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Abstract
OpenReview is an open-source platform for con-
ference management that supports various aspects
of conference peer review and is widely used by
top-tier conferences in AI/ML. These conferences
use automated algorithms on OpenReview to as-
sign reviewers to paper submissions based on two
factors: (1) reviewers’ interests, indicated by their
paper bids, and (2) domain expertise, inferred
from the similarity between the text of their prior
publications and submitted manuscripts. A major
challenge is collusion rings, where groups of re-
searchers manipulate the assignment process to
review each other’s papers positively, regardless
of their actual quality. Most countermeasures tar-
get bid manipulation, assuming text similarity is
secure. We demonstrate that, even without bid-
ding, colluding authors and reviewers can exploit
the text-matching component on OpenReview to
be assigned to their target papers. Our results
reveal specific vulnerabilities in the reviewer as-
signment system and offer suggestions to enhance
its robustness.

1. Introduction
OpenReview is an open-source conference management
platform dedicated to promoting openness in peer review
and the broader scientific communication (Soergel et al.,
2013), and it has been widely used for managing machine
learning (ML) and artificial intelligence (AI) conferences.
In recent years, OpenReview have experienced the rapid
growth of demand in AI/ML venues, each receiving thou-
sands to tens of thousands of paper submissions and similar
numbers of reviewers (Shah, 2022). To manage this over-
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whelming volume, the assignment of reviewers to papers has
become largely automated. A key component of this auto-
mated assignment pertains to text-matched similarity scores
between reviewers’ past work and submitted manuscripts,
where natural language processing algorithms compute the
similarity between the text of each submitted manuscript and
the texts of the reviewer’s previously published manuscripts.
Models like SPECTER (Cohan et al., 2020), which gen-
erates embeddings based on textual content, have become
widely used across various prestigious venues, including
the Conference on Neural Information Processing Systems
(NeurIPS), and are a default model on the OpenReview.

Although automation facilitates efficency, it also introduces
vulnerabilities. One major challenge threatening the in-
tegrity of the peer review is the existence of collusion rings
– groups of individuals who conspire to manipulate the re-
view system for personal gain (Littman, 2021; Vijaykumar,
2020b). These rings can unfairly influence the acceptance
of certain papers by orchestrating favorable reviews from
colluding reviewers. For example, as noted in (Vijaykumar,
2020b), colluders may attempt to “game the system by ex-
ploiting vulnerabilities in the assignment algorithms to have
their collaborators review their submissions.”

The community has thus far focused on detecting and mit-
igating collusion through the analysis of bidding, the part
of the reviewer assignment process where reviewers can
indicate their interest in reviewing each paper. Research
studies focus on bidding patterns (Wu et al., 2021; Jecmen
et al., 2024). The algorithm in (Wu et al., 2021) considers
text similarities as ground truth when examining the bids.
In practice, program chairs have also focused on bidding
when investigating collusion rings (Program Chairs, 2024);
to address concerns over bidding manipulation, venues such
as the Conference on Computer Vision and Pattern Recogni-
tion (CVPR) and ACL Rolling Review (ARR) have removed
the bidding process altogether. This focus on bidding implic-
itly or explicitly assumes that the text-matching algorithms
used for reviewer assignments are resistant to manipulation.
However, this assumption warrants scrutiny.

In this paper, we investigate whether the text-matching al-
gorithms used in automated reviewer assignments on Open-
Review are robust to manipulation. Since most papers are
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assigned to 3–6 reviewers at conferences (Shah, 2022), we
focus our evaluation on whether a pair of colluding author
and reviewer can successfully manipulate the text-matching
algorithms to give the colluding reviewer one of the top-1,
top-3, or top-5 highest text similarity to the colluding paper
among all reviewers at a conference. We find that the text
matching algorithms are susceptible to attacks that can sig-
nificantly increase the calculated similarity between a paper
and its colluding reviewer. Here are some salient details:

• We find that the SPECTER (Cohan et al., 2020) text
similarity matching algorithm can be manipulated. In
evaluations on NeurIPS 2023 data, our attack can in-
crease a colluding reviewer’s similarity from ranked
101 to top-5 for a colluding paper 93% of the time.

• Reviewers are commonly allowed to curate their pro-
files used for text-matching. We find that carefully
selecting past papers – in particular choosing of fewer
papers – can greatly increase the attack’s success rate.
When a colluding reviewer keeps only one paper that is
the most similar to the colluding paper, it increases the
colluding reviewer’s similarity from ranked 101 to top-
5 for the colluding paper 41% of the time even without
any modifications to the colluding paper’s abstract.

• When reviewers have multiple papers in their profile,
similarity-computation algorithms which assign paper
submissions via the maximum of its similarities with
the reviewer’s past papers are more vulnerable than
those which take the mean of the similarities with the
reviewer’s past papers. The attack successfully in-
creases a colluding reviewer’s similarity from ranked
101 to top-5 32% (mean) v.s. 49% (max) of the time.

• Considering NeurIPS 2022 as a “past” conference
whose data is publicly available, and NeurIPS 2023 as
the “current” conference whose data is unavailable, we
find that the attack performance on NeurIPS 2022 is
reflective of the performance in 2023. We find strong
correlations of 0.62, 0.82, 0.92 and 0.93 between col-
luding reviewers’ similarity rankings in NeurIPS 2022
and 2023 in four different settings.

• We conduct a human-subject experiment to test for
the identifiability of adversarial abstracts, in which re-
searchers are asked to evaluate manipulated or control
abstracts. We find that the rate at which participants
complain about coherence or consistency of the ab-
stracts is higher in the manipulated attack abstracts, but
there is also a non-trivial rate of complaints in control
abstracts, which suggests plausible deniability.

In the final section, we discuss the implications of our find-
ings and propose recommendations to enhance the security

and robustness of automated reviewer assignments systems.
We have informed OpenReview about our findings, and we
are working closely together to deploy platform-wide safe-
guards. Independently, some top-tier conferences have also
deployed defenses based on our recommendations.

We are release our code, datasets, and ma-
nipulation examples on GitHub: https:
//github.com/passionfruit03/
reviewer assignments vulnerability. This
paper aims to raise awareness around this vulnerability,
which affects the fairness and integrity of peer review.

2. Problem setting
2.1. Paper-Reviewer Text Similarity

To assign reviewers to papers, the program chairs compute a
“similarity score” for each reviewer-paper pair. For a paper
p and reviewer r, the similarity score s(p, r) is a number
between 0 and 1, and a higher similarity indicates better
reviewer expertise match. We focus on the vulnerability of
text-based similarity scores, although there are other factors
such as bidding. This is because bidding and subject-area
matching are known to be vulnerable (Jecmen et al., 2020;
Wu et al., 2021; Ailamaki et al., 2019) and can only increase
the success of reviewer assignment manipulations.

In this work, we consider the SPECTER algorithm (Cohan
et al., 2020), which is a neural network method widely used
by ML/AI conferences such as NeurIPS and ICML. For any
reviewer r, we let Qr denote the archive containing 10 most
recent papers authored by r. For any paper p, let vp ∈ R768

denote its SPECTER text embedding vector. Note that in
practice, only the titles and abstracts are used to compute
vp. Then, for a submitted paper p and a reviewer r, their
similarity is the mean of cosine similarities between p and
each paper in the reviewer’s archive Qr, or more formally

s(p, r) =
1

|Qr|
∑
q∈Qr

vp · vq

∥vp∥2 ∥vq∥2
. (1)

2.2. Attacker’s Threat Model

The “attacker” represents both the colluding author of a
paper p and a reviewer r working together to ensure p is
assigned to r for peer review. Their objective is increas-
ing s(p, r) so that r ranks in the top-k of the conference’s
reviewers, ranked by their similarity scores with p. In our
experiments, we consider k ∈ {1, 3, 5} since conferences
assign 3–6 reviewers to most papers (Shah, 2022).

