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Abstract

Alzheimer’s disease (AD) is marked by cognitive decline along with the widespread
of tau aggregates across the brain cortex. Due to the challenges of imaging pathol-
ogy spreading flows in vivo, however, quantitative analysis on the cortical pathways
of tau propagation and its interaction with the cascade of amyloid-beta (A5) plaques
lags behind the experimental insights of underlying pathophysiological mecha-
nisms. To address this challenge, we present a physics-informed neural network,
empowered by mean-field theory, to uncover the biologically meaningful spreading
pathways of tau aggregates between two longitudinal snapshots. Following the
notion of ‘prion-like’ mechanism in AD, we first formulate the dynamics of tau
propagation as a mean-field game (MFG), where the spread of tau aggregate at
each location (aka. agent) depends on the collective behavior of the surrounding
agents as well as the potential field formed by amyloid burden. Given the governing
equation of propagation dynamics, MFG reaches an equilibrium that allows us to
model the evolution of tau aggregates as an optimal transport with the lowest cost
in Wasserstein space. By leveraging the variational primal-dual structure in MFG,
we propose a Wasserstein-1 Lagrangian generative adversarial network (GAN),
in which a Lipschitz critic seeks the appropriate transport cost at the population
level and a generator parameterizes the flow fields of optimal transport across
individuals. Additionally, we incorporate a symbolic regression module to derive
an explicit formulation capturing the AS-tau crosstalk. Experimental results on
public neuroimaging datasets demonstrate that our explainable deep model not
only yields precise and reliable predictions of future tau progression for unseen
new subjects but also provides a new window to uncover new understanding of
pathology propagation in AD through learning-based approaches.

1 Introduction

Alzheimer’s disease (AD) is marked by a progressive decline in cognition accompanied by widespread
accumulation of tau aggregates across the cortex. Mounting evidence suggests that tau spreads in a
‘prion-like’ fashion: once a small number of molecules misfold, they act as seeds that affect neigh-
boring neurons, propagating through neural circuits much like a contagion. In parallel, extracellular
amyloid, beta (A3) plaques, often accumulating years before symptom onset, are known to prime
neural tissue by promoting tau hyperphosphorylation and enhancing trans-synaptic spread [23; 15].
Together, these two hallmarks of AD form a toxic synergy that accelerates protein aggregation,
neuronal damage, and memory loss. Yet, the precise cortical pathways along which tau propagates,
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and how A modulates or accelerates those flows, remain open questions in neurodegeneration
research [3}; 245305 11851175 136]].

Early theoretical work inspired by epidemiology and chemical kinetics formulates this process as
a reaction—diffusion system, in which tau both drifts along concentration gradients and undergoes
nonlinear local amplification. For instance, Iturria-Medina et al. [23]] demonstrated that a partial
differential equation (PDE) with an explicit reaction term accurately reproduces the spatiotemporal
patterns seen in longitudinal tau-PET scans. Crucially, extracellular amyloid-/3 plaques, often present
years before clinical onset, have been shown to “prime” neural circuits, enhancing tau phosphorylation
and accelerating its trans-synaptic spread [S)]. This synergistic interplay drives a vicious feed-forward
loop of protein aggregation and neuronal damage, underscoring the necessity of models that capture
the interaction between amyloid plaques and tau aggregates.

In general, there are five popular approaches to capture these intertwined dynamics. (1) Reac-
tion—Diffusion Models (RDM). Building on prion-like hypotheses, continuous reaction—diffusion
equations capture both the drift of tau along spatial gradients and its local nonlinear accumulation [23]].
Such models assume homogeneous kinetics and ignore complex network geometry. (2) Connectome-
Based Network Diffusion. By projecting tau as a density on the structural connectome, Raj et al.
[35] used a linear graph-diffusion operator to simulate tau transport along white-matter tracts. Their
network diffusion model (NMD) accurately predicted regional atrophy patterns across cohorts but
treats the brain as a passive conduit without explicit reaction kinetics. (3) Graph Reaction—Diffusion.
Extending network diffusion, Vogel et al. [39] introduced nonlinear reaction terms on graph Lapla-
cians to jointly model diffusion and local tau—amyloid interactions on anatomical networks. While
more expressive, these methods still rely on hand-tuned reaction laws and lack end-to-end learning
of reaction kinetics. (4) Data-Driven Deep Learning. Recent work harnesses convolutional neural
networks (CNNs) to learn tau progression directly from imaging data. Lee et al. [29]] trained CNNs on
positron emission tomography (PET) sequences to forecast future tau maps but found these black-box
models often overfit and offer limited mechanistic insight. (5) Graph Neural Networks (GNN). Recent
works [2; [14]] leveraged GNNs to capture both network topology and nonlinear interactions, showing
improved regional predictions. Due to the ‘black-box’ nature, however, it is challenging to generate
interpretable governing laws through GNN only. From a system-level perspective, current approaches
simply assume the evolution of tau propagation following a pre-defined physics model, without
actively identifying or optimizing the most suitable governing principle for the underlying dynamics.

