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Abstract

3D Gaussian Splatting (3DGS) is a powerful reconstruc-
tion technique; however, it requires initialization from accu-
rate camera poses and high-fidelity point clouds. Typically,
the initialization is taken from Structure-from-Motion (SfM)
algorithms; however, SfM is time-consuming and restricts
the application of 3DGS in real-world scenarios and large-
scale scene reconstruction. We introduce a constrained op-
timization method for simultaneous camera pose estimation
and 3D reconstruction that does not require SfM support.
Core to our approach is decomposing a camera pose into a
sequence of camera-to-(device-)center and (device-)center-
to-world optimizations. To facilitate, we propose two opti-
mization constraints conditioned on the sensitivity of each
parameter group and restricts the search space of each pa-
rameter. In addition, as we learn the scene geometry di-
rectly from the noisy point clouds, we propose geometric
constraints to improve the reconstruction quality. Experi-
ments demonstrate that the proposed method significantly
outperforms the existing (multi-modal) 3DGS baseline and
methods supplemented by COLMAP on both our collected
dataset and two public benchmarks. Project webpage:
https://eldentse.qgithub.io/contrained-
optimization—3dgs.

1. Introduction

Simultaneous localization and mapping (SLAM) is crit-
ical for robotics and AR/VR applications. Traditional
SLAM approaches [8, 13, 28] are reasonably accurate in
localization but struggle to produce dense 3D maps with
fine-grained detailing. Recently, 3D Gaussian Splatting
(3DGS) [17] has shown great promise for fast and high-
quality rendering. As a result, there is increasing interest in
combining 3DGS with SLAM [10, 16,23, 33, 38]. One way
is to incorporate SLAM for 3DGS initialization as a faster
alternative to Structure-from-Motion (SfM) algorithms.
Yet standard SLAM systems produce only rough camera
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Figure 1. Given noisy point clouds and inaccurate camera poses,
our constrained optimization approach reconstructs the 3D scene
in Gaussian Splatting with high visual quality.

pose estimates and noisy point clouds. Additionally, less-
than-perfect camera intrinsics and Lidar-to-camera extrin-
sic calibration introduce errors and uncertainty into the 3D
reconstruction. Directly using such SLAM inputs results in
blurry reconstructions and degraded geometry (see Fig. 1)
for standard 3DGS methods. While the SLAM outputs can
be enhanced by additional hardware [7, 14], this invariably
increases hardware costs and acquisition time.

This paper addresses the challenge of training 3DGS un-
der imprecise initialization conditions, i.e. inaccurate sensor
calibration and approximate camera pose estimation. We
consider inputs from a typical 3D scanning setup, compris-
ing multiple RGB cameras, a Lidar, and an inertial motion
unit (IMU) within a rigid body framework. In the absence
of SfM support, we introduce a constrained optimization
method for simultaneously estimating camera parameters
and reconstructing 3D scenes. Specifically, our constrained
optimization strategies are targeted at refining the extrinsics
and intrinsics of the multi-camera setup, as well as 3DGS.

To achieve this, we first decouple multi-camera poses
into a sequence of camera-to-(device-) center and (device-)
center-to-world transformations. However, simply optimiz-
ing for camera parameters and scene reconstruction can re-
sult in sub-optimal solutions for two main reasons. First,
there is inherent ambiguity in the perspective projection;
the intrinsic parameters and camera poses describe relative



Figure 2. Qualitative example of camera poses and colored point
clouds obtained from our multi-camera SLAM system.

and nonlinear relationships that can lead to multiple fea-
sible solutions. Secondly, the ensemble camera poses are
over-parameterized; adjusting one camera’s orientation is
equivalent to altering that of all device centers, creating un-
necessary redundancy for optimization.

To address this problem, we precondition our optimiza-
tion based on the sensitivity of each parameter group. We
also employ a log-barrier method to ensure that critical pa-
rameters remain within a predefined feasibility region (e.g.
focal length should not deviate by 2%). To further improve
the quality of scene reconstructions, we propose two geo-
metric constraints to serve as a strong regularization in the
image space. Specifically, inspired by SfM algorithms, we
introduce a soft epipolar constraint and a reprojection regu-
larizer for robust training to mitigate noisy camera poses.

There are no existing benchmarks fitting to this problem
setting, so we curate a new dataset featuring complex in-
door and large-scale outdoor scenes. As illustrated in Fig. 2,
our proposed dataset is captured with 4 RGB cameras, an
IMU, and Lidar. We run an extensive ablation study as well
as comparisons with state-of-the-art methods. Our exper-
iments demonstrate that our constrained optimization ap-
proach is efficient and effective.

