Exposing flaws of generative model evaluation metrics
and their unfair treatment of diffusion models
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Abstract

We systematically study a wide variety of generative models spanning semantically-
diverse image datasets to understand and improve the feature extractors and metrics
used to evaluate them. Using best practices in psychophysics, we measure human
perception of image realism for generated samples by conducting the largest
experiment evaluating generative models to date, and find that no existing metric
strongly correlates with human evaluations. Comparing to 17 modern metrics for
evaluating the overall performance, fidelity, diversity, rarity, and memorization of
generative models, we find that the state-of-the-art perceptual realism of diffusion
models as judged by humans is not reflected in commonly reported metrics such as
FID. This discrepancy is not explained by diversity in generated samples, though
one cause is over-reliance on Inception-V3. We address these flaws through
a study of alternative self-supervised feature extractors, find that the semantic
information encoded by individual networks strongly depends on their training
procedure, and show that DINOv2-ViT-L/14 allows for much richer evaluation
of generative models. Next, we investigate data memorization, and find that
generative models do memorize training examples on simple, smaller datasets like
CIFARI10, but not necessarily on more complex datasets like ImageNet. However,
our experiments show that current metrics do not properly detect memorization:
none in the literature is able to separate memorization from other phenomena
such as underfitting or mode shrinkage. To facilitate further development of
generative models and their evaluation we release all generated image datasets,
human evaluation data, and a modular library to compute 17 common metrics for 9
different encoders at https://github.com/layer6ai-labs/dgm-eval,

1 Introduction

The capability of modern generative models to synthesize fake images that are seemingly indistin-
guishable from real samples has resulted in much public interest [90, [89, 94]]. While the evaluation
of such models has a longstanding history [[10} [11]], the unprecedented fidelity of modern synthetic
images (e.g. [25| 93]]) raises the question of whether the current tools in use by researchers are
sufficient to measure the extent to which these models have truly learned the ground truth distribution,
and whether striving to achieve state-of-the-art performance on current metric leaderboards provides
optimal targets to drive further algorithmic progress.

Evaluating a single generated image is straightforward, since humans can act as the “ground truth”
for determining realism. Evaluating the quality of a model as a whole is much more difficult. Beyond
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Figure 1: An illustration of learned distributions and samples (orange, crosses) having different
properties with respect to the true distribution and training set (blue, squares). Italicized text indicates
metrics that purport to detect these properties.

quantifying to what extent images resemble those from the training set (fidelity), we must determine
how well the generated samples span the full training distribution (diversity), and whether they are
truly novel or are simply reproductions of training samples (memorization), as illustrated in Figure [I]
An ideal generative model will synthesize high fidelity and diverse samples without memorizing the
training set (the latter becoming a prominent concern for models trained on unlicensed data [T01D).
Researchers are well-practiced in ranking generative models by metrics such as the Fréchet Inception
distance (FID) [48]], Inception score (IS) [96], and many others [8|[76} 53, 01]] which group fidelity
and diversity into a single value without a clear tradeoff. Other popular diagnostic metrics separate
sample quality from diversity such as precision/recall [95} [64] and density/coverage [75]. However,
relating such metrics to human evaluation of image quality is not straightforward [120].

These metrics generally follow a two-step design: extract a lower-dimensional representation of each
image, then calculate a notion of distance between true and generated samples in this space. The goal
of the representation extractor, or encoder, is to embed images into a representation space that has a
generalized perceptual relevance across the span of natural images. The implicit assumption in the
de-facto use of the (pool3, 2048 dimensional) Inception-V3 network trained for ImageNetlk
[23] classification is that it provides such a space. Yet major concerns have been raised: it has been
shown to be agnostic to features unrelated to the 1k classes of ImageNet [63]], ImageNet classifiers in
general are biased towards texture over shape [36), [47]], and many other criticisms [120, [82}, [72] [7].

Obvious choices for more universally applicable representation spaces are modern self-supervised
learning (SSL) models trained on large and diverse datasets, as they have proven to extract
representations that excel at a number of generalized downstream tasks [19} 14} (15187144, [80].
While initial studies of a few self-supervised encoders reported that representations from these
networks can produce more adequate rankings for generative adversarial networks (GANSs) [38] on
non-ImageNet domains [7], it is an open question as to which SSL methods and families provide
the best perceptual representation space for evaluating natural images more generally. For example,
SSL methods based on contrastive learning strategies utilizing strong augmentations tend to learn
features that are more invariant to those augmentations [30]. Thus, while the criteria for choosing
an SSL encoder for classification tasks is straightforward — choose one that achieves strong linear
classification accuracy — it is not clear that such a model will extract a general representation for
generative evaluation rather than one that over-relies on object-based semantic information.

Understanding the interdependence of evaluation metrics, representation extractors, and their relation
to human evaluation of generated images requires a large scale study of each component across a
diverse set of datasets. Here we select 41 state-of-the-art generative models spanning diffusion models
[100], GANS, variational autoencoders (VAEs) [60], normalizing flows [92], 26]], transformer-based
models [9]], and consistency models [102]], and generate 4.1M images to provide such a study:

Human evaluation We designed and funded extensive human subject experiments to establish a
robust baseline for generated image fidelity, and find that (i) no current metric strongly correlates
with human evaluators, and that (i¢) diffusion models significantly outperform GANSs and all other
generative techniques at producing images that are indistinguishable from training data.

Self-supervised representations and evaluation metrics We show that (i:i) the Fréchet distance,
kernel distance (KD) [8]], precision, and density calculated with the Inception-V3 network do not
correlate well with human evaluation. We then investigate the semantic information distilled from
self-supervised methods spanning a wide variety of families, showing that (iv) the perceptual qualities



of their representation spaces can strongly depend on training procedure and architecture, that (v)
supervised networks do not provide a perceptual space that generalizes well for image evaluation,
and that (vi) replacing Inception-V3 with DINOv2 ViT-L/14 [80]] solves the discrepancy with human
evaluators while the previously proposed SWAV and CLIP-B/32 replacements [[/2,[7] are sub-optimal.

Diversity, rarity, and memorization By leveraging the recently proposed Vendi [33]] and rarity [42]
scores, we show that (vii) the discrepancy between human evaluators and FID is not due to models
trading off fidelity for diversity, nor to human evaluators assessing rare images as fake. We see these
results as evidence that human error rate is a sensible “ground truth” to align FD metrics with. Finally,
we answer the question: are the best performing models according to our DINOv2-based metrics
memorizing their training data? In doing so, we (vii7) find clear evidence of memorized samples
across models, particularly on CIFAR10, and show that current memorization metrics and tests fail to
capture this [[70, [1]].

Summary Our multifaceted investigation of generative evaluation shows that diffusion models
are unfairly punished by the Inception network: they synthesize more realistic images as judged
by humans and their diversity more closely resembles the training data, yet are consistently ranked
worse than GANs on metrics computed with Inception-V3. While FID is already known to have
shortcomings, we advocate for a complete replacement of Inception-V3 in all evaluation metrics of
images, and show that DINOv2-ViT-L/14 allows for much richer evaluation of generative models.

2 Datasets, metrics, and encoders

Generated datasets We investigate a wide range of generative models trained on a diverse set
of image datasets (CIFARI10 [61]], ImageNetlk [23], FFHQ [58], LSUN-Bedroom [115]]) using
a variety of generative techniques (diffusion, GAN, VAE, normalizing flow, Transformer-based,
consistency). For each dataset we include current state-of-the-art models as ranked by FID, as well
as models spanning different generative procedures. We include 13, 11, 9, and 8 models for the
respective datasets listed above, for a total of 41 generated datasets. To decouple the effects of model
architecture/training procedure from the training data used, we focus only on generative models that
did not include any data external to the respective dataset during training. Models for ImageNet1k,
FFHQ, and LSUN-bedroom were trained at a resolution of 256 x256. We chose to generate 100k
images from each model, with an equal number of images per-class for class conditional models, and
used the checkpoints and hyperparameters that achieved the lowest FID for each model; Appendix [A]
details the full generation procedure. In total we assess each generative model across 17 metrics. We
group the metrics by category here and provide full definitions in Appendix B}

Metrics for ranking generative models We include the well-known FID [48]], which computes the
Fréchet distance (FD) between sets of 50k real and generated samples in the representation space
of the Inception-V3 network. We study FD in several alternative representation spaces, and refer
to these by the model used to extract the representation from each image, e.g. FD¢p p. We include
alternatives to the FID such as the spatial FID (sFID) [76], FID, [22], IS [96], kernel Inception
distance (KID) [8]], and the feature likelihood score (FLS) [53]].

Metrics for diagnosing fidelity, diversity, rarity, or memorization As proxies for sample fidelity
we consider precision [95}164] and density [75]], while our human evaluation baseline, human error
rate, provides a direct measurement of fidelity. To quantify sample diversity we consider recall
[95164] and coverage [[75]], and for sample rarity we consider the rarity score [42]. To study inter- vs.
intra-class diversity for class-conditional image generation we utilize the Vendi score [33]]. While
recall and coverage can also be determined per class, the small number of generated samples available
for each class (e.g. 100 for each ImageNet class) results in difficulty constructing robust nearest-
neighbour-based estimates. We also investigate a form of overfitting that we term memorization, in
which models memorize individual images from their training data and emit them at generation time.
We perform a direct check for pixel-wise memorization for each generative model for each of our
datasets and report this value as the memorization ratio in Section[5.2] We include automated metrics
which claim to isolate memorization from the effects of overfitting or mode collapse: the percentage
of authentic samples [1], Cr score [70], and the percentage of overfit Gaussians from FLS [53]].

Representation spaces for generative evaluation With the aim of finding a more general perceptual
representation space across the span of natural images, we employ a number of alternative encoders
beyond the standard Inception-V3 [[103] trained for supervised classification on ImageNet. First, as a



more modern supervised benchmark we use a ConvNeXt-large architecture trained on ImageNet22k
[67], a larger dataset with more classes. We also include a number of self-supervised feature
extractors as alternatives to supervised learners. While such networks have proven to be useful for
concurrent vision tasks including classification, object-detection, and segmentation [[14} 119} 15], it
remains an open question as to how the objective and augmentations used for training affect the
representation space for generative evaluation. Thus we include seven self-supervised methods from
a variety of families [4]] — contrastive (SimCLRv2 [19]), self-distillation (DINOv2 [80Q]), canonical
correlation analysis (SWAV [14]]), masked image modelling (MAE [44] and data2vec [3]]), and
language-image (CLIP [87], using the OpenCLIP implementation [51] trained on DataComp-1B
[35]). We also consider DreamSim [34], an ensemble of three self-supervised models (DINO [15]],
CLIP, and OpenCLIP) that have each been fine-tuned to better align with human perception of image
similarity using a dataset of human similarity judgments over image pairs. We design experiments to
qualitatively and quantitatively understand their respective feature spaces.

For CNN-based models we use the ResNet50 [45] architecture while for vision transformers (ViT)
[28] we use ViT-L/14 as we found it provides a good tradeoff between representation quality and
computation cost. For both we select weights that were trained with the dataset and hyperparameters
that achieved the highest linear classification on ImageNet. Full details are in Appendix [B.4]

3 Human evaluation of generated data

The goal of our human subject experiments is to establish a large-scale, scientifically grounded
baseline for image generation fidelity. Our experiments specifically target image realism, not the
diversity of a model’s learned distribution, nor whether samples are memorized, as realism is
unequivocally a property for which humans can provide “ground truth”. We find that the vast majority
of models tested per dataset can be separated in terms of their realism with statistical significance, thus
providing a clear ranking which can be compared to calculated metrics like FID. To our knowledge,
this is the largest human subject experiment on the evaluation of generative models performed to date,
with over 1000 paid participants, and 207k individual responses collected.

Experimental design We evaluated human perception of generated image realism for each of the 41
models across 4 datasets described in Section[2] Our experimental design was informed by experts
and best practices in psychophysics, the study of the human perceptual system. It follows the design
of experiments for the HYPE, metric [120], with several modifications to increase the quality of
collected data and expand the scope of models and datasets tested. Each trial is a two alternative
forced choice task where a participant is shown either a generated image from one model, or an
image from the training dataset, and must choose if it is real or fake. Models were evaluated based on
human error rate [[120], the fraction of images which were incorrectly classified. This is a simple
metric with the intuition that models with better fidelity produce images that are more difficult to
distinguish from real images. We take human perceptions of image realism as ground truth, noting
the expansive efforts of the community to generate images that appear photo-realistic to humans, and
will be used by humans. Full design details are provided in Appendix [C|

Concurrent work has also targeted human perceptual benchmarks for image synthesis on a smaller
subset of GAN and diffusion models [114] with 10 times fewer participants. While we are excited to
see human benchmarks gaining popularity, we note a number of concerns with their methods and
thus downstream conclusions. Specifically, observers had no training period nor knowledge of the
training set, and were tasked to judge whether images were “photo-realistic”. We believe this task
contains much more ambiguity than our two alternative forced choice assessment, and introduces
various response biases into participants’ judgments. In their second user study, observers were asked
to evaluate the relative realism of sets of images. This task is difficult to evaluate because participants
can use a single image in the set to guide their decision for the entire set.

Results and analysis The main results of our experiments are shown in Figure[2] We plot the mean
human error rate along with standard error for each model, and sort models on the z-axis by their
FID (lower is better). If FID correlated well with human perception of fidelity, each plot would have
a monotonically increasing trend, but this does not appear to hold. By inspection, the models with
highest fidelity are almost always diffusion models, although GAN models often have lower FID. We
find similar results for alternatives to the FID score in Appendix [D.1]
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Figure 2: Human error rate on models ranked by FID. Data is displayed as the mean across participants
with error bars showing the unbiased standard error.

