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Abstract

On tabular data, a significant body of literature has shown that current deep learning
(DL) models perform at best similarly to Gradient Boosted Decision Trees (GBDTs), while
significantly underperforming them on outlier data Gorishniy et al. (2021); Rubachev et al.
(2022); McElfresh et al. (2023). However, these works often study problem settings which
may not fully capture the complexities of real-world scenarios. We identify a natural tabular
data setting where DL models can outperform GBDTs: tabular Learning-to-Rank (LTR)
under label scarcity. Tabular LTR applications, including search and recommendation, often
have an abundance of unlabeled data, and scarce labeled data. We show that DL rankers
can utilize unsupervised pretraining to exploit this unlabeled data. In extensive experiments
over both public and proprietary datasets, we show that pretrained DL rankers consistently
outperform GBDT rankers on ranking metrics—sometimes by as much as 38%—both overall
and on outliers.

1 Introduction

The learning-to-rank (LTR) problem aims to train a model to rank a set of items according to their relevance
or user preference (Liu, 2009). An LTR model is typically trained on a dataset of queries and associated query
groups (i.e., a set of potentially relevant documents or items per query), as well as an associated (generally
incomplete) ground truth ranking of the items in the query group. The model is trained to output the optimal
ranking of documents or items in a query group, given a query. LTR is a core ML technology in many real
world applications—most notably in search contexts including Bing web search (Qin & Liu, 2013), Amazon
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Figure 1: Main result (Simulated crowdsourcing of labels): We compare NDCG (↑) as we sweep the
percentage of labeled training query groups (QGs); labeled QGs have relevance scores for every element of
the QG. For small enough fractions of labeled query groups, pre-trained DL rankers (sometimes significantly)
outperform both GBDTs (representing the best of supervised GBDTs and semi-supervised GBDTs) and
non-pretrained DL rankers (representing the best of tabular ResNet (Gorishniy et al., 2021), DeepFM (Guo
et al., 2017), and DCNv2 (Wang et al., 2021)). To the left of the black dotted line, pretrained rankers perform
the best (statistically significant at p = 0.05 level). Points are averages over 3 trials.

product search (Yang et al., 2022), and Netflix movie recommendations (Lamkhede & Kofler, 2021). More
recently, LTR has also found use in Retrieval Augmented Generation (RAG), where a retrieval system is
paired with an LLM (large language model) to ground the latter’s responses to truth and reduce hallucination
Lewis et al. (2020); Glass et al. (2022); Pan et al. (2022).

Traditionally, LTR models took tabular features—numerical or categorical features—of queries and documents
as input features (Burges et al., 2005; Cao et al., 2007; Chapelle & Chang, 2011; Qin & Liu, 2013; Lucchese
et al., 2016). As this continues to be the case for many important applications, tabular LTR is a core problem
in machine learning (Bower et al., 2021; Yang et al., 2022; Yu, 2020; Kveton et al., 2022; Pan et al., 2022; Xia
et al., 2008; Chen et al., 2009). Today, deep models are largely outperformed by gradient boosted decision
trees (GBDTs) (Friedman, 2001) in ML problems with tabular features (Jeffares et al., 2023; Qin et al., 2021).
In contrast, deep models are state-of-the-art by a significant margin in domains like text (Devlin et al., 2018)
and images (He et al., 2016).

Recent breakthroughs in modeling non-tabular data like text and images have been driven by first training a
deep neural network to learn from unlabeled data (unsupervised pretraining, or pretraining) (Devlin et al.,
2018; Chen et al., 2020), followed by supervised training (finetuning). Models that are pretrained in this way
can perform significantly better than models that were only trained on existing labeled data. This remarkable
success stems from three factors: (1) limited access to labeled data, (2) large, available sources of unlabeled
text and image data, and (3) pretraining methods that can exploit unlabeled data.

A natural question is whether deep models can similarly use unsupervised pretraining to outperform GBDTs on
the tabular LTR problem. To this end, many papers have studied unsupervised pretraining techniques—both
using deep learning and GBDTs—for tabular data Yoon et al. (2020); Ucar et al. (2021); Bahri et al. (2021);
Verma et al. (2021); Majmundar et al. (2022); Duh & Kirchhoff (2008); Pseudo-Label (2013). However, none
of these methods have shown convincingly that deep learning (with or without unsupervised pretraining)
consistently outperforms GBDTs (semi-supervised or supervised); at best, deep methods appear to achieve
roughly the same performance as GBDTs (Jeffares et al., 2023; Rubachev et al., 2022; Gorishniy et al., 2021;
Shwartz-Ziv & Armon, 2022; Grinsztajn et al., 2022). Furthermore, recent work showed that GBDTs are
significantly more robust against outliers in the dataset than deep learning models McElfresh et al. (2023).
We note that most of these works study idealized problem settings which may fail to capture complexities of
real-world scenarios such as label scarcity and noisy data. Prior work in other domains show that pretrained
deep models can outperform purely supervised models Chen et al. (2020) and former models are more robust
to noise Hendrycks et al. (2019). Therefore, we hypothesize that pretrained deep models can outperform
GBDTs in tabular settings that more accurately reflect real-world challenges.
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Through extensive empirical evaluation, we confirm this hypothesis and show that deep models which use
unsupervised pretraining consistently outperform GBDTs—sometimes by a large margin—when labels are
scarce. By scarce, we mean that only a small number of query groups contain labels. This setting is more
standard in most real-world deployments of LTR, rather than the idealized settings studied in prior work.
For instance, scarcity can arise when organizations: (a) crowdsource labels for a limited number of query
groups due to cost constraints, and/or (b) use rare user feedback (e.g., clicks, purchases) as implicit labels.
Our experiments consider both sources of scarcity. They are run on the three standard public datasets in the
ranking literature: MSLRWEB30K (Qin & Liu, 2013), Yahoo (Chapelle & Chang, 2011), Istella_S (Lucchese
et al., 2016), as well as an industry-scale proprietary ranking dataset.

Contributions: (1) We demonstrate for the first time that unsupervised pretraining can produce deep models
that outperform GBDTs in ranking. Specifically, pretrained deep rankers can achieve up to 38% higher NDCG
(normalized discounted cumulative gain) score (Burges, 2010) than GBDTs when labels are scarce (Figure 1).
For instance, Figure 1 shows on three datasets that as the labels get scarcer, GBDTs start to substantially
underperform pretrained deep rankers (experimental setup in Section 4.1.2).

(2) We prescribe empirically-justified LTR-specific pretraining strategies, including a new ranking-specific
pretraining loss, SimCLR-Rank, which is a modification of the widely used SimCLR (Chen et al., 2020) loss.
In experiments, SimCLR-Rank achieves similar or better performance than most existing pretraining methods
at an order-of-magnitude speedup. This allows SimCLR-Rank to scale to large real-world datasets such as
our proprietary industry-scale ranking dataset.

(3) We demonstrate that when labels are scarce, pretrained deep rankers can perform significantly better than
GBDTs on outlier query groups, boosting NDCG by as much as 80% (Figure 8, Appendix A.3.4). This is
perhaps surprising, given prior results in the label-rich regime showing that GBDTs are significantly more
robust to data with irregularities than deep rankers (McElfresh et al., 2023).

The main novelty of this work lies in the identification of label-scarce LTR as a practical real-world tabular
learning problem and the results which challenge the prior understanding of the optimal modeling choices for
tabular learning. We demonstrate that pretraining strongly help deep models to consistently outperform
GBDTs in this label-scarce problem. Of note, these improvements over GBDTs happen even when the labeled
data is plentiful in absolute numbers; up to 25% labeled query groups in public datasets and 3 million+
labeled query groups in the large industry-scale ranking dataset. Prior to our work, the ML and ranking
literature had not yet identified a widely applicable setting where (pretrained) deep models could consistently
outperform GBDTs (Qin et al., 2021; McElfresh et al., 2023). Due to the prevalence of label scarcity in
practical settings, our results suggest a positive change in how practitioners may approach real-world tabular
learning problems, especially in search and recommendation systems.

Related work: We focus on the traditional LTR setting where the features are all numeric (tabular data).
In this setting, gradient boosted decision trees (GBDTs) (Friedman, 2001) have historically been the de-facto
models, though there is currently great interest in applying deep neural networks to tabular data. Borisov
et al. (2022) categorize existing techniques for using deep neural networks over tabular data into four types:
(1) Encoding-based methods such as VIME (Yoon et al., 2020), SCARF (Bahri et al., 2021), IGTD (Zhu
et al., 2021), and SuperTML (Sun et al., 2019); (2) Novel hybrid architectures such as DeepFM (Guo
et al., 2017), xDeepFM (Lian et al., 2018), and many others Cheng et al. (2016); Frosst & Hinton (2017);
Ke et al. (2018; 2019); Popov et al. (2019); Luo et al. (2020); Liu et al. (2020); Ivanov & Prokhorenkova
(2021); Luo et al. (2021); (3) Transformer-based architectures including SAINT (Somepalli et al., 2021),
TabNet (Arik & Pfister, 2021), TabTransformer (Huang et al., 2020), and ARM-Net Cai et al. (2021)); (4)
Regularized DNNs (Shavitt & Segal, 2018; Kadra et al., 2021).

Within these categories, proposed architectures include factorization machines (Rendle, 2010), wide & deep
architectures (Cheng et al., 2016), and similar architectures designed for recommendation systems (Guo
et al., 2017; Wang et al., 2021; Lian et al., 2018; Naumov et al., 2019; Qu et al., 2016). While our paper is
architecture agnostic, we perform comparisons of pretrained models against non-pretrained DeepFM Guo
et al. (2017) and DCNv2 Wang et al. (2021) models to show that pretraining is needed to outperform GBDTs
consistently. Self-supervised learning (SSL) or unsupervised pretraining has improved overall performance
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and robustness to noise (Hendrycks et al., 2019) in settings where there is a significant source of unlabeled
data like text (Devlin et al., 2018; Howard & Ruder, 2018; Kitaev et al., 2018; Liu et al., 2017; Song & Roth,
2015) and images (Chen et al., 2020; Chen & He, 2021; Grill et al., 2020; Ge et al., 2021; Xie et al., 2020).

