
Published in Transactions on Machine Learning Research (05/2024)

Extreme Risk Mitigation in Reinforcement Learning using
Extreme Value Theory

Karthik Somayaji NS karthi@ucsb.edu
Department of Electrical and Computer Engineering
University of California Santa Barbara

Yu Wang yu95@ucsb.edu
Department of Electrical and Computer Engineering
University of California Santa Barbara

Malachi Schram schram@jlab.org
Thomas Jefferson National Accelerator LaboratoryS

Jan Drgona jan.drgona@pnnl.gov
Pacific Northwest National Laboratory

Mahantesh Halappanavar hala@pnnl.gov
Pacific Northwest National Laboratory

Frank Liu fliu@odu.edu
School of Data Science
Old Dominion University

Peng Li lip@ucsb.edu
Department of Electrical and Computer Engineering
University of California Santa Barbara

Reviewed on OpenReview: https: // openreview. net/ forum? id= 098mb06uhA

Abstract

Risk-sensitive reinforcement learning (RL) has garnered significant attention in recent years
due to the growing interest in deploying RL agents in real-world scenarios. A critical
aspect of risk awareness involves modelling highly rare risk events (rewards) that could
potentially lead to catastrophic outcomes. These infrequent occurrences present a formidable
challenge for data-driven methods aiming to capture such risky events accurately. While
risk-aware RL techniques do exist, they suffer from high variance estimation due to the
inherent data scarcity. Our work proposes to enhance the resilience of RL agents when faced
with very rare and risky events by focusing on refining the predictions of the extreme values
predicted by the state-action value distribution. To achieve this, we formulate the extreme
values of the state-action value function distribution as parameterized distributions, drawing
inspiration from the principles of extreme value theory (EVT). We propose an extreme
value theory based actor-critic approach, namely, Extreme Valued Actor-Critic (EVAC)
which effectively addresses the issue of infrequent occurrence by leveraging EVT-based
parameterization. Importantly, we theoretically demonstrate the advantages of employing
these parameterized distributions in contrast to other risk-averse algorithms. Our evaluations
show that the proposed method outperforms other risk averse RL algorithms on a diverse
range of benchmark tasks, each encompassing distinct risk scenarios.
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1 Introduction

In the recent years, there has been a wide array of research in leveraging reinforcement learning (RL) as a tool
for enabling agents to learn desired behaviors with safety guarantees (Gattami et al., 2021; Eysenbach et al.,
2017; Pinto et al., 2017; Smirnova et al., 2019; Xu & Mannor, 2010). Risk averse RL involves training an RL
agent to optimize a risk measure unlike risk neutral RL where agents are trained to maximize the expected
value of future discounted rewards. In risk averse RL, the accurate quantification of risk is particularly
crucial in preventing catastrophic failures and finds relevance in safety-critical domains such as accelerator
control (Rajput et al., 2022), finance (Daluiso et al., 2023), and robotics (Pan et al., 2019), where agents
must navigate risky or hazardous states.

In risk averse RL, risk measures play a vital role in assessing the uncertainty and the potential negative
consequences associated with an agent’s decisions. Risk-averse RL algorithms employing various risk measures
often consider the distribution of returns to quantify risk. Among these risk measures, Conditional Value at
Risk (CVaR) is widely used, relying on the expected value of extreme quantiles of the return distribution
to quantify risk (Tamar et al., 2014a; Hiraoka et al., 2019). In contrast, expectiles, which minimize the
expected absolute deviation from the target, offer a robust estimate of central tendency (Marzban et al.,
2021). Simpler methods for quantifying risk, such as estimating the variance of the return distribution (Xia,
2016; PrashanthL. & Fu, 2018) are also utilized.

These conventional approaches often require modelling the entire distribution of returns (state action value
distribution) to accurately calculate the risk measure. In risk-averse RL, the focus is on estimating and
quantifying low-probability risks, where the distribution of returns may display extreme skewness or heavy
tails. Conventional methods model the distribution of returns typically through sampling, a data-intensive
process that raises concerns about the accuracy of the modelled distribution, especially in low probability
regions. Furthermore, in scenarios where collecting many samples is restrictive, the tail regions of the
distribution of returns may not be accurately represented. Percentile risk measures, such as CVaR (Tamar
et al., 2014a; Hiraoka et al., 2019), demand precisely modelled tail regions of the distribution of returns
for accurate risk measure estimations. When the extreme tail regions of the distribution are inaccurately
modeled, the risk measure becomes unreliable and may compromise the risk aversion of the RL agent. Thus,
in risk averse RL, accurately modelling the tail region of the state action value distribution is key to good
risk averse behavior. Extremely infrequent risk events, labeled as extreme risks (Troop et al., 2019), naturally
exhibit low-probability skewed tails. Additionally, in situations where sample collection is expensive and
adequate samples from the tail are lacking, traditional risk-averse RL algorithms face challenges such as
high-variance risk measure estimates which are unreliable for optimization, as noted in (Pan et al., 2020;
Beranger et al., 2021). These challenges may lead risk-averse RL algorithms to overlook extreme risk scenarios
potentially resulting in catastrophic consequences in safety-critical applications.

We provide a simple demonstration on how the high variance in risk measure estimates, can affect risk
aversion. We use the Half-Cheetah environment (Brockman et al., 2016) for our demonstration. Following
the setup of (Urpí et al., 2021), we devise a scheme where the agent is penalized rarely for moving over a
certain velocity threshold. We provide all details on implementation and set up in Section 8. The rareness
of the penalty is controlled using a Bernoulli random variable which penalizes the reward with a Bernoulli
penalization rate p. We train risk averse RL agents based on (Urpí et al., 2021) and our proposed method,
EVAC, using the CVaR risk measure (Tamar et al., 2014a) for different rare risk scenarios p = 5%, 15% and
ascertain the percentage of times the Half-Cheetah agent crosses the threshold velocity in an episode. As p
decreases the penalties become rarer and the risks become more extreme. We illustrate the percentage of
crossing the threshold velocity as a function of the Bernoulli penalization rate in Figure 1a.

In Figure 1c, we present the empirical distribution and the modeled distribution according to (Urpí et al.,
2021) for a specific state-action pair, depicted through their cumulative distribution functions (CDF). It is
noted that under extreme rare risk conditions (at p = 5%), the tail of the modeled distribution (illustrated
in red) does not accurately represent the true empirical distribution (illustrated in blue). Furthermore,
Figure 1b includes a depiction of the variance associated with the risk measure, Conditional Value at Risk
(CVaR), for the distribution modeled by (Urpí et al., 2021) and our proposed method, EVAC. We observe
from Figure 1a and Figure 1b that higher variance of the risk measure estimate leads to poor risk aversion
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(a) Risk aversion as a function of extreme risk
in (Urpí et al., 2021) and EVAC
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(b) Variance of the CVaR as a function of ex-
treme risk in (Urpí et al., 2021) and EVAC
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(c) Comparison between the empirical distribution of returns and the modelled distribution for extreme risk (5%
Bernoulli penalty) and moderate risk (15% Bernoulli penalty) in (Urpí et al., 2021)

Figure 1: Risk aversion and distribution modelling performed by (Urpí et al., 2021) as a function of extreme
risk: As the risks become extremely rare, traditional risk averse RL methods face challenges in modelling
the tail distribution and also exhibit higher variance in the risk measure estimate. Thus, they may end up
overlooking risky states and exhibit poor risk aversion.

generally. Under conditions of extreme rare risks, conventional risk-averse methodologies tend to display an
increased variance in the estimate of the risk measure in comparison to EVAC. The high variance in the risk
measure estimates may equally overestimate or underestimate the risk and obstruct the policy from effectively
converging towards a risk-averse policy. As shown in Figure 6a, traditional risk-averse reinforcement learning
(RL) methods tend to overlook extremely rare risky events (with a 5% Bernoulli penalization rate), leading
to inadequate risk aversion. However, as the penalty frequency increases (to a 15% Bernoulli penalization
rate), the variance of the risk measure drops and the risk-averse RL algorithm shows improved risk aversion
capabilities. Consequently, the failure to accurately model the tail in scenarios of extreme and rare risk can
result in suboptimal risk aversion.

Thus, there is an acute need to improve risk aversion by accurately modelling the prediction of extreme values
of the return (state-action value) distribution. In this work, we propose to develop methods that help in
extreme risk mitigation by modelling the state-action value distribution accurately. In particular, we develop
EVAC, an extreme value theory (EVT) based method to model the quantiles of the tail region of the state
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action value distribution. Extreme value theory (EVT) posits that the tail distribution follows a certain
parametric form, which we propose to fit for the particular case of the state action value distribution. We
theoretically and empirically demonstrate the reduction in the variance of the risk measure while employing
EVAC which leads to better risk aversion even under extreme rare risks. Thus, our contributions are that:

1. We recognize the challenges faced by conventional distribution-based RL methods (Ma et al., 2020;
Dabney et al., 2017; Urpí et al., 2021) in effectively modelling and mitigating extremely rare risks.

2. We propose a novel approach to model the tail region of the state-action value distribution, inspired by
extreme value theory (EVT) by utilizing a General Pareto distribution. Importantly, we demonstrate
a reduction in variance in the estimation of the quantiles of the tail distribution.

3. We propose a novel actor-critic distributional RL algorithm called Extreme Valued Actor-Critic
(EVAC) and conduct comprehensive empirical evaluations of our proposed method across various
extreme risk environments. We compare its risk aversion and performance against widely used
baselines.