To formally assess the relative performance of different model types, we separate participants’ mean
error rate into four one-way analyses of variance (ANOVA) — one per dataset — with model type (e.g.
GAN, diffusion) as a between-subjects variable. We also performed planned comparisons between
model types to probe omnibus effects. Analysis revealed effects of model type in all four ANOVA:s,
indicating significant differences between model types’ effect on human error rate (all F’s > 12.09,
all p’s < 0.001 [77]). Post hoc comparisons of mean error rate between model types using Bonferroni
correction are shown in Table[I] where > indicates a significant difference, = indicates no significant
difference, and model type is listed in order of descending mean error rate. Diffusion models were a
clear standout for all datasets except FFHQ, where they performed on par with other model types
(noting that only GANs appeared in more than one experiment on FFHQ). Coupling the results in
Table [T] with the FID rankings in Figure 2] we conclude that current diffusion models produce the
most realistic images according to human perception, but are downranked by FID.

4 Improved representation spaces for generative evaluation

4.1 Qualitative examination of perceptual spaces

To qualitatively visualize what parts of
an image the Fréchet distance “perceives”,
we follow the gradient based visualization  pagaset  Error rate ranking
technique of [63]], which focused on FID. -
Here we adapt and apply it to each of our ~ CIFARIO Diff. > GAN > VAE = > Flow

CNN and ViT encoders. For CNN encoders ~ ImageNet Diff. > Transf. = GAN )

our method is identical, while for ViTs we =~ LSUN  Diff. > Transf. = GAN = Consistency
use the Grad-CAM variation introduced by ~ FFHQ  GAN = Diff. = Transf. > VAE

[37]. Experimental details can be found in

Appendix [D.2.1] Figure[3]shows two visualized samples from each high-resolution dataset. We find
qualitative differences between CNN and ViT architectures — ViTs have a more global receptive
field [88] — but also find starkly different characteristics between supervised and self-supervised
models. In agreement with [63], regions deemed important by Inception are far from optimal for
datasets outside of the ImageNet domain. For FFHQ the important features according to Inception
are typically not part of the person’s face, while for LSUN-Bedroom the focus is on a single object
in the scene; features simply correspond with the Inception model’s top-1 class prediction. We find
that Inception does not perceive a holistic view of images even on its ImageNet training set, and
see similar characteristics for ConvNeXt, indicating that such glaring issues are not mitigated by
supervised training on more modern architectures, larger datasets, nor a larger numbers of classes.

Table 1: Model types ranked by human error rate.

Meanwhile SWAV and SimCLR often ignore important features, with SwAV exhibiting the strongest
overlap with the classification networks. CLIP puts a large focus on the few main objects of an
image — typically the main facial features (lips, eyes, etc.) or objects (beds) — which we presume is
an outcome of the language-image pretext arising from image captions that do not describe texture
or finer details of the image. DINOv2 usually focuses on the image structure as a whole while still
identifying objects of importance. We argue that this is closer to the behaviour we would hope to
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Figure 3: Heatmaps visualizing what the Fréchet distance “perceives” for each encoder. The sign of
the heatmap is given by the activations of the saliency layer that is visualized and does not reflect
the sign of the gradient w.r.t. the FD — both bright yellow and deep blue can thus show an encoder’s
focus. Additional examples are shown in Appendix [D.2.T}

have from an encoder meant to evaluate images, as it emphasizes the important objects while still
being able to pick up on elements elsewhere. MAE and data2vec, both trained using masked image
modelling, have a widespread focus on textures and shapes, with an often smaller importance for the
semantic information related to the main object. We exclude DreamSim from this analysis as it is not
straightforward to use Grad-CAM on its output, which is the concatenation of the output of multiple
encoders. Appendix [D.2.2]includes quantitative analyses, finding that masked models put more
weight towards low-level image features rather than clustering classes by object semantics, while
others (CLIP in particular) distill a more object-focused representation space — both in alignment
with the qualitative analysis shown here.

In summary, we conclude that the representation spaces of self-supervised methods are more ap-
propriate for generative evaluation than supervised approaches, and that self-distillation (DINOv2)
provides the best balance between focusing on important objects and holistic image structure.

4.2 The (mis)alignment of evaluation metrics and human assessment

In conjunction with our human evaluation baseline, we evaluated the 17 ranking and diagnostic
metrics outlined in Section 2|for each encoder and generated dataset. Figure[d](top) shows the relation
of human error rate with FD and precision. We investigate diversity further in the following section.
We include the correlation of 7 common metrics and human error rate (bottom, best viewed while
zoomed in). Note that across encoders, FD, FD,, and KD are very highly correlated, resulting in
essentially the same model rankings. This suggests that all these metrics provide sensible ways of
quantifying distances between probability distributions, provided a good encoder is chosen. Overall,
we find that despite some sample complexity issues, the FD metric — when paired with an appropriate
encoder — provides a strong way of evaluating generative models, see Appendix [D.3|for details.

We find no strong correlation between human evaluation and any common metrics computed in the
Inception representation space outside of the simplistic CIFAR10 dataset, showing that Inception fails
to encode perceptually relevant features for the larger, more diverse, and complex datasets that are
the testbeds driving advancement of generative model development. In agreement with the previous
section we find relatively poor performance of the SwWAV model, which was proposed as an alternative
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Figure 4: Top: Fréchet distance, precision, and human error rate for each generative model as
measured by different encoders (columns) on different datasets (rows). Marker styles denote different
generative techniques. Panels with a shaded background do not have strong (|r| > 0.5) and significant
(p < 0.05) correlations between FD and human error rate. Bottom: Pearson correlation of metrics
over the three high-resolution datasets.

to the Inception model in (in Appendix [B.4.1| we also show poor alignment with a smaller
CLIP-B/32 model investigated in a number of toy examples in [7]]). CLIP VIT-L/14, DINOv2, and
MAE display far greater alignment with the human experiment baseline, as does DreamSim, except
on ImageNet — which we believe to be a particularly important dataset, as it is the most complex one
being considered here, and it is thus used to train the most realistic models. Note that large precision
values (which aims to quantify fidelity) do not consistently correspond to high human error rate, even
for encoders whose FD strongly correlates with human evaluation: precision is thus likely measuring
more than just fidelity, and FD should be preferred over it. We include analogous results for recall in
Appendix [D.T] showing that it does not only capture diversity.

We find that diffusion models are often driving the discrepancy in alignment with human evaluation
for the Inception network: FID prefers GANs over diffusion while FD determined by self-supervised
models trained on very large and diverse datasets does not. This discrepancy does not only occur on
non-ImageNet benchmarks, as previous works have shown for GANs, but is also true on ImageNet.

5 Alternative explanations: diversity, rarity, and memorization

We have found that FID does not correlate with human error rate, and have shown that replacing the
Inception-V3 network with an SSL encoder such as DINOv2-ViT-L/14 both recovers the correlation
of FD with human error rate, and results in a metric which qualitatively focuses on the more relevant
parts of images. While these are very promising characteristics for an evaluation metric, alternative
explanations need to be ruled out before such a metric can be confidently adopted as a community
standard. In this section we first verify that the lack of correlation between FID and human error rate
is not due to models with large human error rates lacking diversity, nor to humans wrongly classifying
rare real images as fake. This justifies our use of human error rate as “ground truth” for fidelity, and
confirms that a lack of alignment with human error rate is a flaw of the encoder/metric pair. Then, we
investigate whether the best performing generative models are memorizing their training data.
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Figure 5: Left: Per-class Vendi scores of ImageNet models, in decreasing order of FDpoy2 score.
Right: FDpnov2 on ImageNet, coloured by average per-class Vendi score (white corresponds to the
train dataset).

5.1 Diversity and rarity

Diversity FD-based metrics combine both fidelity and diversity into a single score, whereas human
evaluation focuses only on the former. We must thus independently measure model diversity in order
to confirm whether the lack of strong correlation between FID and human evaluation is due to the
FID score being flawed as an evaluation metric which focuses on fidelity, or if the discrepancy can
simply be explained by high fidelity models having worse diversity. To decide between these two
alternatives we explore the extent to which FDpnoyv2 and FID align with diversity measures.

Our diversity analysis focuses on the Vendi DXL 2 guded DITXL2
score [33]]. We justify this choice in Appendix 3
[D-4] and verify that the Vendi score meaning-
fully quantifies diversity locally, but the same
is not true globally. For example, Figure [6|dis-
plays samples from a DiT model on ImageNet
with and without strong classifier-free guidance
(cfg=4 and 1.5, respectively; we refer to the for-
mer model as DiT-guided), where it is evident

that DiT-guided exhibits much lower per-class Figure 6: DiT-guided and DiT samples, labelled

semantic diversity. Yet, Appendix [D.4] shows _ . ) : .
that the overall Vendi score is higher for DiT- with per-class Vendi scores using DINOv2.

guided for almost all choices of encoders, while per-class Vendi scores are consistently lower for
DiT-guided across encoders. These results justify the use of the per-class Vendi score as a sensible
diversity metric; the overall Vendi score is mostly measuring inter-class diversity — which is not
particularly meaningful for class-conditional models such as the ones commonly used on ImageNet
— whereas the per-class scores focus on intra-class diversity consistently across encoders, and thus
provide a more meaningful quantification of semantic diversity.

Equipped with the per-class Vendi scores, we evaluate the diversity of ImageNet models using the
DINOV2 encoder in Figure [5] (left), where we can see that differences in diversity do not explain
discrepancies between FID and human evaluations. For example, GigaGAN has diversity scores
which are much farther away from those of the training data than most diffusion models, yet achieves
a better FID (Figure [2)). We see this as strong evidence of a limitation of the use of the Inception
network to measure fidelity with FID. We perform the same analysis using the FD metric with the
DINOV2 encoder in Figure [5] (right): this evaluation metric is not only much more correlated to
human evaluators, but diversity also better explains the few discrepancies between the two, e.g. the
lack of diversity in DiT-guided results in a worse FDpinov2 score than DiT despite having a better
human error rate. Nonetheless, we highlight that the FDpnov2 score emphasizes fidelity more than it
does diversity (e.g. the DiT-guided model still obtains a very strong score).

Rarity To ensure that participants are not confusing “unrealism” with “unlikeliness” and assessing
rare images as fake — which would result in more diverse generative models ranking worse on human
error rate — we investigated whether the human error rate on each real image (individual images
were evaluated by an average of 13 humans) was correlated with the image’s “rarity score” [42].
Experiments are detailed in Appendix [D.4] which show that human evaluators are nor confusing



“unrealism” with “unlikeliness”, and thus human error rate is a sensible ground truth for image fidelity.
Combined with the diversity analysis above, this rules out diversity as an alternative explanation for
the lack of alignment between human assessment and FID, and proves that alignment of FD metrics
with human error rate is a desirable property for the studied generative models.

5.2 Memorization

Recent works have shown that diffusion models are particularly prone to memorization issues, in
which models memorize individual images from their training data and emit them at generation time.
Memorized samples may be near-pixel-wise identical, or semantically equivalent to their source
object while differing in terms of pixel-wise identity, the latter termed reconstructive memory [101].
Both predominantly occur either when the training set is small [[13] or when there are a number
of duplicate training samples [[101]. While it has been shown that diffusion and GAN models can
memorize CIFAR10 samples [[101] — a dataset that contains many duplicates [[6] — to our knowledge
it is currently unknown whether this occurs on larger, more diverse, and higher resolution datasets
such as ImageNet, FFHQ, or LSUN-Bedroom, and whether this affects any of the metrics we report.
We set out to investigate this here.

Our experiments (refer to Appendix [D.6) suggest that the larger datasets (e.g. ImageNet) are not
memorized by even the largest models we considered. This indicates that the models that are measured
as superior in DINOV2 space are not capitalizing on memorization of the training data.

Collecting memorized samples We perform a direct check for pixel-wise memorization for each of
the 100k images from each of our 41 generative models using the calibrated [, distance proposed
in [13]]. We find strong evidence on CIFAR10 that most generative models exhibit exact memory
and showcase a set of memorized samples in Figure[7] We also report the memorization ratio of
all models — the proportion of generated samples that match source samples in the training set — to
illustrate degrees of exact memorization across different models. We found no conclusive evidence of
pixel-wise memorization by any model on ImageNet, FFHQ, or LSUN-Bedroom, but found evidence
of models exhibiting reconstructive memory on ImageNet and LSUN-Bedroom [101]. We find that
less than 0.5% of DiT-XL-2 images exhibit close reconstructive memory. Although reconstructive
memory on complex datasets is not necessarily a major concern, we recommend monitoring the
memorization ratio, especially as models become more powerful and pixel-wise memorization
becomes more likely. We include examples in Figure[/| (left) and additional visualizations and details
in Appendix[D.6] We note that our study was not explicitly designed to detect a more “copy-paste”
approach wherein models memorize aspects of different training images and combine them when
sampling, and thus we cannot rule out all forms of memorization. We leave such investigations for
future work.

Evaluating memorization metrics We evaluate the main memorization metrics in the literature
in light of the memorized CIFAR10 samples we uncovered: the percentage of authentic samples
(AuthPct) [1]], the C7 score [[70]], and the percentage of overfit Gaussians in FLS (FLS-POG) [53]].
We first measure each metric’s sensitivity to memorization in a controlled experiment, where we
sample from the approximate posterior at different depths of a VDVAE’s [21] hierarchical structure
to generate a collection of synthetic datasets that serve as increasingly less faithful reconstructions of
the training set. Appendix[D.6.1]contains the full description and results, and establishes that AuthPct,
the C1 score, and FLS-POG are sensitive to memorization in an ideal scenario where all samples
become increasingly memorized. In Figure 7| (right) we investigate whether these automated metrics
can differentiate models in practice, based on their measured CIFAR10 memorization ratios. Here we
used the DINOV2 representation space, while results for other encoders are shown in Appendix [D.6.2]
For most encoders, the C't score trends in the correct direction, whereas AuthPct and FLS-POG trend
inconsistently and fail to differentiate between models with different numbers of memorized samples.