Inspired by the success of SSL in images and text, many unsupervised pretraining tasks have been proposed
for tabular data. We describe some of the most well-known methods. SubTab (Ucar et al., 2021) proposes to
train an autoencoder to reconstruct a table using a subset of the columns. VIME-self (Yoon et al., 2020) is a
similar method. SCARF and DACL+ (Bahri et al., 2021; Verma et al., 2021) propose augmentations for the
SimCLR pretraining task (Chen et al., 2020) that work for the tabular setting. RegCLR (Wang et al., 2022a)
is a method for extracting tables from images, which is not directly applicable to our setting.

A smaller class of approaches has studied regularized DNNs, finding that they require limited changes to
perform well on tabular data Shavitt & Segal (2018); Kadra et al. (2021). However, the most competitive of
these methods require extensive hyperparameter optimization over a 14-dimensional grid Kadra et al. (2021).

While the body of work studying neural network architectures for tabular data is extensive, deep models
have yet to outperform GBDTs convincingly (Qin et al., 2021; Joachims, 2006; Ai et al., 2019; Bruch et al.,
2019; Ai et al., 2018; Pang et al., 2020; McElfresh et al., 2023). In this work, we consider encoding-based
methods, which alter the representations over which a deep model can learn to rank; we do not focus on
introducing new algorithms in this work, but rather evaluate mostly existing methods applied to tabular
data. We comprehensively evaluate seven representative DL methods: SubTab, SCARF, DACL+, VIME-self,
SimCLR-Rank, SAINT, SimSiam (Chen & He, 2021), and self-supervised approaches for GBDTs in Section 3.1.
Our results show that multiple pretrained deep rankers can consistently outperform GBDTs in the label-scarce
tabular LTR setting, with SimCLR-Rank and SimSiam (Chen & He, 2021) generally performing the best.
We provide a detailed supplemental discussion of related works in the Appendix A.1.

2 Learning-To-Rank problem and its metrics

In the LTR problem, samples are query groups (QGs) consisting of a query (e.g. shopping query) and L
potentially relevant items (e.g. products) for this query. Although an LTR dataset contains multiple QGs,
for the sake of simplicity, the notation in this section only handles a single QG. The i-th relevant item in
this QG is represented by a feature vector xi ∈ Rd, which captures information about this query-item pair,
subsuming any query related features. If and only if the QG is labeled, such as the ones used in supervised
training or testing, we also have an associated scalar relevance label yi, which could be a binary, ordinal, or
real-valued measurement of the relevance of this item for this query (Qin et al., 2021). The objective is to
learn a function that ranks these L items such that the items with highest true relevance are ranked at the
top.

Most LTR algorithms formulate the problem as learning a scoring function fθ : Rd → R that maps the feature
vector associated with each item to a score, and then ranking the items by sorting the scores in descending
order. To measure the quality of a ranking induced by our scoring function fθ on a labeled test QG, a
commonly-used (per-QG) metric is NDCG (normalized cumulative discounted gain) (↑):

NDCG(πfθ
, {yi}L

i=1) = DCG(πfθ
, {yi}L

i=1)
DCG(π∗, {yi}L

i=1)
∈ [0, 1] , (1)

where πfθ
: [L] → [L] ([L] ≜ {1, . . . , L}) is a ranking of the L elements induced by the scoring function fθ on

{xi}L
i=1 (i.e. π(i) is the rank of the i-th item), while π∗ is the ideal ranking induced by the true relevance

labels {yi}L
i=1, and discounted cumulative gain (DCG) is defined as DCG(π, {yi}L

i=1) =
∑L

i=1
2yi −1

log2(1+π(i)) .

Here, (↑) indicates that larger metric values are preferred. Note that for summarizing this metric over the full
test set, we simply take the average across all the QGs in the set. Typically, a truncated version of NDCG is
used that only considers the top-k ranked items, denoted as NDCG@k. In the rest of our paper, we will refer
to NDCG@5 as NDCG; this will be our evaluation metric.

We consider a natural label-scarce LTR setting with large amounts of unlabeled data and a limited supply of
labels for a subset of this data. The labels that do exist can arise from multiple sources, such as crowdsourced
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workers paid to label QGs, or through implicit user feedback (e.g., clicks or purchases); we model both in our
evaluation. Unless specified otherwise, we use all the query groups for unsupervised pretraining, but we use
only the labeled query groups for supervised training.

2.1 Outlier-NDCG for outlier performance evaluation

Motivated by a recent observation that GBDTs outperform DL models in datasets with irregularities McElfresh
et al. (2023), we also study their performance on outliers. In interactive ML systems like search, performing
well on outlier queries is particularly valuable as it empowers users to search for more outlier queries, which
in turn allows the modeler to collect more data and improve the model. To this end, we evaluate the outlier
performance by computing the average NDCG on outlier queries groups and refer to it as Outlier-NDCG
for brevity. In practice, some outlier queries may already be known, and the modeler can define the outlier
datasets accordingly, like in our proprietary dataset. For example, since industry data pipelines often have
missing data/features one could identify samples with missing features as outliers. When outliers are unknown,
detecting them (especially in higher-dimensional data) is challenging. Hence, we create a heuristic algorithm
by assuming outliers are rare values that are separated from the bulk of the data. Using it we systematically
selected outlier query groups for the public datasets that we use. More details about the outliers are provided
in Appendix A.2.2. Separately measuring the performance on the outliers is justified by our later observation
that performance on the full dataset and the outliers can significantly differ (Tables 2 and 3).

3 Design: Unsupervised pretraining for LTR

Qualitatively, the ranking relevance of tabular records to a query is typically determined by a combination of
fields. For example, if a person searches for a product (say a pair of sandals), we can think of the fields in the
LTR problem as representing properties of the results, such as material, color, and price. Qualitatively, we
expect that if a pair of records are the same except for small differences between fields (e.g., missing a field),
then the two products should generally have similar rankings in the LTR problem. In this section, we discuss
how existing methods fail to capture this qualitative intuition.

Semi-supervised learning for GBDTs: While to the best of our knowledge there are no methods
to perform unsupervised pretraining in GBDTs, one can use semi-supervised methods like consistency
regularization (Jeong & Shin, 2020; Sajjadi et al., 2016; Miyato et al., 2018; Oliver et al., 2018; Berthelot
et al., 2019), pseudo-labeling/self-training (Rizve et al., 2021; Pseudo-Label, 2013; Shi et al., 2018; Yarowsky,
1995; McClosky et al., 2006), and PCA (Duh & Kirchhoff, 2008) to address limited size of labeled data.
In consistency regularization, one increases the size of the training set by using data augmentations. In
pseudo-labeling/self-training, a model trained on the available labeled data is used to label unlabeled data.
Then, the final model is trained on the resulting “labeled” dataset. In PCA, one projects the features along
directions of maximum variability in the union of labeled and unlabeled datasets. Since prior work has found
that consistency regularization decreases the performance of GBDTs (Rubachev et al., 2022), we evaluate
only pseudo-labeling and PCA. None of these methods explicitly ensures that semantically similar records
have similar representations in the learned models.

Pretraining methods for tabular data: To address this gap, there have been many unsupervised
pretraining methods proposed for tabular data, which can be applied to the tabular LTR setting. In this
paper, we will evaluate (1) SCARF (Bahri et al., 2021) and (2) DACL+ (Verma et al., 2021) which are
contrastive learning methods (Chen et al., 2020), (3) VIME-self (Yoon et al., 2020) and (4) SubTab (Ucar
et al., 2021) which are autoencoder based methods. The four most commonly-evaluated baselines in the
pretraining literature for tabular data are Ucar et al. (2021); Hajiramezanali et al. (2022); Levin et al.
(2022); Majmundar et al. (2022). Our results suggest that many of these methods outperform GBDTs in the
label-scarce regime (Section 3.1), in accordance with the main theme of this paper. However, the consistently
best-performing methods in our experiments were more basic, domain-agnostic pretraining methods, which
can be viewed as more primitive building blocks of some of the above methods. Surprisingly, they use less
domain knowledge of tabular data than these more sophisticated methods.
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Specifically, in the image setting, SimCLR (Chen et al., 2020) and SimSiam (Chen & He, 2021) are two
widely-adopted unsupervised pretraining methods. They use the idea that two variations of the same data
point should have similar representations. This idea generalizes across domains, including tabular LTR.

SimCLR (Chen et al., 2020): In a batch of B query-groups, the feature vector xq,i of q-th query group and
its i-th item is stochastically augmented twice to obtain x

(0)
q,i and x

(1)
q,i , which are called a positive pair. In this

paper, we use combinations of the following two augmentation strategies for all domain-agnostic pretraining
methods: (a) Zeroing: Zero out features selected randomly and i.i.d. with fixed probability. (b) Gaussian
noise: Add Gaussian noise of a fixed scale to all features. Further details are given in Appendix A.2.3.

Next, a base encoder h(·) and projection head g(·) map x
(a)
q,i to z

(a)
q,i = g(h(x(a)

q,i )) for a = 0, 1. Then by
minimizing the InfoNCE loss (Oord et al., 2018) in this projected representation space, we push the positive
pair, (z(0)

q,i , z
(1)
q,i ), closer while pushing them farther from all other augmented data points in the batch, which

are called their negatives. Formally, for xq,i, we minimize ℓ
(0)
q,i + ℓ

(1)
q,i , where:

ℓ
(a)
q,i = −cos(z(a)

q,i , z
(ā)
q,i )/τ + log

B∑
q′=1

Lq′∑
i′=1

1∑
a′=0

[
1{(q′, i′, a′) ̸= (q, i, a)} · exp(cos(z(a)

q,i , z
(a′)
q′,i′)/τ)

]
(2)

ā = 1 − a, τ is the temperature parameter, Lq′ is the number of items in q′-th query group, and
cos(z, z̃) = ⟨z, z̃⟩/∥z∥∥z̃∥ denotes the cosine similarity. After pretraining, the encoder h is used in down-
stream applications. SimCLR achieves superior performance in many domains (Chen & He, 2021; Wang et al.,
2022b;a). It is known that contrasting a pair of data samples which are hard to distinguish from each other,
called hard negatives can help an encoder learn good representations (Robinson et al., 2020; Oh Song et al.,
2016; Schroff et al., 2015; Harwood et al., 2017; Wu et al., 2017; Ge, 2018; Suh et al., 2019). SimCLR simply
contrasts all pairs of data samples in the batch (including from other query groups) with the assumption that
a large enough batch is likely to contain a hard negative.