2 Related Work

There has been an extensive study in incorporating reinforcement learning in risk avoidance. (Chow &
Ghavamzadeh, 2014; Tamar et al., 2014b; Chow et al., 2015b) have studied quantification of risk in terms of
percentile criteria, specifically the CVaR (conditional value at risk). Other risk averse measures also include
(Xia, 2016; PrashanthL. & Fu, 2018) which incorporate variance as a risk measure, while (Chow et al., 2015a)
uses a notion of range to discuss risk. All the above metrics do require an understanding of the distribution
of the quantity of interest. Most works in the RL context deal with risk as it is connected to the distribution
of the state action value distribution (or the Q-function). The work of (Bellemare et al., 2017) offers a
distributional perspective on the value functions. (Dabney et al., 2017) approximates the distribution of the
value functions in terms of the quantiles of the distribution. Other works like (Ma et al., 2020; Urpí et al.,
2021; Tang et al., 2019) use the notion of quantiles of the value function distribution to quantify risk and
(Srinivasan et al., 2020) also discusses methods for fine tuning agents in transfer learning scenarios.

(Liu et al., 2022) perform post-hoc risk analysis of players in a sports game while accounting for epistemic
uncertainty. They use a distributional RL framework as a policy evaluation tool to evaluate player’s
performance. Specifically, they employ an offline dataset for performance prediction of a player and assess
risky behavior using quantile based distributional modeling. Furthermore to account for distribution shift
between the offline dataset and the test dataset, the work employs epistemic uncertainty estimation via
density estimation for calibration. (Ma et al., 2021) is a distributional RL framework used for risk aversion
in the offline learning paradigm. Compared to the offline risk averse setting of (Urpí et al., 2021) namely
(O-RAAC), (Ma et al., 2021) penalize the quantiles of OOD state action pairs pointwise. They demonstrate
superior risk aversion in the offline setting in comparison to other offline risk averse RL methods. (Greenberg
et al., 2022) propose a method to balance high return policies against risk averse policies. They introduce a
soft risk mechanism and a cross-entropy method to enhance sample efficiency and maintain risk aversion.
(Hau et al., 2022) consider alternate risk measures such as the entropic risk measure and the entropic value at
risk in tabular settings for robust risk averse applications, where the agent needs to mitigate performance loss
in uncertain states. Similar in spirit to (Liu et al., 2022), they combine epistemic uncertainty estimates with
these risk measures along with a dynamically changing risk level to achieve risk aversion and robustness to
model uncertainty. (Killian et al., 2023) operate in the offline RL setting and investigate estimating the risk
associated with a policy in terms of the expected worst case outcomes. The goal is to develop a distributional
value function to provide an early warning of risk over possible future outcomes. They use separate dead end
and terminal state reward signals to construct separate MDPs to derive two value distributions. A state
action pair is classified a dead end if the CVaR of both the value distributions lies below a given threshold.
(Luo et al., 2023) study risk aversion as it corresponds to avoidance of highly noisy states. They lay out
foundations on why the variance as a risk measure falls short for risk averse policy estimation. They propose
Gini deviation, a new risk measure that overcomes the shortcomings of the variance risk measure and also
demonstrates good risk aversion.
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While numerous studies have explored risk aversion using various risk measures and techniques, there has
been minimal focus on increasing the accuracy of the modeled return distributions that these risk measures
rely on, particularly in scenarios involving extreme and rare risks.

When addressing rare risky events, extreme value theory (EVT) (Haan & Ferreira, 2006) provides a framework
to characterizing the asymptotic behavior of the distribution of the sample extrema. EVT finds extensive
application in modelling rare events across domains from finance, to operations research and meteorology to
multi-armed bandit problems (Roncalli, 2020; Santiñaque et al., 2023; Can et al., 2023; Troop et al., 2019).
In the reinforcement learning context, (Garg et al., 2023) recently discusses the use of EVT in estimating the
maximum of the Q-value in the Bellman update. Our work is different from (Garg et al., 2023) on three
main fronts. (i) Firstly, (Garg et al., 2023) operates in the non-distributional RL setting and aims to learn
the optimal value function in the max-entropy RL, inspired by principles in EVT. In max-entropy RL, the
optimal Bellman operator requires estimating the optimal value function, which is intractable in continuous
action spaces. (Garg et al., 2023) uses EVT inspired Gumbell regression to compute the optimal value
function in the non-distributional max-entropy RL setting. However, our work operates in the distributional
RL setting and aims to perform risk averse decision making in extremely rare risky scenarios by modelling the
extreme quantiles of the state action value distribution. Particularly, our work draws inspiration from EVT
to model the entire distribution of the state action value distribution unlike (Garg et al., 2023). (ii)(Garg
et al., 2023) uses the fact that the sample maxima can be characterized by the Gumbell distribution to
estimate the max entropy optimal value function. However, our work considers modelling the entire state
action value distribution precisely by using the principle of asymptotic conditional excess distributions to
estimate the underlying tail behavior of the state action value distribution. (iii) (Garg et al., 2023) uses
Gumbell regression as a tool to define and train a soft Q-function by gathering inspiration from the Gumbell
distributed Bellman errors. This is accomplished by using the Fisher Tippet Theorem (Theorem 4.1) which
provides the limiting behavior of sample maxima. In our work, we estimate the realizations of the critic
(state action value) distribution over a threshold by employing another key theorem in extreme value theory
namely the Pickands-Balkema-de Haan Theorem (Theorem 4.2). Particularly, our method uses maximum
likelihood estimation of the GPD distribution to estimate the state action value distribution.

3 Notations

In this rest of the paper, we adopt the notation for the standard Markov Decision Process (MDP) characterized
by the tuple (S, A, PR, PS , γ), where S is the state space, A is the action space, PR is the stochastic reward
kernel such that PR : S × A → P(R), where R is the reward set. PS : S × A → P(S) is the probabilistic next
state transition kernel, and γ is the discount factor. The policy π of the agent is a mapping π : S → P(A).
We denote St, At, Rt as the encountered state, action and reward, respectively at time step t. The future
sum of discounted returns is a random variable denoted by Jπ(s, a) =

∑∞
t=0 γtRt, where Rt ∼ PR(St, At)

and At ∼ π(St) with S0 = s; A0 = a. We denote the distribution corresponding to the random variable Jπ as
Zπ. In this work, we primarily operate on stationary environments with dense rewards and continuous action
space settings.

4 Background

4.1 Distributional Reinforcement Learning

Distributional reinforcement learning (distributional RL) Bellemare et al. (2017); Dabney et al. (2017) entails
the modelling of the complete distribution of the state-action value function. In contrast to traditional RL
which focuses solely on modelling the expected value of the state-action value function’s distribution as a
point estimate, distributional RL aims to model the entire distribution of the state action value function.

The state action value distribution Z under policy π is updated using the distributional Bellman operator

T πZπ(s, a) = r(s, a) + γEs′∼PS(s,a),a′∼π(s′)Z
π(s′, a′) (1)
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The Bellman operator T π : P(RS×A) → P(RS×A) operates on the space of probabilities over the reals R, for
each state action pair. Focusing attention on Eqn.1 reveals that the update of the LHS distribution Zπ(s, a)
happens via sampling the mixture distribution Es′∼PS(s,a),a′∼π(s′)Z

π(s′, a′), scaling it by γ and shifting it
by r(s, a), which is the sampled scalar reward. Thus, the update of Zπ(s, a) can be viewed as a scale and
shift operation of the mixture distribution Es′∼PS(s,a),a′∼π(s′)Z

π(s′, a′). The distribution function Zπ(s, a)
characterizes the values that the random variable Jπ(s, a) can assume. Thus, knowledge of the distribution
function Zπ(s, a) aids in understanding the extreme values that Jπ(s, a) can be assigned. In risk averse RL,
state action pairs whose distributions Zπ(s, a) assume low extremal values denote risky states and need to
be avoided. Thereby, distributional RL provides a tool to quantify the uncertainty and risk for risk averse
applications.

4.2 Quantile Regression

One of the popular methods to model the distribution of the state-action value function in distributional RL
is through the quantiles of the distribution. The quantiles of the distribution are often estimated through
the quantile regression framework (used in risk averse RL applications including Ma et al. (2020); Dabney
et al. (2017); Urpí et al. (2021)). Quantile regression proposed by Koenker & Bassett Jr (1978) estimates the
true quantile value of a distribution by minimizing the pinball loss. Assume a random variable Y with its
unknown true distribution function FY (.) and probability density function fY (.). The goal lies in estimating
the true quantile values of FY denoted by θτ for τ ∈ [0, 1], the quantile level. The quantile predicted by the
quantile regression framework is a unique minimizer of the pinball loss L(θτ ) given by

L(θτ ) = Ey∼FY
(y − θτ )(τ − 1y−θτ <0). (2)

In deep reinforcement learning, a modified smooth loss function called the empirical quantile Huber loss
Huber (1964) is instead used for better gradient back propagation.

4.3 Extreme Value Theory (EVT)

Modeling the extreme values of distributions under low data availability is challenging. Extreme Value Theory
(EVT) is a statistical framework that focuses on modelling and analyzing the tail behavior of probability
distributions, particularly the distribution of extreme values. It provides methods to characterize and predict
rare and extreme events, making it valuable in assessing and managing risks associated with tail events. We
formally introduce the two main theorems in EVT below.

Theorem 4.1 (Fisher Tippet Theorem Basrak (2011)) Let X1, · · · , Xn be a sequence of IID random
variables, with a distribution function (CDF) F . Let Mn represent the sample maximum. If there exist
constants an > 0 and bn and a non-degenerate distribution function G such that:

lim
n→∞

P
{Mn − bn

an
≤ x

}
= G(x),

then the distribution function G(x) is called the Generalized Extreme Value distribution (GEV) and can be
decomposed into either the Gumbell, Frechet or the Weibull distribution.

Intuitively the Fisher Tippet Theorem describes that the normalized sample maxima of a distribution F ,
converges in distribution to the GEV distribution.