By swapping the training set with a fest set that the model cannot possibly memorize, we check
whether memorization metrics are sensitive to confounding properties other than memorization, such
as fidelity or mode collapse. This experiment is not possible for FLS-POG as it does not use the
training set, and for the C'1 score we split the test set into two as it is already used. The results for
Cr and AuthPct on test data are depicted with low opacity in Figure[7] (right). Surprisingly, in both
cases the results against the test set closely follow those against the training set, meaning that the Cp
score and AuthPct are dominated by some property other than memorization. Based on our analysis
in Appendix we postulate that these metrics focus more on mode shrinkage and image fidelity
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Figure 7: Left: Generated samples on top with matched training samples on the bottom showcasing
exact memorization on CIFAR10 and reconstructive memorization on ImageNet and LSUN-Bedroom.
Right: CIFAR10 models plotted by memorization ratio vs. metric. Memorization metrics against the
test set instead of the training set are shown with low opacity.

(see Figure[T), respectively. From this analysis, we note that modifying the C'r score by swapping
the roles of the training and generated datasets makes it insensitive to mode collapse. We include this
modification of the C score in Figure[7] (right).

In conclusion, we find that none of AuthPct, the Cr score, or FLS-POG is a reliable metric for
memorization. FLS-POG correlates poorly with our estimates of the percentage of memorized
samples, while the C'r score and AuthPct detect mode shrinking and image fidelity more than
memorization. The reason behind these deficiencies is left to future work. Concurrent work
shows that in high dimensions moving the support of a distribution can drastically change precision
and recall (measured using k-nearest neighbors), and the observed phenomenon here might have
a similar cause. Our recommended modification to the C'p score improves on the C score and
AuthPct, but still does not correlate well with the memorization ratio. Instead of using these metrics,
we recommend researchers directly search for and collect memorized images using the calibrated
lo-distance as described above, even though it is labour-intensive and requires tuning.

6 Conclusions

We carried out the largest and most comprehensive assessment of generative model evaluation metrics
to date. We found that currently prevalent metrics such as FID are not strongly predictive of human
error rate, and that diffusion models achieve a higher human error rate than their GAN counterparts,
yet often are ranked worse according to FID. Our multiple investigations show that this discrepancy
is not caused by model diversity, nor by humans assessing rare but real images as fake. Together,
these findings imply that the differences between FID and human assessment are unfairly punitive
towards diffusion models (in terms of assessing fidelity). We also showed that these deficiencies can
be mostly addressed by replacing the Inception encoder by DINOv2 ViT-L/14. We include a table
with the FDpnov2 score and many other metrics for all the models we considered in Appendix |E|,
which we hope will be useful as an updated leaderboard of model performance. Finally, FD-based
metrics are not designed to detect memorization, and we show that except on CIFAR10, the best
performing models in terms of FDpiNoy2 are not memorizing their training data. In doing so, we also
found that while the calibrated /o distance proposed in is a reliable way to identify memorized
samples, other metrics to detect memorization are not ideal. We thus advocate for work proposing new
generative models to report the ratio of memorized samples using the calibrated [, metric alongside
metrics computed with DINOv2-ViT-L/14. Because it requires tuning, finding more automated
metrics that reliably detect memorization will be a productive avenue for future research.
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Broader impact While we do not develop or release any generative models in this work, our work
can be used to improve the quality of generative models in the future. Such generative models, despite
having a number of beneficial uses, have the potential to be used for negative applications such as the
generation of deepfakes. We note that all generative models, encoders, and datasets explored in this
work are already publicly available assets.

Limitations We take human perceptions of image realism as a ground truth for measuring image
fidelity, noting the expansive efforts of the community to generate images that appear photo-realistic
to humans, and will be used by humans. But, for certain generative applications, such as the use of
generative models as augmentations to improve performance of classifiers [2], humans are not always
the end users. In this case the end user is the downstream classifier, and models that achieve the best
FDpinov2 score may not directly translate to optimal improvements in downstream classification.
Additionally, while the image datasets (and hence generative models) in our study were chosen to span
a wide range of natural images, they were all 3-channel RGB format of human-identifiable objects. It
is an open question whether our proposed methods of evaluating generative models translate to e.g.
medical images or astronomical images, which are also RGB, or more broadly to scientific data of
N-dimensions.

Compute Experiments were conducted without a requirement for significant computational re-
sources. Generating datasets was performed either on NVIDIA Titan V GPUs with 12GB of RAM
or a small local cluster, and required a total of ~1100 hours of GPU time, a significant fraction of
which was spent generating images from the DiT and LDM models. The analysis was conducted
on NVIDIA Titan V GPUs with 12GB of RAM, and computing all metrics for each encoder and
generative model required ~48 hours on a single GPU.

Assets and code As stated in the main text, to facilitate further development of generative models
and their evaluation we have prepared a public release of all generated image datasets, human
evaluation data, and a modular library to compute 17 common metrics for 9 different encoders at
https://github.com/layer6ai-labs/dgm-eval. We provide detailed descriptions and links
to the public generative models, metrics, and encoders used in Appendices[A]and [B]

A Generated datasets

For each generative model across the four datasets studied in this work we generated 100,000 images,
unless otherwise stated. For class-conditional models we generated an equal number of samples from
each class — 10,000 per class for CIFAR10 and 100 per class for ImageNet. We chose the checkpoints
and set parameters (if applicable) to the ones that achieved the lowest FID as stated in the paper, or
on the project’s github if not otherwise stated. For GANs we set truncation=1.0 throughout, and for
class-conditional diffusion models we set the guidance parameter to the reported values. To validate
that our set of images for each model was generated correctly we compare the FID calculated with our
code (using 50k samples) to the reported value in the paper or in the code release. Any discrepancies
were investigated by contacting the authors or raising issues on the project github.

When downsampling images from their native sizes to the ones used in this work we note that
significant differences in FID can result from different choices of interpolation methods. As such,
we report the interpolation techniques we used to downsample ImageNet and FFHQ to 256 x 256
pixels, and note that these are required for reproducing our results when using the original images
(the resized datasets are provided along with our code). Differences in our FIDs and the reported
values in various papers could partially be attributed to this effect - for example using Box filtering
instead of Lanczos increases the FID of StyleGAN2-ada on FFHQ by 1.0.

Below we list () the generative models used for each dataset, (i) links to the project pages and
checkpoints used, (#i7) the reported FID in comparison to the value determined from our generated
images, and (iv) any special notes.

A.1 CIFAR10

* StudioGAN models [155] https://github.com/POSTECH-CVLab/
PyTorch-StudioGAN, checkpoints are in folder https://huggingface.co/
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Mingguksky/PyTorch-StudioGAN/tree/main/studiogan_official_ckpt/
CIFAR10_tailored/. We used current weights from each folder.

ACGAN [79] CIFAR10-ACGAN-Mod-train-2022_03_06_02_24_19. Reported
FID=33.39, ours=35.47.

BigGAN-Deep [12] CIFAR10-BigGAN-Deep-train-2022_02_02_21_56_10 Re-
ported FID N/A, ours=3.91.

LOGAN [111] CIFAR10-LOGAN-train-2022_03_12_04_15_31. Reported
FID=20.65, ours=17.87.

ReACGAN [54] |CIFAR10-ReACGAN-train-2022_01_24_23_46_59. Reported
FID=3.87, ours=4.40.

MHGAN [104] CIFAR10-MHGAN-train-2022_02_14_18_23_18. Reported
FID=3.95, ours=4.22.

WGAN-GP [41] |CIFAR10-WGAN-GP-train-2022_01_25_16_34_00. Reported
FID=53.98, ours=26.25.

LSGM-ODE [107] https://github.com/NV1labs/LSGM. We used the FID checkpoint,
sampling with ODE framework. Reported FID=2.10, ours=2.12.

iDDPM-DDIM [78]] https://github.com/openai/improved-diffusion. Reported
FID=2.94, ours=3.27.

* PFGM++ [112] https://github.com/newbeeer/pfgmppl We used
the following  checkpoint https://drive.google.com/drive/folders/
1IADJcuoUb2wc-Dzg42-F8RjgKVSZE- Jd7usp=share_link. Reported FID 1.74,
ours=1.79.

RESFLOW [18] https://github.com/rtqichen/residual-flows, Reported
FID=46.37, ours=48.29.

NVAE [106]. Reported FID N/A, ours=32.53.

StyleGAN2-ada [57] https://github.com/NVlabs/stylegan2-ada-pytorch.
We used the following checkpoint https://nvlabs-fi-cdn.nvidia.com/
stylegan2-ada-pytorch/pretrained/cifar10.pkl, Reported FID=3.49, ours=2.55.

StyleGAN-XL [98] https://github.com/autonomousvision/stylegan-x1.
We used the following checkpoint https://s3.eu-central-1.amazonaws.com/
avg-projects/stylegan_x1l/models/cifar10.pkl, Reported FID=1.85, ours=1.87.

A.2 ImageNet

 Four models used sets of 50k publicly available images provided at https://github. com/
openai/guided-diffusion/tree/main/evaluations|[23].
— ADM [23]. Reported FID=10.94, ours=11.84.
— ADMG [235]]. Reported FID=4.59, ours=5.58.
— ADMG-ADMU [25]]. Reported FID=3.94, ours=4.75.
— BigGAN [12]. Reported FID=6.95, ours=7.94.

e DIiT-XL-2 [84] https://github.com/facebookresearch/DiT. Reported FID=2.27,
ours=2.80.

* DiT-XL-2-guided [84]. This model was equivalent to the above, but used a stronger classifier
free guidance term cfg = 4.0 instead of cfg = 1.5. As described in Section[5.1] this model
was included to study the effects of a model that produces very realistic images, but sampled
with a lower intra-class diversity. Reported FID=N/A, ours=17.24.

* GigaGAN [56] with 100k images provided privately by authors. Reported FID=3.45,
ours=4.16.

* LDM [93] https://github.com/CompVis/latent-diffusion. Reported FID=3.60,
ours=4.29.

* Mask-GIT [17] |https://github.com/google-research/maskgit! We used
the following checkpoint https://storage.googleapis.com/maskgit-public/
checkpoints/maskgit_imagenet256_checkpointl. Reported FID=6.06, ours=5.63.
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* RQ-Transformer [65] https://github.com/kakaobrain/rq-vae-transformer.
We used the 1.4B model from the following checkpoint https://arena.kakaocdn.net/
brainrepo/models/RQVAE/6714b47bb9382076923590eff08blee5/imagenet_1.
4B_rqvae_bOe.tar.gz. Reported FID=8.71, ours=9.71.

* StyleGAN-XL [98]] https://github.com/autonomousvision/stylegan-x1.
We used the following checkpoint https://s3.eu-central-1.amazonaws.comn/
avg-projects/stylegan_x1l/models/imagenet256.pkl. Reported FID=2.26,
ours=2.91.

A.2.1 A note on the curation of ImageNet

The treatment of the raw ImageNet dataset [23] is often not explicitly described in the litera-
ture — particularly for building generative models on ImageNet — and we have found some in-
consistencies on how FID is reported. Therefore we describe our exact approach to calculating
FID on ImageNet, and provide our parsing scripts with the goal of standardizing the process
across papers. The full dataset was obtained from https://wuw.kaggle.com/competitions/
imagenet-object-localization-challenge/data, as the data is no longer available from the
ImageNet website (https://www.image-net.org/index. php).

Raw ImageNet is a dataset of 1,000 classes, each with roughly 1,300 images. The images themselves
are generally non-square, with image height and width both always at least 256. To get from the raw
rectangular ImageNet images to the 256 x 256 resolution of ImageNet256 we perform the following
two operations:

1. Center crop along the long edge. This results in a square image of side length N =
min{ H, W}, given individual image height H and width W.

2. Downsample from N x N to 256 x 256 using bicubic interpolation, as suggested by [82]].
We also experimented with Lanczos interpolation with only minimal change to the results.

This procedure results in roughly 1.3 x 10° images of size 256 x 256. We construct a reference batch
of 100,000 training images matching our generated sets by sampling 100 images from each class
without replacement. We then calculate FD using 50,000 images drawn without replacement each
from the training set and the generated set. These choices result in a slight increase in FID values for
most of the ImageNet models reported above, as most determine the FID of 50k generated samples
and all 1.3MM training samples, but do not affect any model rankings.

A3 FFHQ

Following the examples set in the StyleGAN repositories, we downsampled the original 1024 x 1024
FFHQ dataset to 256 x 256 using Lanczos interpolation.

* Efficient-vdVAE [43] https://github.com/Rayhane-mamah/Efficient-VDVAE.
We used the 8-bit version from the following checkpoint https://storage!
googleapis.com/dessa-public-files/efficient_vdvae/Pytorch/ffhq256_
8bits_baseline_checkpoints.zipl Reported FID N/A, ours=34.88.

e Insgen [113] https://github.com/genforce/insgen. We used the
following checkpoint https://drive.google.com/file/d/10tSWESM_
8S60EtiSddR16-gzo6QW7YBM/view?usp=sharing. Reported FID=3.31, ours=3.46.

* LDM [93]] https://github.com/CompVis/latent-diffusion. Reported FID=4.98,
ours=8.11. To our knowledge the settings we used to generate the images were consistent
with the codebase and with those used in the paper. We contacted the authors about this via
email (as the GitHub page is full of unresolved issues) but received no response.

Projected-GAN [97|] https://github.com/autonomousvision/projected-gan. Re-
ported FID=3.39, ours=3.46.