SimSiam (Chen & He, 2021): Similar to SimCLR, for each data point xq,i, this method produces stochastically-
augmented positive pairs and their projected representations. However, we pass these representations further
through a predictor pred(·), to get p

(a)
q,i = pred(z(a)

q,i ) for a = 0, 1. Finally, we maximize the similarity
between the projected and predicted representations: cos(p(0)

q,i , sg(z(1)
q,i )) + cos(p(1)

q,i , sg(z(0)
q,i )), where sg is a

stop-gradient. Unlike SimCLR, there are no negatives, i.e., the loss function does not push the representation
of an augmented sample away from that of other samples’ augmentations. The asymmetry in the loss due to
the stop gradient and the predictor prevents representation collapse to make negatives unnecessary Tian et al.
(2021); Zhang et al. (2021); Wang et al. (2022b). If the number of items in each query group is L, then the
time/space complexity for SimSiam is only O(BL) per batch, whereas it is O(B2L2) for SimCLR. Therefore,
SimSiam is more efficient and it can scale to larger batchsizes and data.

Pretraining method for LTR: Motivated by (a) SimCLR’s high complexity and (b) the efficacy of
contrasting with hard negatives, we additionally propose SimCLR-Rank, an LTR-specific alternative. Recall
that the SimCLR loss for an item in equation 2 uses all the other items in the batch as negatives. Good
pretraining strategies usually exploit the structure of the data, e.g. text sequences motivates masked token
prediction Devlin et al. (2018). Studying the query group structure of LTR data, we notice that high-quality
hard negatives are freely available as the other items from the same query group. These items are retrieved
and deemed potentially similarly relevant for this query by an upstream retrieval model, making these items
harder negatives than other items in the batch. So, we propose SimCLR-Rank, which modifies SimCLR to
contrast only with the other items in the same query group, as illustrated in Figure 2. Formally, we modify
the per-augmentation loss ℓ

(a)
q,i as:

ℓ
(a)
q,i = −cos(z(a)

q,i , z
(ā)
q,i )/τ + log

Lq∑
i′=1

1∑
a′=0

[
1{(i′, a′) ̸= (i, a)} · exp(cos(z(a)

q,i , z
(a′)
q,i′ )/τ)

]
(3)

Empirically, SimCLR-Rank better separates embeddings within query groups relative to sampling negatives
uniformly from each batch (Appendix A.5). The SimCLR-Rank loss has a time/space complexity of O(BL2),
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Figure 2: In SimCLR and its variants, positive pairs, or augmented versions of the same data sample, are
trained to have similar embeddings. Positive-negative pairs, or augmented samples originating from two
different data points or classes, are trained to have distant embeddings. In vanilla SimCLR, each positive pair
is contrasted with all other items in the batch, denoted by the data points contained in the brown dashed
line above. In SimCLR-Rank, each positive pair is contrasted with only the items in the same Query Group
(QG), denoted by the data points inside the red solid line above.
Table 1: Pretraining methods: A comparison across unsupervised pretraining methods on NDCG,
averaged over 3 trials. Here only 0.1% of the query groups have labels for finetuning. Bold numbers
denote the best in a column, and underlined numbers are within the margin of error of the best. Given that
SCARF/DACL+/SimCLR are too slow to scale to large LTR datasets (for example on the industrial-scale
proprietary online shopping dataset), we find that SimCLR-Rank and SimSiam are the best pretraining
methods for tabular LTR.

Method MSLR (↑) Yahoo Set1 (↑) Istella (↑)
Supervised GBDT 0.2801 ± 0.0002 0.5083 ± 0.0197 0.5450 ± 0.0000
Semi-supervised GBDT 0.2839 ± 0.0004 0.5061 ± 0.0267 0.4656 ± 0.0310
SimCLR-Rank + GBDT 0.3165 ± 0.0050 0.5504 ± 0.0135 0.5397 ± 0.0098
SimSiam + GBDT 0.3158 ± 0.0030 0.5620 ± 0.0167 0.5297 ± 0.0051
SCARF (Bahri et al., 2021) 0.3807 ± 0.0016 0.5884 ± 0.0129 0.5542 ± 0.0024
DACL+ (Verma et al., 2021) 0.3833 ± 0.0037 0.5887 ± 0.0012 0.5626 ± 0.0024
VIME-self (Yoon et al., 2020) 0.3834 ± 0.0011 0.5839 ± 0.0058 0.5514 ± 0.0025
SubTab (Ucar et al., 2021) 0.3748 ± 0.0025 0.5814 ± 0.0062 0.5082 ± 0.0050
SAINT (Somepalli et al., 2021) 0.3355 ± 0.0043 0.5890 ± 0.0075 0.5560 ± 0.0066
SimCLR (Chen et al., 2020) 0.3827 ± 0.0027 0.5837 ± 0.0093 0.5602 ± 0.0055
SimCLR-Sample 0.3498 ± 0.0541 0.5803 ± 0.0070 0.5479 ± 0.0016
SimCLR-Rank 0.3868 ± 0.0026 0.5843 ± 0.0062 0.5609 ± 0.0040
SimSiam (Chen & He, 2021) 0.3790 ± 0.0028 0.6100 ± 0.0072 0.5189 ± 0.0096

making it faster than SimCLR’s O(B2L2) complexity, and enjoying SimSiam’s linear complexity in B. Next,
we empirically study these methods.

3.1 Evaluation of unsupervised pretraining techniques

In this subsection, we compare the discussed pretraining strategies in the following tabular LTR setting.
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Dataset. We use MSLRWEB30K (or MSLR for brevity) (Qin & Liu, 2013), Yahoo Set1 (or Set1 for brevity)
(Chapelle & Chang, 2011), and Istella_S (Lucchese et al., 2016) (a smaller version of Istella (Dato et al.,
2016)). In the tabular LTR literature, these three datasets are generally considered the standard; most recent
papers evaluate (only) on these datasets (Qin et al., 2021; Ai et al., 2019; Pang et al., 2020; Yang et al., 2022;
Yu, 2020). To simulate scarcity of labels, we let 0.1% of the training query groups in each dataset keep their
labels, while the rest of the query groups have no labels. Dataset statistics are provided in Appendix A.2.1.

Methodology. For the neural pretraining approaches (which include SimCLR-Rank, SimSiam, SimCLR,
SubTab, VIME-self, DACL+, SAINT, and SCARF), the base of the model is the tabular ResNet1 (check
the footnote for our explanation on the architecture choice). We also evaluate “SimCLR-Sample”, a neural
pretraining baseline we create to demonstrate the value of negatives from the same query group. SimCLR-
Sample is like SimCLR-Rank, but at the beginning of each epoch the items are first randomly permuted
and grouped into fake query groups. Then we apply SimCLR-Rank. Thus SimCLR-Sample has the same
time/space complexity as SimCLR-Rank. We pretrain on all the available query groups and finetune/train
on only the labeled query groups.

For the GBDT-based approaches, we use the implementation in lightgbm Ke et al. (2017) and adopt a
tuning strategy similar to Qin et al. (2021). We report “Supervised GBDT” as GBDT utilizing only the
labeled data, and in “Semi-supervised GBDT” we report the best among pseudo-labeled (Pseudo-Label,
2013) and PCA-enriched (Duh & Kirchhoff, 2008) GBDTs as well as the combination of the two techniques.
We also evaluate GBDTs enriched with SimCLR-Rank and SimSiam embeddings as additional features,
which we call “SimCLR-Rank + GBDT” and “SimSiam + GBDT”. We describe our experimental setup
in detail in Appendix A.2.3. This includes hyperparameters, procedures for data augmentation, GBDT
pseudo-labeling/PCA details, model training, and finetuning. For comparison to prior baselines on tabular
data, our experimental setup is chosen to mimic the original setup in them.

Results. Table 1 charts the test NDCG for each of the pretraining methods we study. We highlight a
few observations: (1) The pretraining-based DL methods almost all outperform GBDTs (both supervised
and semi-supervised) in this label-scarce setting. Surprisingly, the semi-supervised GBDT baselines tend to
achieve lower NDCG than the supervised GBDT baseline without semi-supervised learning. (2) When GBDTs
are allowed to use representations learned from our pretraining methods, their performance consistently
improves, though they do not outperform pretraining with DL. (3) SimCLR-Rank and SimSiam perform
the best or the second best among these methods for most of the datasets. In particular, SimCLR-Rank
outperforms SimCLR-Sample, demonstrating the value and efficiency of negatives from the same query group.
As expected, SimCLR-Rank is also 7-14x faster than SimCLR/SCARF/DACL+ (Table 6 in Appendix A.3.1).
Given these advantages in terms of test NDCG and speed, we select SimCLR-Rank and SimSiam as the best
overall pretraining methods for tabular LTR, and use them for our continued evaluation.

4 Empirical evaluation

Next we compare the best DL pretraining methods for tabular LTR (SimCLR-Rank and SimSiam) against
GBDT and non-pretrained DL models on (1) the public datasets under different label scarcity patterns to
simulate real-world scenarios2, and (2) a private large-scale ranking dataset which is naturally label-scarce.

4.1 Public datasets results

For the public datasets (MSLRWEB30K, Yahoo Set1, Istella_S; details given in Section 3.1), we simulate
label scarcity occurring in two scenarios: (1) crowdsourcing of labels for a limited number of query groups,
and (2) using scarce implicit binary user feedback (e.g. clicks) as labels.

1We emphasize that we do not prescribe any specific deep learning architecture choice; the choice for the best DL model
may depend on the specific LTR task. Our proposed workflow of pretraining deep models in LTR is agnostic to the specific
choice of DL architecture. Prior work has proposed DL architectures designed for click-through rate (CTR)/LTR based on
factorization machines (Rendle, 2010), such as DeepFM and DCNv2 (Guo et al., 2017; Wang et al., 2021), which we compare
to in Section 4.1.2 and Section 4.1.2 against our pretrained models. Note that it is unclear currently how to do unsupervised
pretraining using these CTR/LTR specific architectures at the moment.

2Code is provided at https://github.com/houcharlie/ltr-pretrain/.
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4.1.1 Simulated crowdsourcing of labels

We simulate a setting where labels are crowdsourced for only some query groups due to limited resources.

Dataset. For each of the three public datasets, we vary the fraction of labeled query groups in the training
set in {0.001, 0.002, 0.005, 0.1, 0.5, 1.0}. Note that within each labeled query group all items are labeled.