We assume that each pair of colluding reviewer and author
(the “attacker”) know each other and work together on the
attack. The colluding reviewer can adversarially curate their
reviewer archive Qadv

r (Section 3.1), and the colluding author
can manipulate the abstract of their paper (Section 3.2).
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Finally, the attackers have access to the exact SPECTER
embeddings, with the model weights publicly available on
GitHub https://github.com/allenai/specter.
However, they do not have access to the reviewer pool of the
current iteration of the conference. Still, many conferences
publish previous reviewer pools, which our results show can
have security implications (Appendix H).

3. Attack Procedure
3.1. Adversarial Reviewer Archive Curation

OpenReview and many peer review systems allow reviewers
to curate own archives, which are used to compute similar-
ity scores for assigning papers. Some conferences even
encourage this practice, starting with an empty archive that
reviewers populate with any papers they choose.

A colluding reviewer can exploit this process by construct-
ing an adversarial archive, Qadv

r , that includes only papers
from their archive Qr which are highly similar to the target
paper p. The colluding reviewer can curate their archive to
keep only one paper that has the highest similarity to p,

Qadv
r =

{
a random paper in argmax

q∈Qr

vp · vq

∥vp∥2 ∥vq∥2

}
,

(2)
with ties broken uniformly at random, where vp ∈ Rk is the
SPECTER embeddings defined in Section 2.1.

3.2. Adversarial Abstract Modifications

The colluding author can construct an adversarial abstract to
increase the simiarity to the reviewer (after archive curation).
We find two types of abstract modifications that effectively
increase the similarity and formalize them into two simple
operations. The first is INCLUDETHEMES which involves
adding background or filler sentences related to the main
ideas of papers in Qadv

r . The second is INSERTKEYWORDS
which inserts “keywords” that target SPECTER to increase
s(p, r) even if the keywords do not necessarily seem impor-
tant to humans. This operation is inspired by works in ad-
versarial robustness (Ebrahimi et al., 2017; Jin et al., 2020;
Li et al., 2020). For detailed explanations with examples
and formal algorithms, see Appendix A and K, respectively.

In this work, we use a Large Language Model (LLM) to
perform fully automatic abstract modifications without hu-
man supervision. This makes large-scale evaluations and
further ablations feasible. To ensure modified abstract qual-
ity, we instruct LLMs to stay consistent with the paper and
ensure general coherence (see Appendix J for prompts).
To simulate real attackers, a small 25-samples experiment
on abstracts with human-in-the-loop modifications can be
found in the Appendix E. In addition, we conduct a human
subject experiment to study the detectability of adversar-

ial abstracts (Appendix I). The LLM model we use is the
OpenAI gpt-4-0125-preview model.

4. Results
4.1. Experiment Setup

We download from OpenReview and curate a dataset of
7,900 reviewers (and their archives) and all 3218 accepted
papers from the Neural Information Processing Systems
(NeurIPS) 2023 conference. Our evaluations are based on
the rankings of reviewer similarities. For any paper p and
reviewer r at a conference, we define the natural ranking of
(p, r) as the rank position of r when all reviewers at the con-
ference are ranked by their similarity scores with the paper
p. We use the term manipulated ranking for the colluding
reviewer’s rank position after manipulations. Appendix B
relates natural rankings to absolute similarity.

In our dataset, for each paper p, we find reviewers with nat-
ural rankings of 20, 101, 501, and 1001. For each of those
scenarios, we evaluate the effectiveness of our attack by
measuring the top-1, top-3, and top-5 success rates, where
a top-N success rate is defined as the fraction of times the
attack successfully increases the colluding reviewer’s ma-
nipulated ranking to be top-N for the colluding paper. More
details on experiment setup are in Appendix C, and we study
attack budgets in Appendix D.

4.2. Attack Success Rates

We sample 300 (paper p, reviewer r) pairs where r has a nat-
ural ranking of 101 for p. In addition, we sample 100 (p, r)
pairs each for when the reviewer natural ranking is 20, 501,
and 1001. The 101st scenario has more samples by request
from a reviewer of this paper. Then, we perform the attack
for each (p, r) pair by curating Qadv

r and modifying abstract.
In Table 1, we find that the success rates are high. When the
natural ranking is 20, the colluders are naturally similar and
attack success rates are the highest. When the natural rank-
ing is 101, the proposed attack procedure leads to a top-5
attack success rate of 93%. Even when the natural ranking is
1001, the top-1 success rate is 48%. These results highlight
the potential that colluding reviewers who are not working
directly in the same area can still collude to successfully
manipulate reviewer assignments. Appendix F further ex-
plores the relationships between success rates and absolute
similarity. While all our experiments uses fully automatic
abstract modifications for scalability, Appendix E evaluates
25 abstracts with human-in-the-loop modifications.

4.3. Reviewer Archive Curation

Currently, in most venues, reviewers are allowed – and fre-
quently even encouraged – to curate their profiles. We find
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Table 1: Attack success rates for colluding reviewers with
natural rankings of 20, 101, 501, and 1001.

Attack Success Rates (± SE) Manipulated
Rankings

Natural
Top-1 Top-3 Top-5

Mean
Rankings 95% CI

20 90(3)% 96(2)% 98(1)%
1.28

[1.06, 1.50]

101 74(3)% 89(2)% 93(2)%
2.22

[1.80, 2.64]

501 60(5)% 76(4)% 83(4)%
6.58

[3.47, 9.69]

1001 48(5)% 63(5)% 67(5)%
15.68

[6.82, 24.54]

that this policy makes the conferences seriously vulnerable
to adversarial archive curation (Section 3.1). With archive
curation (but no abstract modifications), for colluding (p, r)
pairs with natural rankings of 101, we find that 15%, 30%,
and 41% of the samples have manipulated rankings being
within the top-1,3 and 5, respectively. Reviewer archive
curation alone is a serious threat to automated reviewer as-
signments. Appendix G further shows that attacks are less
successful when reviewers must keep more papers in Qadv

r .

4.4. Maximum versus Average Similarity

In Section 2.1, we discuss how the SPECTER similarity is
calculated (Equation 1). Instead of the mean, another popu-
lar approach is taking the max: s(p, r) = max

q∈Qr

vp·vq

∥vp∥2∥vq∥2
.

So far, our analyses involve reviewer archive curation to
keep a single paper, under which max and average pooling
similarity definitions become the same. In this section, we
compare the attack success rates without adversarial cura-
tion (that is, Qadv

r = Qr). We randomly sample without
replacement 100 (p, r) pairs with natural rankings of 101
under each aggregation method, and then run abstract mod-
ifications. Table 2 shows that the attack is more effective
against maximum aggregation. This aligns with our expec-
tation, since modifications can target just one paper in Qr

when the max is taken.

5. Related work
For more detailed investigation into collusion rings, see (Vi-
jaykumar, 2020a; Littman, 2021). For a more extensive
survey on text matching algorithms, see Shah (2022, Sec-
tion 3). Among the various components of the similarity
score computation, research on addressing collusion rings
has primarily focused on bidding (Wu et al., 2021; Jecmen

Table 2: Attack performances using average or max pooling
in similarity s(p, r) calculation (natural ranking 101).