StyleGAN2-ada [57] https://github.com/NVlabs/stylegan2-ada-pytorch.
We used the following checkpoint https://nvlabs-fi-cdn.nvidial
com/stylegan2-ada/pretrained/paper-fig7c-training-set-sweeps/

ffhq70k-paper266-ada.pkl. Reported FID=4.30, ours=5.30. The discrepancy
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is purely due to different choices for downsampling: We used Lanczos filtering
to downsample the original 1024x1024 pixel FFHQ images to 256x256, while
their work used box filtering. Box filtering exactly reproduces the results reported
in the StyleGAN2-ada paper, and we thank the authors for their work to help
us solve this discrepancy. Please see the following github issue for more details
https://github.com/NVlabs/stylegan2-ada-pytorch/issues/283.

* StyleGAN-XL [98]] https://github.com/autonomousvision/stylegan-x1.
We used the following checkpoint https://s3.eu-central-1.amazonaws.com/
avg-projects/stylegan_x1l/models/ffhq256.pkl. Reported FID=2.19, ours=2.26.

* StyleNAT [109] https://github.com/SHI-Labs/StyleNAT. We used the following
checkpoint https://shi-labs.com/projects/stylenat/checkpoints/FFHQ256_
940k_f1lip.pt) Reported FID=2.046, ours=2.11.

* StyleSwin  [116] https://github.com/microsoft/StyleSwin, We
used the following checkpoint https://drive.google.com/file/d/
10jYZ1zEWGNdivORFKv7KhXRmYko72Lj0/view?usp=sharing. Reported FID=2.81,

ours=2.89.
* Unleashing-Transformers [Ol: https://github.com/samb-t/
unleashing-transformers| We wused the following checkpoint https:

//github.com/NVlabs/ffhq-dataset. Reported FID=7.12, ours=9.02. We note
that other discrepancies with the reported FID on FFHQ have previously been raised via the
issues function of GitHub.

A.4 LSUN-Bedroom

* Four models used sets of 50k publicly available images provided at https://github. com/
openai/guided-diffusion/tree/main/evaluations [25].
— ADMNet-dropout [25]]. Reported FID=1.90, ours=2.20.
DDPM [49]. Reported FID=4.89, ours=5.18.
iDDPM [78]]. Reported FID=4.24, ours=4.54.
StyleGAN [58]]. Reported FID=2.35, ours=2.65.

* Consistency [7/0]. We used the consistency training model provided at https://github.
com/openai/consistency_models. Reported FID=7.85, ours=8.27.

* Diffusion-Projected GAN [110]. We used the pretrained projected GAN model pro-
vided athttps://github.com/Zhendong-Wang/Diffusion-GAN. Reported FID=1.43,
ours=1.79.

* Projected GAN [97]. We used the pretrained projected GAN model provided at https:
//github.com/autonomousvision/projected-gan. Reported FID=1.52, ours=2.23.
The settings we used to generate the images were consistent with the codebase defaults,
which were, as far as we could tell, consistent with those used in the paper. We contacted
the authors both via email and the issues function of GitHub but received no response.

* Unleashing Transformers [9]. We used the pretrained model provided by the authors
at https://github.com/samb-t/unleashing-transformers. Reported FID=3.64,
ours=3.58.

B Metrics and encoders

To assess all aspects of generative models we include a number of diagnostic metrics that are designed
to directly quantify the fidelity, diversity, rarity, or memorization of our 100k image samples. Such
metrics are valuable for diagnostic purposes but difficult to use to directly rank generative models.
Ranking requires metrics which group these concepts into a single value without a clear tradeoff. In
total we assess each generative model across 17 metrics, both ranking and diagnostic. These metrics
are computed in a number of supervised and self-supervised representation spaces. In total we include
9 encoders. Throughout this section, we denote generated samples as {z¢}!"_,, and real samples as

20


https://github.com/NVlabs/stylegan2-ada-pytorch/issues/283
https://github.com/autonomousvision/stylegan-xl
https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/ffhq256.pkl
https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/ffhq256.pkl
https://github.com/SHI-Labs/StyleNAT
https://shi-labs.com/projects/stylenat/checkpoints/FFHQ256_940k_flip.pt
https://shi-labs.com/projects/stylenat/checkpoints/FFHQ256_940k_flip.pt
https://github.com/microsoft/StyleSwin
https://drive.google.com/file/d/1OjYZ1zEWGNdiv0RFKv7KhXRmYko72LjO/view?usp=sharing
https://drive.google.com/file/d/1OjYZ1zEWGNdiv0RFKv7KhXRmYko72LjO/view?usp=sharing
https://github.com/samb-t/unleashing-transformers
https://github.com/samb-t/unleashing-transformers
https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/ffhq-dataset
https://github.com/openai/guided-diffusion/tree/main/evaluations
https://github.com/openai/guided-diffusion/tree/main/evaluations
https://github.com/openai/consistency_models
https://github.com/openai/consistency_models
https://github.com/Zhendong-Wang/Diffusion-GAN
https://github.com/autonomousvision/projected-gan
https://github.com/autonomousvision/projected-gan
https://github.com/samb-t/unleashing-transformers

The following appendix () details each of the metrics, (i) presents controlled experiments and
additional checks for diversity and memorization metrics, and (i4¢) describes the encoders and
motivates the choice of ViT model size used.

B.1 Metrics for ranking generative models

FD The Fréchet distance (FD) uses (p,, 2,) and (ug, X4), the sample mean and covariance of the
real and generated representations, respectively, and is determined through:

FD 11y, sty ) = i = g3 + T (0 + 2y = 2(5,5,)1) . (1)

The FD corresponds to the Wasserstein-2 distance between Gaussians with the corresponding means
and covariances, and is thus a valid metric between the first two moments of real and generated
distributions. If these two distributions happen to be characterized by their first two moments (e.g.
they are both Gaussian), then the FD becomes a metric between distributions, not just their first two
moments. We use 50,000 images for both the real and generated images. To move away from the
standard Inception-V3 network which [103] used as a feature extractor we drop the “I” from this
metric and the following, where appropriate.

FDoo FD [22] aims to remove the inherent bias of the FD due to the finite number of samples.
It is determined by evaluating the FD at 15 regular intervals over the number of samples N, from
N = 5,000 to N = 50,000, fitting a linear trend to the 15 data points, and using the trend to infer a
FD value at N = oo, FD,.

sFID The spatial FID (sFID) [[76] is the FID computed using a representation from the intermediate
mixed 6/conv layer of the Inception-V3 network [103]] trained for ImageNet1k [23], rather than the
standard (pool3, 2048 dimensional) layer. The sFID relies on the Inception-V3 network, and thus we
do not report it for other architectures.

KD The Kernel distance (KD) [8] aims to replace the FD with something that is a proper distance
between distributions regardless of whether the distributions are characterized by their first two
moments. In order to this, an unbiased estimate of the maximum mean discrepancy [39] is used:

gn rym 1 _ g g 1 U r r 2 & r
KD ({afhin (o) = gy 2 Mehal) + gy 2 k) = 00 D D kel a))

iti! G5! i=1 j=1
)

where k is a positive definite kernel that is chosen as a hyperparameter. We use the standard 3rd
degree polynomial kernel.

IS The Inception score (IS) [96] is maximized when the entropy of the distribution of labels
predicted by the Inception-V3 model is minimized for every input (i.e. generated image) and when
the predictions are evenly distributed across all 1000 possible labels. It is given by:

IS ({a} ) = e 2iz1 KL(p(ylz?) Ip(v)) (3)

where p(y|z) denotes the output of the Inception-V3 network when x is the input, and
p(y) the observed frequencies of labels in the training data.  We use a refactored
version from https://github.com/sbarratt/inception-score-pytorch/blob/master/
inception_score.py to compute this metric. The IS relies on the Inception-V3 network, and
thus we do not report it for other architectures.

FLS The feature likelihood score (FLS) [53] is a recently proposed density estimation method
that requires training, generated, and test samples. The goal of FLS is to be as close to likelihood
evaluation even when there is no likelihood available. In order to do this, the FLS fits a kernel
density estimate (KDE) to the generated samples (after having been transformed by the encoder).
The bandwidths of the KDE are chosen so as to maximize the log-likelihood of training data, and the
FLS is then given by (an affine transformation of) the test log-likelihood obtained by the KDE. We
use the default implementation from https://github.com/marcojira/fls|
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B.2 Metrics for fidelity, diversity, and rarity

Precision, recall, density, coverage As proxies for sample fidelity we use precision [95) [64]
and density [75)]. Both precision and density are based upon nearest neighbours computed in
a representation space. Precision counts the binary decision of whether a generated sample is
contained in any neighbourhood sphere of training points, while density counts how many real-
sample neighbourhood spheres contain the sample. To quantify sample diversity we use recall
[95. 164] and coverage [75]], which similarly to their counterparts precision and density, are based
upon nearest neighbours computed in a representation space. Formally, precision is given by:

1 n
precision ({xf}?zl, {z} ;”:1) = Z 1 (mf € S({z} zn:l)) , 4
i=1

where 1(-) denotes the indicator function, S({z}}/L;) = UJL; B(a, NND(27)), where B(x,)
denotes a Euclidean ball centered at = with radius r, and NNDy (z) is the distance between z; and
its k*" nearest neighbour in {2}, excluding itself. Similarly, recall is given by:

Jj=1
recall ({xf 1 {wg}gnzl) = %Z 1 (m§ € S({x} ?:1)) ) ®)
=1
density is given by: J
density ({f}io,, {2f}jL,) = % i i 1 (2f € B(x}, NNDy(x}))), (6)
i=1j=1
and coverage is given by: J
coverage ({zf}i_,, {2} }jL,) = % 3 Z:Irllaxn]l (zf € B(«}j, NNDg(z))) . @)
j=1

Precision, recall, density, and coverage are determined with the code provided at https://github.
com/clovaai/generative-evaluation-prdc associated with the work [[75]. We use 5 nearest
neighbors (kK = 5) and 10,000 samples throughout, as standard.

Rarity score To determine the “rarity” of an individual image x we use the rarity score [42]]. Similar
to precision, recall, density, and coverage, the rarity score uses k-nearest neighbours:

rarity (m, {=} ;”:1) = jeJ(xrf{li‘r%}ﬁl) NND;, (m;) , ®)

where J(z,{z}}7,) = {j =1,...,m |z € B(z}, NNDy(z}))}.
Vendi score To study inter- vs intra-class diversity for class-conditional image generation we utilise
the Vendi score [33]]. This score does not require a reference dataset. Formally, the Vendi score is
given by:

VS({af}iey) = em 2l ey, ©)
where )\; is the i eigenvalue of the n x n matrix K/n, where K;;; = k(z?,z9,) for a positive semi-
definite kernel k (chosen as a hyperparameter) with k(x,z) = 1. The convention that 0log0 = 0
is used to compute the Vendi score. The Vendi score over the whole dataset reports the overall
sample diversity, and when conditioned on class it quantifies the intra-class diversity of samples. We
separate the two in order to study mode concentration of class conditional models - we find some
models have high inter-class diversity, which is encouraged through the class conditioning, while
lacking intra-class diversity. While recall and coverage can also be determined per class, the small
number of generated samples available for each class (e.g. 100 for each ImageNet class) results in
difficulty constructing robust nearest-neighbour-based estimates. As per the original paper, we use a
linear kernel to compute the score. We also tried using the same polynomial kernel that we used for
computing KD, but found no clear benefit from doing so.

B.3 Maetrics for memorization

We also investigate a form of overfitting that we term memorization, in which models memorize
individual images from their training data and emit them at generation time.
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AuthPct AuthPct [1] deems each generated sample either as authentic or inauthentic and returns
the fraction of authentic samples. Inauthentic samples are those for which the distance to the nearest
point in the training set is less than the distance between that training sample and its nearest neighbour
in the training set.

Cr The Crp score [[70] is a global three sample non-parametric test explicitly designed to detect
memorization. It uses the training set, the test set, and the generated samples, and summarizes how
often training samples are closer to generated samples than they are to samples in the test set through a
Mann-Whitney hypothesis test [69]]. The data is split into a number of cells using k-means clustering,
the score is determined in each cell, then the per-cell score is averaged into the final one. We use
the default implementation from https://github.com/casey-meehan/data-copying, namely
k = 3 and preprocessing the representation space using a 64 component PCA.

FLS-POG We denote the percentage of overfit Gaussians as determined in FLS as FLS-POG [53].
For each generated sample we compute the difference between the train and test log-likelihoods, and
report percentage of generated samples that had a higher log-likelohood under the training set than
the test set. We use the default implementation from https://github.com/marcojira/fls/,

Memorization ratio with calibrated [/, distance The calibrated [ distance [[101]] of a generated
sample 2/ is given by:

rm xf—NN zlg
a?, (a}Ty) = ” 1)l

. (10)

k
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where NN () denotes the k‘" nearest neighbour (in Euclidean distance) to z in the training data
without =, i.e. {x}}72; \ {z}. Note that this metric is computed directly on pixel space, with no

encoder being used. Low values of /(x, {x7}_,) indicate that 2] memorized a training sample. A
threshold 7 is set and the generated sample z is then considered as “memorized” if its calibrated /o

distance is smaller than 7. The memorization ratio is given by the percentage of memorized samples:
1 n
N . g . g
memorization_ratio ({z};, {z}}72,) = - z; L (U {2}y < 7). (11)
=

While the memorization ratio can provide a good assessment of how much a model memorized its
training samples (Section [5.2)), no default configuration of the k and 7 hyperparameters achieves
this across all models and datasets: these values need to be hand-tuned in order to meaningfully flag
memorization. Thus, despite our recommendation to use this metric to detect memorization, we do
not believe that it should be used as a basis to compare models.

B.4 Encoders

With the aim of finding a more generalized perceptual representation space across the span of natural
images we employed a number of alternative encoders. Here we outline the specific implementations
used, and provide evidence for the ViT-L/14 architecture choice. For self-supervised methods we
include short descriptions on the family of training employed, grouping into categories based on
those of [4].