Notably, nearly all existing tau-propagation models [40; 215 [16} [10] operate at the level of coarse
anatomical regions or volumetric parcels, effectively “down-sampling” the cortex into a handful of
nodes and treating each as spatially homogeneous. Although region-based graphs offer computational
efficiency from a modeling perspective, such oversimplification of the cortical sheet’s fine-grained
geometry, such as folds, sulci, and gyri, limits their ability to accurately capture how misfolded
proteins diffuse and interact at the voxel resolution. In contrast, surface-based PET studies [22} [15]]
have shown the potential to address this limitation. For example, Xia et al. [42] projected [18F]-AV-
1451 uptake onto individual FreeSurfer surfaces and demonstrated that tau spreads in waves across
temporal and parietal gyri, following the cortex’s folds rather than simple volumetric adjacency.
Cho et al. [9] extended this to a two-year longitudinal analysis with [18F]-flortaucipir, revealing
concentrated tau accumulation in medial, basal, and lateral temporal regions and clear propagation
trajectories along the surface. In light of this, our proposed model is built directly on the cortical
surface mesh, with >160,000 vertices that faithfully trace the brain’s highly convoluted topology.

Taken together, we propose a physics-informed deep learning framework that unites biophysical
modeling and data-driven discovery to reconstruct tau propagation dynamics from longitudinal tau-
PET scans. First, we formulate tau spread as a mean-field game (MFG), where each cortical location
(agent) evolves under the influence of a local tau—amyloid interaction field and the collective behavior
of neighboring regions. This variational formulation naturally induces an optimal transport process in
Wasserstein space, capturing both reaction and diffusion within a theoretically grounded structure.
Second, the forward-backward structure in MFG naturally leads to a saddle point formulation
within a min-max optimization framework [1]]. As shown in Fig. |1} we design a Wasserstein-1
Lagrangian generative adversarial network (GAN), where a generator learns subject-specific tau
velocity fields and a Lipschitz critic estimates population-level transport costs. Third, we incorporate
symbolic regression to learn an explicit, interpretable tau—A [ reaction law directly from data. Unlike
previous region-based or volumetric models, our model operates directly on the cortical surface
mesh, leveraging over 100k vertices to capture fine-grained geodesic flows along sulci and gyri. This



anatomical fidelity enables our model to uncover biologically plausible propagation pathways and
mechanistic insight into tau—amyloid interplay. Our experiments demonstrate that our MFG-based
deep model not only delivers precise and reliable predictions of future tau accumulation but also
reveals interpretable dynamics aligned with neuropathological staging and recent imaging studies.
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Figure 1: Schematic sketch for the methodological connection between RDM, MFG, GAN in our model. (a)
A potential mean field game is obtained by coupling the Hamilton—Jacobi-Bellman (HJB) and Fokker—Planck
(FP) equations into a two-player saddle-point formulation: Player 1 (population density p) minimizes via inf ,,
while Player 2 (value function ¢) maximizes via sup,. This variational game underpins zero-sum optimal
transport dynamics. (b) By casting cortical tau spreading as a reaction—diffusion process on the brain cortex, one
recovers an equivalent deterministic MFG between the flow field v and tau density distribution p. Using the
Kantorovich-Rubinstein dual of the Earth—-Mover (Wasserstein-1, W1) distance, we formulate a W;—Lagrangian
GAN: the Critic (Flow Maximizer, sup,,) learns the transport cost, and the Generator (Density Minimizer, inf ;)
predicts the next-time tau distribution p;41. Alternating these updates unifies PDE-based flow optimization and
data-driven density forecasting.