Attack Success Rates (± SE) Manipulated
Rankings

Aggregati-
Top-1 Top-3 Top-5

Mean
on Method 95% CI

Average 13(3)% 24(4)% 32(5)%
18.20

[14.45, 21.95]

Maximum 20(4)% 40(5)% 49(5)%
9.37

[7.52, 11.22]

et al., 2022; 2023; 2024; Leyton-Brown et al., 2024). For
research on manipulating text matching, some have focused
on exploiting PDF parsers (Markwood et al., 2017; Tran &
Jaiswal, 2019) while others have demonstrated the possibil-
ity of purely text-level attacks (Eisenhofer et al., 2023). Our
work study text-level attacks at a significantly larger scale
and remove key assumptions to demonstrate vulnerabilities
that are simple to exploit in practice.

6. Discussion
This work raises awareness about the vulnerabilities of cur-
rent reviewer matching systems by showing a simple and
practical attack that is effective. Furthermore, we conducted
a human subject experiment testing for adversarial abstract
detectability (Appendix I). While some noted issues with co-
herence and consistency, similar complaints arose for benign
abstracts, suggesting plausible deniability. No malicious
intent was identified by participants. Safeguards based
on our recommendations are now in place at several major
AI/ML conferences, and we are working with OpenReview
to support safeguards natively on their platform.

We offer several recommendations. Firstly, colluding re-
viewers can effectively exploit archive curation, so requiring
reviewers to have more extensive publication archives re-
duces the effectiveness of manipulation. Next, using average
instead of max aggregation in the similarity calculation can
reduce the impact of targeted manipulations by limiting the
influence of any single paper, but if max pooling yields more
accurate matches, a compromise like the 75th percentile can
offer both robustness and match quality. Thirdly, educating
reviewers about manipulations can lead them stay vigilant.
Fourth, consider adopting a broader mitigation strategy, such
as introducing randomness into reviewer assignment (Jec-
men et al., 2020). Lastly, developers of similarity algorithms
should consider the robustness of their methods.
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6.1. Limitations

We focus on collusion with a single reviewer, but exploring
cases with multiple colluding reviewers could reveal deeper
vulnerabilities. We also omit practical constraints like re-
viewer load, conflicts of interest, and geographic factors,
which may affect attack effectiveness and generalizability.
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(a) The colluding reviewer adversarially curates their archive to only
contain one of their past papers that is the most similar to the paper p
they want to get assigned.

(b) The colluding author adversarially modifies their abstract
to be more similar to the paper in the colluding reviewer’s
curated archive.

Figure 1: An illustrated example of the attack procedure. 1a shows the reviewer’s action; 1b shows the author’s action.

A. Details on Attack Procedure
Notation Only titles and abstracts are used to compute SPECTER similarity scores between papers, and reviewers can
curate their archives adversarially. To explain the attack procedure in more detail, we will expand the notation for paper p to
have corresponding tp for the title and ap for the abstract as we will manipulate those, and we will explicitly denote the
reviewer archive. Hence, we use s((tp, ap), Qr) to denote paper-reviewer similarity below.

Attack surface and constraints We assume that each pair of colluding author and reviewer (the “attacker”) know each
other and are actively colluding, so they can work together to create the attack. The colluding author can manipulate the
abstract of their paper, and the colluding reviewer can adversarially curate their reviewer archive Qadv

r to only retain selected
papers. We only consider abstract modifications, since the SPECTER similarity scores are computed based on title and
abstract only, though the author can change any parts of their paper. In this paper, we also do not consider changes to the
title because we suspect title modifications may arouse more suspicion from non-colluding reviewers.

When modifying the abstract, the attacker must avoid arousing suspicion in non-colluding reviewers. This is ostensibly
vague and we formalize this notion via two constraints on adversarial modifications of the abstract: (i) Coherence: The
abstract should use academic writing style, have natural flow, and cannot contain scientifically false information. (ii)
Consistency: The abstract should be consistent with the paper’s contents. In this paper, we also enforce constraints on
the number of sentences and keywords that can be added to the colluding paper’s abstract. Attacks are generally allowed
only one sentence that is related to Qadv

r , but we allow up to three sentences related to Qadv
r in some cases only when we

have human-in-the-loop to ensure coherence and consistency. In addition, attacks are allowed to add up to 10 keywords
selected from Qadv

r . We also perform human-study experiments to judge whether non-colluding reviewers find that abstracts
generated by our proposed attack are suspicious.

A.1. Annotated Examples

A.1.1. INCLUDETHEMES

The goal of INCLUDETHEMES is to modify the abstract ap in order to increase the SPECTER similarity between paper p
and reviewer r, by adding background or filler sentences related to the central themes of papers in Qadv

r . We note that the
resulting modified abstract aadv

p may become inconsistent with its paper p if the main ideas in the abstract have been changed
entirely. Our key observation is that SPECTER similarities between papers and reviewers increase when abstracts share
overlapping themes, even when those themes are central to papers in Qadv

r but only referenced as background information in
aadv
p . This means that INCLUDETHEMES can produce aadv

p by including themes from Qadv
r to increase s((tp, a

adv
p ), Qadv

r )
without violating the coherence and consistency constraints. An example of INCLUDETHEMES can be found in Figure 2.
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INCLUDETHEMES Example: Multimodal language models have shown promise in AI applications like robotics,
where these models enable scalable approaches for learning open-world object-goal navigation – the task of asking a
virtual robot agent to find any instance of an object in an unexplored environment (e.g., “find a sink”). In this work, we
propose a new method to fuse the embedding space of frozen text-only large language models (LLMs) and pre-trained
image encoder and decoder models, by mapping between their embedding spaces. Our model demonstrates a wide
suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue. . .

Figure 2: An example of INCLUDETHEMES modifying the abstract. Goal navigation is an important theme in the adversarial
archive Qadv

r of the reviewer r. The modification (highlighted sentence) adds robot goal navigation as a motivating example
for further improvements to multimodal models. The resulting abstract aadv

p remains coherent and consistent with the paper’s
focus on text and image embedding alignment, but has increased similarity to the target adversarial archive s((tp, aadv

p ), Qadv
r ).

The INCLUDETHEMES changes shown in this example, alongside adversarial reviewer archive curation, increase the
reviewer’s similarity to the paper from being 101st most-similar to become the most similar amongst all reviewers at the
NeurIPS 2023 conference.

The implementation of the human-in-the-loop and fully automatic modes differ in whether human supervision is used to
ensure the coherence and consistency of the modified abstract aadv

p . In the human-in-the-loop mode, modified abstracts aadv
p

are created by a human (potentially with the help of a LLM), and the human can make incremental edits to aadv
p to ensure

coherence and consistency. On the other hand, the fully automatic mode only uses a LLM to generate the aadv
p with a prompt

that emphasizes coherence and consistency, and it does not allow further edits to aadv
p once they are generated.

In addition, the implementation for both human-in-the-loop and fully automatic modes involves generating N different
versions of modified abstracts. Since generating and modifying abstracts is stochastic (due to the stochasticity of LLM
outputs and manual edits), we keep only the attempt that is the most similar to the colluding reviewer r. We tune and report
the choice of N for our experiments in Appendix C, and the formal algorithm is Algorithm 1 in Appendix K.1.