ConvNeXt As a more modern supervised benchmark we use a ConvNeXt-large architecture
trained on ImageNet22k [67]]. We use the timm implementation provided here https://github.
com/huggingface/pytorch-image-models/blob/main/timm/models/convnext.py and se-
lect the convnext_large_in22k model.

SwAV  SwAV [14] featured heavily in a previous work advocating for the use of self-
supervised feature extractors for generative model evaluation [72]], as at the time it was
a state-of-the-art self-supervised image representation model. SwAV is trained on Ima-
geNetlk using a canonical correlation analysis method, and learns by clustering data while
enforcing consistency between cluster assignments produced for different views of an im-
age. We use the ResNet50 architecture and weights from [72], with code provided
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at https://github.com/stanis-morozov/self-supervised-gan-eval/blob/main/src/
self_supervised_gan_eval/resnet50.pyl

SimCLRv2 SimCLRv2 [[19] is contrastive method which learns visual representations by encour-
aging the similarity between two often heavily augmented views of an image, while discouraging the
similarity between distinct training images. SImCLRv2 is a CNN trained on ImageNetlk. We used
the PyTorch implementation available at https://github. com/Separius/SimCLRv2-Pytorchl

CLIP CLIP is a multi-modal language-image model [87], which trains an image encoder and text
encoder to predict which images were paired with which texts. We use CLIP ViT [87]. CLIP-B/32
was studied for generative evaluation in a controlled experiment in [7]] (while they do not state the
architecture used in the paper we found it at https://github.com/eyalbetzalel/fcd/blob/
main/fcd.py). In the next section we show that this choice is sub-optimal, and that a better choice is
the OpenCLIP ViT-L/14 implementation [51]] trained on DataComp-1B [35]. Thus, we use OpenCLIP
ViT-L/14 trained on DataComp-1B.

DINOv2 DINOV2 [80] is from the self-distillation/discriminative family, which learns representa-
tions by passing two different views of an image to two encoders and mapping one to the other by
means of a predictor. DINOv2 is a ViT-L/14 architecture trained on a large custom dataset of 142M
images built by combining common datasets for classification, segmentation, depth estimation, and
retrieval tasks, plus additional images from the internet. We justify the architecture choice alongside
CLIP in the following section.

MAE Masked autoencoder (MAE) [44] is from the masked image modelling family, and learns
to directly reconstruct masked image patches. We use the ViT-L PyTorch implementation from
https://github.com/facebookresearch/mae, which was trained on ImageNet1k.

data2vec data2vec [3] is from the masked image modelling family, and learns by predicting latent
representations of the full input data based on a masked view of the input. We use the Hugging
Face implementation found here https://huggingface.co/docs/transformers/model_doc/
data2vec. We use ViT-L, which was trained on ImageNet1k.

DreamSim The DreamSim method [34] uses a dataset of human similarity judgments over image
pairs in order to fine-tune encoders to better align with human perception of image similarity.
DreamSim was publicly released after the initial submission of this paper. We also highlight that the
focus of our work is different than DreamSim: our human trials focus on image quality rather than
similarity, and our subsequent analysis uses these human judgements to evaluate current metrics for
generative models, while DreamSim creates a dataset of human-perceived image-to-image similarities
and designs an encoder that reflects these human judgements. In other words, DreamSim focuses
on obtaining an encoder which maps images that humans assess as similar to nearby points in latent
space, whereas we focus on finding an encoder where distances between probability distributions
on its latent space, such as FD, correlate with human judgment of fidelity. Our experiments use the
full DreamSim ensemble, the concatenation of the representations of three different self-supervised
models (DINO [15]], CLIP, and OpenCLIP) that have each been fine-tuned on the DreamSim dataset.

We note that while separating our encoders into such self-supervised families allows for a broad
understanding of the different methodologies employed during training and hints at potential charac-
teristics at their learned representation spaces, models can in practice employ a mix of approaches. In
particular, DINOv2 also employs a masked modeling objective, however it was not masking images
but rather the latent-space with a teacher network used to provide targets [80].

B.4.1 Determining ViT model size for generative evaluation

To determine which model size provides a good perceptual space for generative evaluation with
ViT-based models we calculated FD and precision of the 11 ImageNet generative models under
varying model sizes of CLIP and DINOv2 encoders. For CLIP we also studied models trained
using different sets of training data (OpenAl LAION-400M, LIAON-2B, and DataComp-1B), while
DINOV2 encoders all used an identical training set. CLIP models not denoted with OpenAl were
from OpenCLIP. While larger models achieve better accuracy under a linear evaluation protocol
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Figure 8: ImageNet results as a function of ViT model size for CLIP (top) and DINOvV2 (bottom).

on ImageNetlk, which may be evidence towards using them for generative evaluation, we argue
that the computational cost of such a large model is restrictive to the development of generative
models. Often, metrics need to be tracked during model development for numerous training setups,
hyperparameter settings, and epochs, which motivates networks with a lower computational cost. For
reference, on a workstation with a single NVIDIA Titan V GPU, determining the representations of
50k samples takes ~4 minutes with ViT-B/14, ~15 minutes with ViT-L/14, and ~85 minutes with
ViT-G/14. Thus, smaller encoders that exhibit representation spaces matching the utility of larger
encoders should be preferred.

Figure [§]shows the results of the model size sweep. Models are listed by ascending size. For CLIP
we find that CLIP-B/32-OpenAl, CLIP-B/32-LAION2B, and CLIP-B/16-LAION2B show a much
smaller correlation between FD and human error rate than the ViT-L/14 and ViT-G/14 models. We see
that the model best aligned with the expensive ViT-G/14 - the highest performing CLIP model under
linear evaluation protocols - is CLIP-L/14-DataComp-1B. We quantify this agreement with the FD
correlation matrix shown on the right (the precision matrix, while not shown displays the same trends),
and find a very high correlation between CLIP-L/14-DataComp-1B and CLIP-G/14-LAION2B.

For DINOv2 we see lower alignment of FD and human error rate when using the ViT-S/14 model in
comparison to the larger three, and also find good agreement between the ViT-B/14, ViT-L/14, and
ViT-G/14 models. We again quantify this agreement with the FD correlation matrix shown on the
right (the precision matrix, while not shown displays the same trends), and find that the ViT-L/14
shows the highest correlation with ViT-G/14, although ViT-B/14 is highly correlated as well.

As evidenced by both the CLIP and DINOV2 results, ViT-L/14 provides a perceptual space nearing
the ImageNet qualities of the largest encoders at a much lower computational cost. Thus we believe
that ViT-L/14 provides a good tradeoff between representation quality and computation cost, and use
it as the basis for all ViT-based encoders in this work. While we propose DINOv2-L/14 as the encoder
that best improves upon Inception-V3, we suggest that the strong correlation of DINOv2-B/14, yet a
factor of ~4 lower computational cost, will provide useful during generative model development
- metrics can be tracked using this model size during training, and final leaderboard values can be
reported after training has concluded using DINOv2-L/14. Our codebase allows to easily do this.

C Human subject experiments

C.1 Test description

As noted in Section [3] the goal of our human subject experiments was to evaluate the fidelity of
generated images in a scientifically grounded way across many models and datasets. The design of
our tests was therefore specifically tailored to address the realism of generated images, and not other
aspects of the modeled distributions, such as diversity. We further emphasize that our focus is on the
realism of images that are generated for human use, not other uses (for example generating synthetic
data to improve classifier performance [46l], to debias datasets [[108], or for dataset distillation [[L6]).
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real, press ‘r’. If you think itis fake, press . Press SPACEBAR to see examples of real and fake images. Press ESC if
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Press SPACEBAR when you are ready to begin the study.
This image is FAKE.
Press SPACEBAR to continue.

Figure 9: Screens displayed to participants during our StyleGAN-XL evaluation for ImageNet. Other
experiments followed the same template. The bottom left shows the format of the 40 practice and
200 test trials, with the correct answer text shown only after a participant entered their response.

We found that the experiments from [[120] for the HYPE,,, metric supported these goals, and thus we
used them as a template. We first describe our method in detail, compare the differences from [120],
and then present our full results.

In each test, generated images from a single model are directly compared to images from the training
dataset - an absolute comparison [81]]. Previous human experiments have used comparative ratings
rather than absolute, for example by directly comparing pairs of models [117,[90} [94]], or
grouping together several models with a baseline and comparing all at once [24] 27,97).
The absolute approach has several advantages:

* Models are tested against a single, consistent baseline.

* The number of experiments scales linearly with the number of models to be tested. Pairwise
testing requires a quadratic number of experiments.

» Experiments can be extended with new models in a consistent manner - additional experi-
ments do not depend on previously used models.

* Comparisons of new results against previously-gathered results are analytically simple
using between-subjects comparisons. The comparative paradigm would require mixing
between-subjects and within-subjects designs.

* The performance of any given model does not depend on which other models were tested in
the same experiment.

* Scores can indicate whether models generate images indistinguishable from the baseline,
or if there is room for improvement (see Figure [2| where the optimal error rate of 0.5 is
approached only for CIFAR10).

» Experiment results will not be outdated when researchers make progress with new models.

In total, 41 distinct experiments were conducted, each consisting of an instruction and training phase,
followed by a testing phase. Research on how to collect high quality data from crowd sourcing
platforms [71]] shows that providing training on the task to be completed is the best way to improve
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data quality, while providing financial incentives can also work, but pre-screening individuals by
their on-platform reputation is ineffective. Hence, in the first phase we provide participants with
background information, a request for consent, and clear instructions on their task, including the fact
that exactly half of the presented images would be real. We then conducted 40 practice trials which
were not used in the analysis of our results. Each trial was a two-alternative forced choice task, in
which the participant was shown a single image which was either a “real” image from the training
dataset, or a “fake” image generated by the model being tested. The participant was simply asked
to judge if the image was real or fake with no alternatives, and they were provided feedback on the
correct answer directly after they responded. In the testing phase, subjects are shown an additional
200 trials of the exact same format. Participants were unconstrained in their time to view and judge
each image. There was a 200 ms inter-trial interval before presentation of the subsequent image,
and a delay of 100 ms after image presentation before participants could enter a response to prevent
accidentally advancing through trials. For reproducibility, in Figure 9] we show screenshots from an
example test, the StyleGAN-XL model on ImageNet, as they were displayed to the participants. The
experiments were created using PsychoPy [85] and hosted on Pavlovia [83]]. The experiments were
only administered on desktop or laptop computers, not on mobile devices or tablets, and image size
was scaled to the user’s display.

The choice to reveal correct answers to participants after they guess is not completely standard
across the literature. Some authors have provided feedback [96] 120} |50]], while others have avoided
it [117} 166]], and often no justification is provided. Ultimately, we want participants to make the
most accurate decisions they are capable of, which is why we use a long training phase, and provide
feedback throughout. The main argument against providing feedback during testing is that participants
may “learn” and adjust their responses, which may in effect change the distribution of experimental
data throughout the test. We do not find this to be concerning for the following reasons. First, our long
training period is meant for participants to learn and improve their performance on the real task; most
learning will occur early during the training phase, less so during the testing phase. Second, even
without feedback, participants can still learn and change their approach to the task as they see more
examples. Third, with or without feedback all participants have the same opportunity to learn, and so
our experimental datapoints, the error rates of individual participants on 200 trials, are drawn from
the same hypothetical distribution. In preliminary experiments we observed no significant difference
between the error rates on the first and second halves of the test trials, showing that learning during
the test phase does not create a large effect.

Ethical considerations Our institution does not have an internal review board (IRB) approval
requirement for running crowd-sourced experiments, and thus has no formal approval process for
experiments such as ours. In place of an IRB approval we followed an informal process internally
prior to running the experiments, as recommended in the NeurIPS 2023 guidelines. The process
involved: confirming what internal review processes existed and were required of us at our institution,
ensuring that none of the images that would be shown to participants had any explicit or offensive
content, informing participants that they may be shown images that could trigger common phobias,
taking the test ourselves, and paying the participants above minimum wage.

Participant recruitment and compensation Human subject experiments for generative model
evaluation are quite common, but often are ad-hoc and cannot be considered as randomized, controlled
experiments. Sometimes authors themselves are the participants [48],[68]], or volunteers known to the
authors are used [24} 117,166, 97], raising questions of bias. Luckily, there are several crowd-sourcing
platforms to recruit willing and unbiased participants from the general population. For our experiment,
participants were recruited from Prolific [86] which has been shown to provide the highest quality
data in scientific studies about behavioural research platforms [31}29]. While we did not filter eligible
participants by their on-platform reputation, we did require participants to be fluent in English, the
language used throughout the experiment, and to have completed college, or a university degree at
least at the Bachelors level (we used this filter to maximize the probability of fluency in English, and
thus of instructional obedience during the trials). No other filters were used, and statistics on the
demographics about consenting participants are shown in Table 2] Comparisons between models and
datasets are therefore between-subjects. For each experiment, which took a median of 15 minutes to
complete, participants were paid at a median rate of £7.60/hr, including a base rate for completing
the study which complied with the payment standards of the Prolific platform, and an incentive of
£0.001 for each correct answer.
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Table 2: Demographics and performance for the 897 of 1036 participants who voluntarily consented
to release their demographics through Prolific. The normalized error rate accounts for the varying
difficulty of tasks over different combinations of (dataset, model). A negative value means better
performance on the task, with a value of 1 meaning 1 standard deviation above the mean within
their task cohort of ~25 participants. As intuitively expected, there is no significant performance
difference based on demographic group.