The other central theorem in EVT is the Pickands-Balkema -de Haan Theorem (PBD Theorem) which inspects
the conditional exceedance probability above a threshold u, of a random variable X with a distribution
function F ..

Theorem 4.2 (Pickands-Balkema-de Haan Theorem ) Pickands III (1975) Let X1 · · · Xn be a se-
quence of IID random variables with distribution function (CDF) given by F whose limiting behavior approaches
the GEV distribution. Let Fu(x) = P (X − u ≤ x|X > u) be the conditional excess distribution. Then,

lim
u→∞

Fu(x) D−→ Hξ,σ(x),
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where Hξ,σ(x) is the Generalized Pareto distribution (GPD) with parameters ξ, σ.

Intuitively Theorem4.2 describes that the conditional distribution Fu of the random variable X approaches
the GPD distribution for large enough u. The CDF of the GPD distribution Fξ,σ(x) is given by:1 −

(
1 + ξx

σ

)−1/ξ

for ξ ̸= 0
1 − exp(− x

σ ) for ξ = 0
(3)

5 Motivation

Modelling the quantiles of the state-action value distribution, especially the low-probability extreme realizations
(tail quantiles) is crucial in risk averse RL. However, this is challenging when the extreme tail regions of the
underlying distribution are skewed or heavy tailed. This challenge arises as the traditional sampling based
estimations of these quantiles tend to exhibit high variance, leading to potential compromises in risk aversion
strategies. To address this issue, our approach in this study involves leveraging extreme value theory-based
parameterized asymptotic distributions to effectively model the low-probability tail regions of the state-action
value distribution.

To underscore the importance of employing extreme value theory-based parameterized distributions for tail
distribution characterization, we initially examine the challenges associated with utilizing sampling based
methods to estimate the quantiles of the tail distribution through quantile regression.

5.1 Challenges when employing the sampling distribution in quantile regression

Assume a random variable Y with its unknown true distribution function FY (.) and probability density
function fY (.) Assume N samples sampled from FY , {y1, y2, · · · , yN }. The aim is to find the quantile value
estimate θN

τ using quantile regression, by minimizing the empirical pinball loss for a given quantile level τ ,
which follows from Eqn.2:

L(θτ
N ) = 1

N

N∑
i=1

(yi − θN
τ )(τ − 1yi−θN

τ <0) (4)

Importantly, the asymptotic convergence of the quantile regression estimator to the true quantile value is
discussed in Koenker & Bassett Jr (1978) as

√
N(θN

τ − θτ ) D−→ N (0, λ̃2),

where the variance of the estimator θN
τ is given by

λ2 = λ̃2

N
= τ(1 − τ)

N · f2
Y (θτ ) . (5)

The variance of the quantile regression estimate θN
τ is dependent on the number of samples N from the

distribution that are used to estimate the quantiles and also on the squared probability density f2
Y (θτ ) at the

quantile value θτ .

Under a fixed number of samples, the variance of the quantile regression estimate increases in the case of rare
extreme valued state-action value distributions when the density function fY (θτ ) assumes low probability
values in the tail regions (τ → 1− i.e. heavy tails). Beranger et al. (2021); Pan et al. (2020) also discuss the
estimation inaccuracy of the quantile estimates under lower data availability. Bai et al. (2021) specifically
discusses the inherent undercoverage associated with quantile regression estimator for tail quantile regions.
Such evidence coupled with the high variance property acts as a deterrent to exclusively choosing the sampling
distribution for estimating extreme quantiles in the case of distributions with low probability extreme events.

Thereby, we investigate the modelling of the state action value distribution when the sampling distribution
assumes rare extreme values.
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5.2 EVT based modelling of the state-action value distribution

Given the naturally occurring heavy tails in rare extreme events, direct sampling from the return distribution
(state-action value distribution), may yield insufficient information regarding extreme values. Consequently,
we propose an approach that involves fitting a parameterized distribution to the tail regions of the state-action
value distribution. This approach draws inspiration from the principles of Extreme Value Theory (EVT),
which advocates the fitting of asymptotic distributions to the extreme tail regions of the state action value
distribution.

6 Method

Extremely rare reward penalties like the ones discussed in Section 1 cause the state action value distribution
to be characterized by low probability tails. The higher probability occurrences of the true random return
Jπ(s, a) can be learnt reasonably well, unlike the low probability extreme valued realizations. Thereby, we
propose to decompose the state action value distribution into two regions namely, the non-tail region and the
tail region.

Remark 6.0.1 Although higher rewards are considered better in reinforcement learning, we negate the rewards
to maintain consistent notation with literature in EVT. This does not affect any analysis. Because of the
negated reward, we swap focus from the left tail of the state action value distribution to the right tail.

In order to capture the extreme regions within the state-action value distribution, we depict the tail distribution
and the non-tail distribution, in Figure 2. For a given threshold u, we denote by Zπ

L(s, a), the non-tail
distribution. The subscript ‘L’ is used for denoting support values of Zπ lower than u. Similarly, we denote
by Zπ

H(s, a), the tail distribution. The subscript ‘H’ denotes distribution with support values higher than u,
which is assumed to be a sufficiently high threshold for the state action pair (s, a). We assume that the area
under Zπ

L(s, a) and Zπ
H(s, a) to be 1. So, the state action value distribution Zπ(s, a) is obtained by rescaling

Zπ
L(s, a) and Zπ

H(s, a).
Zπ(s, a) = η · Zπ

L(s, a) + (1 − η) · Zπ
H(s, a) (6)

𝑍𝐿
𝜋(𝑠, 𝑎)

න
𝑥1

𝑢

𝑍𝐿
𝜋 𝑠, 𝑎 𝑑𝑥 = 1
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EVT based tail modeling

Traditional tail modeling
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𝜋 (𝑠, 𝑎)

≈ 𝜂. ZL
𝜋 𝑠, 𝑎 + 1 − 𝜂 . GPD𝜉,𝜎

𝜋 (𝑠, 𝑎)

Figure 2: Modelling the tail and non-tail distributions of the state action value function. The area under the
non-tail distribution Zπ

L(s, a) and tail distribution Zπ
H(s, a) is assumed to be 1.

The fundamental idea guiding our methodology for modelling extreme values within the state-action value
distribution is to conceptualize the tail region of the distribution as the conditional excess distribution beyond
a certain threshold. To formalize this, we invoke the Pickands-Balkema-de Haan theorem (Theorem 4.2)
to approximate the tail regions of the state-action value distribution Zπ. According to Theorem 4.2, the
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conditional excess can be expressed through the Generalized Pareto Distribution (GPD) with parameters ξ, σ.
Consequently, for each state-action pair (s, a) ∈ S × A within the state-action value distribution Zπ(s, a),
the tail region can be effectively modeled by an associated GPD distribution with parameters ξ(s, a), σ(s, a).
Therefore, the tail regions of each Zπ(s, a) can be viewed as parameterized GPD distributions in the S × A
space, denoted as GPD

(
ξ(s, a), σ(s, a)

)
with distinct thresholds u for each (s, a). The threshold u for each

(s, a) pair is the value of the support distribution Zπ(s, a), where its CDF has a value of η. In the limit, the
tail distribution Zπ

H(s, a) can be represented by GPD
(

ξ(s, a), σ(s, a)
)

and appropriately rescaled to obtain
Zπ(s, a) as outlined in Eqn. 6.

Fitting the asymptotic GPD distribution enables effective extrapolation and the generation of new data points
during sampling, which makes the EVT based tail modelling data efficient. The merit of this approximation
lies in its ability to capture the extreme value behavior of Zπ even with limited data availability, owing to
the fitting of asymptotic Extreme Value Theory (EVT) distributions. We provide a detailed explanation of
the GPD fitting procedure in Section 7 and the algorithmic flow of our approach in Algorithm 1.

6.1 Variance reduction in the quantile regression estimate using EVT based tail modelling

Having characterized the tail region of the state-action value distribution using the parameterized Generalized
Pareto Distribution (GPD), our objective is to explore the implications of replacing the sampling distribution
with the proposed parameterized state-action value distribution when performing quantile regression.

The proposed methodology involves updating quantiles of the state-action value distribution through quantile
regression. As detailed in Section 5.1, the variance of the quantile regression estimator is influenced by the
square of the probability density at a specific quantile level. This prompts a crucial inquiry: how does the
variance of the quantile regression estimate change when utilizing a GPD approximation for the tail region of
the underlying distribution? To address this question, we conduct an analysis of the variance of the quantile
regression estimator for a distribution with a parameterized GPD tail and compare it to a distribution without
such tail modeling.

Assume a random variable Y with its distribution function FY . Let the τ th quantile of FY be denoted as θτ .
For any sufficiently large quantile level η ∈ [0, 1), and a smaller increment quantile level t ∈ [0, 1 − η) such
that, η + t ∈ [0, 1), we have the corresponding quantiles of the distribution θη and θη+t. We define the excess
value of the quantile as x = θη+t − θη. We define the CDF of the GPD distribution by FHξ,σ

and its density
function by fHξ,σ

.