2 Methods

Data Description. We can organize brain cortex data as a graph G = (X, D), where X = {x; | i =
1,..., N} represents a set of N predefined cortical locations (e.g., surface parcels or mesh vertices),
and D = [d;;] %:1 contains the Euclidean distances between all vertex pairs, with d;; = ||z; — x|

At each cortical site x;, we obtain two time-varying scalar standardized uptake value ratios (SUVR):
w(t) = [ur(t),...,un(®)] T, vt) = [vi(t),...,on ()] T and u(t+1) = [ug (t+1),..., un(t+1)]T,
corresponding to longitudinal measurements of tau and amyloid concentrations, respectively.

2.1 How Brain Proteins Travel: Insights from Diffusion and Game Theory

Reaction Diffusion Model. Tau protein propagation in Alzheimer’s disease often resembles the way
a drop of ink spreads in water, but constrained by the intricate folding of the cortex. To capture this,
we postulate a reaction—diffusion model (RDM) (partial differential equation, PDE) on our cortical

graph: 6155515) = S(u(t) + R(u(t), (), (1)

» S(u) is the diffusion operator, modeling pure tau spread along the network topology (brain cortex);
» R(u,v) is the reaction operator, capturing the interaction between tau and amyloid.

Physically, S(u) governs how tau “leaks” between neighboring regions (much like heat conduction),
while R(u, v) governs how amyloid burden might accelerate or inhibit tau accumulation.

In a typical machine-learning implementation, the diffusion term .S(u) can be instantiated by a graph
neural network (GNN) that learns to approximate the action of the Laplacian —V - (Vu). However,



using a standard multilayer perceptron (MLP) for R(u, v) often yields a black-box model with limited
interpretability. To address this, we replace the MLP with a symbolic regression module [34]], which
discovers an explicit algebraic formula for R. The outcome is a hybrid framework that: (1) Leverages
GNNss for accurate, geometry-aware diffusion S(u); and (2) Uses symbolic regression to yield a
transparent, human-readable reaction law R(u, v).

From Reaction-Diffusion to Mean Field Games. Interestingly, the same reaction—diffusion PDE
(Eq. (1)) can be obtained as the optimality condition of a potential Mean Field Game (MFG) [31]]. In
that viewpoint, each infinitesimal “particle” of tau chooses a trajectory to minimize transport cost
(diffusion) while experiencing local rewards or penalties from amyloid (reaction). Formally, this
formulation boils down to a saddle—point problem:

(Ol)nfu sup {/ / oo+ H(Vo)| pdrdt — // t))dxdt}, 2)

where we choose H (p) = 1||p|?, = — |7 R(s,v) ds, so that 9,F (p,v) = —R(p,v).
The corresponding Euler—Lagrange COHdlthIlS are

{(HJB): — 0o+ H(Vo) = —R(p,v), 3

(FP):  Oip — V~(p V,H(V qb)) =0.

Since V,H (p) = p, the Fokker—Planck equation becomes 0;p — V - (p V¢) = 0. Now assume a
uniform density p(x,t) = 1 and identify the value function ¢ with the tau concentration u. Then

Ou ==V - (Vu) + R(u,v), “4)

which exactly reproduces the reaction—diffusion PDE (Eq. (I})). Thus, tau spreading on the cortex can
be viewed both as a network-constrained reaction—diffusion process and as the Nash equilibrium of a
deterministic potential MFG. Because such MFGs admit the Kantorovich—Rubinstein dual [38], this
duality naturally connects our reaction—diffusion formulation to the GAN-driven optimal transport
framework.

2.2  GAN-Driven Flow Field Evolution Using Wasserstein-1 Metrics and Lagrangian
Principles

Problem Formulation. Let X = {z;}}Y, C R? denote cortical coordinate domain (e.g., cortical
mesh). At each time ¢, we observe the tau concentration vector u(t), which defines an empirical
distribution p; € Prob(X). Our goal is to learn both: (1) a flow field v(x,t) on the mesh that drives
tau transport, (2) and the predicted tau density 4(t + 1), so that @(t + 1) & p;1, the true next-step
distribution. The classical optimal mass transport (OMT) formulation, under the squared-¢5 cost
(Wasserstein-2), is given by 9

inf / / ”q H drds, st.dp+V-q=0, (5)

p( ,0)=p¢
S1)=ptt1

where q(z, s) = p(x, s) v(x, s) is the flux field. This yields Ws(p;, ps+1) but requires discretizing
the “pseudo-time” s € [0, 1]. By contrast, the Earth—-Mover (Wasserstein-1) distance

Wi(pe, prs1) = ven(iplfptﬂ) E(ﬂw/)NvHaj - y|| ©)

admits the Kantorovich—Rubinstein dual [38]]:

Wl(Ptapt—H) = Ssup {E.’E’\/Pt[c(x)] - EprHl[C(y)}}. (N
ICll<1

This dual form can (1) avoid discretizing an extra “time” variable, (2) provide a Lipschitz-constrained
critic C that yields smoother, more stable gradients, (3) remain well-posed even when p; and p;41
have disjoint support.