Group # Participants Normalized error rate
19-29 574 -0.0140.93
Age group 30-39 200 -0.1840.95
40-49 77 -0.01+1.07
50+ 46 0.52+1.21
Female 389 0.01£0.95
Sex Male 507 -0.05£0.99
Prefer not to say 1 -
Doctorate degree 19 -0.32£0.70
Highest education level Gradu?lte degree . 294 0.10£0.98
Technical/community college 121 0.02+1.02
Undergraduate degree 463 -0.09+0.96
Africa 127 0.214+0.94
Asia 40 0.19£1.07
Europe 557 -0.02+0.96
Continent of birth North America 129 -0.19+£0.99
Oceania 13 -0.46£0.99
South America 29 -0.36£0.87
Unknown 2 0.4241.61
Asian 44 0.34+1.12
Black 103 0.35+0.89
Ethnicity Mixed 86 -0.10+0.96
Other 44 -0.26£0.85
White 620 -0.08+0.96

The experiments for each of the 41 models were completed by at least 25 unique recruits (see Tables
M) through [7), totalling 1,036 different people, and providing over 207k individual test responses
(along with more than 41k practice responses not included in our statistics), making this the largest
human study evaluating generated image quality that we know ofE] A small number of experiments
were completed by more than 25 participants due to unstable connections to the Prolific and Pavlovia
servers causing logging issues.

Image selection Within each experiment, the images shown to a given participant were selected and
randomized as follows. First, 2,000 images from the training dataset were randomly selected without
replacement with classes in proportion to the dataset if applicable. The same set of training images
were used for each model corresponding to that dataset. In a similar fashion, 2,000 model samples
were selected (see Section[2]and Appendix [A)), in proportion to the dataset’s class distribution if the
model was class-conditional. For each participant, 100 real and 100 generated images were selected
at random from these pools, again respecting class distributions where applicable. The number of
times each generated image was viewed by a human therefore follows a binomial distribution with
n > 25 and p = 0.05. The 200 selected images were presented to the participant in a randomized
order. The 40 practice images were chosen in a similar fashion, but had no overlap with the 4,000 test
images, and were reused for all participants. Appendix [D|shows image samples for each model.

’The next largest similar experiment that we know of collected about 138k individual responses [120].
Human evaluations have also been conducted on text-to-image generation quality, where [90] collected about
40k individual responses, [94] collected about 25k, and more recently [81] collected about 33k responses.
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C.2 Comparison to HYPE

Our experimental design was inspired by the HYPE, score [120], but we made several changes
to improve the quality of collected data. We summarize the differences in Table [3] We doubled
the number of images shown to each participant for more accurate estimation of each participant’s
error rate, while slightly lowering the number of participants per model. We used Prolific rather than
MTurk because research shows that Prolific can provide better data quality due to their participant
screening practices [31, 29]]. Prolific also requires fair base pay rates based on time, so compensating
participants solely on their number of correct responses is disallowed. The pre-screening test from
[[120] used a mix of data from all models they tested, which does not align with our preference for
absolute comparisons and extensible experiments given in Appendix [C.1] so we did not use it.

C.3 Results

Each of the 41 models were evaluated based on human error rate [120]], the fraction of the 200 test
images which were incorrectly classified. This is a simple metric with the intuition that models with
better fidelity produce images that are more difficult for humans to distinguish from real images.
Detailed results by dataset that were summarized in Figure 2] and Table[I]from the main text are given
in Tables ] through[7] Along with the overall error rate, was also provide the error rates on the real
and fake images separately. As in [120], we observe that the error rate on real images increases for
models with higher fidelity, even though real images are drawn from the same pool of 2000 examples
across models. We also provide the mean rate that participants guessed “real”, noting that they were
instructed that exactly half of presented images would be real. Finally, we give the mean time spent
on the 200 test examples.

Table 3: Comparison between design of HYPE, experiments [[120] and ours.

Ours HYPE

Correct answer revealed to Yes Not specified

participant after their response

Number of real/fake images in 2000 5000

selection pools

Number of images shown to each 200 100

participant

Number of participants for each >25 30

experiment

Number of experiments conducted 41 13

Number of responses collected 207k 39k

Recruitment platform Prolific MTurk

Payment Base pay £1.80 + £0.001 $1 for passing qualifying
per correct answer test + $0.02 per correct an-

swer on main test

Qualification Fluent in English, Achieve >65% accuracy on
minimum education test using a mix of data
requirement from all models tested
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Table 4: Detailed human experiment results on CIFAR10

Model # Tests Error Rate T R Error Rate 1 F Error Rate T R Answer Rate Time (s)
ACGAN 25 0.148 +0.013 0.181 +0.021 0.116 £ 0.016 0.467 217
BigGAN 25 0.387 +£0.014 0.381 £0.021 0.393 £ 0.022 0.506 284
iDDPM-DDIM 26  0.400 4+ 0.013 0.390 £ 0.019 0.410 £ 0.022 0.510 268
LOGAN 25 0.206 +0.020 0.204 £ 0.021 0.208 £ 0.026 0.502 220
LSGM-ODE 27 0.437+0.010 0.417 +0.021 0.456 £+ 0.018 0.519 232
MHGAN 25 0.336 £0.015 0.331 = 0.016 0.341 £ 0.021 0.505 267
NVAE 25 0.131 £0.018 0.128 +0.015 0.134 £ 0.025 0.503 240
PFGM++ 25 0.436 +0.011 0.422 4+ 0.024 0.450 4+ 0.025 0.514 243
ReACGAN 25 0.336 £0.016 0.326 +0.017 0.345 £+ 0.026 0.510 247
RESFLOW 25 0.088 £0.008 0.090 +0.010 0.086 £ 0.011 0.498 199
StyleGAN2-ada 25 0.393 £0.012 0.387 +0.020 0.399 +£ 0.022 0.506 328
StyleGAN-XL 25 0.399 £0.012 0.378 £ 0.018 0.420 £ 0.022 0.521 251
WGAN-GP 25 0.170 £0.013 0.158 £0.013 0.181 £ 0.022 0.511 221

Table 5: Detailed human experiment results on ImageNet

Model # Tests Error Rate T R Error Rate 1 F Error Rate 1 R Answer Rate Time (s)
ADM 25 0.266 £ 0.016 0.254 4+ 0.021 0.279 +0.018 0.513 369
ADMG 25 0.248 +£0.012 0.236 + 0.021 0.259 4+ 0.016 0.512 396
ADMG-ADMU 25  0.269 £+ 0.016 0.240 4+ 0.017 0.298 4+ 0.024 0.529 344
BigGAN 25 0.158 +£0.014 0.155 4+ 0.016 0.161 +0.019 0.503 326
DiT-XL-2 25  0.286 £+ 0.016 0.266 + 0.026 0.307 4+ 0.024 0.521 341
DiT-XL-2-guided 27 0.330 £ 0.013 0.329 +0.019 0.330 £ 0.017 0.500 352
GigaGAN 25 0.212+0.015 0.212 +0.019 0.212 +0.015 0.500 398
LDM 26 0.309 +0.017 0.294 4+ 0.023 0.323 4+ 0.022 0.515 369
Mask-GIT 25 0.183+0.016 0.164 + 0.018 0.203 4+ 0.025 0.520 278
RQ-Transformer 26 0.223 +0.012 0.205 +0.014 0.242 + 0.017 0.518 308
StyleGAN-XL 25 0.153+0.013 0.145 +0.014 0.162 +0.018 0.509 315

Table 6: Detailed human experiment results on LSUN-Bedroom

Model # Tests Error Rate T R Error Rate 1 F Error Rate T R Answer Rate Time (s)
ADM-dropout 25 0.387 +0.020 0.334 £ 0.027 0.440 £+ 0.022 0.553 306
Consistency 25 0.1554+0.022 0.131 £ 0.026 0.179 £ 0.027 0.524 325
Diff-ProjGAN 26 0.148 +0.019 0.130 £ 0.018 0.167 4+ 0.023 0.519 335
DDPM 25  0.267 +£0.021 0.259 + 0.026 0.276 £+ 0.021 0.509 354
iDDPM 25 0.297 +£0.021 0.263 £ 0.025 0.331 £+ 0.028 0.534 336
Projected-GAN 25 0.142+0.018 0.144 £ 0.022 0.140 +£0.017 0.498 266
StyleGAN 26  0.2174+0.018 0.179 £ 0.017 0.254 £+ 0.025 0.537 427
Unleash-Trans 25 0.209 4+ 0.022 0.178 + 0.024 0.240 £ 0.027 0.531 305

Table 7: Detailed human experiment results on FFHQ

Model # Tests Error Rate T R Error Rate 1 F Error Rate T R Answer Rate Time (s)
Efficient-vdVAE 25 0.088 £ 0.010 0.081 4+ 0.013 0.096 + 0.010 0.507 282
InsGen 25 0.255 4+ 0.018 0.275 £+ 0.025 0.236 £ 0.016 0.480 326
LDM 25 0.186 +0.016 0.195 £ 0.016 0.178 £ 0.022 0.492 429
Projected-GAN 25 0.120£0.012 0.107 £ 0.011 0.134 £ 0.018 0.514 318
StyleGAN2-ada 25 0.215+0.017 0.215 £ 0.019 0.216 £+ 0.021 0.500 359
StyleGAN-XL 25 0.160 £ 0.012 0.163 £+ 0.008 0.158 £ 0.021 0.498 340
StyleNAT 25 0.299 +0.019 0.314 4+ 0.023 0.283 £+ 0.022 0.485 387
StyleSwin 25 0.180+0.012 0.198 £ 0.023 0.161 +0.010 0.481 288
Unleash-Trans 27 0.173£0.015 0.142 £ 0.015 0.203 £ 0.022 0.530 330
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Table 8: Layer used for GradCAM for each encoder.
Model Layer Name

Inception blocks.3.2
ConvNeXt  stages.3.blocks.2

SwAV layer4.2

SimCLRv2 net.4.blocks.2.net.3

CLIP visual.transformer.resblocks.11.1n_1
DINOv2 blocks.23.norm1

MAE blocks.23.norml

data2vec model.encoder.layer.23.]layernorm_before

D Additional experimental results

D.1 Additional scatter plots and correlations

Figure [T0|displays additional views of Figure[d] showing trends as a function of other popular metrics
(recall, precision, and density), while Figures [ T]and [I2]display the correlation of additional metrics.

D.2 Representation spaces for generative evaluation

D.2.1 Experimental details on GradCAM and additional heatmaps

We follow the gradient based visualization technique of [63]. As the FD is defined only between
large sets of images (50k), the method pre-computes the representations of 50k images from the real
dataset, and for a set of 49,999 generated images, then adds the additional image of interest using
Grad-CAM to visualize the parts of the image that have the largest influence on FD. For ViT-based
encoders, we use the Grad-CAM variation introduced by [37]. The layer GradCAM was applied to
for each encoder can be found in Table[8]

To unify the color scheme across encoders, we changed the sign on the heatmap for CLIP, DINOv2,
ConvNeXt and SimCLRv2. Indeed, the sign of the heatmap is given by the activations of the saliency
layer that is visualized and does not reflect the sign of the gradient w.r.t the FD. Both bright yellow
and deep blue can thus show an encoder’s focus. The sign was changed for the listed encoders as it
seemed to make better sense with the semantics of the images observed.

Additional heatmaps for all encoders on Imagenet, FFHQ and LSUN-Bedroom can be seen in Figures
[[3]and[T4} On those heatmaps, the "generated" set is taken to be the real dataset, and not from any
specific generative model.

D.2.2 Quantitative representation spaces

In conjunction with the preceding qualitative analysis we performed two quantitative analyses of the
representation spaces, and display the results in Figure[I5] First, we measured the perceptual score
in representation space using the BAPPS 2AFC dataset [[118]], data from a two alternative forced
choice (2AFC) test that asked human evaluators which of two distorted views is more similar to a
reference. The perceptual score measures the alignment of the human preference with the relative
distances between the reference and patches in representation space. In the “traditional” experiment
patches were distorted using traditional photometric, noise, blur, spatial, and compression distortions,
while another experiment distorted patches using “CNN-based” distortions such as autoencoding,
denoising, colorization, and super-resolution. Interestingly, better classifiers achieve worse perceptual
scores [62]. We find that SImCLR ranks worst on the perceptual score while the masked methods of
MAE and data2vec score the highest. These results are perhaps unsurprising given their respective
self-supervised training procedures - the contrastive SimCLR relies on a set of heavy augmentations
while MAE and data2vec work closer to pixel space and do not use augmentations - but such results
point to clear differences between perceptual spaces as a direct result of the self-supervised training
objective. We note that for generative evaluation, distortions such as jitter do not necessarily change
the semantic information of the image and thus should not change the representation. Such distortions
are a minor fraction of the total dataset.
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Figure 10: We show analogous results to Figure with points coloured by additional metrics. Fréchet
distance and human error rate for each generative model as measured by different encoders (columns)
on different datasets (rows). Panels with a shaded background do not have strong (|r| > 0.5) and
significant (p < 0.05) correlations between FD and human error rate.
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Figure 11: Pearson correlation for all metrics using different encoders (rows) on different datasets
(columns). Missing metrics require a validation or test set, which some datasets do not have.
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Figure 12: Pearson correlation for additional metrics (including IS and sFID) for the Inception-V3
network. Supporting the conclusions of the main text, we find that these additional metrics are not
strongly correlated with human evaluation on datasets more complex than the simplistic CIFAR10.
Missing metrics require a validation or test set, which some datasets do not have.
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Figure 13: Additional GradCAM visualisations (1/2).
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data2vec

Figure 14: Additional GradCAM visualisations (2/2).
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Figure 15: Left: Perceptual score [62] for each encoder measured using the BAPPS [[118]] dataset.
Samples from the dataset are shown above, where v~ denotes the patch that humans judged to be
closer to the reference. Right: correlation of intra-class diversity on ImageNet.