In summary, our contributions are:
The first constrained optimization approach for training
3DGS that refines poor camera and point cloud initializa-
tion from a multi-camera SLAM system.
We derive and enable refinement of camera intrinsics, ex-
trinsics, and 3DGS scene representation using four of our
proposed optimization constraints.
A new dataset capturing complex indoor and large-scale
outdoor scenes from hardware featuring multiple RGB
cameras, IMU, and Lidar.
Our approach achieves competitive performance against
existing 3DGS methods that rely on COLMAP, but with
significantly less pre-processing time.

2. Related Work

3D reconstruction. 3D reconstruction from multi-view im-
ages is a fundamental problem in computer vision. Tradi-
tional methods use complex multi-stage pipelines involv-
ing feature matching, depth estimation [24], point cloud fu-
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sion [5], and surface reconstruction [15]. In contrast, neural
implicit methods such as NeRF [25] simplify this process by
optimizing an implicit surface representation through volu-
metric rendering. Recent advancements include more ex-
pressive scene representations via advanced training strate-
gies [4] and monocular priors [9]. However, these meth-
ods are often limited to foreground objects and are com-
putationally intensive. More recently, 3DGS has been pro-
posed as an efficient point-based representation for complex
scenes. While all the aforementioned methods require accu-
rate camera poses, 3DGS also requires a geometrically ac-
curate sparse point cloud for initialization. This research ad-
dresses the challenges posed by inaccurate point clouds and
camera poses to achieve a high-quality static reconstruction.

Camera pose optimization. Recently, there has been
growing interest in reducing the need for accurate camera
estimation, often derived from SfM. Initial efforts like i-
NeRF [40] predict camera poses by matching keypoints us-
ing a pre-trained NeRF. Subsequently, NeRF- - [37] jointly
optimizes the NeRF network and camera pose embeddings.
BARF [21] and GAREF [6] address the gradient inconsis-
tency issue from high-frequency positional embeddings,
with BARF using a coarse-to-fine positional encoding strat-
egy for joint optimization. In the 3DGS field, iComMa [34]
employs an iterative refinement process for camera pose es-
timation by inverting 3DGS, while GS-CPR [22] uses vi-
sual foundation models for pose optimization with accurate
key-point matches. However, these methods assume a high-
quality pre-trained 3DGS model and are computationally
inefficient. In contrast, our method jointly optimizes camera
poses and reconstruction through constrained optimization.

SLAM with 3DGS. The integration of 3DGS has garnered
significant interest in the field of SLAM [10, 16, 23, 33, 38],
serving as an efficient representation of 3D scenes. Meth-
ods in this domain offer several advantages, including con-
tinuous surface modeling, reduced memory usage, and im-
proved gap filling and scene inpainting for partially ob-
served or occluded data. In contrast, some work extends
SLAM outputs to photometric reconstructions [7, 41, 42]
by assuming accurate poses and point clouds due to com-
plex hardware [7, 42] or multiple capture sequences [7]. In
this paper, we consider coarsely estimated poses and noisy
point clouds from a multi-camera SLAM system to achieve
highly accurate 3D scene reconstruction.

Multimodal 3DGS. There has been an increasing interest
in reconstruction using multimodal data [18, 20], particu-
larly for autonomous driving. For instance, [39, 43] com-
bine images with Lidar, though they rely on COLMAP for
refining camera poses. Additionally, [39] optimizes cam-
era poses independently without intrinsic parameter refine-
ment. In contrast, we are the first to introduce a constrained
optimization framework that refines intrinsic and extrinsic
parameters of (multiple) cameras under various constraints.



Figure 3.

[lustration of camera intrinsic optimization. (a) In
monocular settings, inaccurate intrinsic parameters could be cor-
rected by adjusting the camera pose, e.g. shifting the camera origin
right by 7". (b) This approach is not feasible for multiple cameras
under extrinsic constraints like self-driving cars or SLAM devices.

3. Methodology

In the following, we formulate our problem setting in Sec-
tion 3.1 and detail how we enable intrinsic and extrinsic
camera refinement in Section 3.2. We then present our pro-
posed optimization and geometric constraints in Section 3.3
Section 3.4, respectively.

3.1. Multi-camera problem setting

Given a set of coarsely estimated camera poses ',

{P;}|N_, € SE(3), along with their respective RGB images
{TVX € REXWX3 'where H and W denote the height and
width of the images, and ¢ represents the image/pose index
(1 < ¢ < N)among N images. The poses are inaccurate
due to two main reasons. Firstly, the orientation and posi-
tion of the device P; derived from SLAM can be noisy due
to sensor noise and drift in Lidar odometry estimation. Sec-
ondly, the RGB images are captured asynchronously to the
device pose acquisition. Specifically, the image pose P; is
roughly estimated by combining the closest device pose P;
and the camera-to-device extrinsic £. This approach over-
looks the inevitable time-frame offset (often up to 50 ms),
further increasing the discrepancy between the estimated
and true camera poses. In the following sections, we detail
our approach to jointly correct the noisy set of camera poses
and 3D point clouds within 3DGS scene representation.