FY (θη+t) = P
(

Y ≤ θη + x
)

(7)

= η + (1 − η)P
(

Y − θη ≤ x|Y > θη

)
≈ η + (1 − η)FHξ,σ

(x)

As mentioned earlier for sufficiently large η, P
(
Y − θη ≤ x|Y > θη

)
approaches the GPD distribution FHξ,σ(x)

in the limit. Thus, we have
P (Y ≤ θη + x) ≈ η + (1 − η)P (X ≤ x) (8)

where X ∼ Hξ,σ. It follows from Eqn.8, that,

fY (θη + x) ≈ (1 − η)fHξ,σ
(x) (9)

If we represent the quantiles of FHξ,σ
by θH , then we have the following relationship between the quantiles of

FY and the quantiles of the GPD distribution :

θη+t ≈ θη + θH
t

1−η
(10)

9
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We are interested in representing the quantiles for sufficiently large η and higher. Following Eqn. 5, the
variance of the quantile regression estimator in estimating the quantile θη+t of the distribution function Y is

λ2
Y = (η + t)(1 − η − t)

N · (1 − η)2f2
Hξ,σ

(
θH

t
1−η

)

In Eqn. 10, θη corresponds to the ηth quantile of the distribution corresponding to the threshold quantile level
η. Assuming that the distribution has sufficient probability mass at quantile level η, θη may be accurately
estimated with the provided samples. If θη is known, one may simply estimate the t

1−η

th quantile of the
GPD distribution and shift it by θη. Thus the quantile regression estimator’s variance in estimating η + t
quantile of Y using the GPD is given by:

λ2
H = (t/(1 − η))(1 − t/(1 − η))

N · f2
Hξ,σ

(
θH

t
1−η

)

We can verify that λ2
Y ≫ λ2

H for large values of η, e.g., close to 1.0. Therefore, we show that GPD based
modelling of the tail region of the distribution Y helps reduce the variance in the estimation of higher
quantiles. We also illustrate this in Figure.3 with a few candidate values for η = 0.75, 0.8, 0.85.
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Figure 3: Dashed lines indicate λ2
Y and the solid lines indicate λ2

H . λ2
H is always upper bounded by the λ2

Y

which illustrates variance reduction while using GPD for approximating the tail.

The preceding analysis establishes that when η is large enough (and the tail distribution converges to the
GPD distribution), the variance of the quantile regression estimator with the parameterized state-action value
distribution is smaller in comparison with the variance of an estimator with a non-parameterized state-action
value distribution.

The reduced variability in the quantile regression estimate is beneficial as it also lowers the variability in the
estimate of the risk measure. For instance, the Conditional Value at Risk (CVaR) risk measure, employed
in optimizing risk-averse policies (as outlined in Equation 12), shows reduced variability when there is less
variability in the tail quantile estimates. This decrease in risk measure variability can, in turn, expedite the
process of developing risk-averse policies with a limited number of interactions with the environment.

10



Published in Transactions on Machine Learning Research (05/2024)

7 Extreme Valued Actor Critic (EVAC)

7.1 Actor Critic Framework

To scale the GPD modelling to large and continuous state action spaces, we introduce an actor-critic
deep reinforcement learning method, named Extreme Valued Actor-Critic (EVAC). This approach utilizes
parameterized Extreme Value Theory (EVT) based distributions to represent the state-action value distribution.
Aligned with existing frameworks like Lillicrap et al. (2016); Fujimoto et al. (2018); Urpí et al. (2021), our
architecture comprises an actor and critic network. Similar to Urpí et al. (2021), the actor network is employed
for optimizing the risk measure and suggesting optimal risk-averse actions. Conversely, the critic network is
dedicated to modelling the quantiles of the state-action value distribution. Specifically, the critic network is
utilized to capture both the quantiles of the non-tail region and those of the EVT-based parameterized tail
distribution. We present the framework for training the critic that models the state-action value distribution.

7.2 Training the state-action value distribution

The state-action value distribution models the distribution of the future returns and is updated using the
Bellman update :

T πZπ(s, a) = r(s, a) + γ
[
η · Zπ

L(s′, a′) + (1 − η) · Zπ
H(s′, a′)

]
(11)

where (s, a, r, s′, a′) represent the state, action, reward, next-state and next-action tuple. The distribution
Zπ(s′, a′) = η · Zπ

L(s′, a′) + (1 − η) · Zπ
H(s′, a′) is decomposed into the non-tail distribution Zπ

L(s′, a′) and the
tail distribution Zπ(s′, a′) as in Eqn 6. In EVAC, we propose learning the state action value distribution
Zπ(s, a) and the parameters of the GPD distribution GPD(ξ(s, a), σ(s, a)).

The state action value distribution Zπ(s, a) is modelled using quantiles. We denote the τ th quantile of
Zπ(s, a) as Zπ(s, a)|τ . Firstly, the non-tail distribution function Zπ

L(s, a) is defined as:

Zπ
L(s, a)| τ

η
= Zπ(s, a)|τ , ∀τ ∈ [0, η]

The GPD distribution with parameters ξ(s, a), σ(s, a) is denoted as GPD(ξ(s, a), σ(s, a)). The tail distribution
Zπ

H(s, a) is obtained by a shifted version of the GPD distribution and may be represented as

Zπ
H(s, a) = Zπ(s, a)|η + GPD

(
ξ(s, a), σ(s, a)

)
where Zπ(s, a)|η is the scalar shift and represents the threshold quantile of the state action value distribution
Zπ(s, a) corresponding to quantile level η.

Our aim is to model the quantiles of Zπ(s, a) accurately by utilizing samples from the non-tail distribution
function Zπ

L(s′, a′) and the tail distribution Zπ
H(s′, a′). Our proposed training procedure to train the state

action value distribution Zπ(s, a) in Eqn 11 encompasses the following distinct components:

• Sampling from the non-tail distribution (Zπ
L(s′, a′)) and the tail distribution (Zπ

H(s′, a′)).

• Quantile regression to estimate the quantiles of the state action value distribution Zπ(s, a).

• Updating the parameters (ξ(s, a), σ(s, a)) of the GPD distribution which controls the tail distribution
Zπ

H(s, a).

7.2.1 Sampling the non-tail distribution function and the tail distribution

Our goal is to estimate the quantiles of the state action value distribution Zπ(s, a) of the current state action
pair (s, a) in Eqn 11 through quantile regression. In order to do so, we need to obtain samples from the RHS
of Eqn 11 by sampling the tail distribution Zπ

H(s′, a′) with proportion (1 − η) and the non-tail distribution
Zπ

L(s′, a′) with proportion η.

11
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We obtain samples from the non-tail distribution Zπ
L(s′, a′) using inverse transform sampling. For sampled

quantile levels τ ∼ U(0, η), the queried samples Zπ(s′, a′)|τ correspond to sampling from the non-tail
distribution Zπ

L(s′, a′).

We obtain samples from the tail distribution Zπ
H(s′, a′) by querying the GPD model. Specifically Zπ

H(s′, a′) =
Zπ(s′, a′)|η + GPD

(
ξ(s′, a′), σ(s′, a′)

)
. First, we sample from the GPD distribution GPD

(
ξ(s′, a′), σ(s′, a′)

)
and shift it by the scalar threshold quantile value Zπ(s′, a′)|η.

The shifted GPD distribution models the tail region of the state action value distribution, while the samples
from Zπ

L(s′, a′) model the non-tail region. Having obtained samples from the RHS of Eqn.11, the state
action value function Zπ(s, a) can be trained using quantile regression. It is to be noted that although the
state action value function is modelled by quantile regression, our sampling procedure involves sampling of
Zπ

L(s′, a′) and the shifted GPD distribution which more accurately models the tail behavior, unlike Ma et al.
(2020); Dabney et al. (2017); Urpí et al. (2021).

7.2.2 Quantile regression to update quantiles of Zπ(s, a)

The samples obtained from the tail distribution, Zπ
H(s′, a′) (with proportion 1−η) and the non-tail distribution

Zπ
L(s′, a′), (with proportion η), are used to estimate the quantiles of the state action value distribution

Zπ(s, a). Consider N such samples from the tail and non-tail distribution, each represented as yi. Particularly,
to estimate the τ th quantile θτ of Zπ(s, a), the pinball loss L(θτ ) is minimized.

L(θτ ) = 1
N

N∑
i=1

(yi − θτ )(τ − 1yi−θτ <0)

This procedure accurately models the quantiles of the state action value distribution Zπ(s, a) by obtaining
samples from both the non-tail and the tail distributions. Since the pinball loss is non-smooth, we employ a
smooth approximation of the pinball loss namely, the Huber loss Huber (1964).

7.2.3 Updating the parameters of the GPD Distribution

The previous procedure uses samples from the tail and non-tail distribution to update quantiles of the
state action value distribution. However, the tail distribution Zπ

H(s, a) which is modelled by the shifted
GPD distribution itself needs to be updated. Thereby, it is imperative to appropriately fit the parameters
ξ(s, a), σ(s, a) of the Generalized Pareto Distribution (GPD) to accurately model Eqn. 11. The GPD is used
to model the distribution of excess values above a given threshold (threshold quantile value).

GPD
(

ξ(s, a), σ(s, a)
)

= Zπ
H(s, a) − Zπ(s, a)|η

where Zπ(s, a)|η is the threshold quantile. To acquire these excess values, we initially generate samples
Zπ(s, a)|1τ=η and subtract them from the threshold Zπ(s, a)|τ=η to obtain the surplus beyond the threshold.
Subsequently, the GPD parameters ξ(s, a), σ(s, a) can be determined through maximum likelihood estimation
of the GPD distribution applied to the samples of excess over the threshold.

Thus, we provide a novel framework for using extreme value theory for state action value distribution
estimation. In Section A, we provide a proof of the convergence of the Bellman operator in Eqn 11. In Section
B, we provide details of the MLE estimation procedure to update parameters of the GPD distribution.