Methodology. We repeat the methodology from Section 3.1 for the GBDT and the SimCLR-Rank and
SimSiam pretraining methods. For each dataset and labeling fraction, we report the test metric of the best
GBDT ranker among semi-supervised GBDTs and supervised GBDTs under “GBDT”. Similarly, under “no
pretrain DL” we report the best supervised DL model amongst tabular ResNet (Gorishniy et al., 2021),
DeepFM (Guo et al., 2017), and DCNv2 (Wang et al., 2021) under the name “no pretrain DL”. Finally, we
report the best pretrained ranker amongst SimCLR-Rank and SimSiam under the name “pretrained DL”.
Pretrained DL rankers use tabular ResNet (see Appendix A.2.3 for more details). During hyperparameter
tuning, we tune for NDCG and report the resulting test NDCG and test Outlier-NDCG.

Results. We compare pretrained rankers, non-pretrained DL rankers, and GBDTs on public datasets in
Figure 1. The results for Outlier-NDCG are provided in Figure 8 in Appendix A.3.4. We find that pretrained
rankers outperform non-pretrained methods (including GBDTs) on NDCG and Outlier-NDCG across all
public datasets, up to a dataset-dependent fraction of QGs labeled, as shown in Figure 1 (for NDCG) and
Figure 8 (for Outlier-NDCG). We also note that GBDTs have better NDCG than non-pretrained DL models
in most of these regimes. This shows that there exist scenarios with a limited supply of labeled query groups,
where self-supervised pretraining is the factor that allows deep learning models to outperform GBDTs. We
provide a detailed comparison between semi-supervised and supervised GBDT models in Appendix A.4.

4.1.2 Simulated implicit binary user feedback

Here we simulate a scenario when users of an LTR system provide binary implicit feedback for the items, like
the clicking of an advertisement on a webpage. This kind of feedback is usually infrequent in an LTR system,
as it is the result of a user choosing to spend more time or resources on an item in a presented list. Therefore,
most query groups will not have any labels, and even labeled query groups will only have a few positively
labeled items. On the other hand, such labels are often cheaper to collect than crowdsourced labels, so they
are used in many industry use cases.

Dataset. To simulate this scenario, we follow the methodology from Yang et al. (2022), to generate
independent stochastic binary labels for each item from its true relevance label for training and validation
sets of each of the public datasets. Note that we still use the true (latent) relevance labels in the test set for
evaluation. This models a scenario where we observe binary labels that are noisy observations of a true latent
label, but the task is to use these noisy labels to learn to rank according to the true labels. The details of
this binarizing transformation are provided in Appendix A.2.4. In this transformation, a parameter, τtarget,
implicitly controls how sparse the binary labels are (larger is more sparse). We select τtarget = 4.5, to obtain
8.9%, 5.3%, and 25.2% labeled query groups which contain at least one positive label in MSLR, Yahoo Set1,
Istella_S datasets, respectively. We present detailed data statistics in Table 11 of Appendix.

Methodology. We reuse the methodology of Section 4.1.1, except we use a linear scoring head for pretrained
models to improve stability and performance (see Appendix A.2.3). Similar to Section 4.1.1, we report the
best of multiple models for each method and dataset (see Section 4.1.1 for details).

Results. In Table 2, we present the test NDCG and Outlier-NDCG metrics of the models under this
setting. We see that pretrained rankers significantly outperform GBDTs and non-pretrained DL rankers in
this simulated binary user feedback setting with up to, even with 25.2% labeled query groups (Istella_S).
For MSLRWEB30K and Yahoo Set1 datasets, the second best model is the GBDT, and the non-pretrained
DL ranker has a much worse Outlier-NDCG. This aligns with recent observations that GBDTs perform
better than DL models in supervised training with datasets containing irregularities McElfresh et al. (2023).
However, pretraining helps DL rankers close this gap, and at times beat GBDTs in outlier performance.
We also present results for τtarget ∈ {4.25, 5.1} in Appendix A.3.5. There, we find that making the labels
sparser (τtarget = 5.1) increases the relative improvement of pretrained DL rankers, while in a less sparse
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Table 2: Main result (Simulated implicit binary user feedback): When X% (MSLRWEB30K=8.9%,
Yahoo Set1=5.3%, and in Istella_S=25.2%) of query groups are assigned a few binary labels, pretrained
DL method outperform both GBDT and non-pretrained DL models. We generate labels with τtarget = 4.5
(Section 4.1.2). ♣ means that pretrained models are significantly better in NDCG than non-pretrained models,
measured by a t-test with significance p < 0.05.

Method MSLRWEB30K (↑) Yahoo Set1 (↑) Istella (↑)
NDCG (↑)

GBDT 0.346 ± 0.001 0.617 ± 0.000 0.602 ± 0.000
No Pretrain DL 0.333 ± 0.001 0.621 ± 0.000 0.608 ± 0.002
Pretrained DL 0.356 ± 0.004♣ 0.622 ± 0.001 0.613 ± 0.002♣

Outlier-NDCG (↑)
GBDT 0.288 ± 0.000 0.540 ± 0.000 0.678 ± 0.000

No Pretrain DL 0.238 ± 0.026 0.536 ± 0.003 0.687 ± 0.015
Pretrained DL 0.289 ± 0.012 0.543 ± 0.002♣ 0.699 ± 0.003

Table 3: Main result (Real-world dataset): % improvement of rankers pretrained by SimSiam and
SimCLR-Rank over GBDTs on a large-scale proprietary online shopping dataset. Unsupervised pretraining
improves performance (1) overall (full dataset) (internally, 2% is a big improvement), and (2) on outliers.

Method NDCG (↑) Outlier-NDCG (↑)
∆% change w.r.t. GBDT

GBDT +0.00% +0.00%
No Pretrain DL +3.82% ± 0.14% -6.97% ± 0.43%
SimCLR-Rank +4.00% ± 0.14% -4.85% ± 0.44%
SimSiam +5.64% ± 0.14% +2.75% ± 0.43%

setting (τtarget = 4.25) GBDTs dominate. This suggests that pretrained DL models outperform GBDTs when
learning from rare implicit binary user feedback, as is common in search and recommendation systems.

4.2 Large-scale real-world dataset results

In this section we test whether the results from the simulated label scarce settings above, especially Section 4.1.2,
translate to a large-scale real-world LTR problem.

Dataset. Our proprietary dataset is derived from the online shopping logs of a large online retailer, numbering
in the tens of millions of query groups. In this dataset, query groups consist of items presented to a shopper
if they enter a search query. We assign each item a purchase label: label is 1 if the shopper purchased the
item, or 0 if the shopper did not purchase the item. Hence, this is a real-world instance of the implicit binary
user feedback setting simulated in Section 4.1.2. Further, only about 10% of the query groups have items
with non-zero labels. See Appendix A.2.1 for more dataset details.

Methodology. We compare the performance of pretrained DL models–SimCLR-Rank and SimSiam–with
GBDT and non-pretrained DL models. SimSiam and SimCLR-Rank are first pretrained on all the query
groups before being finetuned on the labeled query groups with some non-zero purchase labels. The GBDT
and the non-pretrained models are only trained on the labeled data. More details about these models and
training strategies is given in Appendix A.2.5.

Results. Our results are summarized in Table 3 and all numbers are given as relative percentage improvements
(∆%) over the GBDT ranker. First, note that all the DL models outperform GBDT models in terms of
NDCG. Amongst them, the pretrained model using SimSiam performs the best with a gain of over 5.5%. This
is substantial, given that in large-scale industry datasets, even a 2% improvement in NDCG is considered
significant. In terms of Outlier-NDCG, the story is very different. Here, the non-pretrained DL model and

10



Published in Transactions on Machine Learning Research (11/2024)

SimCLR-Rank performs up to -7% worse than the GBDT. However, SimSiam pretraining allows the DL ranker
to overcome this shortcoming and beat the outlier performance of the GBDT. This verifies our hypothesis
from Section 4.1.2 that pretraining can help DL models outperform GBDTs on large-scale real-world LTR
problems, especially with implicit user feedback. Lastly, we see a significant performance difference between
SimSiam and SimCLR-Rank. We investigate this in an ablation with public datasets in Section 4.3.

4.3 Ablations: Choices for pretrained models in LTR

Our experiments suggest that the best pretraining and finetuning strategies for the LTR problem are different
from the known best practices for image or text tasks. We make a few observations. (1) SimSiam and
SimCLR-Rank perform significantly differently depending on the dataset. (2) Combining models pretrained
by SimCLR-Rank and SimSiam can produce a model that is competitive against SimCLR-Rank and SimSiam
across all datasets, producing a unified approach that may be performant across many settings. (3) Full
finetuning of the model performs much better than linear probing, which only finetunes a linear layer over
frozen pretrained embeddings. In the remainder of this section, we elaborate on these findings in more detail.

(1) SimCLR-Rank and SimSiam perform substantially differently depending on the dataset.
SimSiam and SimCLR-Rank perform significantly differently depending on the dataset, which is different
from the observations of Chen & He (2021), who proposed SimSiam and found that it performs similarly to
SimCLR derivatives. We next compare SimCLR-Rank with SimSiam at different levels of label scarcity.
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Figure 3: Comparison of SimCLR-Rank and SimSiam pretraining strategies on three public datasets with
varying fraction of labeled query groups. Neither method consistently dominate the other in all the datasets.
However, by combining SimCLR-Rank and SimSiam encoders, we can produce models that are competitive
across all datasets. Data points are averages over 3 trials.

Methodology. The dataset and methodology follows that of Section 4.1.1, except we let (1) SimCLR-Rank use
the Gaussian augmentation with scale 1, and (2) SimSiam use the zeroing augmentation with probability 0.1.
These augmentations generally perform well for their respective methods. Experiments illustrating the effect
of each augmentation method are included in Appendix A.3.6.

Results. In Figure 3, SimCLR-Rank performs better on MSLRWEB30K and Istella_S, while SimSiam
performs better on Yahoo Set1 when labels are scarce. Figure 4 shows the t-SNE projections of sub-sampled
item embeddings learned by SimCLR-Rank, SimSiam, and pre-final layer of a fully supervised model for
Yahoo Set1. SimSiam exhibit qualitatively more clustered embeddings than SimCLR-Rank, particularly for
high relevance labels. Similar t-SNE plots for other datasets are in Appendix A.3.3.

(2) Combining models pretrained by SimCLR-Rank and SimSiam produces a model that has
the strengths of both. To make steps towards a single recommendation for unsupervised pretraining in
LTR, we unify SimCLR-Rank and SimSiam into a single method “SimCLR-Rank + SimSiam”.