3.2. Intrinsic and extrinsic refinement with 3DGS

Intrinsic refinement via analytical solution. Existing
methods typically assume that camera intrinsics are pro-
vided [7, 41] and overlook the importance of refining these
parameters. As illustrated in Fig. 3, the inaccuracies of
camera intrinsics can be compensated via small extrinsic
offsets for single-camera captures [23, 38]. However, this
approach fails in multi-camera systems (e.g. SLAM or self-
driving cars) where poses are constrained by the device P;.
In multi-camera setups, inaccurate intrinsic parameters can
significantly degrade rendered details, leading to blurry re-
constructions. To enable intrinsic refinement, we apply the

'We refer to the camera pose as the camera-to-world pose, indicating
the camera’s position and orientation in world coordinates for simplicity.
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chain rule of differentiation and obtain analytical solutions
for computing the gradient of each intrinsic parameter. We
detail the derivation procedures in Supplementary Sec. B
and provide qualitative examples of this enhancement in
Fig. 7, which improves image quality with clearer text.

Extrinsic refinement via camera decomposition. Refin-
ing the camera extrinsics in a multi-camera system is chal-
lenging due to the large number of parameters. For instance,
a 4-camera rig with 10k images involves 60k degrees of
freedom. To address this, we decompose each camera pose
into two components: the camera-to-device pose and the
device-to-world pose, expressed as:

PUY =Pt x &9, (1)
where Pt is the camera-to-world pose for camera j at
time ¢, Pt is the device-to-world pose at ¢, and &7 is the
camera-to-device extrinsic for camera j. This approach re-
duces the problem to modeling 4 shared extrinsics £/ and
2500 independent device poses P, totaling 6 x 2500 4 6 X
4 = 15024 degrees of freedom. Shared parameters across
cameras and time frames simplify optimization and enhance
the stability of joint camera pose refinement and accurate
3D scene reconstruction. This is illustrated in a real SLAM
acquisition and its decomposition in Fig. 4.

We can now refine the camera extrinsics by applying
small offsets to Eq. 1:

PUD = f(P',6") x (&7, ), )
where q§t and p7 € R are learnable tensors, each consisting
rotation ¢rot7 Prot € R? and a translation ¢tran37 Ptrans € R
to compensate for the device pose at time ¢ and the ;"
camera-to-device error, respectively. Functions f(-) and
g(+) define how these small deltas refine the noisy poses.

There are two general approaches to refine these poses.
The first approach is to left-multiply the original pose by the
error matrix:

f(,ptv gt) =

ot x Pt

~—
SE(3) representation of ¢*

However, this leads to unstable optimization as it forces the
camera location to rotate with respect to the world origin,
which is often far from the initial camera value. To address
this, we propose right-multiplying the error matrix with the
original pose by defining the new device center as 7752“,* =
RapwAt + tgrw, and thus:

f(P gt = P!

3)

X

P “)
~—~
SE(3) representation of ¢*
We provide qualitative examples for these schemes in Sup-

plementary and adopt the form in Eq. 4 for f(-) and g(-).

3.3. Optimization constraints

Directly optimizing the camera parameters as formulated
in Section 3.2 leads to sub-optimal solutions for two main
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Figure 4. Illustration of our camera decomposition scheme. (a)
Initial noisy point cloud from SLAM setup. (b) and (d) Optimiza-
tion procedures of device-to-world and camera-to-device transfor-
mations. (c) Refined point cloud from our constrained optimiza-
tion approach, showing improved visual quality.

reasons: 1) The inherent ambiguity in perspective projec-
tion, where intrinsic parameters and camera poses describe
relative and nonlinear relationships, leading to multiple fea-
sible solutions; and 2) The overparameterization of camera
poses, where adjusting one camera’s orientation affects all
device centers, creating unnecessary redundancy for opti-
mization. In this section, we propose a sensitivity-based
pre-conditioning strategy to adjust the learning rate of each
parameter and a log-barrier strategy to constrain optimiza-
tion within the feasible region.
Sensitivity-based pre-conditioning.  Inspired by the
Levenberg-Marquardt algorithm, which is known to solve
general nonlinear optimization problems, such as camera
calibration [26], we propose an optimization approach that
constrains parameter movements based on their sensitivity
and initial coarse estimates of poses and intrinsics. This is
strongly motivated as even a tiny refinement (1%) in these
parameters can lead to significantly different behaviors.
Given a dense point cloud G, we render into UV coor-
dinates by camera-to-world P, and intrinsic K matrices:

(u, U) = PTOj(d’mn (ybtranSy Proty ptranslga PCZW7 K), (5)

where Proj(-) is the projection function. We can then ob-
tain the sensitivity matrix by solving the Jacobian of Eq. 5:

).