To probe the level of semantic and pixel-wise diversity captured by each encoder we calculate
the intra-class Vendi score over each class of the ImageNet training set (including in pixel space).
This score is proportional to the effective number of independent samples within the class after
transforming to the representation space. Section [D.4]provides more details. A low score reflects
a low diversity within the class, which is an indicator of a feature space that overemphasizes a
small set of class specific features rather than the wide diversity of semantic in pixel-space. The
correlation of the score over all classes across our set of encoders in shown in Figure[T3] Sorting
the encoders by their correlation with Inception we find two distinct groupings. The masked models,
MAE and data2vec, have a intra-class diversity that is highly correlated with each other, but also
with the diversity as measured in image-space. This indicates that such representation spaces put
more weight towards low level image features rather than clustering classes by object semantics,
which is a quantitative agreement with the characteristics of the heatmap visualizations. Interestingly
MAE achieves high linear-classification accuracy but performs very poorly on k-nearest neighbours
evaluation protocols [44]], perhaps also indicating a lack of clustering based on class-specific semantic
information. ConvNeXt, CLIP, SwAV, and DINOv2 show a high correlation with Inception yet a low
correlation with image-space, indicating that their feature spaces distill a more object-based semantic
information. Of the ViTs, CLIP has the smallest alignment with pixel space diversity and the largest
with Inception space.

D.3 FD bias

It is known that using finite datasets for computing FID (and similarly for FD in general) results
in a biased estimate of the quantity that one would obtain if an infinitely large amount of data was
observed. As mentioned in Appendix [B.I] FID, [22] aims to remove this inherent bias. Here we
measure the biases of FD and FD, in a realistic setting with a number of encoders used in our work
in order to test whether the default 50k generated samples are sufficient for our proposed replacement
to the Inception-V3 feature extractor.

We use the 100k samples generated with DiT-XL-2 [84] trained on ImageNet-256, and calculate the
relevant statistics as a function of the number of training samples used by sub-sampling both the
DiT generated set and the set of training images. Figure|16|shows the results across 4 encoders -
Inception, CLIP, DINOv2, and MAE. We observe that while FD, has less bias compared to FD, it
does not completely solve the problem, and continues to decrease with the number of samples used.
We also find that the self-supervised encoders exhibit less biased FD than the Inception network.
For example, DINOv2 with 20k samples has the same relative error compared to the full 100k set
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Convergence of FD and FD,, Across Various Encoders Convergence of ASW and FD Using Inception
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Figure 16: Left: Convergence of FD., and FD using different representation spaces. Right:
Convergence of FD and ASW using Inception as the encoder.

as Inception does using 50k samples. While one could argue that this means only 20k samples are
required for DINOv2, we retain consistency with FID and use 50k samples for FD with all encoders.

Naively, the FD thus has two issues: the aforementioned bias, and the fact that it only compares
the first two moments of its corresponding distributions (see Appendix [B.I). Since the FD can
be understood as approximating its distributions with Gaussians of matching moments and then
computing the Wasserstein-2 distance, Wy, between them, it is sensible to consider other metrics
based on Wasserstein distance as potential evaluation metrics. Unfortunately, computing this distance
is in general computationally expensive [32].

In an attempt to address these issues, we considered using the sliced Wasserstein distance, SWo,
instead. Let I and QQ be distributions on R?, which we should think of as the generated and real
distributions, respectively. Let uy(-) denote the push-forward of measures under the mapping
x — {u, z). Then SWy, is defined through:

SW3 (P,Q) = E, [W3(ugP, uxQ)], (12)
where the expectation is taken with respect to the uniform measure on the unit sphere in R.

It can be shown that SW has a lower sample complexity compared to both W and its relaxation
[73]. Calculating optimal transport in one dimension requires significantly less computation than
in higher dimensions as it can be solved via sorting. Therefore, the RHS of Equation [I2] can be
approximated well using Monte-Carlo methods. However, [[74]] introduces a closed form approximate
sliced Wasserstein (ASW) distance with convergence guarantees that does not require Monte-Carlo,
making the final result a formula based on the first two moments of P and Q:

ASW({af i, (e )50) = Wa (v (0, 2UEHE)) e (o ZEUBERON ) 4 Ly

d d
(13)
where
1 n
My({z{}i,) = (nz e —ug§> + Ilg 3, (14)
i=1

(and analogously for MQ({ZL'; ™ 1)), and where p, and i, denote the sample mean of generated
{«?}"_, and real samples {@}}L,, respectively. Note that the Wy term required to compute the
ASW can be trivially computed through the 1-dimensional FD formula. The ASW resembles FD, but
with the advantages of having both convergence and sample complexity guarantees.

To test the sample stability we use the same setting that we did for FD and FD . Figure[16] (right)
depicts the relative error of ASW and compares it with FD using Inception. It is clear that the ASW
has less dependence on sample size, indicating that even small batches of around 10k samples may
be sufficient (note that the plot is log-scale).

Despite its theoretical guarantees, we found that ASW does not correlate well with human perception
across various encoders and does not seem to be affected by mode shrinkage. Since it is not widely
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Figure 17: Per-class Vendi score (higher is more diverse) distributions with different encoders. By
visual inspection, DiT-XL-2 is more diverse than DiT-XL-2-guided.

used in the literature, we chose to not include it in the main text. These results do however raise the
question: why does the FD perform so well in practice compared to the ASW, despite the latter being
seemingly more principled? We hypothesize that there are two factors at play: (i) the encodings
are likely approximately Gaussian (e.g. [52]), meaning that comparing the first two moments is
enough; and (i) while the computation of the FD is biased, if the bias behaves similarly across
generated datasets, it will have no impact in model rankings. While we leave a formal exploration of
these hypotheses for future work, we point out that the strong correlation of FD with KD (Figure )
suggests that the FD only comparing the first two moments and having sample complexity issues are
not problems that are borne out in practice, and we thus recommend using FD as-is given that its use
is already widespread.

D.4 Diversity

In this section, we outline the rationale behind our decision to utilize the per-class Vendi score with
DINOV2 as the metric for our diversity analysis.

Based on an analysis of the DiT-XL-2 and DiT-XL-2-guided datasets, the strong classifier guidance
value of DiT-guided in comparison to DiT resulted in samples that lacked diversity within each class
(examples were shown in Figure[6). We pose that a robust diversity metric should flag such a lack of
intra-class diversity, and thus these two models are the basis of the following analysis. As mentioned
in the main manuscript, much like precision measures more than just fidelity (Figure @] and similarly
for density, see Figure[I0), we find that recall and coverage also quantify more than just diversity,
which can be clearly seen in Figure [I0](as both of these metrics have relatively strong correlations
with human evaluation when using good encoders — a property that diversity metrics should not
exhibit). On the other hand, the per-class Vendi score, which we will further justify shortly, has the
intended property of being uncorrelated with human error rate (Figure 3] right).

We computed the Vendi score for the DiT-XL-2 and DiT-XL-2-guided models over each individual
ImageNet class (100 images per class), and averaged the results, which are presented in Table 9]
The distributions of the per-class Vendi scores are plotted in Figure[T7} The per-class Vendi scores
consistently ranked DiT-XL-2 higher than DiT-XL-2-guided for every encoder, indicating that DiT-
XL-2 exhibits higher intra-class diversity. This observation aligns with our inspection, where it is
apparent that the guided model produces less diverse intra-class samples. Hence, we adopted the
per-class Vendi score for our analysis.

We next report the overall (not conditioned on class) Vendi score in Table [T0] using 50k images from
each set. It is important to note that Vendi scores represent the effective number of unique samples in
a dataset. Therefore, it is counterintuitive to obtain very low values, such as those observed in MAE,
data2vec, SimCLRv2, and even with simple resizing, where there are only a few effective samples
among the 50k images. Moreover, not all encoders ranked DiT-XL-2 above DiT-XL-2-guided based
on the overall Vendi scores, except for DINOv2, SimCLRv2, and ConvNext. However, SImCLRv2
exhibited minimal differences across ImageNet train, DiT-XL-2, and DiT-XL-2-guided. Additionally,
neither SimCLRv2 nor ConvNext showed FD rankings that aligned well with human perception.
Consequently, we pose that this diversity analysis provides additional support for the use of DINOv2
for generative evaluation.
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Table 9: Mean Vendi score for different encoders on ImageNet train and generated samples.

Encoder ImageNet train DiT-XL-2 DiT-XL-2-guided
Inception 6.04 5.50 3.25
ConvNeXt 28.08 23.52 8.73
CLIP 13.74 10.17 5.72
SimCLRv2 5.17 4.99 4.15
DINOv2 15.93 14.17 5.61
SwAV 8.72 6.42 4.40
MAE 1.10 1.08 1.07
data2vec 1.03 1.02 1.02
Resize (to 32x32) 1.09 1.09 1.09

Table 10: Overall diversity for ImageNet training and generated images.

Encoder ImageNet train DiT-XL-2 DiT-XL-2-guided
Inception 88.57 89.03 129.92
ConvNext 951.83 824.33 687.58
CLIP 36.56 27.61 31.90
SimCLRv2 6.74 6.77 6.38
DINOv2 762.52 688.53 671.54
SwAV 55.61 43.51 59.77
MAE 1.15 1.14 1.17
data2vec 1.04 1.04 1.04
Resize(to 32x32) 1.12 1.13 1.18

D.5 Rarity

Here we perform experiments to investigate whether participants confuse fakeness with unlikeliness.
Such an effect would result in images generated from more diverse models being more likely to
be assessed as “fake” and hence a diverse model receiving a lower human error rate compared to
a model of lower quality but less diversity. The following experiments rule out such a flaw in our
experimental setup and ensure that our human error rate dataset is not misleading.

To isolate this effect, we on focus comparing the error rate on “rare” real samples versus “common”
real samples. For each of the 2000 real images we used for each dataset (individual images were
evaluated by an average of 13 humans), we determined the fraction of humans that labeled it as fake,
while as a measure of image rarity/unlikeliness we calculate the “rarity score” (RS) of [42]. The RS
is determined on image representations, so we performed the calculation using both Inception-v3 and
DINOV2 to quantify the dependency of RS on the embedding space.

Table 11: Correlation of the fraction of humans that labelled a real image as fake and the rarity score
[42] of that image. The rarity score can only be determined for images that fall “on manifold”.

Dataset Encoder % on manifold r p-value 1 (94%) p-value (94%)
CIFARI10 Inception 76.3 0.278  0.000 0.216 0.000
CIFARI10 DINOv2 88.3 0.062  0.009  0.0004 0.859
ImageNet Inception 82.2 -0.034  0.163 -0.002 0.922
ImageNet DINOv2 92.9 0.008  0.726 -0.012 0.624
LSUN-Bedroom Inception 70.3 0.110  0.000 0.045 0.106
LSUN-Bedroom DINOv2 90.2 0.102  0.000 0.021 0.386
FFHQ Inception 79.3 -0.027  0.286 -0.024 0.357
FFHQ DINOv2 89.7 -0.019  0.431 -0.040 0.103
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Figure 18: Top: Human error rate and rarity score for each of the 2000 training images. Individual
images were evaluated by an average of 13 humans. Bottom: Examples on LSUN Bedroom (left)
and CIFARI10 (right), with the top rows displaying training images correctly judged by humans
as real, and the bottom rows displaying real images “incorrectly” judged as fake. The fraction of
participants who judged the image as fake is denoted on the top right of each image.

As seen in Figure[I8]and Table[TT|we find no correlation between the human error rate and RS on
ImageNet and FFHQ. On CIFAR-10 and LSUN-Bedroom we find a small but statistically significant
correlation, which we identify as driven by dataset issues: the non-zero correlation is caused by a
very small percentage of “real” images which are clearly taken from 3D-generated scenes (instead
of bedroom photographs in LSUN-Bedroom), or from 2D-generated scenes or low quality images
(in CIFAR-10). These results show that (i) humans are more likely to label generated scenes as
fake/generated (LSUN-Bedroom, CIFAR-10), and (7¢) humans are more likely to label low-quality
images as fake/generated (CIFAR-10). Such images have a higher than average RS, and hence the
small correlation between human evaluation and RS on CIFAR10 and LSUN-Bedroom is due to
humans properly identifying these dataset issues. We find that removing just 6% of the “fakest” (as
measured by humans) real images on LSUN-Bedroom removes the correlation of RS and human
error rate - quantitative proof that the small correlation is driven by dataset issues, and not due to
humans associating diversity with fakeness. Rare defects in the training set are not enough to affect
our results: being so rare ( 6%) means they barely affect the average error rate; and this training-set
effect is the same for every generative model evaluation and thus does not change their rankings.

This analysis provides additional validation that our experimental design and human error rate metric
are accurately measuring the fidelity of images, and are not effected by extraneous factors such as
image unlikeliness/rarity.

D.6 Memorization

In this subsection we include a detailed description of our procedure to () collect memorized samples
for generative models trained on CIFAR10, ImageNet, FFHQ, and LSUN-Bedroom, (i) summarize
a number of controlled experiments to probe the effectiveness of memorization metrics in ideal
scenarios, and (4i7) show additional results for memorization metrics in different representation
spaces.
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Memorization check with calibrated [, distance In Figure |19} we show the memorized ratio
for each of the 13 generative models we evaluated on CIFAR10 using the metrics described in
Section 5.2} We also tailored k& — which is the hyperparameter specifying the number of nearest
neighbours used to compute the metric — to each dataset. We use & = 50 for CIFAR10, FFHQ, and
LSUN, while for ImageNet with its limited examples per class in the training set, we set £k = 3. In
addition, we exclusively conduct intra-class nearest neighbour search on ImageNet, as opposed to
performing the search across the entire training set. We find that more complex models are more
likely to memorize on CIFAR10, whereas less performant models such as ResFLOW and NVAE are
less likely to memorize.