Wasserstein; ~Lagrangian GAN for Flow Evolution. Building on the dual formulation (Eq. [7), we
cast tau spreading as a two-player adversarial game in which one network infers the flow field that
transports the current tau distribution p; into the next distribution p; 1.

» Generator Gy (Density Predictor). Imagine “pulses” of tau flowing across the brain’s surface
under the combined influence of diffusion and local biochemical reactions (as shown in Fig.
a). To do so, Gy is a reaction—diffusion engine (see Sec. @]for details), which, given the current
tau/amyloid state (u(t),v(t)), computes the flow field v = Gy (u(t), v(t)) and advances tau by one
Lagrangian step of size At. The result @ (¢ + At) induces the “push-forward” measure on the mesh
pAtJrl = ({E + VAtv ﬁ’(t + At))# Pt

» Critic C, (Flow Maximizer). Let C,, : X — R be a neural network with parameters ¢, constrained
so that its Lipschitz constant satisfies ||C, ||, < 1. The critic’s objective is to maximize the estimated
Earth-Mover gap Lo (¢) = Eonpy [Co(®)] = Eyepy [Co(y)]. By pushing Cy, to increase
this difference under the 1-Lipschitz constraint, the critic approximates the Wasserstein—1 distance
W1 (pt, pr+1) between the generated and true tau distributions.

The generator then minimizes this critic score on its own prediction: L (0) = Eynp, ., [Coo(2)].

Together, they play the saddle-point game

inf sup {Buns i [Col@)] = Bymps[Colw)]}- ®)
llelle <1

Connections to MFGs. To see why our Wasserstein;—Lagrangian GAN critic solves a deterministic
MFG, we interpolate between p; and p;1 over a “pseudo-time” s € [0, 1]. Let p(z,s), s € [0,1],
satisfy the continuity equation dsp+ V- (pv) = 0, p(+,0) =pt, p(-,1) = pry1, where v(z, s)
is the velocity (flow) field. A potential MFG formulation is then the saddle-point problem

p1(n£) sup // s¢+ H(Vo)| pdrds — T (p(-,1)), ®

with terminal constraint enforced by 7 (p(-, 1)) so that p(-,1) = py11. Here: ¢(z, s) plays the role

of the critic or value-function. The Hamiltonian is the indicator H(p) = {3_’ Hp H ~ 7 which
o0, |IP
corresponds to the Lagrangian A(v) = ||v||. The optimality (Euler-Lagrange) conditions are
(HIB): —08,¢ + H(V¢) =0, (10)
(FP):  Osp+V-(pVo) =0.

Since H(p) = 0 whenever ||p|| < 1, the HIB equation implies 0s¢ = 0 and hence ¢(z, s) = ¢(z).
Substituting back and using only the terminal constraint p(+, 1) = p;41 reduces the saddle point to

sup /¢> pele)de — /¢ ) pra (@) de ), (an
[Vol<1
Ez~ﬂf[¢("’)] ]EmNpt+1[¢("I;)]

which is exactly the Kantorovich—Rubinstein dual for Wi (p¢, pi41). In our GAN, the critic C,,
approximates this optimal ¢, and the generator Gy seeks the flow field for which the push-forward
pt+1 minimizes this same dual objective. Thus, the adversarial Wasserstein;—Lagrangian-GAN
training directly implements the equilibrium of a potential MFG, with the critic maximizing the
Earth-Mover gap and the generator minimizing it. For clarity, Fig. [I)illustrates how the RDM, its
equivalent potential MFG formulation, and the resulting Wasserstein—Lagrangian GAN are formally
connected.