The Jacobian matrix represents how small changes in each
input component affect the output and can be efficiently
computed. We take the average of individual 7 matrices
for multi-view camera captures and adjust the learning rate
based on the diagonal value ratio of (J ' J)~"/?, which is

j(¢rota d)TIanm prota ptrans |g, P02W7 K) -
8“‘/3¢'m( 8”/8¢)lmns au’/apml 3u/8plmns
(91)/8(25‘_0[ 8v/a¢&rans av/aprm av/aptrans

(6)
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the inverse square root of the first-order approximation of
the Hessian matrix.

Log-barrier method to constrain the feasible region. In
addition to refining each parameter set with its sensitivity-
based learning rate, we further construct a log-barrier con-
straint to ensure crucial parameters remain within their fea-
sible boundaries by empirically assessing the error margin
of each parameter.

To achieve this, we define m inequality constraints
hi(xz) < 0, (1 <4 < m) for parameter x. The log-barrier
method expresses these constraints in the negative log form,
as Loamier = YT Y 10 log(—hi(x)), where T is a temper-
ature term that increases from a small value to a very large
one. This formulation offers several advantages for training
by inspecting the gradient of the negative log form:

9Y/rlog(—hi()) 1 0Ohi(x)
3} - hi(z) =z ™
x Thy

As shown in Fig. 5, this creates a symmetric penalty func-
tion centered around the initial value. The penalty gradi-
ent increases significantly as the parameter approaches the
predefined boundaries because the gradient term 7#@)
becomes large. This prevents the parameter from entering
infeasible regions. As optimization progresses, we increase
the temperature 7 to reduce the penalty and allow the pa-
rameters to stabilize between the boundaries. This design
is ideal for our problem scenario as we can empirically set
two bounds and guide the optimization toward a plausible
solution. We apply these constraints to both the camera in-
trinsics and the decomposed camera pose transformations.

3.4. Geometric constraints

In this section, we propose two geometric constraints to im-
prove the robustness in mitigating noisy camera poses. We
first use a state-of-the-art keypoint matching method [31]
to output semi-dense (up to several hundreds) keypoint
matches {Z;, Z; } for adjacent image frames ¢ and 7 + n.
Here, &, Ziyn € RM*2 represent M matches for the im-
age pair, and n is a small integer 1 < n < 3 to ensure high
co-visibility between images. The following two geomet-
ric constraints can effectively provide a strong prior for the
relative poses between cameras in a multi-camera system.

Soft epipolar constraint. This regularizes the learned rel-
ative camera poses to adhere the epipolar geometries. We
implement this by first estimating the fundamental matrix
IF, using the relative camera poses P; ; and respective in-
trinsics K; and K, i.e. Fij = K "[t] Ry K"
We can then compute the Sampson distance [36] which
takes the matched pixel pairs and [F as inputs:

Eepipolar(fia Titn, F) =

@, Fz!
= 2 T 2 T

+ () + (FTal,) + (FTa,,)

]\/[Z—l

Jj=0

N2 P 2"
(IFQJZ) Titn

1 2
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Figure 5. Illustration of the log-barrier method. Lower and upper
bounds are predefined based on initial SLAM estimation. At the
start of the optimization, the barrier imposes a strong penalty for
significant deviations from the initial estimate. As the temperature
increases, it transforms into a well-function, allowing the parame-
ter to fully explore the feasible region.

With this constraint as regularizer, we can achieve robust
optimization convergence by incorporating prior informa-
tion about camera intrinsics and extrinsics. However, since
the epipolar constraint does not consider depth information
and has projective ambiguities, we propose an additional
geometric constraint in the following.

Reprojection error regularization. We extend the Bun-
dle Adjustment from traditional SfM algorithms into a ge-
ometric constraint that simultaneously optimizes both cam-
era poses and 3DGS. This constraint can be expressed as:

Lreproj( Ziy Tign > dis digen| Piy, Pign, Koy Kign)
—_—— —— —— — —

matched points  depths ~ camera poses intrinsics
M-1
— § : . . “1njpr—127 _ =
= (KlJrn/Pth/Pi Dz Kz x; — xi+n)
Jj=0
M-1
—1 = -
K7l+nxi+n - 1’1), (8)

7=0

where d; and J;+n € RMx1 are the depths for the matched
points in ™ and i + n™ images. This regularization term
minimizes errors by considering depth distances, thus con-
straining the geometry of the scene which is complementary
to the previous soft epipolar constraint.