Methodology. To produce a “SimCLR-Rank + SimSiam” model, we finetune a linear layer over the embeddings
from a finetuned SimCLR-Rank concatenated with the embeddings from a finetuned SimCLR-Rank model.
More details about how we combine the models is given in Appendix A.3.7.

11



Published in Transactions on Machine Learning Research (11/2024)

60 40 20 0 20 40 60
x1

40

20

0

20

40

x2
SimCLR-Rank t-SNE Set1

0.0
1.0
2.0
3.0
4.0

40 20 0 20 40 60
x1

40

20

0

20

40

60

x2

SimSiam t-SNE Set1
0.0
1.0
2.0
3.0
4.0

60 40 20 0 20 40 60
x1

40

20

0

20

40

x2

Non-pretrained t-SNE Set1
0.0
1.0
2.0
3.0
4.0

Figure 4: t-SNE plots of SimCLR-Rank, SimSiam, and a non-pretrained model trained on 0.1% of the data for
the Yahoo Set1 dataset. Both SimCLR-Rank and SimSiam use the zeros augmentation (p = 0.1) to remove
augmentation choice as a confounding variable. Relevance label is indicated by marker size/color. We see
that SimCLR-Rank and SimSiam embeddings are qualitatively very different. Qualitatively, SimCLR-Rank
and SimSiam embeddings separate different relevance labels better than the non-pretrained model. For this
setting, SimSiam has the best downstream performance, and also gives the most clustered embeddings.

Results. In Figure 3 we find that “SimCLR-Rank + SimSiam” performs equal to or better than SimCLR-Rank
and SimSiam across many different percentages of labeled query groups. While the combined model does not
uniformly dominate across all labeled query group percentages, it is a promising first step towards a single
unified method for unsupervised pretraining in ranking.

(3) Full finetuning outperforms linear probing. Linear probing is a popular finetuning strategy in text
and image domains, where it produces good results (Chen & He, 2021; Chen et al., 2020; Peters et al., 2019;
Kumar et al., 2022). We next compare it with the full finetuning strategy in tabular LTR.

Methodology. We use the methodology from Section 3.1 to compare 3 finetuning strategies: linear probing
(LP), full-finetuning (FF), and multilayer probing (MP) for SimSiam and SimCLR-Rank. MP tunes a 3-layer
MLP head on top of the frozen pretrained embeddings. Experimental details are in Appendix A.2.3.

Results. Table 4 provides results on MSLRWEB30K dataset. We find that in terms of NDCG of both
SimCLR-Rank and SimSiam, LP is the worst and FF is the best. Interestingly, MP comes as a close
second in SimCLR-Rank, but it performs poorly on SimSiam. Our results on other datasets are similar
(Appendix A.3.2). We thus recommend full fine-tuning as a stable and performant strategy. To explain
the above observations, we we can look again at the t-SNE projections of the embeddings generated by the
SimSiam and SimCLR-Rank encoders (pretrained using the zeros augmentation with p = 0.1 to remove
augmentation choice as a confounding factor, finetuned on 0.1% of the data) and the pre-final layer of a model
trained only on 0.1% of the data on a randomly sampled 1000 samples from the full training set (Figure 4).

These plots offer the following explanations for the two phenomena. (1) The embeddings produced by the
SimSiam/SimCLR-Rank are not sorted by relevance score in the projection space, unlike the fully supervised
encoder. This suggests that a linear ranker cannot use the pretrained embeddings to predict the true relevance
labels. (2) MP works better for SimCLR-Rank than SimSiam because SimCLR-Rank’s embeddings are more
evenly spread out (less collapsed) than those of SimSiam. This allows an MLP trained on the SimCLR-Rank
embeddings to distinguish the items with different relevance labels.

5 Conclusion

We study the learning-to-rank (LTR) problem with tabular data under a scarcity of labeled data—a common
scenario in real-world practical LTR systems. Prior works on supervised learning with tabular data have
shown that GBDTs outperform deep learning (DL) models, especially on datasets with outliers. In this paper,
we find that in the label-scarce setting, DL pretraining methods can exploit available unlabeled data to obtain
new state-of-the art performance. Through experiments with public LTR datasets and a real-world large-scale
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Table 4: Finetuning: Comparison of fine tuning strategies on MSLRWEB30K dataset (LP = Linear Probing,
MP = Multilayer Probing, FF = Full Finetuning). Full finetuning consistently performs best or near-best,
while linear probing and multilayer probing perform poorly.

Method SimSiam SimCLR-Rank
NDCG (↑)

LP 0.2679 ± 0.0007 0.3219 ± 0.0224
MP 0.2764 ± 0.0001 0.3890 ± 0.0011
FF 0.3935 ± 0.0034 0.3959 ± 0.0022

Outlier-NDCG (↑)
LP 0.1803 ± 0.0033 0.2304 ± 0.0332
MP 0.1749 ± 0.0023 0.2969 ± 0.0009
FF 0.3149 ± 0.0119 0.2892 ± 0.0025

online shopping dataset, we show that pretraining allows DL rankers to outperform GBDT rankers, especially
on outlier data. Finally, we provide guidelines for pretraining on LTR datasets. There remain several open
questions around pretraining for tabular and LTR data. It is still unknown whether we can achieve knowledge
transfer across different tabular datasets, as is commonly done in image and text domains. It will also be
useful to investigate LTR-specific pretraining methods which can further improve the ranking performance.
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A Appendix

A.1 Detailed discussion of related work

Learning-To-Rank. In our paper, we focus on the traditional LTR setting where the features are all numeric
(tabular data). However, there is a line of work in LTR where raw text is also an input. In this case, one can
leverage large language models in the ranking setting (Zhuang et al., 2023; Han et al., 2020; Yates et al.,
2021; Nogueira et al., 2019; Mitra et al., 2018).

In tabular LTR problems, the dominant models currently used are gradient boosted decision trees (GBDTs)
(Friedman, 2001), which are not deep learning models. GBDT models, which perform well on tabular data,
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many important ranking metrics (like NDCG) are non-differentiable. The combination of tree-based learners
and ranking losses has become the de-facto standard in ranking problems, and deep models have yet to
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types: (1) Encoding-based methods such as VIME (Yoon et al., 2020), SCARF (Bahri et al., 2021), IGTD
(Zhu et al., 2021), and SuperTML (Sun et al., 2019); (2) Novel hybrid architectures such as DeepFM
(Guo et al., 2017), xDeepFM (Lian et al., 2018), and many others Cheng et al. (2016); Frosst & Hinton (2017);
Ke et al. (2018; 2019); Popov et al. (2019); Luo et al. (2020); Liu et al. (2020); Ivanov & Prokhorenkova
(2021); Luo et al. (2021); (3) Transformer-based architectures including SAINT (Somepalli et al., 2021),
TabNet (Arik & Pfister, 2021), FT-Transformer Gorishniy et al. (2021), TabTransformer (Huang et al., 2020),
and ARM-Net Cai et al. (2021)); (4) Regularized DNNs (Shavitt & Segal, 2018; Kadra et al., 2021).
For instance, TANGOS introduced special tabular-specific regularization to try to improve deep models’
performance (Jeffares et al., 2023). We also note that a more recent work, Tree-hybrid simple MLP (Yan
et al., 2024a), proposes to combine MLPs and GBDTs together for the tabular prediction problem.

Self-supervised learning. Self-supervised learning (SSL) or unsupervised pretraining has improved
performance in settings where there is a significant source of unlabeled data like text (Devlin et al., 2018)
and images (Chen et al., 2020). In SSL, deep models are first pretrained on perturbed unlabeled data using
self-supervised tasks to learn useful representations for the data. Then these models are finetuned for a
downstream task with labeled data. Finetuning often takes one of two forms: (1) linear probing (a popular
finetuning strategy in text and images (Chen & He, 2021; Chen et al., 2020; Peters et al., 2019)),where
we freeze the pretrained model and only update the linear head during supervised finetuning, and (2) full
finetuning, where we update the whole model during supervised finetuning (Devlin et al., 2018). Sometimes a
mix of the two is used (Kumar et al., 2022). The core idea behind prominent SSL approaches like SimSiam
and SimCLR is to carefully perturb input training samples, and train a representation that is consistent
for perturbations of the same sample. This provides robustness to natural perturbations and noise in data
(Hendrycks et al., 2019).

Inspired by the success of pretraining and self-supervised learning in images and text, several works show
how to apply SSL to unlabeled tabular data. One strategy is to corrupt tabular data and train a deep model
to reconstruct it (Yoon et al., 2020; Majmundar et al., 2022; Ucar et al., 2021; Nam et al., 2023b; Lin et al.,
2023; Syed & Mirza, 2023; Hajiramezanali et al., 2022). Another approach is to use contrastive losses, which
have been highly successful in the image domain (Chen et al., 2020). These methods are also applicable to
our case because tabular data, like image data, is often composed of fixed-dimensional real vectors (Verma
et al., 2021; Bahri et al., 2021; Lee & Shin, 2022; Hager et al., 2023; Liu et al., 2023; Darabi et al., 2021).
Concurrent work has also investigated training tabular-specific LLMs for tabular tasks (Yan et al., 2024b;
Schuh et al., 2024). Concurrent to us, Holzmüller et al. (2024) also proposes pretraining (with a modified
architecture) to improve tabular deep learning performance. Rubachev et al. (2022) evaluate a variety of
different pretraining methods for tabular learning across many different datasets, finding that there is not a
clear state of the art.

Robustness in LTR. There has been prior work on studying worst-case behavior (robustness) of rankers
(Voorhees, 2005; Zhang et al., 2013; Goren et al., 2018; Wu et al., 2022b;a; Penha et al., 2022). Some previous
metrics measure a model’s robustness against adversarial attack (Goren et al., 2018; Wu et al., 2022a; 2023).
Others measure the model’s per-query performance variance on a dataset (Voorhees, 2005; Zhang et al., 2013;
Wu et al., 2022b). Our outlier metric, Outlier-NDCG, is a departure from previous work because it is not
directly a measure of robustness and it is possible for a model to perform better on outlier data.