7.3 Policy Optimization

Once the critic, (encompassing both the tail and non-tail segments) has been trained under a fixed policy π to
produce the state action value distribution Zπ(s, a), our focus shifts towards the actor’s policy optimization,
aimed at achieving a risk-averse behavior. In order to train risk averse policies, extreme values of the
state-action value distribution are employed to guarantee optimal worst case performance. We propose to
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employ the CVaR risk measure Tamar et al. (2014b); Ying et al. (2022) on the state-action value distribution
Zπ(s, a) for mitigating extreme risk. The CVaR (Conditional value at risk), is a risk measure that denotes
the average worst case performance by integrating the quantiles of the state action value distribution between
quantile levels x1 and 1.0. The optimal policy π∗ in Eqn.12 is obtained through policy gradients over the
CVaR. We choose x1 = 0.95 in all experiments. ( Note the negation of the reward (Remark 6.0.1) which
paves the way for higher values of x1).

We expect that for a given amount of collected data, lower variance estimates of the CVaR for a given (s, a)
pair lead to better risk averse policies. We evaluate the both the variance and consequently the quality of the
risk averse policies produced by EVAC and other baselines in the next section.

π∗ = arg min
π

CVaR(x1) (12)

= arg min
π

1
x2 − x1

∫ 1

τ=x1

Z
(

s, π(s)
)∣∣∣

τ
dτ

7.4 Algorithm for EVAC

Algorithm 1: Extreme Valued Actor Critic: EVAC
Input: Initialize GPD parameters {σ(s, a), ξ(s, a)} the critic Z(s, a), policy π(s) and threshold quantile level η
Policy Iteration:
1. Sampling from the parameterized distribution and updating the critic (Section 7.2.1 and 7.2.2)
for tuple (s, a, r, s′, a′ = π(s′)) do

x ∼ GP D
(

ξ(s′, a′), σ(s′, a′)
)

Define Z′
H = Z(s′, a′)|τ=η + x

Define Z′
L = Z(s′, a′)|τ=τ0 ; where τ0 ∼ Unif(0, η)

Sample p ∼ Bernoulliη
Define Bellman target: ZT = r + γ[1p=0Z′

H + 1p=1Z′
L]

Update the critic Z using samples ZT through quantile regression
2. Updating the GPD parameters ξ(s, a), σ(s, a) (Section 7.2.3)
for tuple (s, a) do

y ∼ Z(s, a)|τ>η

ξ(s, a), σ(s, a) = MLE[GPD(y − Z(s, a)|τ=η ]
Policy Improvement: (Section 7.3)
Update policy π according to Eqn.12

We provide an algorithmic flow of EVAC in Algorithm 1. The EVAC algorithm receives the critic and actor
network parameter initializations, the GPD parameter initializations and the threshold quantile level η as
inputs. Firstly, any tuple (s, a, r, s, a′ = π(s′)) or equivalently a batch of such tuples is considered for updating
the state action value distribution. To accomplish this, the excess over the threshold quantile level η, is
computed by sampling the GPD distribution i.e. x ∼ GPD

(
ξ(s′, a′), σ(s′, a′)

)
. Next, two kind of samples are

obtained. One from the non-tail region (Z ′
L) and another from the tail region (Z ′

H). Then these samples are
selected in proportions η and (1 − η) respectively to update the critic through standard quantile regression
performed on the entire batch.

Secondly, a tuple of state action pairs (s, a) or equivalently a batch of them is considered to update the
GPD parameters. The updated state action value distribution is sampled to obtain the the excess over the
threshold quantile for all elements in the batch. The parameters of the GPD distribution are then updated
using maximum likelihood estimation on the excess samples.

Finally, the policy is updated using CVaR optimization on the updated state action value distribution.

8 Experimental Evaluation

As detailed earlier, extreme rare risk scenarios can have catastrophic outcomes. Although it is very pertinent
to use real world complex control environments to study risk aversion, such complex scenarios often lack
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open source simulators. As a result, we resort to creating such extreme rare risk scenarios in open source
environments.

Thus, in order to evaluate rare risk aversion of each agent, we define special environments following the work
of Ma et al. (2021); Urpí et al. (2021) where risk scenarios are simulated. However, to simulate extreme risk
scenarios we introduce some modifications.

8.1 Generating extreme risk scenarios

In order to replicate scenarios where the state-action value distribution Zπ(s, a) encompasses exceedingly
rare extreme values with minimal probabilities, we deliberately design rewards r(s, a) that can take very low
values (representing catastrophic events) with extremely low probabilities. This mirrors realistic situations
where the reward for a given state-action pair is drawn from a distribution that seldom yields low values,
corresponding to high penalties.

To illustrate a strategy simulating low-probability, high-penalty events, we incorporate a penalty term into
the reward with a low probability. Essentially, this penalty term is influenced by a Bernoulli random variable
parameterized by p, offering control over the rarity of penalizing events. The parameter p determines the
infrequency of penalties.

We experiment on two benchmark Open-AI environments Brockman et al. (2016) namely Mujoco environments
and Safety-gym environments Ji et al. (2023).

8.2 Mujoco Environments

For creating rare risky events in the Mujoco Environments, we modify the reward using a wrapper function
which penalizes the reward for certain state action pairs with a certain probability (which is typically small
to simulate rare risky events). Our reward penalization setup is similar to the set up of Urpí et al. (2021).
We primarily experiment with three Mujoco environments namely, HalfCheetah, Hopper and Walker2d
environments. Denoting R(s, a) as the original non-penalized reward, we define the stochastic penalized
reward r(s, a). For the Half-Cheetah environment,

r(s, a) = R(s, a)+Iv>αL · Bp

where I is the indicator function, v is the velocity of the HalfCheetah agent, L = −50, is a penalization
weight, α = 2.5 is the threshold velocity of the HalfCheetah agent above which the agent gets penalized
rarely. The sample of the Bernoulli random variable is denoted by Bp. To simulate extreme rare penalties,
the Bernoulli distribution parameter p is made equal to 0.05 i.e. (p = 0.05), which indicates the frequency at
which the state action pair (s, a) is penalized.

For the Hopper environment,
r(s, a) = R(s, a)+I|θ|>αL · Bp

where I is the indicator function, |θ| denotes the angle of Hopper, L = −50 is a penalization weight, for
the reward, α = 0.03 is the threshold angle over which the agent gets penalized. The Bernoulli distribution
parameter is set to p = 0.03.

For the Walker2d environment,
r(s, a) = R(s, a)+I|θ|>αL · Bp

where I is the indicator function, |θ| denotes the angle of the Walker2d agent, L = −30 is a penalization
weight for the reward, α = 0.2 is the threshold angle over which the agent gets penalized. The Bernoulli
distribution parameter p = 0.03.

For all Mujoco environments, we analyze the CVaR (in Eqn.12) and its variance. Next, in order to test for
risk aversion of the agent, we define a metric namely the percentage failure which is defined as :

Percentage Failure = EN[Iq>α] ∗ 100
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where EN represents the empirical mean over N episodes, q is the quantity of interest, i.e. the velocity v for
the Half-Cheetah and the angle |θ| for the Hopper and Walker.

The percentage failure is indicative of the fraction of the times in an episode that the agent enters into
state-action pairs that are penalized rarely. The percentage of failure naturally quantifies the risk aversion
ability of the agent in question. Additionally, we also include the cumulative reward collected in each episode
to assess the performance of the agent in addition to its risk aversion capability.

8.3 Safety-gym Environments

We also perform extensive experiments on another suite of environments, namely the safety-gym benchmark
Ji et al. (2023). Safety-gym environments consist of configurable robots with programmable reward functions.
We use the ‘Point’ robot and the ‘goal’ task. Thus, in our setup a particular robot (the ‘point’ robot) is
tasked with reaching a goal location on the arena. The robot receives a reward with respect to distance from
the goal.

We follow the method of reward penalization used by Ma et al. (2021) to introduce rare risky rewards. We
define certain circular regions on the arena, termed ‘hazards’ which rarely lead to penalizations. To introduce
extreme rare risks, the nature of reward penalization is

r(s, a) = R(s, a)+Iq∈HL · Bp

where R(s, a) is the original non-penalized reward, r(s, a) is the stochastic penalized reward, q denotes the
current location of the robot in the arena, H includes positions of all the hazards in the arena. The sample of
the Bernoulli random variable is denoted by Bp and p is the Bernoulli frequency of penalization. The penalty
weight L = −10. Thus, the agent suffers a rare penalty when in the hazard region. We create two scenarios
for extreme risks with respect to the placement of the hazard and the size (radius) of the hazard.

Safety-gym Scenario-A: In this experimental setup, there is a single hazard of large radius placed along
the straight line path (shortest distance) between the start position and the goal position. The agent needs
to learn to avoid the large hazard region. We set the Bernoulli penalization rate p = 0.05 for Scenario-A.

Safety-gym Scenario-B: In this more challenging experimental setup, there are multiple hazards of smaller
radius placed closer to the goal. The agent needs to discover the optimal path to avoid all hazards and reach
the goal. We make the setup even more challenging by setting the penalization parameter to p = 0.03 to
introduce more extreme risks.

We provide visual representations of Scenario-A and Scenario-B in Figure 5 and Figure 6 respectively in
Section H of the Appendix.

8.4 Baselines

We compare EVAC over different baseline algorithms such as DDPG-RAAC Urpí et al. (2021), TD3-RAAC
(TD3 version of DDPG-RAAC) and DSAC (with single critic) Ma et al. (2020). RAAC uses quantile regression
to construct Zπ(s, a) and uses the CVaR to optimize the policy. DSAC additionally maximizes the entropy
of the policy to ensure optimal exploration. The difference between our approach (EVAC) and the compared
baselines is that we additionally approximately model the tail of the state-action value distribution using the
shifted and scaled GPD distribution.

8.5 Result Discussion

As can be seen in Table 1, the EVAC agents exhibit good risk averse behavior by avoiding risky reward state
actions. The percentage failure for the EVAC agents is noticeably smaller when subject to even extreme risk
scenarios.