Note that many existing works compute alpha-blending
along the z-axis component of Gaussians in camera space
to approximate rendered depth. However, we found this ap-
proach unstable during optimization. Therefore, inspired by
computer graphics, we instead compute line intersections to
determine depths more accurately. We detail the mathemati-
cal derivation of this approach in the Supplementary Sec. E.

4. Experiments

Implementation details. We train 3DGS using the follow-
ing loss objective, which is a weighted combination of our
proposed constraints and can be written as:

2965

Elotal = Epixel + )\ssim . Essmi + >\barrier . ACbarrier
—_———

log barrier constraint

original learning objective

+ >‘epi : Eepipola.r + )\reproj . »Creproj . (9)

geometry constraints

We empirically set Agim = 0.2, Apaier = 0.1, Aepi =
1 x 1072 and Areproj = 5 x 107* for Eq. 9. The smaller
values for Aepi and Arproj prevent significant deviations in
relative poses due to noisy key-point matches. We set the
learning rate for intrinsic parameters to 8 x 10~%. The base
extrinsic learning rate is 5 x 1073, adjusted for each group
of transformation parameters using the diagonal value ra-
tios from (J ' J )_1/ 2. For log-barrier constraint on intrin-
sic parameters, we impose a strict bound of +2% deviation
from the original value. We also apply adaptive constraints
empirically for extrinsics: +0.625°and +2.5°for ¢, and
Prot, and £0.125m and 4-0.5m for Pyans and pyans. For all
experiments, we follow [11] and adopt a test-time adap-
tation strategy on the unseen images to refine their cam-
era poses. During test-time adjustments, we apply a learn-
ing rate of 5 x 10~* over 500 iterations while keeping the
trained 3DGS parameters frozen. We apply this to the en-
tire test set after training 48k iterations. As most images are
captured in uncontrolled settings with varying lighting and
exposure [30], we introduce an efficient exposure compen-
sation module. We hypothesize that illumination variations
are region-specific and affect image brightness gradually.
Therefore, we correct this by a learnable low-frequency off-
set. We detail this approach in the Supplementary Sec. C.
Dataset. There is a lack of suitable public datasets of real-
world multimodal SLAM sequences that well reflect the
challenges faced in industrial applications, where scans are
noisy and captured quickly. To address this, we collected
data using our self-developed hardware across four scenes,
including indoor and challenging outdoor settings. Our
hardware, featuring four fisheye cameras, an IMU sensor,
and a Lidar, scanned scenes such as a cafeteria, office room,
laboratory ( 100-300m?), and a residential district in East
Asia (85x45m?). Our captured dataset represents a unique
problem setting and can be considered as a special case for
autonomous driving. Specifically, as humans carry the cap-
ture device and walk around to capture the scene, it induces
greater vertical movements than those typically found in au-
tonomous driving datasets. Additionally, these scans fea-
ture stronger lighting variations and moving subjects. Due
to the absence of advanced hardware synchronization and
sophisticated sensor calibration in our rapid data acquisi-
tion process, the resulting camera poses and point clouds
from SLAM are particularly noisy around object surfaces.
We provide details on our devices, acquisition protocol, and
data pre-processing in the Supplementary Sec. A, and have
released the dataset. We also benchmark on public datasets,
though they feature with less sensor noise: Waymo [32] for



autonomous driving and GarageWorld [7] for indoor mea-
surement and inspection.

Evaluation metrics.  Obtaining ground truth camera
poses from real-world settings is challenging so existing
works [12, 27] often adopt COLMAP outputs as pseudo
ground truth. However, Table | shows that COLMAP-
generated poses are prone to failures, sometimes catas-
trophic, making them unreliable as ground truth. This aligns
with existing research, where some approaches are more ac-
curate than COLMAP on individual scenes [3], and evalu-
ation rankings vary depending on the reference algorithm
used for obtaining pseudo ground truths [2]. As such, we
follow established methods [3, 11, 17] and assess pose qual-
ity in a self-supervised manner using novel view synthe-
sis [35]. Specifically, we sample test images at [V intervals,
with N determined per scene to ensure it contains 60 test-
ing images. We report Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS) to evaluate ren-
dering quality.

Comparison methods. We compare our constrained op-
timization approach with various reconstruction methods,
both with and without COLMAP, as well as SLAM-based
Gaussian Splatting methods. We categorize them as:

* Direct reconstruction: This baseline directly optimizes
scene reconstruction using the outputs from SLAM
which include noise from various components. There-
fore, this is considered the lower bound for our approach.

* Pose optimization: This baseline optimizes both the
3DGS parameters and the camera poses. It does not
take into account the multi-camera configuration and does
not refine camera intrinsic parameters. This compari-
son method is commonly seen in incremental SLAM pa-
pers [16, 19, 23] and can serve as a strong baseline as
it aligns with the learning objectives of the mapping or
global bundle adjustment process.