Transfer learning. We summarize some related work on transfer learning in tabular domain. One direction
revolves around pretraining models on common columns across many datasets (Zhu et al., 2023; Wang &
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Sun, 2022; Sui et al., 2023; Ye et al., 2023). Another direction leverages LLMs (large language models) to do
few-shot tabular learning (Hegselmann et al., 2023; Liu et al., 2022; Nam et al., 2023a). Pretrained model
features are often useful across datasets. For example, text features are transferable between text datasets
(Devlin et al., 2018), which has contributed to the recent success of foundation models (Devlin et al., 2018;
Touvron et al., 2023; Kojima et al., 2022; Brown et al., 2020). Unfortunately, it is still unclear how to achieve
transferability in tabular LTR, where previous work has leveraged common columns (or at least column
documentation) to achieve transfer learning (Levin et al., 2022; Hegselmann et al., 2023). However most
LTR datasets do not have common columns or publicly-documented column meanings (Qin & Liu, 2013;
Chapelle & Chang, 2011; Lucchese et al., 2016). Developing a method to transfer features in tabular LTR is
an important open problem.

Pretrained models in learning to rank. Concurrent to the submission/review of this paper, recent works
have also validated the benefits of pretraining in LTR. S2phere (Li et al., 2023c) proposes an elaborate recipe
combining pseudo-labeling, contrastive learning, and transformer-based masked autoencoding to pretrain
an LTR model, and shows that it performs well in offline and online metrics. MPGraf (Li et al., 2023b)
proposes a pretraining method for LTR that combines both the query-document regression formulation
of LTR and the graph-based formulation of LTR into a single model. GS2P (Li et al., 2024) proposes to
use an ensemble of differently-trained models to generate pseudo-labels for the final model to learn. Like
us, GRACE (Xu et al., 2024) uses contrastive learning for pre-ranking (retrieval); unlike our method, they
use this process to align item embeddings with pretrained embeddings during supervised training phase.
COLTR (Li et al., 2023d) proposes to increase the dimensionality of the features with Fourier features and to
alternative pseudo-labeling between a listwise and pointwise ranker to produce better ranking results. Li
et al. (2023a) finetune pretrained language models for the document ranking task.

A.2 Experimental Details

A.2.1 Dataset statistics

In table Table 5, we provide the details of our three public datasets and the proprietary real-world dataset.
Note that for the public dataset experiments we sub-sample the pre-training dataset in different ways (as
described in Sections 3, 4.1.1 and 4.1.2) to create the training dataset and simulate scarcity of labeled samples.
However, we use the same validation dataset without and with the labels for the self-supervised pretraining
and supervised learning stages, respectively. Note that in all these datasets, the higher the label value the
higher the relevance of the item.

Table 5: Dataset statistics on the MSLRWEB30K, Yahoo Set1, Istella_S, and proprietary datasets.

Number of query groups Number List
Pretraining Supervised learning of of

Dataset Pretrain SSL Val Train Val Test features labels
MSLRWEB30K 18151 6072 Subset Pretrain SSL Val 6072 136 {0,1,2,3,4}

Yahoo Set1 14477 2147 Subset Pretrain SSL Val 5089 700 {0,1,2,3,4}
Istella_S 19200 7202 Subset Pretrain SSL Val 6523 220 {0,1,2,3,4}

Proprietary dataset 35.6M 1.62M 3.68M 171k 1.08M 63 {0,1}

A.2.2 Outliers query group details

Here we detail how we select the outlier query groups for the Outlier-NDCG metrics (Section 2.1). For our
proprietary online shopping dataset, there are known outlier features that cause low quality predictions.
These outliers arise from noise introduced in various stages in the data pipeline. We have mitigation strategies
in place against these feature outliers, but they are often imperfect. Because we already know some of the
outliers features, we deem any query group with items with outlier features as an outlier. These outliers
comprise roughly 10% of the test set, which is still a large number of query groups (much larger than the
number of query groups in the outlier datasets of the public datasets).
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For our public datasets, we systematically select outliers as follows: we generate a histogram with 100 bins for
each feature across the validation dataset. For example, Istella (Lamkhede & Kofler, 2021) has 220 features,
so we have 220 different histograms. For each histogram, we scan from left to right on the bins until we have
encountered at least G empty bins in a row, and if there is less than 1% of the validation set above this
bin, then all the feature values above this bin are considered outliers. We also repeat this process right to
left. Any test query group containing items with outlier feature values is labeled an outlier query group, and
placed in the test outlier dataset. In Figure 5, we present an example histogram of a feature in Istella_S
dataset.

Figure 5: An example of outlier detection in Istella_S (Lucchese et al., 2016) for our Outlier-NDCG metric.

Because different datasets have differently-sized typical gaps, we tune G for each dataset (MSLR, Yahoo,
Istella) such that the resulting percentage of outlier queries is as close to 1% of the test set as we can get.
MSLRWEB30K has G = 5, with 0.65% (40/6072) outlier queries, Yahoo has G = 20, with 1.4% (30/2147)
outlier queries, and Istella has G = 32, with 0.46% (34/7202) outlier queries. 1% is a hyperparameter that
can be tuned according to the user’s goals.

A.2.3 Model Settings and Training Details

Pretrained DL model.

Pretraining: (1) the encoder used for pretraining is the tabular ResNet (Gorishniy et al., 2021) with three
ResNet blocks, with the final linear layer removed, (2) pretraining is done on the entire dataset with learning
rate 0.0005 using Adam (Kingma & Ba, 2014) (3) with SimSiam/SimCLR-Rank/SimCLR-Sample, we tuned
among four different augmentations for each pretraining method: randomly zeroing out features (“Zeroing”)
with probabilities 0.1 or 0.7, and Gaussian noise with scale 1.0 or 2.0, (4) for SCARF we tune the corruption
probability in {0.3, 0.6, 0.9}, (5) for VIME-self we tune the corruption probability in {0.3, 0.5, 0.7}, (6) for
DACL+ we tune the mixup amount in {0.3, 0.6, 0.9}, (7) for SubTab we divide input features into 4 subsets
with 75% overlap, and tune the masking probability in {0.3, 0.6, 0.9}, (8) we pretrain for 300 epochs for
all methods, and (9) we use a batch size of roughly 200000 items for SimCLR-Rank, SimSiam, VIME-self,
and SubTab as they are less GPU memory intensive while using a batch size of roughly 2000 items for
SimCLR/DACL+/SCARF which are more GPU memory intensive.

We also evaluate SAINT (Somepalli et al., 2021), a transformer-based pretrainining method. For the
architecture, we follow (Somepalli et al., 2021), using L = 4 layers, dropout of 0.1, attention heads h = 4,
with a self-attention query/key/value dimension of 16 and a intersample attention query/key/value dimension
of 64. For augmentation, we follow (Somepalli et al., 2021) and use a CutMix mask parameter of 0.3 and
MixUp parameter of 0.2. Again following (Somepalli et al., 2021) we weight the denoising loss 10 times more
than the contrastive loss. For all other minor architectural details, we follow the code of (Somepalli et al.,
2021). We pretrain for 5 epochs with a batch size of roughly 100 items due to GPU memory contraints and
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also the time cost (one epoch of saint took 300x longer than an epoch of SimCLR-Rank in MSLRWEB30K,
6000x longer in Yahoo Set1, and 1000x longer in Istella). We use a learning rate of 5e-5.

Finetuning: (1) finetuning is done on the labeled train set by adding a three-layer MLP to the top of the
pretrained model and training only this head for 100 epochs and then fully finetuning for 100 epochs using
Adam with a learning rate of 5e-5, (2) we use an average batch size of roughly 1000 items (may vary based on
query group size), (3) we use the LambdaRank loss (Burges, 2010), (4) we use the validation set to perform
early stopping (i.e. using the checkpoint that performed best on the validation set to evaluate on the test set).

For SAINT we follow the finetuning process of (Somepalli et al., 2021) in using the output of the CLS
embedding as the representation for an item, and tune the learning rate in {5e-5, 1e-5, 5e-6} as we found the
performance to be sensitive to this setting.

Implicit binary user feedback setting. We reuse the methodology of Section 4.1.1, except we use a
scoring head of one linear layer (as opposed to a three layer MLP) for pretrained models. We found that this
improved stability and performance in the binary label setting.
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Figure 6: We plot the t-SNE plots of embeddings produced by three different encoders for the MSLRWEB30K
dataset: (1) pretrained by SimCLR-Rank, (2) pretrained by SimSiam, (3) trained via supervised training on
the entire training set on roughly 1000 samples from MSLR. Marker size and color indicates relevance. We
find (1) SimCLR-Rank/SimSiam cluster different relevances effectively but do not order them as well as the
supervised encoder. (2) SimCLR-Rank produces more spread-out embeddings with less defined clusters than
SimSiam.
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Figure 7: We plot the t-SNE plots of embeddings produced by three encoders: (1) pretrained by SimCLR-Rank,
(2) pretrained by SimSiam, (3) trained via supervised training on the entire training set on roughly 1000
samples from Istella_S. Marker size and color indicates relevance. We find (1) SimCLR-Rank/SimSiam cluster
different relevances effectively but do not order them as well as the supervised encoder. (2) SimCLR-Rank
produces more spread-out embeddings with less defined clusters than SimSiam.

No Pretrained DL model. There are a few rankers we evaluated for the no-pretrain DL baseline: (1) a
3-layer tabular ResNet from (Gorishniy et al., 2021) with a three-layer MLP on top of it, and was trained
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for 300 epochs on the labeled training set with learning rate tuned in {0.01, 0.001, 0.0001} using Adam,
with early stopping using the validation set, (2) a DeepFM (Guo et al., 2017) model following the model
architecture in the paper with learning rate tuned in {0.05, 0.005, 0.0005}, and (3) a DCNv2 (Wang et al.,
2021) model with learning rate tuned in {0.05, 0.005, 0.0005} and cross layers tuned in {2,3,4}. DeepFM
and DCNv2 were designed to use categorical features, and in MSLRWEB30K/Yahoo Set1/Istella_S do not
document their categorical features (if any). We performed an analysis of the datasets and found 5, 48, 6
categorical features in MSLRWEB30K/Yahoo Set1/Istella_S respectfully each with cardinality at most 3. We
embedded these categorical features into embeddings of dimension 8, following the rule-of-thumb in (Wang
et al., 2021).

GBDT model. The GBDT ranker is the one from lightgbm (Ke et al., 2017) and we grid search the
number of leaves in {31, 96, 200} minimum data in leaf in {20, 60, 200}, and column sample in {0.5, 0.9, 1.0}
individually for each data point (for a total of 9 difference choices), while letting the rest of the parameters
be the default in lightgbm (our tuning strategy is similar to Qin et al. (2021)). We use the LambdaRank
loss to train the models.