A.1.2. INSERTKEYWORDS

In order to further raise the similarity, INSERTKEYWORDS adds specific keywords to the abstract. These keywords may not
seem obviously important to humans, but they can increase s((tp, a

adv
p ), Qadv

r ) if added into the adversarial abstract. This
phenomenon aligns with findings in the adversarial examples literature, where researchers have found the output of neural
networks to be brittle to the insertion of certain keywords or tokens into the input. Furthermore, we find that the similarities
can increase even when the keywords are used under different meanings and with different parts of speech across abstracts.
This allows INSERTKEYWORDS to insert technical keywords from Qadv

r into the aadv
p without introducing unrelated or

suspicious concepts. For example, “transfer learning” might be simplified to “transfer,” a common English term. To ensure
coherence and grammatical correctness, INSERTKEYWORDS may also adjust text around the inserted keywords (e.g. insert
a phrase that contains the keyword).

We present an example of INSERTKEYWORDS in Figure 3. In this example, the paper in adversarial archive Qadv
r proposes

mitigating label scarcity in transfer learning with data augmentation, in particular using gradient flow methods to the
minimize maximum mean discrepancy loss on the feature-Gaussian manifold. To search for the keywords that increase the
similarity, we propose the FINDKEYWORDS subroutine, which is described later, to suggests keywords from Qadv

r to add to
the abstract ap, including repeated words if they can further increase similarity.

Some keywords from the reviewer’s archive Qadv
r carry meanings directly related to the abstract ap. In Figure 3, the keyword

‘learning’ is added as ‘machine learning’; ‘feature-label’ is broken up and added as ‘labels and features’; ‘feature-Gaussian’
is inserted only as ‘Gaussian’. For these keywords, the inserted variations match their meanings in the reviewer’s archive.
However, other keywords with technical meanings unrelated to this paper p, such as ‘manifold’, ‘discrepancy’, and ‘flow’,
are adapted to common English (‘manifold’ as “a great deal”, ‘discrepancy’ as “difference”, and ‘flow” referring to training
pipelines). Still, there can be unrelated technical keywords like ‘Riemannian’ and ‘optimum’ that do not have suitable
common English meanings for abstract ap, so they would not be inserted.

Now, we describe the implementation details of the INSERTKEYWORDS operation. The process iteratively searches
for M batches of K keywords, inserting each batch before searching for the next. We propose the FINDKEYWORDS
subroutine (Algorithm 3 in Appendix K.2) to greedily choose keywords that increase the similarity s((tp, a

adv
p ), Qadv

r ).
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Example: With more real-world machine learning applications, the importance of safeguarding data privacy of
labels and features has increased manifold. Per-example gradient clipping is a key algorithmic step that enables
practical differential private (DP) training for deep learning models. The choice of clipping threshold R, however, is
vital for avoiding high training loss discrepancy and achieving high accuracy under DP. Not only does it serve as a
clipping threshold, but the Gaussian noises added are also dependent on R. We propose an easy-to-use replacement,
called automatic clipping, that eliminates the need to tune R for any DP optimizers, including DP-SGD, DP-Adam,
DP-LAMB and many others. The automatic variants are as private and computationally efficient as existing DP
optimizers, but require no DP-specific hyperparameters and thus improve DP training manifold. Our proposed method
is as amenable as the standard non-private training flow. . .

Figure 3: An example of INSERTKEYWORDS modifications. The paper in the adversarial archive Qadv
r proposes mitigating

label scarcity in transfer learning with data augmentation. Some inserted keywords (highlighted) match their original mean-
ings from the paper in Qadv

r , while others (highlighted + bolded) are adapted to common English. The INSERTKEYWORDS
changes to this abstract, alongside adversarial reviewer archive curation, increase the reviewer’s similarity to the paper from
being 101st most-similar to 3rd most-similar amongst all reviewers at the NeurIPS 2023 conference.

Since FINDKEYWORDS is a greedy algorithm, the alternation between finding and inserting each batch of keywords
can take into account the new aadv

p when finding the next batch of keywords. The two hyperparameters, M and K, in
INSERTKEYWORDS are tuned and reported in Appendix C. The formal algorithm is Algorithm 2 in Appendix K.2.

INSERTKEYWORDS also has human-in-the-loop and fully automatic modes (detailed in Algorithm 2). In the human-in-
the-loop mode, a human can oversee if and how the keywords can be added while abiding by coherence and consistency
constraints. In the fully automatic mode, the LLM is prompted to be coherent and consistent without human supervision. A
more detailed description can be found in Appendix 2.

B. Similarity Scores and Rankings
In this work, we evaluate attack success using natural and manipulated rankings, as relative similarity rankings are more
broadly applicable across conferences that may use different optimization programs for reviewer assignment (Charlin &
Zemel, 2013; Stelmakh et al., 2021; Kobren et al., 2019; Jecmen et al., 2020; Payan & Zick, 2022; Leyton-Brown et al.,
2024). To relate natural rankings to absolute similarity, Figure 4 plots the mean similarity score (before attack) associated
with each ranking across all papers in the NeurIPS 2023 dataset. For each paper, we rank all non-author reviewers by
similarity and average the scores at each rank position over all papers.

Figure 4a shows that only a small fraction of reviewers have exceptionally high or low similarity scores to each paper, while
mid-ranking reviewers exhibit a much more gradual decline in similarity scores. Figure 4b zooms in on selected rankings
between 1 and 1001 for closer inspection.

(a) Mean similarity scores asso-
ciated with each ranking from
1 to 7900. The shaded area rep-
resents standard error but is too
small to be visible.

(b) Zoomed in plot of the mean
similarity scores, only for se-
lected rankings between 1 and
1001. Error bars represent stan-
dard errors.

Figure 4: Mean similarity scores (before attack) associated with different rankings across all papers in the NeurIPS 2023
dataset. The curve exhibits a steep decline at the highest and lowest ranks, indicating that only a small fraction of reviewers
has exceptionally high or low similarity to a given paper.
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C. Experiment Setup: Dataset Curation and Attack Budgets
To evaluate the attack procedure, we download a dataset of reviewer archives and papers from the Neural Information
Processing Systems (NeurIPS) 2023 conference. We also consider the previous edition, NeurIPS 2022, as a publicly
available “prior” conference to develop the attack algorithm. Our setup simulates the real-world scenario when colluders
only have access to the data of prior conferences before submitting to a new conference.

Dataset curation Using the OpenReview API (https://api2.openreview.net), we download all accepted pa-
pers at the NeurIPS 2023 venue. We download the names of all reviewers at NeurIPS 2023 (https://neurips.cc/
Conferences/2023/ProgramCommittee) and search for OpenReview profiles that match the names of each re-
viewer. When curating the reviewer pool, we discard some reviewers if (1) there are multiple profiles that match the name of
a reviewer or if (2) the reviewer has no public publications on their OpenReview profile. In this manner, we obtain 3,218
papers and 7,900 reviewers for the experiments. Following the same procedure, we also curate a NeurIPS 2022 dataset with
2,671 papers and 6,634 reviewers. We only download and use the paper metadata where Creative Commons Public Domain
Dedication (CC0 1.0) apply (https://openreview.net/legal/terms).