* 3DGS-COLMAP: The following two methods leverage
COLMAP to derive precise camera poses. Despite be-
ing time-consuming, COLMAP is widely adopted for
training 3DGS, as the resulting poses can often be con-
sidered ground truth. We initially included this base-
line as the upper bound for performance. In the first
variation, 3DGS-COLMAP uses roughly estimated cam-
era intrinsics to guide the optimization of camera poses.
The subsequent variant, 3DGS-COLMAP*, integrates
additional approximate camera poses and refines them
through a rig-based bundle adjustment (BA). This rig-
based BA maintains a learnable, yet shared, constant pose
constraint across multiple cameras, making it the most
relevant baseline for comparison.

Recent progress: We compare with two SLAM-

based 3DGS methods including CF-3DGS [12] and

MonoGS [23]. We also compare with InstantSplat [11],
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which uses a foundation model to provide relative poses
and refine reconstruction geometry.

Multimodal 3DGS: We compare with LetsGo [7] and
Street-GS [39], which take Lidar data as input for large-
scale public benchmarks. We provide implementation de-
tails of these methods in the Supplementary Sec. F.
SfM-free NeRF: We compare with CamP+ZipNeRF [1]
and BARF [21]. They perform similarly to the baseline,
which is a lower bound for our approach.

4.1. Experimental results - Tables 1 and 2

Direct baselines (Table 1 rows 1-2). We show that di-
rect reconstruction using noisy SLAM outputs results in
low rendering quality for all indoor/outdoor scenes. In con-
trast, the pose optimization method improves SSIM over the
baseline by 8.3%, 7.89%, 6.97%, and 6.94% for each of the
scenes. Both methods underperformed in the Town scene
due to its complex geometry and noisy point clouds.
COLMAP-based methods (Table 1 rows 3-5). 3DGS-
COLMAP is extensively applied to various 3D reconstruc-
tion tasks, yielding satisfactory results for three out of four
datasets (SSIM: 0.88, 0.90, and 0.83) despite requiring up to
12 hours of computation time. However, it fails in the Cafe-
teria scene due to repetitive block patterns (see details in the
Supplementary). In contrast, 3DGS-COLMAP# has a re-
duced pose estimation time of 2-3 hours due to SLAM pose
prior and Rig-BA. While it produces a more balanced ren-
dering quality, it underperforms in the last two scenes com-
pared to 3DGS-COLMAP, suggesting that rig optimization
may lead to suboptimal outcomes. GLOMAP [29] is more
efficient but generally underperforms the two baselines.
Recent progress (Table 1 rows 6-8). We show that both
3DGS for incremental SLAM methods, MonoGS and CF-
3DGS, perform weakly across all evaluated datasets, with
SSIM ranging from 0.40 to 0.75. This deficiency stems
from their reliance on high-quality image sequences, where
accurate relative pose estimation depends heavily on image
covisibility. Specifically, our dataset imposes a stringent
85% covisibility threshold, which makes it more challeng-
ing to obtain relative camera poses across the global scene.
Additionally, the dataset contains various recurring block
patterns as well as plain surfaces, which can lead to de-
generate solutions. Conversely, InstantSplat achieves better
rendering quality by leveraging foundation models.
Multimodal 3DGS (Table 2). Our approach achieves the
best score in 12 cases and the second-best in the remain-
ing ones. Notably, Street-GS also includes pose optimiza-
tion, similar to our 3DGS-COLMAP baseline. However,
our method shows significant improvement due to the com-
bination of camera decomposition, intrinsic optimization,
and various constraints, all without relying on COLMAP.
We present additional quantitative analysis and qualitative
comparisons in the Supplementary Sec. G and H.



Table 1. Quantitative comparisons on our dataset.
metric. ©

Red and blue highlights indicate the 1st and 2nd-best results, respectively, for each
performs additional rig-based bundle adjustment to refine initial camera estimations. Our proposed method matches or surpasses

the performance of the widely-adopt 3DGS-COLMAP approach while requiring significantly less data pre-processing time (prep. time).