GBDT + pseudolabeling. We add pseudo-labeled GBDTs as a semi-supervised GBDT baseline. For
GBDTs with pseudo-labeling (GBDT-pseudo), we propose the following algorithm as there are no references to
our knowledge. First, we train the GBDT on the labeled train set, and then use this GBDT to pseudo-labels
for the unlabeled train set. A GBDT ranker outputs real-valued scores. To convert real-valued scores into
relevance scores, we take the resulting scores and evenly bin them into 31 buckets. The scores converted to
0 are the lowest bucket, the scores converted to 1 are the second lowest bucket, and so on. We choose 31
because that is the largest number of labels allowed for GBDT ranking in lightgbm (the reason is because the
LambdaRank loss requires the calculation of 2label which can get very large).

GBDT + PCA. For GBDT+PCA, we take the entire training set’s features and learn a PCA on it with {5,
10, 15} components, similar to (Duh & Kirchhoff, 2008), to produce {5, 10, 15} new features (i.e. we tune
among 5, 10, 15). We then train on the labeled train set, with both the original features and the new PCA
features together.

GBDT + PCA + pseudolabeling. We also introduce a baseline where we perform PCA on the full
training dataset, and then perform pseudolabeling as above. We tune the PCA similarly to the GBDT +
PCA baseline.

SimCLR-Rank + GBDT/SimSiam + GBDT. We also explore using pretrained neural embeddings as
features in the GBDT. To do this, we used the pretrained SimCLR-Rank (or SimSiam) model to produce
embeddings over the labeled data, concatenated the original features with the embeddings, and then trained
a GBDT on this new dataset. We use the same tuning grid as for the original GBDT model.

Comparing finetuning strategies. When linear probing (LP), we freeze the pretrained model and update
only a linear head on top of it for 200 epochs. In multilayer probing (MP), we freeze the pretrained model
and update a 3-layer MLP head on top of it for 200 epochs. In full finetuning (FF), we use the finetuning
strategy from Section 4.1.1. We use the validation set for early stopping.

All reported values for Outlier-NDCG are those achieved by the corresponding ranker with best overall
NDCG. We report all results as averages over 3 trials, and use single V100 GPUs from a shared cluster to
run the experiments.

A.2.4 Details of Binary Label generation used in Section 4.1.2

Following the methodology from Yang et al. (2022), we generate stochastic binary labels y from the relevance
labels r as y = 1{t · r + G1 > t · τtarget + G0} where t is a temperature parameter, G1, G0 are standard
Gumbels, and τtarget is a parameter controlling how sparse the binary labels are. Higher τtarget leads to
higher label sparsity. Yang et al. (2022) show that y is 1 with probability σ(t · (r − τtarget)) where σ is the
sigmoid function. We set t = 4 as in Yang et al. (2022). For a given τtarget, we produce produce a new
dataset for each of MSLRWEB30K, Yahoo Set1, and Istella_S where we convert the relevance labels in the
training/validation sets to binary labels and keep the true relevance labels in the test set.
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A.2.5 Large industry-scale dataset experimental details

For our DL ranker, first we pass the features (numerical and categorical) through some featurizers. Then we
use a simple 4 hidden layer MLP, with and ReLU activation, to predict a single scalar score for each (query,
item) pair. We also use dropout and batch normalization in input and hidden layers.

For the SimCLR pretraining stage, we remove the last linear layer of the above ranker to create the main
encoder to produce the pretrained embeddings. Projector encoder here is a 2 hidden layer MLP, with ReLU
activation and no bias, which outputs an input dimensional embedding. We also do not use any normalization
or dropout in this projector.

For SimSiam we use the same embedder and a similar projector. The only difference in the projector being
batch normalization in the hidden layers and batch normalization without affine learnable parameters in the
output layer. Additionaly, SimSiam also employs a predictor MLP, with a single hidden layer and ReLU
activation, and with the same input and output sizes. It uses batch normalization and no bias in the hidden
layer and no input and hidden dropouts.

For pretraining, we used an augmentation which randomly zeroed out some features. We also tried randomly
swapping some features between items in the same batch or query group, but they didn’t perform as well as
zeros augmentation. During the fine-tuning stage we discard the projectors and predictor and add back the
linear layer to complete the non-pretrained ranker structure. DL rankers are trained/fine-tuned using PiRank
loss Swezey et al. (2021), batchsize of 1000, AdamW optimizer with learning rate of 0.00001, weight decay of
0.01 and cosine scheduling with warmup. All training stages and experiments were conducted on machines
with 4 GPUs, where we ran 100k iterations with ddp and picked the best checkpoint based on validation
metric.

GBDT rankers were trained with LambdaRank using the lightgbm package. They were tuned with Bayesian
hyperparameter optimization strategy by tuning number of leaves, learning rate, and minimum data in leaf
in a reasonably large range with a maximum of 150 jobs. We used default values of the library for the other
hyperparameters.

A.3 Additional results

A.3.1 Runtime comparisons of pre-training strategies

In Table 6, we provide the runtime comparisons between SimSiam, SimCLR, and SimCLR-Rank (new
method).

Table 6: Seconds per epoch comparison between pretraining methods. Average over 3 trials. The encoder we
use for pretraining is the tabular ResNet (Gorishniy et al., 2021) with the final linear layer taken out.

Seconds per epoch
Method Complexity MSLRWEB30K Yahoo Set1 Istella
SimCLR O(B2L2) 102.81 ± 1.14 14.45 ± 0.04 69.26 ± 0.16
SimCLR-Rank (new) O(BL2) 9.4700 ± 0.02 1.970 ± 0.01 5.950 ± 0.04
SimSiam O(BL) 0.8700 ± 0.01 0.130 ± 0.00 0.730 ± 0.00

A.3.2 Additional Results on linear probing vs finetuning

Here we provide more results on the question of linear probing vs full finetuning, as discussed in Section 4.3. In
Tables 7 and 8 we compare different probing strategies for all datasets when using SimSiam and SimCLR-Rank,
respectively, as the pretraining method.
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Table 7: SimSiam under different finetuning strategies on NDCG/Outlier-NDCG, averaged over 3 trials (LP
= Linear Probing, MP = Multilayer Probing, FF = Full Finetuning). We find that linear probing and MLP
probing perform extremely poorly (except in Yahoo Set1, where MLP probing performs well).

Method MSLRWEB30K (↑) Yahoo Set1 (↑) Istella (↑)
NDCG (↑)

LP 0.2679 ± 0.0007 0.6089 ± 0.0032 0.3805 ± 0.0042
MP 0.2764 ± 0.0001 0.6137 ± 0.0022 0.4484 ± 0.0020
FF 0.3935 ± 0.0034 0.6107 ± 0.0035 0.5618 ± 0.0049

Outlier-NDCG (↑)
LP 0.1803 ± 0.0033 0.5088 ± 0.002 0.4407 ± 0.0388
MP 0.1749 ± 0.0023 0.5157 ± 0.0080 0.5324 ± 0.0002
FF 0.3149 ± 0.0119 0.52 ± 0.0133 0.6348 ± 0.0164

Table 8: SimCLR-Rank under different finetuning strategies on NDCG/Outlier-NDCG, averaged over 3 trials
(LP = Linear Probing, MP = Multilayer Probing, FF = Full Finetuning). Multilayer probing performs
moderately worse than full finetuning, and linear probing performs much worse than all other strategies.

Method MSLRWEB30K (↑) Yahoo Set1 (↑) Istella (↑)
NDCG (↑)

LP 0.3219 ± 0.0224 0.5202 ± 0.0093 0.4029 ± 0.0073
MP 0.3890 ± 0.0011 0.5942 ± 0.0016 0.5813 ± 0.0006
FF 0.3959 ± 0.0022 0.6022 ± 0.0013 0.5839 ± 0.0013

Outlier-NDCG (↑)
LP 0.2304 ± 0.0332 0.3811 ± 0.0048 0.4717 ± 0.0166
MP 0.2969 ± 0.0009 0.4888 ± 0.0046 0.6369 ± 0.0045
FF 0.2892 ± 0.0025 0.5143 ± 0.0055 0.6352 ± 0.0140

A.3.3 Additional Results on SimCLR-Rank vs SimSiam

In this section we give additional t-SNE plots of the embeddings learned by SimCLR-Rank and SimSiam
encoders, and the pre-final layer of the fully supervised ranker (trained with all labels) on MSLRWEB30K
dataset (Figure 6), and Istella_S dataset (Figure 7). For the Yahoo Set1 dataset, SimSiam performs the best,
but for the above two datasets SimCLR-Rank is the best.

A.3.4 Additional Results: Simulated crowdsourced label setting

Here we provide the results on label scarcity for Outlier-NDCG in Figure 8. Result interpretation is given in
Section 4.1.1.

A.3.5 Additional Results for Simulated Implicit Binary user feedback setting

In this part of the appendix we provide additional results on binary label generation as detailed in Section 4.1.2.
In Tables 9 and 10 we give the dataset statistics when using τtarget = 4.25 and τtarget = 5.1, respectively. For
these two settings, the GBDT baseline does not contain semi-supervised runs as we found that semi-supervision
tends to generally degrade GBDT performance; see Appendix A.4. The “No Pretrain” baseline uses the
tabular ResNet architecture.

In Tables 12 and 13 we give the comparison between pretrained and non-pretrained rankers following the
methodology in Section 4.1.2 and find that GBDTs perform the best when binary labels are less sparse
(τtarget = 4.25) and pretrained DL rankers perform the best when binary labels are sparser (τtarget = 5.1).
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Figure 8: Simulated crowdsourcing of labels: We compare Outlier-NDCG (↑) pretrained rankers,
non-pretrained DL rankers, and GBDT rankers as we change the percentage of training query groups that
are labeled. To the left of the black dotted line, pretrained rankers perform the best. Points are averages over
three trials. To the left of the black dotted vertical line, pretrained rankers are (1) significantly better on
outliers than GBDTs at the p = 0.05 level using a one-sided t-test, and (2) on average better on outliers than
all other non-pretrained methods.

Table 9: Train and validation dataset statistics on MSLRWEB30K, Yahoo Set1, and Istella_S after binary
label generation with τtarget = 4.25. The test set is left untouched. Labeled QGs are those query groups that
have at least one item with y = 1.

Dataset # query groups # labeled QGs # items per QG # positives per QG
train val train val train val train val

MSLRWEB30K 18151 6072 15.9% 16.2% 124.35 122.38 1.4% 1.4%
Yahoo Set1 14477 2147 11.1% 10.8% 30.02 30.32 6.2% 6.0%
Istella_S 19200 7202 49.0% 49.5% 106.36 94.98 1.4% 1.6%

This strongly suggests that pretrained DL models outperform GBDTs when the labels arise from binary user
feedback that is moderately uncommon or rare (as in online shopping, recommendations, or search).