Attack budgets (hyperparameters) There are three hyperparameters N ,M ,K we use to define the attack budget
(Appendix A). In INCLUDETHEMES, N stands for the number of aadv

p versions created before selecting the most similar
version. In INSERTKEYWORDS, M is the number of batches of keywords to insert, and K is the maximum number of
keywords in each batch. We explore the attack success rates under different combinations of N ,M ,K with the NeurIPS
2022 dataset and select the highest performing combination N = 5, M = 2, K = 5. In Appendix D, we also present an
investigation into different choices of hyperparameters N ,M ,K on the NeurIPS 2023 dataset.

D. Attack Budgets and Attack Success Rates
We evaluate success rates under varying attack budgets by studying how the hyperparameters of INCLUDETHEMES and
INSERTKEYWORDS operations (N , M , K) affect automatic attack success rates of 50 samples with natural rankings of
101 from the NeurIPS 2023 dataset.

First, Figure 5 shows attack success rates for varying N—the number of INCLUDETHEMES rounds—without using
INSERTKEYWORDS (M = 0, K = 0). Success rates generally increase with N . This is expected because language model
embeddings can be sensitive to paraphrasing, so taking the most-similar attempt amongst stochastic outputs helps improve
attack success rates. However, there are signs of diminishing returns. Second, we report attack success rates for varying
M and K in the INSERTKEYWORDS operation and FINDKEYWORDS subroutine, without using INCLUDETHEMES
(N = 0). In Figure 6, success rates increase with the total number of inserted keywords, M ×K, as shown by the color
gradient from bottom left to top right in each subfigure. For a fixed keyword count, inserting smaller batches over more
INSERTKEYWORDS iterations outperforms larger batches over fewer iterations, as seen in the contrast between upper-left
and bottom-right squares in those subfigures. This supports the intuition that gradual updates help greedy search adapt to
changes in aadv

p from earlier batches.

Figure 5: Attack success rates generally increase with N when the most similar attempt is kept out of N versions of aadv
p in

INCLUDETHEMES. The band is the standard error.
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(a) Top-1 (b) Top-3 (c) Top-5

Figure 6: Grids of Top-1, Top-3, and Top-5 success rates for different combinations of batches of keywords to insert in
INSERTKEYWORDS (M ) and the number of keywords per batch returned by FINDKEYWORDS (K).

Table 3: Attack success rates in human-in-the-loop mode with early stopping.

Attack Success Rates (± SE) Manipulated Ranking

Natural
Top-1 Top-3 Top-5

Mean
Rankings 95% CI

101 76(9)% 92(6)% 92(6)%
2.08

[0.97, 3.19]

E. Human-in-the-loop Mode Attack Results
We perform 25 attacks by constructing the Qadv

r and modifying aadv
p in the more realistic human-in-the-loop mode. We

randomly sample (p,r) pairs with natural rankings of 101, and we keep the first 25 samples with paper topics we are
familiar enough with to judge the coherence and consistency of the modified abstracts. Firstly, we use the method described
in Section 3.1 to construct Qadv

r . For the abstract modifications, we simulate what colluding authors would do when
abstracts are modified with human involvement. The human-in-the-loop implementations of INCLUDETHEMES and
INSERTKEYWORDS are described in Appendix K Algorithm 1 and Algorithm 2, respectively. In addition, we do early
stopping checks as described in Appendix K.

For the human-in-the-loop attack, we find it helpful to increase the default attack budget N , which is the number aadv
p

versions generated in INCLUDETHEMES, from 5 to 10. This is because the consistency and coherence constraints are
enforced much more strictly in the human-in-the-loop mode. In cases when LLM outputs a version that is similar to previous
versions or does not increase the similarity to r meaningfully, we skip and move on to the next version to save editing time.

In addition to increasing N , we allow up to 3 sentences about the colluding reviewer’s archive Qr to be added to the abstract
during INCLUDETHEMES, instead of the 1 sentence constraint in the fully automatic mode. This is a realistic change
because coherence and consistency are enforced manually here, and additional sentences often improve abstract flow by
allowing better transition sentences. As for FINDKEYWORDS and INSERTKEYWORDS, we choose the default values of
K = 5 and M = 2. In fact, because of the early stopping, most abstracts have less than 10 keywords added.

We report the attack success rates in Table 3. We find that the human-in-the-loop attacks with early stopping can successfully
increase the colluding reviewers’ manipulated rankings in most cases. Even when coherence and consistency constraints are
manually enforced, the proposed attack procedure still have high success rates.

F. Similarity Scores and Attack Results
Some papers–such as those in niche fields–may have fewer high-similarity reviewers, while others may have more. As a
result, even colluding reviewer pairs with identical ranking positions may have different values of similarity scores, leading
to varying attack success rates. In this section, we explore how those natural similarity scores affect the likelihood of a
successful attack.

For each paper, we calculate the similarities to all reviewers and then rank them. This allows us to compute the top
and bottom quartiles with respect to the similarity scores of all reviewer-paper pairs with the same natural ranking. In
particular, we focus on rankings 20, 101, 501, and 1001. We then revisit the main results from Section 4.2, applying this
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Table 4: Attack success rates of groups of colluding pairs with natural similarity (before attack) in the top and bottom
quartiles for their respective natural rankings. The baseline attack success rates from Section 4.2 are also provided.

Attack Success Rates (± SE)

Natural
Top-K

From
Bottom quartile Top quartile

Ranking Section 4.2

20 Top-1 90(3)% 87(7)% 88(6)%

Top-3 96(2)% 96(4)% 94(4)%

Top-5 98(1)% 100% 94(4)%

101 Top-1 74(3)% 56(6)% 86(4)%

Top-3 89(2)% 77(5)% 97(2)%

Top-5 93(2)% 82(5)% 99(1)%

501 Top-1 60(5)% 46(10)% 78(9)%

Top-3 76(4)% 61(9)% 83(8)%

Top-5 83(4)% 68(9)% 83(8)%

1001 Top-1 48(5)% 33(10)% 48(11)%

Top-3 63(5)% 58(10)% 65(10)%

Top-5 67(5)% 58(10)% 74(9)%

Figure 7: Attack success rates when the colluding reviewers have to keep 1, 2, 5, 10 papers in the adversarial archive |Qadv
r |.

Success rates drop when colluding reviewers must keep more papers in their archive. The shaded bands represent standard
errors of the mean.

new stratification. For each ranking, we consider the colluding pairs identified in Section 4.2 and categorize them into two
groups: those whose natural similarity falls in the bottom quartile and those in the top quartile. In Table 4, success rates are
generally lower for the bottom quartile group, though attacks can still achieve considerable success in these cases. We note
that results are mixed when the natural ranking is 20, likely because attacks are highly successful for both groups.

G. Lower Limits on Reviewer Archive Length
A possible defense to our attack could be imposing a lower limit on the number of publications each reviewer has to keep in
their archive. To investigate such a defense, we randomly sample without replacement 100 (p, r) pairs to act as colluders
with natural rankings of 101 and where the reviewer r has at least ten publications. For the curation of Qadv

r , we consider
four different scenarios where the reviewers keep the 1, 2, 5, or 10 most-similar publications in Qadv

r . Afterward, we run
automatic abstract modification and evaluate the success rates. Figure 7 shows that attack success rates decreases with
|Qadv

r |, meaning that imposing a high lower limit on the reviewer’ archive lengths can effectively decrease the proposed
attack’s success rates. However, there is a trade-off here, since honest reviewers may actually want to update their profiles to
reflect their most current research interests.
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Figure 8: Manipulated rankings in 2022 and 2023 iterations of NeurIPS are strongly correlated, so colluders can estimate
the manipulated rankings using previous year’s data. Spearman’s rank correlation coefficients ρ is reported, and the dotted
line is y = x.