Cafeteria | Office | Laboratory | Town
Methods Prep. time |PSNR T SSIM + LPIPS | |PSNR SSIM 1 LPIPS ||PSNR+ SSIM t LPIPS | [PSNR 1 SSIM 1 LPIPS |
Direct reconst. 3minutes | 1923 0.7887 0.2238 | 17.49 0.7577 02777 | 1835 0.7975 02207 | 16.12 0.6151 0.3234
Pose optimize. 5 minutes | 26.89  0.8716 0.1219 | 23.96 0.8366 0.1663 | 26.11 0.8673 0.1183 | 20.18 0.6845 0.2392
3DGS-COLMAP |4-12hours| 17.03 0.7681 0.2475 | 25.82  0.8832 0.1262  28.30 0.9080 0.0837 | 24.07 0.8304 0.1362
3DGS-COLMAP2 | 2-3hours | 26.51 0.8379 0.1281 | 23.91 0.8394 0.1797 | 23.76 0.8157 0.1277 | 23.51 0.8090 0.1534
3DGS-GLOMAP | 2-6hours | 21.83 0.7889 0.1546 | 21.94 0.8609 0.1464 | 2592 0.8805 0.1098 | 23.37 0.8254 0.1630
CF-3DGS [12] I minute | 1544 05412 0.5849 | 1653 0.7555 0.4086 | 1644 0.7557 0.3945 | 1545 0.5412 0.5849
MonoGS [23] Iminute | 827 04684 0.6033 | 956 04957 0.6560 | 13.08 0.6011 0.5103 | 12.74 0.3085 0.5331
InstantSplat [11] |50 minutes | 19.86 0.7743 0.2548 | 2330 0.8718 0.1451 | 20.89 0.8624 0.1801 | 21.48 0.7378 0.2999
CamP+ZipNeRF 2205 0.8544 03718 | 1932 0.8253 02049 | 17.67 0.7527 02833 | 1635 0.6797 0.5326
BARF 1897 0.7340 0.2622 | 17.03 07001 03717 | 19.29 0.7529 02701 | 1697 0.5249 0.5108
Ours | 5minutes | 29.05 09168 0.0817 | 2607 08850 0.1131 28.64 09104 0.0845 | 2452 0.8259 0.1428

Table 2. Quantitative comparisons on GarageWorld (left) and Waymo (right) datasets with state-of-the-art multimodal methods.

GarageWorld [7] Waymo [32]
Group 0 Group 3 Group 6 Scene 002 Scene 031
Methods |[PSNR 1t SSIM 1 LPIPS | |PSNR 1 SSIM+ LPIPS | |PSNR 1 SSIM 1 LPIPS | |[PSNR 1 SSIM * LPIPS | |PSNR 1 SSIM + LPIPS |
3DGS [17] 2543 0.8215 | 02721 | 23.61 0.8162 | 02698 | 21.23 0.7002 0.4640 | 2584 0.8700 0.1746 | 24.42 0.8328 0.1783
LetsGo [7] 2529 0.8387 0.2978 2531 0.8329 0.2804 | 21.72 0.7462 0.445 26.11 0.8429 0.2951 | 2479 0.7851 0.3477
Street-GS [39]| 24.20  0.8222 0.2993 | 24.19 0.8209 0.2849 | 20.52 0.7206 0.4763 | 27.96 0.8708 0.1664 | 25.04 0.8553 0.1697
Ours | 2606 08325 02605 2507 08311 02523 | 2376 0.7779 0.3537 | 29.75 0.883  0.161 | 2848 0.868 0.1450

Table 3. Ablations on number of cameras. We show that the im-
provement consistently increases with number of cameras.

| 1 camera | 2 cameras | 4 cameras
Methods
[PSNR 1 SSIM 1 LPIPS ||PSNR 1 SSIM 1 LPIPS ||PSNR 1 SSIM 1 LPIPS |
Cafeteria
Pose optim.| 27.51 0.881 0.079 | 27.52 0.885 0.093 | 2643 0.859 0.119
Ours 29.81 0917 0.067 | 29.76 0921 0.072 | 29.50 0.922 0.077
Improv. | 230 0036 0012 | 224 0036 0021 | 307 0063 0042
Office
Pose optim.| 24.36  0.845 0.121 | 24.00 0.832 0.141 | 23.38 0.827 0.169
Ours 2651 0.885 0.103 | 2620 0.881 0.110 | 26.12 0.891 0.109
Improv. ‘ 2.15 0.040 0.018 ‘ 220 0.049 0.031 ‘ 2.74  0.064 0.060
4.2. Ablations

Camera decompositon & pre-conditioning. Directly op-
timizing camera parameters in a multi-camera setup can be
computationally inefficient without improving reconstruc-
tion quality. To address this, we propose a camera decom-
position and sensitivity-based pre-conditioning optimiza-
tion strategies. As shown in Table 4, this approach achieves
optimal performance with fast training convergence.
Number of cameras. We evaluate the camera decomposi-
tion in Table 3 and show that our proposed method consis-
tently improve the rendering quality. Our method is effec-
tive even in single-camera scenarios, as it links all camera
poses with a shared camera-to-device matrix. This shared
matrix provides a partial global constraint on the camera-
to-device pose, simplifying the optimization process espe-
cially within limited training budgets.