A.3.6 Ablation: Data Augmentation Techniques

In Tables 14 and 15, we show the performance of each augmentation choice on SimCLR-Rank and SimSiam,
respectively. We use the methodology described in Section 4.1.1, and have 0.2% of training QGs labeled.

A.3.7 Combining SimCLR-Rank and SimSiam

Here we describe how we constructively combined the SimCLR-Rank and SimSiam to get the competitive
results in Section 4.3. Following the setting of Appendix A.2.3, we train (1) a SimCLR-Rank model with
gaussian augmentation and noise of scale 1.0, and (2) a SimSiam model with zeroing augmentation and
corruption probability 0.1.

After pretraining the SimCLR-Rank and SimSiam models, we finetune each of them on the labeled data and
keep the checkpoints with the best validation NDCG. Then we combine these two models by concatenating
the final embedding layers together—if each model’s penultimate embedding dimension is h (h = 136 for us),
then the concatenated embedding is of dimension 2 × h. Then we pass this concatenated model through a
batchnorm (to normalize the scales of each embedding to prevent scale issues), pass it through dropout layer
of probability 0.7 (if the dataset is MSLRWEB30K or Istella_S) or 0.0 (if the dataset is Yahoo Set1), and
map this vector (of dimension 2 × h) to a score of dimension 1 using a linear layer. We finetune only the final
linear layer.
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Table 10: Train and validation dataset statistics on MSLRWEB30K, Yahoo Set1, and Istella_S after binary
label generation with τtarget = 5.1. The test set is left untouched. Labeled QGs are those query groups that
have at least one item with y = 1.

Dataset # query groups # labeled QGs # items per QG # positives per QG
train val train val train val train val

MSLRWEB30K 18151 6072 1.1% 1.3% 124.35 122.38 0.8% 0.7%
Yahoo Set1 14477 2147 0.6% 0.6% 30.02 30.32 5.4% 5.1%
Istella_S 19200 7202 3.0% 2.7% 106.36 94.98 1.1% 1.3%

Table 11: Train and validation dataset statistics on MSLRWEB30K, Yahoo Set1, and Istella_S after binary
label generation with τtarget = 4.5. The test set is left untouched. Labeled QGs are those query groups that
have at least one item with y = 1.

Dataset # query groups # labeled QGs # items per QG # positives per QG
train val train val train val train val

MSLRWEB30K 18151 6072 8.9% 8.9% 124.35 122.38 1.1% 1.1%
Yahoo Set1 14477 2147 5.3% 5.4% 30.02 30.32 5.9% 5.4%
Istella_S 19200 7202 25.2% 25.2% 106.36 94.98 1.3% 1.3%

A.4 Semi-supervised GBDT

Here we provide a more detailed comparison between Supervised GBDTs, GBDT + pseudolabeling, and
GBDT + PCA + pseudolabeling in Figure 9 for the simulated crowdsourcing of labels setting and in
Table 17 for the simulated implicit binary user feedback setting. We follow the experimental methodology in
Appendix A.2.3. We find that for the most part, semi-supervised learning does not benefit GBDT rankers.

A.5 Quantitative measures of embedding quality

We provide a quantitative measure of embedding quality in this section. We attempt to verify that the focus on
in-query group negatives helps improve embedding quality. To do this, we compare the embeddings produced
by a SimCLR-Rank model and a SimCLR-Sample model (SimCLR-Sample is the same as SimCLR-Rank
except the negatives are randomly taken from the batch rather than being in-query group), both under zeroes
augmentation with p = 0.1, and measure how spread out the embeddings are within a query group for each
method. In Table 16, we find that SimCLR-Rank embeddings are consistently more spread out within a
query group than SimCLR-Sample, showing that in-query group focus leads to a measurable impact on the
distinguish-ability of embeddings within a query group. This may help explain why SimCLR-Rank performs
better than SimCLR-Sample.
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Table 12: We compare pretrained models to non-pretrained models in the binary label setting with τtarget =
4.25 (Section 4.1.2) on NDCG averaged over three trials. We follow the methodology in Section 4.1.2.

Method MSLRWEB30K (↑) Yahoo Set1 (↑) Istella (↑)
NDCG (↑)

GBDT 0.3616 ± 0.0000 0.6233 ± 0.0000 0.6251 ± 0.0000
No Pretrain DL 0.3552 ± 0.0015 0.6297 ± 0.0005 0.6147 ± 0.0006
Pretrained DL 0.3602 ± 0.0007 0.6272 ± 0.0024 0.6243 ± 0.0007

Outlier-NDCG (↑)
GBDT 0.2792 ± 0.0000 0.5352 ± 0.0000 0.7393 ± 0.0000

No Pretrain DL 0.3142 ± 0.0063 0.5389 ± 0.0036 0.6631 ± 0.0102
Pretrained DL 0.2923 ± 0.0079 0.5471 ± 0.0050 0.6945 ± 0.0041

Table 13: We compare pretrained models to non-pretrained models in the binary label setting with τtarget = 5.1
(Section 4.1.2) on NDCG averaged over three trials. We follow the methodology in Section 4.1.2. ♣ indicates
metrics on which pretrained rankers outperform non-pretrained rankers significantly via a p < 0.05 t-test.

Method MSLRWEB30K Yahoo Set1 Istella
NDCG (↑)

GBDT 0.2844 ± 0.0000 0.5782 ± 0.0000 0.5638 ± 0.0000
No Pretrain DL 0.3432 ± 0.0065 0.5703 ± 0.0246 0.5722 ± 0.0080
Pretrained DL 0.3564 ± 0.0054♣ 0.6031 ± 0.0064 ♣ 0.599 ± 0.0014 ♣

Outlier-NDCG (↑)
GBDT 0.2416 ± 0.0000 0.5011 ± 0.0000 0.6640 ± 0.0000

No Pretrain DL 0.2441 ± 0.0089 0.4593 ± 0.0317 0.6334 ± 0.0054
Pretrained DL 0.2553 ± 0.0161 0.54 ± 0.0055♣ 0.6730 ± 0.0090 ♣

Table 14: We compare different augmentation strategies for SimCLR-Rank. The methodology used is the one
in Section 4.1.1, with 0.2% of training QGs labeled.

Augmentation MSLRWEB30K Yahoo Set1 Istella
NDCG (↑)

Zeroing (p=0.1) 0.3830 ± 0.0007 0.6022 ± 0.0013 0.5820 ± 0.0024
Zeroing (p=0.7) 0.3737 ± 0.0025 0.5998 ± 0.0053 0.5646 ± 0.0048

Gaussian noise (scale=1.0) 0.3959 ± 0.0022 0.5998 ± 0.0026 0.5839 ± 0.0013
Gaussian noise (scale=2.0) 0.3907 ± 0.0025 0.5953 ± 0.0043 0.5809 ± 0.0010

Outlier-NDCG (↑)
Zeroing (p=0.1) 0.2782 ± 0.0036 0.5143 ± 0.0055 0.6408 ± 0.0063
Zeroing (p=0.7) 0.2730 ± 0.0054 0.5062 ± 0.0070 0.6141 ± 0.0064

Gaussian noise (scale=1.0) 0.2892 ± 0.0025 0.4963 ± 0.0024 0.6352 ± 0.0140
Gaussian noise (scale=2.0) 0.2886 ± 0.0096 0.4875 ± 0.0054 0.6327 ± 0.0191
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Table 15: We compare different augmentation strategies for SimSiam. The methodology used is the one in
Section 4.1.1, with 0.2% of training QGs labeled.

Augmentation MSLRWEB30K Yahoo Set1 Istella
NDCG (↑)

Zeroing (p=0.1) 0.3935 ± 0.0034 0.6107 ± 0.0035 0.5618 ± 0.0049
Zeroing (p=0.7) 0.3911 ± 0.0003 0.6076 ± 0.0072 0.5660 ± 0.0047

Gaussian noise (scale=1.0) 0.3782 ± 0.0093 0.6010 ± 0.0026 0.5612 ± 0.0060
Gaussian noise (scale=2.0) 0.3860 ± 0.0011 0.6100 ± 0.0089 0.5587 ± 0.0047

Outlier-NDCG (↑)
Zeroing (p=0.1) 0.3149 ± 0.0119 0.5200 ± 0.0133 0.6348 ± 0.0164
Zeroing (p=0.7) 0.3002 ± 0.0060 0.5081 ± 0.0097 0.6201 ± 0.0104

Gaussian noise (scale=1.0) 0.2585 ± 0.0371 0.4893 ± 0.0084 0.6145 ± 0.0160
Gaussian noise (scale=2.0) 0.2929 ± 0.0021 0.5163 ± 0.0101 0.5905 ± 0.0146

Table 16: The ratio of the in-query group mean absolute deviation over the overall mean absolute deviation of
embeddings from SimCLR-Rank and SimCLR-Sample. These embeddings were calculated over the validation
set of each dataset. We find that SimCLR-Rank has a higher ratio, meaning the embeddings are more spread
out within a query group.

Method MSLRWEB30K Yahoo Set1 Istella
SimCLR-Rank 0.9953 0.9904 0.9915

SimCLR-Sample 0.9945 0.9881 0.9797
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Figure 9: A comparison of Supervised GBDT, GBDT + PCA, GBDT + pseudolabeling, and GBDT + PCA
+ pseudolabeling. We find that semi-supervised learning may sometimes benefit GBDT rankers, though it is
not very consistently beneficial.

Table 17: We compare GBDT models in the binary label setting with τtarget = 4.5 (Section 4.1.2) on NDCG
averaged over three trials. We follow the methodology in Section 4.1.2.

Method MSLRWEB30K Yahoo Set1 Istella
NDCG (↑)

Supervised GBDT 0.3335 ± 0.0000 0.6168 ± 0.0000 0.6024 ± 0.0000
GBDT + PCA 0.3105 ± 0.0236 0.6141 ± 0.0022 0.5508 ± 0.0410

GBDT + pseudolabeling 0.3467 ± 0.0011 0.5868 ± 0.0012 0.5178 ± 0.0068
GBDT + PCA + pseudolabeling 0.3241 ± 0.0270 0.5944 ± 0.0012 0.5315 ± 0.0120
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