Secondly, the CVaR of the EVAC agents is higher than the baseline methods. Additionally, the standard
deviation of the CVaR across different runs for the EVAC agent is smaller in comparison to other baselines.
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Environment Algorithm Percentage Failure Cumulative Reward CVaR

HalfCheetah

RAAC-DDPG 16.55± 4.43 637.81± 319.78 135.18 ± 13.02
RAAC-TD3 41.3± 16.6 836.8± 195.85 129.81 ± 38.75

D-SAC 30.04 ± 22.26 1356.05 ± 269.63 149.76 ± 27.38
EVAC 2.87 ± 1.3 1502.46 ± 94.25 156.71 ± 11.07

Hopper

RAAC-DDPG 66.94 ± 11.79 410.62 ± 315.12 27.58 ± 34.41
RAAC-TD3 48.78 ± 12.36 718.53 ± 355.55 27.87 ± 65.35

D-SAC 57.34 ± 11.42 782.85 ± 400.78 51.5 ± 95.93
EVAC 2.09 ± 4.18 875.89 ± 299.75 76.61 ± 28.15

Walker2d

RAAC-DDPG 68.05 ± 11.62 123.17 ± 66.46 1.31 ± 6.6
RAAC-TD3 22.18 ± 13.02 308.66 ± 134.99 -9.52 ± 14.83

D-SAC 24.75 ± 11.33 598.5 ± 128.38 3.76 ± 8.34
EVAC 4.98 ± 7.23 668.18 ± 463.68 4.37 ± 3.22

Table 1: Performance metrics on Mujoco environments under a penalization rate of p = 0.05 for the Half
Cheetah environment and p = 0.03 for the Hopper and Walker2d environments. We record CVaR at x1 = 0.95
(0.05 if reward is not negated) and threshold quantile level η = 0.96. Inference is done on 5 trained agents.
Each trained agent completes an episode in inference mode acting on the learnt policy. The results are
expressed as mean ± standard deviation across 5 trained agents.

.

Environment Algorithm Percentage Failure Cumulative Reward CVaR

Scenario-A

RAAC-DDPG 14.03 ± 11.4 5.41 ± 0.24 1.59 ± 0.09
RAAC-TD3 12.13± 5.94 5.55± 0.23 1.39 ± 0.13

D-SAC 22.31 ± 13.67 2.13 ± 4.07 1.33 ± 0.18
EVAC 0.0 ± 0.0 5.71 ± 0.0 1.7 ± 0.08

Scenario-B

RAAC-DDPG 20.2± 14.66 5.22± 0.41 1.58 ± 0.1
RAAC-TD3 22.34± 9.93 4.87± 0.47 0.64 ± 0.41

D-SAC 15.47 ± 4.84 5.1 ± 0.24 1.56 ± 0.09
EVAC 2.47 ± 3.9 5.61 ± 0.12 2.0 ± 0.06

Table 2: Performance metrics on the Safety-gym environment under a penalization rate of p = 0.05 for
Scenario-A and p = 0.03 for Scenario-B. We record CVaR at x1 = 0.95 (0.05 if reward is not negated). We
set the threshold quantile η = 0.96. The results are expressed as mean ± standard deviation across 5 trained
agents.

This is in concurrence to the analysis in Section 6.1. The lower variance implies that the EVAC agent is able
to consistently and precisely quantify risk in the tail region of the state action value distribution and thereby
avoid risky state action pairs (which is demonstrated by the low percentage failures).

The cumulative rewards in Table 1 show higher performances than other baselines. In the Mujoco environments,
the cumulative reward of DSAC is slightly smaller to EVAC and comes at the cost of entering rare risky
regions. We observe that RAAC agents are not as risk averse and do not improve cumulative performance
either in extreme rare risk scenarios. EVAC agents while achieving higher cumulative performance, exhibit
very good risk aversion too. This implies that the EVAC agents explore systematically within the ‘legal’ and
non-risky regions to maximize cumulative reward. We observe similar trends in risk aversion and the CVaR in
the safety-gym environments in Table 2. The cumulative rewards collected by EVAC agents is the maximum
in case of the safety-gym environments which demonstrates the EVAC agents’ ability to recognize and avoid
extremely rare risk hazards (at even 3% extreme penalty rate) while trying to maximize cumulative reward.

In summary, the obtained CVaR values demonstrate that EVAC agents improve optimization of the risk
sensitive objective. The higher cumulative rewards indicate that EVAC agents explore well and are not too
conservative. The near zero failure percentages demonstrate that the EVAC agents can be risk averse even
under extremely rare penalizations.
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We perform several ablation studies in the Appendix. We perform ablation studies on varying the penalization
rate p to assess the ability of EVAC to adjust to varying levels of extreme risks in Section D. We also discuss
the sensitivity of the EVAC algorithm on the threshold quantile level η in Section F. The CVaR quantile x1,
controls risk averse behavior. We perform ablation studies with stricter x1 values on all baseline algorithms
in Section G to ascertain if simply changing the x1 value leads to conservative behavior. We find that simply
increasing x1 does not lead to risk aversion in extreme risk scenarios and only additional tail modelling
aids in risk aversion. We perform a comparative analysis between the estimated tail distribution of the
RL agents against the ground truth distribution for EVAC and other baselines in Section E. We describe
the experimental setup and hyperparameters in greater detail in Section C. In Section H we provide visual
illustrations of the risk averse trajectories of the EVAC agents on the Safety-gym environments. We also
provide a proof of the convergence of the Bellman operator used in EVAC in Section A for a fixed policy. We
provide details of the MLE estimation procedure in Section B of the Appendix.
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A Proof of convergence of the Bellman Operator in EVAC

In this section, we set out to prove the convergence of the Bellman update Eqn.11.

T πZ(s, a) = r(s, a) + γ
[
ZL(s′, a′) + (1 − η)ZH(s′, a′)

]
Definition 1: For any two random variables J1(s, a) and J2(s, a) with distributions Z1(s, a) and Z2(s, a)
with inverse CDF functions F −1

J1(s,a) and F −1
J2(s,a) respectively, the Wasserstein distance dp is defined as:

dp

(
FJ1(s,a), FJ2(s,a)

)
=

( ∫ 1

0
|F −1

J1(s,a)(u) − F −1
J2(s,a)(u)|pdu

)1/p

Equivalently, the maximal Wasserstein distance d̄p is defined as:

d̄p(FJ1 , FJ2) = sups,adp

(
FJ1(s,a), FJ2(s,a)

)
Property 1: For a scalar constant r, the shifted random variables J1(s, a) + r and J2(s, a) + r have

dp

(
FJ1(s,a)+r, FJ2(s,a)+r

)
= dp

(
FJ1(s,a), FJ2(s,a)

)
Property 2: For a real constant scaling factor 0 < γ < 1, the scaled random variables γJ1(s, a)

and γJ2(s, a) have
dp

(
FγJ1(s,a), FγJ2(s,a)

)
≤ γdp

(
FJ1(s,a), FJ2(s,a)

)
Definition 1: For a distribution Z, a quantile level η and its corresponding quantile Zη, we define the
non-tail distribution ZL = Pr(Z ≤ Zη) and the non-tail distribution ZH = 1

1−η Pr(Z > Zη).

Theorem 1: Let Z denote the space of all state action value distributions. For the state action
value distribution Z(s, a) = ZL(s, a) + (1 − η)ZH(s, a) , where ZL represents the non-tail region of
Z and ZH represents the tail region of Z (as described in Definition 1), the Bellman operator
T π : Z × Z, is a γ contraction under the maximal Wasserstein distance metric d̄p.

Note: For notational convenience, we express dp

(
FJ1(s,a), FJ2(s,a)

)
as dp

(
Z1(s, a), Z2(s, a)

)
.

Proof:

dp(T πZ1, T πZ2)

= dp

(
r(s, a) + γ

[
ZL1(s′, a′) + (1 − η)ZH1(s′, a′)

]
, r(s, a) + γ

[
ZL2(s′, a′) + (1 − η)ZH2(s′, a′)

])
= dp

(
γ

[
ZL1(s′, a′) + (1 − η)ZH1(s′, a′)

]
, γ

[
ZL2(s′, a′) + (1 − η)ZH2(s′, a′)

])
≤ γdp

([
ZL1(s′, a′) + (1 − η)ZH1(s′, a′)

]
,
[
ZL2(s′, a′) + (1 − η)ZH2(s′, a′)

])
= γdp

(
Z1(s′, a′), Z2(s′, a′)

)

d̄p(T πZ1, T πZ2) = sups,adp

(
T πZ1(s, a), T πZ2(s, a)

)
≤ γ sups,adp

(
Z1(s, a), Z2(s, a)

)
= γd̄p

(
Z1(s, a), Z2(s, a)

)
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From the above equation, we prove that the T π operator is a contraction and that the Bellman update with
the GPD tail distribution converges.

B MLE Estimation of the parameters of the GPD Distribution

The CDF of the GPD distribution Fξ,σ(x) is given by:1 −
(

1 + ξx
σ

)−1/ξ

for ξ ̸= 0
1 − exp(− x

σ ) for ξ = 0

The log-density function (log-PDF) of the same GPD distribution is given by:

log fξ,σ(x) =
{

− log(σ) +
(

− 1/ξ − 1
)

log
(

1 + ξx/σ
)

for ξ ̸= 0
− log(σ) − x/σ for ξ = 0

(13)

∂ log fξ,σ(x)
∂ξ

=
(

− 1/ξ − 1
)( 1

1 + ξx/σ

)
· x

σ
+ log

(
1 + ξx/σ

)(
1/ξ2

)
= 0

∂ log fξ,σ(x)
∂σ

= − 1
σ

+
(

− 1/ξ − 1
)

· 1
1 + ξx/σ

· ξx = 0

However when ξ = 0; we are left with the MLE estimation of the parameter σ of the exponential distribution

∂ log f0,σ(x)
∂σ

= − 1
σ

+ x

σ2 = 0 (14)

We make the GPD parameter σ(s, a), ξ(s, a) be parameterized and represent it by σθ(s, a), ξϕ(s, a). Given a
batch of transition tuples (si, ai, ri, s′

i) ; i = 1 → B, where B is the batch size, we source samples from the
GPD distribution by sampling K samples xk from Zπ

H(s, a), the constructed GPD distribution. We then
compute the empirical log-likelihood loss L that needs to be maximized.