H. Correlation of Attack Success between NeurIPS 2022 and 2023
An attacker can use publicly available data from the previous year’s conference to train or validate their attack. For example,
an effective early stopping heuristic can halt further modifications once the colluding reviewer becomes the top match
among prior-year reviewers. We use such early stopping heuristic in Appendix E and find it effective. Still, the relationship
between success of any attack in the previous year to the success in the target year is not clear a priori, and we investigate it
in this section.

In Figure 8, we calculate the manipulated rankings amongst both NeurIPS 2022 and NeurIPS 2023 reviewer pools for 300
colluding (paper p, reviewer r) pairs with natural rankings of 101 and 100 (p, r) pairs each for natural rankings of 20, 501,
and 1001 from Section 4.2. As shown in Figure 8, we discover a strong correlation between the manipulated rankings in the
2022 (publicly available) and 2023 (unknown to attackers) iterations of NeurIPS. This implies that adversarial attackers can
estimate attack success using previous year’s data. The reviewer pools data many major ML/AI conferences publish actually
give attackers a dataset to carefully tune their modifications, knowing that being successful on the public data is often good
enough.

I. Human Subject Experiment
In this paper, we find that our method can successfully increase the manipulated rankings between a paper and a colluding
reviewer. However, the paper may also be assigned to honest reviewers, and in this section we describe a randomized
control trial that we conduct to understand the perception of adversarial abstracts by unsuspecting human reviewers. Our
research question and study design were pre-registered at https://aspredicted.org/HXF Z92. This experiment
was approved by an independent Institutional Review Board. The broad research question we looked to answer was: Are
benign (control) and adversarial (experimental) abstracts the same to unsuspecting human reviewers? We also acknowledge
that, as discussed below, this experimental design also had several limitations that can lead to an overestimation of the
detectability of the adversarially modified abstract.

I.1. Experiment design

We recruited 59 participants with one opting out after debriefing (we initially employ deception to hide the true purpose of
this study), making it a total of 58 participants. The participants are PhD students or graduated with a PhD – who have
reviewed at ML/AI conferences in the past five years. Participants were recruited by emails and word of mouth, and each
participant was compensated $20 . To simulate the behavior of an unsuspecting reviewer at an actual conference, we employ
deception so that the participants have no knowledge of the adversarial manipulations prior to starting the study.

We curated two pools of papers — benign and adversarial, each containing modified versions of 914 real machine learning
papers we collected from arxiv.org. To generate the adversarial version of each paper, we first select a reviewer that has
natural ranking of 101 out of the NeurIPS 2023 reviewer pool, then we curate the adversarial archive Qadv

r (Section 3.1) and
generate aadv

p by Algorithm 1 and Algorithm 2 under the fully automatic mode. As a result of the adversarial attack, the
colluding reviewer had a manipulated ranking within the top-5. Since the adversarial abstracts are LLM-generated without
any human oversight, we believe that directly comparing them against the original human-written abstracts may introduce a
confounder to our experiment that the adversarial abstracts are LLM-generated while the benign abstracts may be written by
humans. To address this, in the benign (control) paper pool, we ask the LLM to paraphrase the original abstract.

13

https://aspredicted.org/HXF_Z92
https://arXiv.org


Vulnerability of Reviewer Assignments to Collusions

Each participant was assigned two personalized papers based on their expertise. Each paper assignment was chosen to
be in either the benign (control) or adversarial (experimental) condition uniformly at random. Depending on whether
the assignment is control or experimental, we computed the participant’s SPECTER similarities to the pool of benign or
adversarial papers. Using this process, we assigned each participant two distinct papers they are the most similar to.

I.2. Attack budgets and LLM prompts

This experiment uses a different set of attack budgets (N = 3, M = 3 and K = 4) and LLM prompts from the rest of
the paper. The budgets and prompts in this experiment are tuned the same way, but they were erroneously tuned on the
NeurIPS 2023 test data instead of the NeurIPS 2022 training data. However, we believe this should not affect the study
outcome because the abstracts here are being manipulated more than in the fully automatic attacks evaluated in earlier
sections. Furthermore, we are not measuring the attack success rates, which would be affected by this error, but rather the
differences (if any) between benign and adversarial abstracts to unsuspecting reviewers.

The prompts can be found in our released artifacts, and here we provide a more detailed explanation. Firstly, in the
INCLUDETHEMES operation, we prompt the LLM to follow the same rules and add only one sentence about the colluding
reviewer’s archive, just like in the rest of this paper. In the INSERTKEYWORDS operation, we ask the LLM to add 12
keywords in this experiment, which is more than the 10 keywords (N = 2, K = 5) we use in the rest of this paper. Finally,
early stopping is also not used in the automatic abstracts modification process for this experiment. Due to the extra keywords
added, the adversarially modified abstract tested in this experiment may be more detectable than it would be for the abstracts
generated in previous sections.

I.3. Experimental procedure

After each participant signed up for our study, we emailed them two PDFs of the papers they are assigned to review. We
asked participants to notify us if they had seen either paper prior to this study, and we assigned them new papers if they
had seen them before. These PDFs are rendered from the LATEX source available on arXiv, except we replaced the original
abstracts with the adversarial or benign versions of the abstract. In addition, we anonymized the arXiv papers by removing
the author names. After they completed the tasks, we debriefed the participants since deception was used and gave them the
option to withdraw from the study after learning about the real purpose of this study.

I.4. Survey

Ideally, we would like to ask participants to write full reviews of the papers, but such time commitment was not feasible since
each review can take hours. Therefore, we asked the participants to take ten minutes to skim and complete a ‘mini-review’
for each paper consists of the following questions:

a. Would you be able to review this paper given your expertise? [Yes/No]

b. Is the abstract of the paper consistent with the contents in the paper? [Yes/No]

c. Does the abstract of the paper seem coherent? [Yes/No]

d. If you answered “No” to any of the questions, please explain. [Text box]

I.5. Limitations

To make the human subject experiment scalable and participant recruitment practical, we made several design choices that
also manifest as limitations. Each of these limitations can overestimate the identifiability of the adversarial abstracts.

• We generated the adversarial abstracts automatically without any degree of human oversight for scalability. This may
not reflect operation of actual colluders in the real world, where malicious authors can at least look over the manipulated
abstract to check for detectability.

• Due to the scale, we were not able to edit the body of the papers sent to participants for review. However, since having
topics and keywords in the abstract that are not in the rest of the paper can be suspicious, malicious authors in practice
could also edit the body of the paper (e.g., introduction or related work) to contain those words.
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Table 5: Fisher’s Two-Sided Exact Test results and participants’ “No” response proportions. p-values are adjusted for
multiple testing with Benjamini-Hochberg correction (Benjamini & Hochberg, 1995).

Evaluation Category p-value 1− β (Power) “No” Rate (Experimental) “No” Rate (Control)

Expertise 0.65 0.06 22.7% 18.8%
Consistency 0.03 0.74 24.2% 6.3%
Coherence 0.255 0.27 25.8% 14.6%

Table 6: Complaint types from collected comments.

