 - Offer insight from a distinctive identity or experience
 1424 - Reframe the issue in a thoughtful and authentic way
 1425 - Feel more compelling when written in a voice that adds depth and contrast
 1426
 1427 Output only a single integer between 1 and 10, based on the overall persuasiveness of the
 1428 counterargument.
 1429
 1430 Score from 1–10:
 1431 1–2: Very weak, unlikely to affect the author’s view.
 1432 3–4: Limited impact, may raise points but not convincing.
 1433 5–6: Moderate, somewhat persuasive and could prompt reflection.
 1434 7–8: Strong, likely to make the author reconsider aspects of their view.
 1435 9–10: Very strong, realistically could change the author’s stance.
 1436
 1437 [Original Opinion]
 1438 {original_opinion}
 1439
 1440 [Counterargument]
 1441 {counterargument}
 1442
 1443 Persuasiveness Score (1–10):
 1444
 1445 Figure A7: Prompt used for evaluating general persuasiveness, where the counterargument is as-
 1446 sessed against only the *title* of the original post (i.e., the main claim). Curly-braced placeholders
 1447 (e.g., {}) are replaced with task-specific variables.
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467

1468 Targeted Persuasiveness:
1469 [INSTRUCTION]
 1470 You are given an original opinion and a counterargument.
 1471 Rate how persuasive the counterargument would likely be to the person who wrote the
 1472 original opinion — that is, how much it could realistically make them reflect, reconsider, or
 1473 change their view.

1474
 1475 A persuasive counterargument does more than simply oppose the claim. It introduces a way
 1476 of seeing the issue that the author may not have fully considered, often by drawing from a
 1477 distinct perspective, background, or line of reasoning. The strength of persuasiveness
 1478 comes from how effectively the counterargument broadens the author's frame of reference
 1479 and shows that the issue can be understood differently.

1480
 1481 Give a single score from 1 to 10, where higher numbers mean the counterargument is more
 1482 likely to prompt genuine reflection or a shift in the author's stance.

1483
 1484 Score from 1–10:
 1485 1–2: Very weak, unlikely to affect the author's view.
 1486 3–4: Limited impact, may raise points but not convincing.
 1487 5–6: Moderate, somewhat persuasive and could prompt reflection.
 1488 7–8: Strong, likely to make the author reconsider aspects of their view.
 1489 9–10: Very strong, realistically could change the author's stance.

1490
 1491 Output only a single integer between 1 and 10.

1492
 1493 [Original Opinion]
 1494 {original_opinion}

1495
 1496 [Counterargument]
 1497 {counterargument}

1498
 1499 Persuasiveness Score (1–10):

1500
 1501 Figure A8: Prompt used for evaluating targeted persuasiveness, where the counterargument is as-
 1502 sessed against both the *title* and *body* of the original post. Curly-braced placeholders (e.g., {}) are
 1503 replaced with task-specific variables.

1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523 **Perspective Diversity:**
 1524 [INSTRUCTION]
 1525 Below is an original opinion and three counterarguments written in response.
 1526 Evaluate the overall diversity among the counterarguments using the criterion below.
 1527 Be as objective and concise as possible.
 1528 Provide only a score from 1 (very low diversity) to 5 (very high diversity).
 1529
 1530 [Original Opinion]
 1531 {original_opinion}
 1532
 1533 [Counterargument 1]
 1534 {counterargument_1}
 1535
 1536 [Counterargument 2]
 1537 {counterargument_2}
 1538
 1539 [Counterargument 3]
 1540 {counterargument_3}
 1541
 1542 [Evaluation Criterion]
 1543 Diversity: Assess whether the three counterarguments approach the original opinion from
 1544 clearly different perspectives, drawing on distinct social identities, belief systems, or lived
 1545 experiences. High scores should be given when each response plausibly reflects the
 1546 worldview of a different kind of individual. Low scores indicate surface-level variation or
 1547 repetition of the same underlying reasoning.
 1548
 1549 Evaluation Form (scores ONLY):
 1550
 1551 - Diversity:
 1552
 1553
 1554 Figure A9: Prompt used for evaluating perspective diversity, assessing whether the generated coun-
 1555 terarguments reflect distinct viewpoints. Curly-braced placeholders (e.g., {}) are replaced with task-
 1556 specific variables.
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575

1576 **Quality:**
 1577 [INSTRUCTION]
 1578 Below is an original opinion and a counterargument written in response.
 1579 Evaluate the counterargument based on the criterion below.
 1580 Be as objective as possible.
 1581 For each aspect, provide only score from 1 (worst) to 5 (best).

1582
 1583 [Original Opinion]
 1584 {original_opinion}

1585
 1586 [Counterargument]
 1587 {counterargument}

1588
 1589 [Evaluation Criteria]
 1590 {criteria}: {criteria_description}

1591
 1592 Evaluation Form (scores ONLY):
 1593
 1594 - {criteria}:
 1595
 1596 **criteria: criteria_description**
 1597 Appropriateness: Evaluate whether the language and tone are suitable for the context and
 1598 proportional to the significance of the issue.
 1599
 1600 Clarity: Evaluate whether the writing is clear, well-organized, and free from ambiguity or
 1601 unnecessary complexity.
 1602
 1603 Grammaticality: Evaluate whether the text adheres to standard grammar conventions,
 1604 including punctuation, sentence structure, and syntax.
 1605
 1606 Relevance: Evaluate how directly the counterargument engages with the original opinion
 1607 and addresses its key points.
 1608

1609 Figure A10: This prompt is used to evaluate quality, covering *appropriateness*, *clarity*, *grammaticality*, and *relevance*. The variables `criteria` and `criteria_description` are defined in
 1610 detail below. Curly-braced placeholders (e.g., `{}`) are replaced with task-specific variables.
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635

1636 **Stance:**

1637 [INSTRUCTION]

1638 Below is the Original Opinion and Counterargument.

1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655

Please score the stance relationship between their statements on a continuous scale from 0 to 100:

- A score of 0 means "Counterargument totally supports Original Opinion"
- A score of 100 means "Counterargument completely opposes or contradicts Original Opinion"

Be as objective as possible. Do not explain your reasoning—just output the score.

[Original Opinion]
{original_opinion}

[Counterargument]
{counterargument}

Score (0–100):

1656 Figure A11: This prompt is used to evaluate how well a counterargument maintains an opposing
1657 stance with respect to the given original post, with reference to (Lin et al., 2023). Curly-braced
1658 placeholders (e.g., {}) are replaced with task-specific variables.
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673