Lϕ = 1
B

B∑
i=1

· 1
K

K∑
k=1

[∂ log fξ,σ(xk)
∂ξϕ

]
(15)

Lθ = 1
B

B∑
i=1

· 1
K

K∑
k=1

[∂ log fξ,σ(xk)
∂σθ

]
(16)

where xk ∼ Zπ
H(s, a), K is the number of samples sampled from the GPD distribution Zπ

H(s, a). We set
K = 100 and B = 128 for all experimentation. We perform gradient ascent on the parameters θ by using the
empirical loss:

θ : θ + αlr · Lθ (17)
ϕ : ϕ + αlr · Lϕ

where αlr is the learning rate. Thus, there is a computation overhead of O(B · K) in updating the parameters
of the GPD distribution.

C Experimental details and Hyperparameter setting

We use an actor critic framework , where the critic is a quantile critic. Both the actor and critic have 3 layers
with hidden size being 128.
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C.1 Mujoco Environments

During training and inference, the max episode length of the agent is set to 1000. During training, the agents
were trained for 100,000 time steps on the whole. The batch size B = 128 and we set K, the number of
samples sampled from the GPD distribution to 50. We set the learning rates for the actor and critic to 0.001
in all cases. The discount factor γ = 0.99 for all cases too. The soft update parameter τ = 0.02 for all our
experiments on the Hopper and Walker2d, while τ = 0.01 for the HalfCheetah environment.

C.2 Safety Gym Environments

During training and inference, the max episode length of the agent is set to 1000. During training, the agents
were trained for 70,000 time steps on the whole for the safety-gym suite.

In all of the ablation studies, we report our results on 3 different trained agents.

D Risk Awareness and Performance with changing Penalization rate p

We recall that the penalization rate p is defined as the Bernoulli distribution parameter that is used to create
rare risky rewards of the form r(s, a) = R(s, a)+Iv>αL.Bp, for the Half-Cheetah environment. As p becomes
smaller, the penalty becomes rarer, thereby indicating more extreme risk scenarios.

In this section we change this penalization rate p of the reward for the HalfCheetah-v3 environment. We
move from an extreme rare reward penalty of p = 0.03 to a fairly frequent penalty rate of p = 0.1. For our
experimentation purposes, we fix the threshold quantile η = 0.96 for both EVAC and RAAC-TD3. From
Table 3 however, as the penalization rate p becomes smaller (rare risky events), the EVAC agent still exhibits
very small percentages of failure while the cumulative reward is still very high. This bolsters the fact that the
EVAC agent still explores reasonably while being risk averse.

Algorithm p Percentage Failure Cum. Reward CVaR

EVAC 0.03 6.43 ± 4.99 1412.81 ± 292.22 140.66 ± 23.57
0.05 2.87 ± 1.3 1502.46 ± 94.25 156.71 ± 11.07
0.1 1.07 ± 0.63 1160.8 ± 264.46 111.48 ± 33.65

RAAC-TD3 0.03 30.23 ± 12.21 847.86 ± 145.21 85.66 ± 24.12
0.05 41.3± 16.6 836.8± 195.85 129.81 ± 38.75
0.1 13.97 ± 5.58 366.0 ± 453.85 104.92 ± 7.08

Table 3: Table showing various performance metrics as the penalization rate p is varied for the HalfCheetah
environment (with fixed threshold quantile η = 0.96).

.

E Comparison of the modelled distribution with the Ground-truth distribution

Since we believe that the use of EVT theory helps in accurately modelling the tail of the distribution of the
future sum of discounted returns, we compare the modelled distribution Zπ(s, a) of every algorithm (baselines
and EVAC) against the true empirically obtained distribution of the sum of future discounted returns.

We freeze the initial state to be the same across all algorithms (RAAC-DDPG, RAAC-TD3, D-SAC, EVAC)
and collect trajectories according to optimal policy defined for each algorithm. For example, each algorithm
has a defined optimal policy and a trajectory T t = {R1, R2, · · · } is collected by following the optimal policy
of that algorithm. For such a trajectory T t, we compute the future discounted sum of rewards J t =

∑
i γiRi

for the very first state in the trajectory. We repeat this process of trajectory collection for the same initial
state N times to estimate the distribution of the sum of future discounted returns for each algorithm from
{J t}N

t=1.

On the other hand we sample values from the quantile critic of each algorithm to obtain the modelled
distribution Zπ(s, a). We collect {zj}M

j=1, where zj ∼ Z(s, π(s)). It is to be noted that since each algorithm
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has a different optimal policy, the empirical distribution of the sum of future discounted returns would vary
for each algorithm.
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Figure 4: Comparison of the empirical CDF of the modelled distribution (in dashed red) and the empirical
CDF of the ground truth (in solid blue) sum of discounted rewards. All plots are plotted for non-negated
rewards. The tail behavior (left tail) of the EVAC agents almost precisely matches the true empirical
distribution of the sum of the future discounted rewards. (Note that the scale of the X-axis is different for
each algorithm and environment)

We then plot the empirical CDF of both {J t}N
t=1 (which is called the ground truth) and {zj}M

j=1 (modelled
Z-distribution). These empirical CDFs are plotted for each algorithm and for each Mujoco agent in Figure 4.

We compute the 1-Wasserstein distance between the ground truth and the modelled distribution in Table 4.
The 1-Wasserstein distance d1(X, Y ) between two random distributions X and Y is defined as:

d1(X, Y ) =
( ∫ 1

0
|F −1

X (u) − F −1
Y (u)|du

)
Firstly for the HalfCheetah, we see that the left tail of the ground truth and the modelled distribution for
EVAC, both concentrate in the same region of around 100-120. For the Hopper, the ground truth and the
modelled Z distribution both are almost perfectly aligned at a value of around 129 to 130. For the Walker2d,
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Environment Algorithm 1-Wasserstein distance (↓)
HalfCheetah RAAC-DDPG 55.05

RAAC-TD3 57.69
D-SAC 37.55
EVAC 14.89

Hopper RAAC-DDPG 38.22
RAAC-TD3 28.77

D-SAC 86.87
EVAC 0.64

Walker2d RAAC-DDPG 42.70
RAAC-TD3 21.95

D-SAC 47.40
EVAC 3.32

Table 4: Table showing 1-Wasserstein distance between the empirical ground truth distribution of the sum of
discounted rewards and the modelled distribution as shown in Figure 4

we see a similar trend in the tails of the groundtruth and modelled distribution for the EVAC algorithm.
(Note that the scale of the X-axis is different for each algorithm and environment). From Table 4 and Figure
4, we notice that there is generally a smaller discrepancy between the ground-truth distribution of the EVAC
agent and its corresponding modelled distribution, in comparison with other baselines that do not use EVT
to model the tail behavior. Thus, EVAC agents are able to better model the true underlying distribution,
especially the tail regions.

F Risk Awareness and Performance with changing threshold quantile parameter η

We next address the sensitivity to risk awareness when the threshold quantile parameter η is changed for
the HalfCheetah-v3 environment. The value of η indicates the threshold quantile level after which the GPD
approximation for Zπ

H(s, a) is made.

We fix the penalization rate p = 0.05 while changing η continuously. We also fix x1 = 0.95 and x2 = 1.0 for
CVaR calculation.

Environment η Percentage Failure Cum. Reward CVaR

HalfCheetah 0.90 35.17 ± 23.26 946.65 ± 234.75 183.68 ± 35.38
0.96 2.87 ± 1.3 1502.46 ± 94.25 156.71 ± 11.07

Table 5: Table illustrating various performance metrics as the threshold quantile η is varied for the HalfCheetah
environment (with fixed penalization rate p = 0.05).

.

We observe that the choice of the threshold quantile η plays an important role in risk mitigation too. We
observe that risk sensitivity increases with increase in the value of η. We posit that this is due to better
approximation of the GPD distribution as η increases (Theorem 4.2). Table 5, as η increases, the EVAC
agents become very risk averse while producing good cumulative rewards. This underscores the effectiveness
of using EVT theory for risk mitigation in reinforcement learning.

G Effect of increasing x1 in CVaR optimization (more conservative behavior)

We recall from Equation 12 in the manuscript that x1 is used to control the level of risk aversion. We re-write
Equation 12 from the manuscript below.
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π∗ = arg min
π

CVaR(x1)

= arg min
π

1
x2 − x1

∫ x2=1

τ=x1

Z
(

s, π(s)
)∣∣∣

τ

As x1 → 1, the policy is incentivized to optimize the right tail and is thus made more risk averse. Instead of
x1 = 0.95, we set x1 = 0.99 to ensure the highest level of conservatism.

Environment Algorithm Percentage Failure Cum. Reward CVaR

HalfCheetah
RAAC-DDPG 47.07 ± 17.64 677.15 ± 173.03 126.22 ± 115.43
RAAC-TD3 30.47 ± 4.97 360.55 ± 242.4 104.21 ± 12.0

D-SAC 35.7 ± 40.42 1089.13 ± 395.36 143.37 ± 50.41
EVAC 1.03 ± 1.26 872.62 ± 171.62 151.45 ± 4.33

Table 6: Table showing the the percentage failure and also the cumulative reward as risk sensitivity parameter
x1 is made stricter at 0.99 instead of 0.95 for the HalfCheetah environment (with fixed penalization rate
p = 0.05 and threshold quantile η=0.96).