Type of complaint Control Experimental

Issues with the writing style 8.2% 25.4%
Abrupt transitions & poor organization 2.0% 4.5%
Nonsensical or incorrect claims 4.1% 10.4%
Contains things never mentioned in the paper 4.1% 13.6%
Not representative of the paper content 2.0% 4.5%
Irregularities related to INCLUDETHEMES – 6%
Irregularities related to INSERTKEYWORDS – 16%
Not related to either – 82%

• To make recruitment practical, we asked participants to write mini-reviews that are focused on the abstracts. This may
lead to participants reading the abstracts much more carefully than usual, potentially cross-referencing the abstract and
the rest of the paper multiple times.

• In practice, the authors separately enter their (title and) abstract in text boxes on a web interface, which are used to
compute the similarities with reviewers. This entered abstract may potentially have differences with the abstract in the
paper’s PDFs, and it is the PDFs that are generally read more carefully by reviewers.

Finally, we note that the monetary compensation may have induced some participants to pay less attention than others (e.g.,
if their participation was solely for compensation).

I.6. Results

We collected a total of 116 mini-reviews from participants, comprising 49 reviews for the control group and 67 reviews for
the experimental group. Out of 116 mini-reviews, 51 of the reviews included free response comments for Question 4 in the
survey (Section I.4). As we discuss below, the results are mixed. First, we consider the total counts of Yes/No responses
about the paper-reviewer expertise alignment as well as the consistency and coherence of the abstracts. Table 5 summarizes
the findings, where we see that control abstracts are considered significantly more consistent than experimental abstracts,
but no significant difference is found in expertise alignment and abstract coherence.

In Table 6 we analyze the free response comments provided. Each review that indicated either incoherence or inconsistency
includes comments, and all comments are between 7 and 189 words. We identify five main types of complaints in the
comments, and we report the percentages of reviews in control and experimental groups that mention each type of complaint.
The percentages are out of all reviews collected for each group (49 reviews for control and 67 reviews for experimental),
and there may be multiple types of complaints mentioned in each comment. The most prevalent issue for both benign
and adversarial abstracts is writing style, which is related to word choice, tone, and readability. Surprisingly, complaints
like “contains things never mentioned in the paper” exist for both benign and adversarial abstracts. To investigate whether
these complaints are due to LLM hallucinations during the benign paraphrasing of control abstracts rather than the original
contents uploaded to arXiv, we manually examined the paraphrased control abstract and the original abstract related to
each complaint. We find that all types of complaints have at least one paper which we believe the complaint applies to the
original abstract. Lastly, we investigated whether the review comments for the adversarial abstracts mentioned issues that
are directly related to the modification operations proposed in this work. In the experimental group, we noticed that 6% of
the responses are related to INCLUDETHEMES, 16% of the reponses are related to INSERTKEYWORDS, and 82% of the
responses are not directly related to either. Some responses may be related to both operations, so the percentages do not sum
to 100%. Finally, none of the participants identified malicious intent in any of the abstracts. Although it is not surprising
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that no participant identified malicious intent given the use of deception, we believe this finding remains significant, because
real-world peer reviewers likewise are not explicitly instructed to look for signs of collusion.

In summary, we find that no participants suspected malicious intent, but we identify higher rates of complaints about
the coherence and consistency of adversarial abstracts when compared to benign abstracts. Problems in coherence and
consistency may have benign causes (e.g., negligence, bad writing, or authors not having English as their first language),
giving colluding authors plausible deniability if accused of malicious manipulations. With the proliferation of LLM-edited
abstracts, the (in)ability to distinguish between adversarial and benign abstracts is even more dire because the complaint
rates of abstracts with adversarial manipulations are not much higher than benign manipulations with an LLM. Furthermore,
the attack we evaluate is fully automatic; the human-in-the-loop version is likely to raise less complaints because the attacker
can manually catch obvious inconsistencies and iterate.

J. LLM Prompts
We show the fully automatic mode prompts used in our main results. Slightly different versions of the
same prompts are used for the human-in-the-loop mode (Section E) and in the human subject experiment (Sec-
tion I). These prompts can be found in our artifacts on GitHub: https://github.com/passionfruit03/
reviewer assignments vulnerability.

We observe that the LLM tend to hallucinate, such as falsely claiming that algorithms from the colluding reviewer’s archive
are also used in the submission paper. Therefore, we ask the LLM to follow a format: explain that my work is inspired by
the themes in the previous work. For the writing style, we instruct the LLM to use a matter-of-fact writing tone. Lastly,
we ask the LLM to remove personally identifiable information, since most conferences anonymize authors during peer
review. For each operation (INCLUDETHEMES and INSERTKEYWORDS), we provide two examples to the LLM to guide
its generation. They can be found in our artifacts.

INCLUDETHEMES Prompt (fully automatic mode)

In order for my paper to reach certain audiences, having the right topics in the abstract is very important. Edit the abstract
to add one sentence to the introduction, explaining that my work is inspired by the themes in the previous works provided
in a list.
Here are a few requirements when writing the abstract:

1. Do not include titles of the previous works in my abstract.

2. Use a matter-of-fact writing style common for scientific publications and avoid adjectives. Please especially avoid
hyping up research with adjectives such as “burgeoning”, “transformative”, “groundbreaking”, etc.

Finally, please remove any personal identifiable information, such as GitHub links, from my abstract.
I will provide you with a JSON dictionary with the following structure: { “title”: my paper’s title, “abstract”: my paper’s
abstract “related previous works”: [ “title”: title1, “abstract”: abstract1, “title”: title2, “abstract”: abstract2, .... ] }
Format your answer into JSON with the following schema: { “title”: title string (should be the same as original),
“abstract”: edited abstract, relating my work to the concepts in the previous works provided. }

INSERTKEYWORDS Prompt (fully automatic mode)

In order for my paper to reach certain audiences, having the right keywords in the abstract is very important. I will
provide you with a JSON dictionary with three keys: “title”, “abstract” and “keywords”. I want you to insert each
keyword to the abstract based on its meanings commonly used in general English or meanings related to the technical
details in the abstract.
Here are a few requirements when writing the abstract:

1. You must write a professional and scientifically rigorous abstract. Use a matter-of-fact tone.

2. Use well-known facts in the scientific community when inserting keywords. Do not make changes to the parts
related to this specific paper.

3. Some keywords may already exist in the abstract, but you must repeat the keyword somewhere else in the abstract.
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Finally, some keywords are out of the scope of the abstract. You may reject them and provide a short 20-word explanation
of why.
Format your answer into JSON with the following schema: { “title”: title string (should be the same as original),
“abstract”: edited abstract string, “left out keywords”: first rejected keyword: 20-word explanation of why the keyword
is rejected. ... }

K. Formal Abstract Modification Algorithms
Before introducing the formal algorithms, we define a few useful helper functions:

1. ConstraintCheck(aadv
p ) returns true if abstract aadv

p is coherent and consistent.

2. SimilarityCheck(tp,aadv
p

′,aadv
p ,Qadv

r ,δ) queries the SPECTER model and returns true if the similarity of abstract aadv
p

′ is
higher than (or at least comparable to) the similarity of abstract aadv

p , that is, s((tp, aadv
p

′
), Qadv

r )+δ > s((tp, a
adv
p ), Qadv

r ).
The δ parameter represents a small non-negative value, for cases when the new edits added in aadv

p
′ do not have to be

more similar to reviewer r than the aadv
p .