Intrinsic optimization. Table 5 shows that intrinsic re-
finement improve rendering quality, with consistent gains
across all metrics. In addition, we demonstrate that intrin-
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Table 4. Ablations on camera decomposition and sensitivity-based
pre-conditioning strategies. C.P. and P.C. denote camera decom-
position and pre-conditioning, respectively. In addition to standard
rendering metrics, we report convergence percentage (CVG %),
indicating the training stage at which SSIM exceeds 95% of its
peak. A smaller values refers more stable optimization.

Methods ‘
C.D.P. C.‘PSNR 1 SSIM 1 LPIPS | CVG%‘PSNR 1SSIM 1 LPIPS | CVG%

Cafeteria ‘ Laboratory

X X | 2691 08659 0.1129 3438 | 27.00 0.8807 0.1045 31.25
X vV | 2645 08577 0.1072 2292 | 26.07 0.8645 0.1096 18.76
v x | 2887 09154 00850 43.10 2852 0.9092 0.0894 39.58
v v/ 2905 09168 0.0817 1565 28.64 09104 0.0845 16.67
Table 5. Ablations on intrinsic refinement.
Methods | Cafeteria | Laboratory
Refinement | PSNR+ SSIM+ LPIPS | | PSNR+ SSIM1 LPIPS |
b | 2740 08975 0.0976 | 2679 08843  0.0932
v 29.05 09168 0.0817 28.64 09104 0.0845

sic refinement can deblur images by adjusting focal lengths
and the principal point, as shown in Fig. 7.

Log-barrier method. Using only the pre-conditioning op-
timization strategy is insufficient to prevent sensitive pa-
rameters from exceeding their feasible region. To address
this, we use a log-barrier method to constrain the feasible
region. We show that by simply constraining the feasible
region within 2% improves SSIM by 6.8% in Fig. 8.
Geometric constraints. We next assess the importance
of the two proposed geometric constraints. In addition to
standard metrics, we report the mean epipolar line error
(Ep-e) and the reprojection error (RP-e) in Table 6. We
observe consistent performance gains with both geometric
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Figure 6. Qualitative comparisons with existing approaches. Our method achieves high rendering quality across a diverse range of scenes.

Figure 7. Qualitative examples for novel view synthesis with
(right) and without (/eft) intrinsic refinement. We eliminate blur-
riness and enhance rendering quality by refining camera intrinsics
during optimization.

335
+2%

330
325

=320

& 315 2% constraint 2070
& 310 “
305
300

295

05 10 15 20 25 30 35 40 45
Iterations (X10%)

005 10 15 20 25 30 35 40 45 0
Iterations (X10%)

Figure 8. Ablations on log-barrier method. We show that training
without log-barrier (blue plot) lead to significant principle point

deviation (left) and sub-optimal solution (right). In contrast, using
log-barrier method (orange plot) results in a higher SSIM (right).

constraints, even as random noise increases in both camera-
to-device and device poses. We also provide qualitative ex-
amples of key-point matches and their corresponding epipo-
lar lines in Fig. 9. We show that minor epipole displace-
ments resulting from geometric constraints significantly re-
duce the epipolar line error from 2.70 to 0.75 pixels.

5. Conclusion

This paper presented a method for 3DGS with noisy camera
and point cloud initializations from a multi-camera SLAM
system. We proposed a constrained optimization framework
that decomposes the camera pose into camera-to-device
and device-to-world transformations. By optimizing these
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Table 6. Ablation study on geometric constraint. Ep-e stands
for mean epipolar line error (Ep-e) and RP-e denotes mean re-
projection error. Our proposed losses help to reduce both errors
and increase the rendering quality.

Noise| Methods | Cafeteria
Level gp RP.|PSNR1 SSIM{ LPIPS| Ep-e| RP-e|
X X | 2705 08945 0.1047 114 252
Cx V| 2724 09130 00906 1.1 | 2.04
v x| 2725 09141 00895 109 205
v v/ | 2731 09147 00891 108  1.88
X X | 2604 08901 0.1007 123 256
020 | ¥ V| 2616 08952 00989 117 219
v x| 2651 09007 00963 112 206
vV /| 2684 09045 00958 1.1  2.00
X X | 2480 08584 0.1244 172  3.92
050 | X V| 2487 08607 01196 142 299
v x| 2518 08665 0.1138 123 235
vV /| 2520 08672 01120 121 232

Paired image 1

Paired image 2

Coarse Pose
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Figure 9. Qualitative examples on key-point matches and their
corresponding epipolar lines. Vertical inspection shows that the
geometric constraints cause minor epipole displacements towards
lower epipolar error as well as better reconstruction quality.

transformations individually under soft constraints, we can
efficiently and accurately construct 3DGS. We also intro-
duced a new multi-view 3D dataset captured under these
noisy, albeit practical, settings, which we will release to the
community to encourage further research development.
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