.

From Table 6, even when the CVaR objective is made very risk averse (at x1 = 0.99), the baseline agents still
do not demonstrate good risk mitigation. The vanilla quantile based methods which depend on sampling
exclusively, may not model the tail behavior accurately enough. This implies that even if x1 is made arbitrarily
large (more risk averse) in such agents, proper risk mitigation may still not be observed. EVAC on the other
hand demonstrates good risk aversion. This further acts as a motivation to using EVAC-like agents which
seem to evidently show better risk mitigation.

H Trajectory Visualization on Safety-gym environments

In this section, we provide visual depictions of the trajectories followed by different agents in the Safety-gym
environment. We represent the hazards by red circles. The starting position is indicated in green and the
goal position is indicated in blue in Figures 5 and 6. As discussed in the manuscript, the goal of the agent is
to navigate to the goal while avoiding the red ’hazard circles’. In the two scenarios A and B, we observe that
the EVAC agent is able to efficiently learn the locations of the hazard and avoid such hazards at all times.
However, due to the extremely rare penalty rate of p = 0.05 for Scenario-A and p = 0.03 for Scenario-B, the
other baseline agents, do not seem to recognize the low probability events and often enter the hazardous blue
circles.

I Histograms showcasing risk avoidance

We illustrate the histogram of the quantities of interest in the Mujoco environments in Figure 7. We perform
inference on the trained agents and record the quantities of interest for each Mujoco environment. We observe
that the quantity of interest (i.e. velocity of the HalfCheetah and the angle of the Hopper) are mostly within
the safe region as anticipated.

J Experiments on Discrete Action Space

To extend the EVAC algorithm to discrete action spaces we experiment on an autonomous driving environment
(Leurent, 2018) where the agent is tasked with driving a car on a highway. The agent is rewarded for moving
fast and avoiding any collisions. However, the car agent may get penalized rarely by highway patrol for
speeding over the speed limit. The goal of the agent is thereby to navigate on the highway at the speed limit
while avoiding any collisions with other cars on the highway. To make speeding penalties rare, we ensure that
the highway patrol is present only 5% of the times.
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Figure 5: Trajectories visualized for the Safety-gym Scenario -A with p = 0.05. The EVAC agent successfully
navigates to the goal by recognizing the blue hazards.
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Figure 6: Trajectories visualized for the Safety-gym Scenario-B with p = 0.03. The EVAC agent successfully
navigates to the goal by recognizing the blue hazards.

The highway environment has a continuous state space with dimension 25. It has a discrete action space with
5 actions. We illustrate the highway environment below in Figure 8.
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Figure 7: Histograms of the quantities of interest for the Mujoco environments
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Figure 8: Simple illustration of the highway environment
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We compare the discrete version of EVAC with QR-DQN (Dabney et al., 2017) on metrics such as the
percentage failure, cumulative reward and the CVaR value similar to Section 8.

Environment Algorithm Percentage Failure Cum. Reward CVaR

Highway QR-DQN 32.1 ± 42.58 133.2 ± 80.39 31.54 ± 19.87
EVAC 0.0 ± 0.0 185.27 ± 6.59 37.95 ± 16.84

Table 7: Table showing the percentage failure, cumulative reward and CVaR for the discrete action space
Highway Environment

.

K Evolution of the percentage failure

We plot the percentage failure as a function of the number of training iterations (same as the number of
data samples collected) in Figure 9. We observe that the EVAC agents exhibit lower percentage failures
throughout training and understand high extreme risk regions accurately.

0 25000 50000 75000

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 Fa

ilu
re

HalfCheetah-v3

0 25000 50000 75000
Training Iterations

0

10

20

30

40

50

60

70

Hopper-v3

0 25000 50000 75000
0

10

20

30

40

50

60

Walker2d-v3
RAAC-DDPG
RAAC-TD3
DSAC
EVAC

Figure 9: Figure indicating the evolution of the percentage failure as a function of number of samples/
training iterations. The EVAC agent reaches smaller percentage failure rates faster in comparison to the
other baselines.

L Experiments with other complex risk scenarios

L.1 Risk aversion against rare malicious attackers in a mobile communication environment

Often times when cell phone users move about in a given area, they need to connect to different transmitting
base stations near them, so that they can communicate over the channel and observe high Quality of experience
(QoE). Given multiple base stations and cell phone users the control problem is to assign users to different
base stations so that the over all QoE is maximized. However, in such a real world setting there may exist
security compromised base stations that perform stealth attacks. Stealth attacks (Jakobsson et al., 2004) are
characterized by base stations that perform rare attacks on agents in a manner that remains undetectable.
Such rare security compromises could lead to devastating consequences to cell phone users and need to be
flagged as unsafe.
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We employ mobile-env (Schneider et al., 2022), an open source environment that simulates the connections
and QoE between several base stations and cell phone users. To simulate stealth attacks, we nominate one of
the base stations to be malicious meaning that it very rarely causes data privacy issues for the cell phone
users. The design of a risk averse policy in this scenario involves actively disconnecting from the unknown
malicious base station for any cell phone user.

We simulate these stealth attacks in two scenarios for the wireless communication.

Scenario A: We design 4 base stations and just 3 cell phone users who randomly move about with a certain
speed. There is a single malicious base station that is unknown to the agent. The observation space of the
agent is 27 dimensional and consists information on the connection between the cell phone and the base
station, SNR of the channel etc. The reward is rarely penalized at rate p = 5% by a negative penalty for any
connections made to the malicious base station. The action space is continuous valued and its dimensionality
corresponds to the number of cell phones.

Scenario B:The setup is similar to Scenario-A except we have 4 base stations and 5 cell phone users that
randomly move at a certain speed. The observation space is 45 dimensional. This set up is more challenging
than the previous ones as it involves multiple cell phone users trying to connect to a limited number of base
stations.

We evaluate the percentage failure (which indicates the number of times the malicious base stations was
connected to in th episode), the cumulative reward and the mean CVaR below.

Scenario Algorithm Percentage Failure Cum. Reward CVaR

Scenario-A RAAC-TD3 38.89 ± 11.34 -4.4 ± 2.17 33.46 ± 45.92
DSAC 88.89 ± 9.07 -1.21 ± 0.95 11.9 ± 14.71
EVAC 3.7 ± 5.24 -6.5 ± 2.3 34.8 ± 4.13

Scenario-B RAAC-TD3 59.26 ± 41.9 -3.97 ± 1.51 -65.75 ± 14.93
DSAC 67.38 ± 12.94 -2.79 ± 0.8 1.71 ± 14.7
EVAC 29.63 ± 22.83 -4.99 ± 0.97 37.52 ± 4.97

Table 8: Table showing various performance metrics for risk avoidance when malicious base stations are
introduced into the mobile communication environment

.
A good risk averse policy in this setup will not connect to the malicious base station. However, being
not connected to the base station reduces overall reward (QoE). Thus, we see that EVAC which mostly
understands not to connect to the malicious base station (demonstrated through low percentage failures),
incurs smaller cumulative rewards.

Thus, EVAC which uses EVT based tail modelling is risk averse even in the presence of rare malicious stealth
attacks by a base station.

L.2 High dimensional risk region for the Walker2d environment

The Walker environment as described in (Brockman et al., 2016) is a locomotive robot model that is tasked
with walking upright with as high a speed as possible. However certain gaits of the walker may lead to
potentially catastrophic consequences under certain environment settings. In this regard, we penalize the
walker when it moves with very high velocity ,when its head angle is bent and when it hops instead of walking.

We monitor the velocity v, head angle θ and the vertical height h of the walker robot from its state space.
We define a hyperplane risk surface to introduce rare penalties. We define the risk hyperplane as below:

wv ·
(

v − v0

)
+ wθ ·

(
|θ| − θ

)
+ wh ·

(
h − h0

)
> 0

where wv, wθ, wh indicate the importance weight for velocity, head angle and height of the walker. We set this
to be a fixed wv = 0.3, wθ = 1.0, wh = 0.5. Any state space variable satisfying the inequality is considered
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risky. Unlike, the single paramter threshold, this is more restrictive and requires the agent to keep track of
multiple state space variables. We introduce rare risky penalty with Bernoulli rate p = 5% and assess the
risk aversion of EVAC and other baseline algorithms.

Algorithm Percentage Failure Cum. Reward CVaR

RAAC-DDPG 13.76 ± 5.08 265.57 ± 243.66 158.18 ± 15.82
RAAC-TD3 10.8 ± 2.13 201.98 ± 106.36 67.47 ± 7.21

DSAC 16.76 ± 4.78 566.47 ± 127.98 167.97 ± 28.88
EVAC 1.76 ± 1.35 267.74 ± 51.04 160.68 ± 6.34

Table 9: Table showing various performance metrics for the complex risk hypersurface
.

EVAC shows small amounts of cross over to the risky hypersurface while having lower variance in CVaR
values.

M Limitations and Future Work

The use of EVT for risk mitigation in distributional reinforcement is novel. Our work tries to illustrate the
benefit of using EVT theory in risk aware reinforcement learning. One of the challenges in the use of EVT
RL is the overhead involved in training parameters of the GPD distribution through maximum likelihood
estimation. The added overhead may prove expensive for both training and inference, especially on edge
devices. We quantitatively discuss this computational overhead in the concluding part of Section B.We plan
to further investigate the usefulness of EVT RL in other domains and study its scaling in other complex
environments. Furthermore, we would like to investigate the applicability of EVAC in the offline reinforcement
learning setting.
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