3. EarlyStoppingCheck(aadv
p ,Qadv

r ) returns true if the colluding reviewer r is the most-similar reviewer for the paper
p amongst some (potentially proxy) set of reviewers. In the proposed method, abstracts are modified in a multistep
process, so an early stopping check may be desirable to stop further modifications if the attack is likely successful. The
use of early stopping is designed as an optional tradeoff in our algorithm. In one of our experiments, we use the early
stopping heuristic: if the colluding reviewer is the most-similar reviewer for the colluding paper among all reviewers
in the previous edition of the conference, no further abstract modifications are made. This heuristic is feasible and
realistic because many major AI/ML conferences publish their reviewer pools from previous years. We validate the
effectiveness of our early stopping heuristic in Section E and further investigate the use of proxy sets in Section H.

K.1. The INCLUDETHEMES Algorithm

Algorithm 1 formalizes the INCLUDETHEMES operation, and it shows both human-in-the-loop and fully automatic modes.
In human-in-the-loop mode, we have a hyperparameter δ, which is a small positive value that allows aadv

p
′ to trade slightly

lower similarity than the aadv
p for ensuring coherent and consistent adversarial abstracts. We subjectively pick δ to be a small

value (around 0.01) without systematic tuning.

K.2. The INSERTKEYWORDS Algorithm

Algorithm 2 formalizes the INSERTKEYWORDS operation, and it also shows both human-in-the-loop and fully automatic
modes. We present FINDKEYWORDS subroutine separately.

The difference between the human-in-the-loop and fully automatic modes lie in how the keywords are inserted. In the
human-in-the-loop mode, the human adds the keywords into aadv

p one by one, creating up to five drafts of different ways to
add each keyword. Since manually enforcing coherence and consistency constraints greatly limits where each keyword can
be inserted in aadv

p , we find that taking the maximum of multiple drafts is helpful because the similarity can be sensitive. In
the fully automatic mode, LLM inserts a whole batch of keywords each time, and the LLM is prompted to be coherent and
consistent without human supervision.

In Algorithm 3, we propose the FINDKEYWORDS subroutine, which is a greedy search to find keywords that when inserted
into aadv

p raise the similarity to the Qadv
r . To make this search efficient, we narrow down keywords by a heuristic that

measures the increase in similarity upon appending the word to the current aadv
p . This is just a simple attack strategy that

uses the openly available SPECTER weights—more sophisticated attacks are possible, but our simple heuristics are already
extremely successful at breaking current systems.
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Algorithm 1 INCLUDETHEMES Operation
Input: tp (the title of p), aadv

p (the adversarial abstract from INCLUDETHEMES), and Qadv
r (the adversarial

archive of reviewer r)
Output: aadv

p , an adversarial abstract that increases similarity to r by adding keywords from Qadv
r .

1: function INCLUDETHEMES(tp, ap, Qadv
r )

2: aadv
p

(0) ← ap
3: for i = 1, . . . ,N do
4: if Early stopping is used and EarlyStoppingCheck(aadv

p
(i−1),Qadv

r ) then
5: return aadv

p
(i−1)

6: end if
7: if mode == human-in-the-loop then
8: aadv

p ←A modified abstract including the main themes from Qadv
r into the original abstract ap. The human

author can modify the abstract to add themes from Qadv
r or add manual edits to the an LLM-generated

version (prompt in Appendix J).
9: repeat {Make incremental edits to aadv

p .}
10: aadv

p
′ ← A draft with manual edits on aadv

p towards being consistent and coherent.
11: if SimilarityCheck(tp,aadv

p
′,aadv

p ,Qadv
r ,δ) is true then

12: aadv
p ← aadv

p
′ {Update aadv

p if the similarity after edits do not drop dramatically.}
13: end if
14: until ConstraintCheck(aadv

p ) is true
15: else {fully automatic mode}
16: aadv

p ←An LLM generated adversarial abstract that includes themes from Qadv
r into the original abstract ap.

To reduce nonsensical abstract generations, we prompt the LLM to follow a format – the generated
abstract should say it takes inspiration from ideas in Qadv

r in one sentence (Appendix J).
17: end if
18: aadv

p
(i) ← aadv

p

19: end for
20: return aadv

p
(j) ∈ argmaxi∈[N ] s((tp, a

adv
p

(i)
), Qadv

r ) of all i = 0, . . . ,N
21: end function
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Algorithm 2 INSERTKEYWORDS Operation
Input: tp (the title of p), aadv

p (the adversarial abstract from INCLUDETHEMES), and Qadv
r (the adversarial

archive of reviewer r)
Output: aadv

p , an adversarial abstract that increases similarity to r by adding keywords from Qadv
r .

1: function INSERTKEYWORDS(tp, aadv
p , Qadv

r )

2: aadv
p

(0) ← aadv
p

3: for i = 1, . . . ,M do
4: if Early stopping is used and EarlyStoppingCheck(aadv

p
(i−1),Qadv

r ) then
5: return aadv

p
(i−1)

6: end if
7: keywords← FINDKEYWORDS(tp, aadv

p , Qadv
r , K)

8: if mode == human-in-the-loop then
9: for each word w in keywords do

10: repeat
11: aadv

p
′ ← A new draft with one way w can be inserted into aadv

p .
12: if ConstraintCheck(aadv

p
′) is true and SimilarityCheck(tp,aadv

p
′,aadv

p ,Qadv
r ,0) is true then

13: aadv
p ← aadv

p
′

14: end if
15: until Up to five drafts aadv

p
′ have been generated for inserting w

16: end for
17: else {fully automatic mode.}
18: aadv

p ← Adversarial abstract generated by LLM to incorporate all keywords into the current aadv
p . The LLM is

prompted to leave out any keywords it considers too technical and unrelated to the main topics in aadv
p

(the prompt can be found in Appendix J).
19: end if
20: aadv

p
(i) ← aadv

p

21: end for
22: return aadv

p
(i) that has highest s((tp, aadv

p
(i)
), Qadv

r )
23: end function
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Algorithm 3 FINDKEYWORDS subroutine
Input: Paper title tp, adversarial abstract from INCLUDETHEMES aadv

p , adversarial archive Qadv
r , K (number of

keywords to return), and optionally FILTER(·) (a function to filter out undesirable keywords)
Output: Up to K keywords greedily selected to maximize the SPECTER similarity to aadv

p when the keywords are
inserted into the abstract.

1: function FINDKEYWORDS(tp, aadv
p , Qadv

r ,K)
2: W ← All words in titles and abstracts from Qadv

r .
3: W ← FILTER(W ) {Optionally filter out certain words, e.g. numbers}
4: keywords← [] {Keeps track of the keywords}
5: keywordsSimilarity← s((tp, a

adv
p ), Qadv

r ) {Keeps track of estimated similarity to r}
6: for i = 0, . . . ,K − 1 do {Iteratively select up to K keywords}
7: for each word wj in W do {Simulate real modified abstracts with different wj added}
8: aadv

p
(j) ← adversarial abstract with words appended at the end “{aadv

p } {w
(0)
max} ...

{w(i−1)
max } {wj}”.

9: end for
10: Let w(i)

max be a word wj such that the associated s((tp, a
adv
p

(j)
), Qadv

r ) is the highest in W .

11: if max
j

s((tp, a
adv
p

(j)
), Qadv

r ) < keywordsSimilarity then {Stop if similarity does not increase}
12: break
13: end if
14: keywords.append(w(i)

max) {Add w
(i)
max as a new keyword}

15: keywordsSimilarity← max
j

s((tp, a
adv
p

(j)
), Qadv

r ) {Update estimated similarity with w
(i)
max added}

16: end for
17: return keywords
18: end function
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