Moreover, we provide additional visualization results to further showcase the exact memory exhibited
from DDIM on CIFARI10 in Figure 20] and the reconstructive memory exhibited from DiT-XL-2
on ImageNet in Figure 2T]and from ADM-dropout on LSUN in Figure[22] Based on Figure 20} the
presence of exact memorization is evident, raising concerns that need to be considered on CIFAR10.
However, each "memorized" sample found with the above metric in Figure 2T on ImageNet and
Figure [22] on LSUN — while not being pixel-wise identical — retains a higher degree of semantic
similarity compared to the three alternative matches in the training set. We can also observe that,
for some cases, the generated image does not exhibit significantly closer similarity to the matched
training sample compared to the training sample’s nearest neighbors. While it seems that the model
tends to show reconstructive memory on samples that have similar duplicates in the training set,
we note that this marks potential failures of the memorization metric, and thus do not report a total
number of samples without further work to understand the reasons behind this. This memory can also
be interpreted not necessairily as memorization, but as a form of generalization, as the model captures
and reproduces common patterns or characteristics present in the training data. Our analysis leads us
to conclude that reconstructive memory on complex datasets is not currently a major concern, as out
of millions of training images we found a small number of matches. Nevertheless, we re-iterate our
stance from the main text that reconstructive memory should continue to be monitored as models
themselves become increasingly more complex.

Other than the pixel-wise check, we also revisit the nearest neighbour search in DINOv2 representation
space in small scale and find decently-matched results for complex datasets; qualitatively, the results
are similar to the pixel-wise check from Figure[21] This could be even further explored in future work.
Yet it is still unclear whether or not we have exact memorization - the matched cases mostly occur
within classes exhibiting low intra-class diversity, where the samples in training set are extremely
similar with each other.
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Figure 19: Memorization ratio for 13 generative models on CIFAR10.

D.6.1 Controlled experiment for memorization metrics

To study the response of metrics to memorization we first constructed a controlled experiment where
generated samples become increasingly memorized from a realistic set of training images.
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Figure 20: Memorized samples from DDIM on CIFAR10. Images are arranged in vertical pairs,
where the upper image is generated, and the lower image is a training set image.

We generate the synthetic datasets using the VDVAE architecture [21]], which is a hierarchical VAE.
Specifically, we used an FFHQ-256 pretrained model, which has 62 layers, and for each training
example we sampled from the approximate posterior until a certain layer, and sampled from the
prior in later layers. In this manner, going deeper with the approximate posterior corresponds to
more closely memorizing the training example. In particular, using depth 0 means sampling from the
model’s prior, while using the posterior until depth 62 corresponds to a reconstruction that is a very
close reproduction of the original image. For a qualitative example of depth and memorization refer

to Figure 23]

Formally, a VAE consists of three functions: (%) the generator pg(x|z), (i7) the approximate posterior
g¢(z|z), and (ii) the prior pe(z), where z is the latent variable. In the hierarchical setting, it is

assumed that z = (2o, 21, - - , 2,) and the prior and the approximate posterior are factorized as:
po(2) = po(20)po(21]20) - po(2nl2<n), 1s)
46 (2]7) = q¢(20]2) g9 (21|12, 20) - - - 4y (2n 2, 2<n).- (16)

The distribution of the image conditioned on this z is py(x|z) i.e. the generator. To sample from this
model, py(z) is used to sample z and then to sample = conditioned on z. This corresponds to our
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Figure 21: Reconstructive memorized samples from DiT-XL-2 on ImageNet. Each set of 5 images in
arow includes a generated sample, a matched training sample, and three nearest neighbors from the
training set associated with the matched training sample.
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Figure 22: Reconstructive memorized samples from ADM-dropout on LSUN. Each set of 5 images
in a row includes a generated sample, a matched training sample, and three nearest neighbors from
the training set associated with the matched training sample.
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Figure 23: Left: Qualitative example of synthetic data for the controlled memorization experiment.
Top left image is a training sample and the next 5 images correspond to using the approximate
posterior up to depth 41, 15, 5, 3, and 0. Right: Values of the Cp score, AuthPct, and FLS-POG at
each depth. The DINOv2 encoder was used for these metrics.

depth O setting. To make samples resemble the training set, we can use g, (z|z) instead of pg(z). The
distribution is modified as follows

p([x) = 4o (20[) - - 4o (zm |2, 2<m )Po(Zmt1]2<m1) - - Po(2n]2<n). 17)

In terms of sampling, this corresponds to using the training image = and the approximate posterior to
generate zg, 21, - * * , 2, and then using the prior to generate the rest of z. As m (which we refer to as
depth) increases, the mutual information between = and z increases, which in turn results in a more
faithful reconstruction.

Using the described procedure, 30,000 samples are generated at each of the following depths: 0
(meaning no conditioning), 1, 3, 5, 9, 15, 25, and 41. We use 63,000 images as the training set and
7,000 as test images; these are the same sets that are used to train and test the VDVAE. We calculate
AuthPct, C'r, and FLS-POG on each set of images and display the results in Figure 23] We find that
both C'r score and AuthPct have characteristics that indicate they can correctly identify memorization
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in this experiment. At depths less than 15, C'p is a positive value, indicating the training samples
are no closer to the generated samples than they are to ones from the test set (are not memorized),
while at depths greater than 15, C'r becomes increasingly negative, indicating a stronger detection of
memorization. AuthPct starts from close to 100%, meaning all samples are authentic, and decreases
to 20% at a depth of 41, indicating that generated samples are closer to training samples than expected.
Since a depth of zero means no conditioning on individual training images (except for the training of
the original model), the result confirms the effectiveness of the proposed method for this particular
point. As the depth increases, AuthPct correctly decreases the percentage of authentic samples in
a rate that is almost equal to the decrease in C'7. FLS-POG has the correct trend as it increases as
samples become more memorized. However, the rate of the increase is minimal, does not reflect the
level of memorization seen at a depth of 41 (as seen in the images training samples which are almost
exactly reproduced at this depth), and is not comparable to the change in the other two metrics. From
this controlled experiment we conclude that, in the absence of mode collapse/mode shrinkage when
training samples are uniformly memorized, C and AuthPct can flag memorization in practice while
FLS-POG does not flag memorization strongly enough.

D.6.2 Memorization metric quality

With a better understanding of AuthPct, FLS-POG, and the C score, we calculate them on the sets
of CIFAR10 generated images and compare to the measured memorization ratios determined through
the analysis above. Results for the DINOV2 representation space were shown in Section[5.2] while
here we show the scores for every encoder in Figure[24] We also include our modification to the C'r
score which swaps the roles of the training and test samples (details and motivation for the modified
Cr score follow in Appendix m We remind the reader that higher AuthPct, C'1 score, and
modified Cr score are meant to indicate less memorization, whereas lower FLS-POG is meant to
indicate /ess memorization.

Here we detail the characteristics of each encoder. For Inception, we see that a higher memorization
ratio seems to correctly correlate with lower AuthPct and C score. However there is no discernible
pattern for FLS-POG and Cr modified. Meanwhile, the SWAV encoder seems to provide the correct
directionality for all memorization metrics. CLIP produces no discernible trend for AuthPct and
FLS-POG, a slightly accurate trend for C'r, and a strongly accurate trend for modified Cr. MAE is
similar to CLIP except with the roles of FLS-POG and C'r perhaps flipped. data2vec is somewhat
similar to SWAV with the correct directionality — particularly for C'r score — but with a slightly
weaker trend for the other metrics. Lastly, DINOv2 shows a correct correlation for the modified C'p
score, but no strong trends for the others. While the performance of each encoder shows a large
variation, it is important to note that we illustrate clear issues with the memorization metrics in the
next section (D.6.3). We find that modified C'r score performs the best in this section, with C'r
score next, then AuthPct, then FLS-POG last. This agrees with our previous experiment that shows
FLS-POG is the weakest detector of memorization.

D.6.3 Low-dimensional experiments for memorization metrics

Table 12: Memorization metrics on synthetic datasets
Metric True Distribution Shrinkage Memorized Underfit 1 Underfit 2 Underfit 3

AuthPct 41.20 20.00 0.00 46.60 67.20 77.30
Cr Score -0.23 -16.14 -25.26 7.16 15.22 18.42
Cr Mod. 0.05 -0.86 -16.71 -0.62 0.23 1.37
FLS-POG 60.10 60.00 89.70 59.00 56.30 55.20

While the previous subsections have confirmed that C'r and AuthPct can flag memorization in ideal
scenarios (Section [D.6.T)) and seemingly show appropriate trends in some representation spaces
(Section [D.6.2)), it is not clear that they are explicitly flagging memorization over other forms of
overfitting. Curiously, the metrics computed against the test set resemble those against the training
set, which the models cannot have memorized outside of data-leakages between the construction
of the train and test sets. While we note that such leakages do occur for CIFARI10 [6], in the
following toy scenario we demonstrate the inability of the metrics to separate types of overfitting
from memorization.
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Figure 24: Memorization ratio vs. metric value for each metric out of AuthPct, FLS-POG, Cr, and
the modified C, evaluated on the models from Figure[T9] The same metric values computed against
the test set are shown with lower opacity.

To understand the impact of various modelling phenomena on memorization metrics we design
a simple 2-dimensional experiment. As a ground truth distribution, we take a uniform mixture
of 5 Gaussian components. Each component’s mean is sampled from a unit diagonal Gaussian
distribution, while each component’s covariance matrix is diagonal with diagonal elements sampled
from a uniform distribution over the interval [0.01,0.09]. From this distribution we sample 1000
training and 1000 test points.
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Figure 25: Toy datasets generated for the purpose of investigating memorization metrics.

We then generate 1000 points from various “models” from which to measure memorization:

* A perfect model with zero memorization, represented by independent samples from the
same ground truth distribution.

* A model experiencing total mode shrinkage: it uniformly samples a mean from each
Gaussian in the mixture.

* A model that has perfectly memorized the training data: it amounts to randomly sampling
from the training data with replacement.

e Three “underfit” models, which in fact have learned the true distribution with upscaled
standard deviation for each component of the Gaussian mixture: 1.50, 30, and 4.50.

The training, test, and generated distributions are shown in Figure 23] We evaluate metrics on these
datasets and report the values in Table[12]

FLS-POG seemingly performs correctly for detecting memorization in these regimes - with the
memorized model receiving the highest score of 80% and the other models receiving a score hovering
around 60%. However, a value of 60% on both the true and mode shrinkage examples indicates
that it poorly flags mode shrinkage, one of its claimed usages [33]], and the relative change of 5%
from underfit to the true distributions is on the order of the change seen in the VDVAE controlled
experiment, indicating that such relative changes can have multiple meanings. AuthPct indicates
memorization (< 50%) for the mode shrinkage model, the perfect model, and the slightly underfit
model. From this, we gather that AuthPct incorrectly flags well-trained models that produce samples
on the true manifold.

We also find that the C'r score performs incorrectly here: the score of —16.14 it assigns to the mode
shrinkage model — well below 0 — has incorrectly flagged memorization. We can see why by looking
closer at the metric: the Cr score compares how much more often (¢) the distance from a generated
data point to a training data point is lower than (i) the distance from a test data point to a training
data point, and reports a highly negative score if (%) is often lower than (7). In this case, we would
expect our generated, mode-shrunken samples to be much closer to the training data than the test data
is to the training data, which agrees with what we observe. The issue here boils down to a lack of
symmetry between test and training set: the test set is only used for one of the comparisons, whereas
the training set is used in both distance checks. The generated dataset is also only used once. We
address this asymmetry by proposing a modification to the C score — referred to as the modified
C'r score — wherein we essentially swap the roles of the training and the generated data within the
base C score. The modified Cr score thus compares how much more often (¢) the distance from
a generated data point to a training data point is lower than (i) the distance from a generated data
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Figure 26: ImageNet samples for generative models (rows) sorted by error rate from our human
subject experiments. Classes from left to right: great white shark, English Springer, comic book, and
volcano.

point to a test data point, reporting a highly negative score if (i) is often lower than (¢7). To fully
summarize and perhaps visualize our change, consider the Cr score as a function from training data
T, generated data G, and test data T to the real numbers, represented as C (17, G, T»). Then, the
modified Cp score — call it Cp ps — can be represented as Cp ar (Th, G, T2) = Cr(G, Th, ). We
see that our change has produced the desired behaviour, as now the mode shrinkage dataset is not
detected as memorized by Cr as.

From this discussion we gather that the C'r score incorrectly flags mode shrinkage, and AuthPct
incorrectly flags well-trained models. Recall that none of the models except for the memorized one
are actually derived from the test set. These experiments explain why AuthPct and C'r seem to score
models in a way that is almost invariant to the training set in Figure [7}

D.7 Model samples

Figures 26| 27] 29] and 28] show image samples from the 41 generative models across the four
datasets.
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Figure 27: CIFARI10 samples for generative models (rows) sorted by error rate from our human
subject experiments. Non class-conditional models show a random selection of generated samples
while class-conditional models show classes airplane, automobile, bird, and dog.

Projected-GAN
Bt Rate ~0.14
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Consistency
Error Rate = 0.16
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Unleash-Trans
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FID = 3.58

StyleGAN
Error Rate = 0.22
FID=2.65

DDPM
Error Rate = 0.27
D=5

iDDPM
Error Rate = 0.30
FID =4.54

ADM-dropout  ©
Error Rate - 0.39
FID=2.20

Figure 28: LSUN Bedroom samples for generative models (rows) sorted by error rate from our human
subject experiments.
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Efficient-vdVAE
rror Rate = 0.09
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Projected-GAN
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StyleNAT
Error Rate = 0.30
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Figure 29: FFHQ samples for generative models (rows) sorted by error rate from our human subject
experiments.
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E FDpinoy2 scores leaderboard

Table [13] shows our considered metrics across models and datasets.
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Table |E| lists individual contributions of the authors (in alphabetical order).
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