2.3 MFG4AD: A Physics-informed GAN for Modeling Tau Propagation in AD

Network Architecture. Building on the above link between reaction—diffusion, mean field games,
and Wasserstein-Lagrangian GANs. The framework integrates reaction-diffusion modeling, symbolic
regression, and GAN into a unified architecture, coined MFG4AD. We now drill into the Genera-
tor network architecture that powers MFG4AD. At the heart of MFG4AD, our generator Gy is a
reaction—diffusion engine tailored to the cortical mesh G = (X, D):



MFG4AD: Governing Law of Pathology Propagation Mechanism
Through A Mean-Field Game
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Figure 2: MFG4AD: A physics-informed deep learning framework for modeling tau propagation and amyloid-
tau interactions in Alzheimer’s disease. (a) We conceptualize the cortical surface as a graph, where vertices
represent cortical locations and edges encode distances (d;;). The tau concentration defines the initial and
terminal density distributions, p; and p;1, respectively, while amyloid acts as an external modulator influencing
the evolution of tau through a reaction term. (b) We propose a MFG4AD, consisting of a generator G that
predicts the next-time density (d¢+1), and a critic C,, that evaluates the Wasserstein-1 distance between the
predicted (p:+1) and true distributions (p:+1). The optimal transport flow field v guides the evolution of tau
density. (c) The generator Gy combines a GNN to model network-constrained diffusion (tau spreading along
cortical pathways) and a symbolic regression module for explicit, interpretable tau—amyloid reaction dynamics.

9 (1) Graph-based diffusion. We first leverage a graph neural network S. (Fig. 2] (c), top) to
approximate the Laplacian operator —V- (Vu). Concretely, each vertex x; pools tau values u(t) from
its neighbors weighted by the geometry-D and computes a discrete diffusion flux P; = S (u(t), D),
which captures how tau “leaks” along cortical folds.

€ (2) Symbolic reaction. Next, we account for tau—amyloid crosstalk, which captures how amyloid cat-
alyzes or inhibits tau. A symbolic regression module (R, ) (Fig. |Z|(c), bottom) ingests the tau—amyloid
pair (u;(t), v;(t)) at each vertex and outputs an explicit reaction rate Q; = Re (u;(t), v(t)).

9 (3) Infer the flow field. We bundle each vertex’s current tau level and its two physics-driven
quantities into a state descriptor F; = [uz (t), Py, Qi]. A lightweight neural subnetwork Hy then

turns these descriptors into a movement vector v; € R?: v; = [Hy(F)] . Finally, we let each bit of
tau ride this flow field via one Lagrangian step of size At:

alt + D) = wi(t) + At [ V- (w(t) v(0)],, + 2 Pr o+ s Qi) (12)

where (1, po, i3 are the learnable scalars that let the model automatically tune the relative strengths
of diffusion, reaction, and source contributions to best match longitudinal tau data. By doing so,
Gy is not a black box but a reaction—diffusion engine that explicitly computes diffusion, reaction,
and advection to predict the next tau map (¢ + At). Then a “push-forward” derives empirical
measure p;41 on the mesh, which the Critic evaluates against the true distribution p;11 under the
Wasserstein-1 metric. Training alternates between optimizing these two networks (Fig. 2] b), allowing
the generator to learn biologically meaningful, accurate predictions of tau propagation, while the
critic ensures stable convergence by evaluating the quality of the generated densities.

Training Phase. We summarize our training procedure in Algorithm ] (as shown in Appendix). Each
generator update is preceded by no = 5 critic updates, with learning rates set to nc = 1 x 10~° for
the critic and g = 1 x 10~ for the generator. To enforce the 1-Lipschitz constraint on the critic C,,
we apply spectral normalization to every layer [32]. The generator’s loss combines the adversarial
term with an ¢; = |4;(t + 1) — u,(t 4 1)|; reconstruction penalty weighted by A = 10, ensuring
both realistic and accurate predictions.

3 Experiments

Data Preprocessing. Tau/A3 SUVR Generation. We process each subject’s T1-weighted (T1W)
MRI with FreeSurfer to reconstruct the cortical surfaces (white, pial, and mid-thickness) and to define



cerebellar gray matter as our reference region. Next, we rigidly register the motion-corrected tau-PET
and amyloid-PET volumes to the T1W image, resample them into MRI space, and compute voxel-wise
SUVR by dividing each voxel’s uptake by the mean signal in the cerebellar reference. These SUVR
volumes are then projected onto the subject’s pial surface (~100k vertices) via trilinear interpolation
and lightly smoothed along the mesh. To facilitate group analysis, each surface SUVR map is warped
into the MNI template (fsaverage in MNI space), resampled onto the same 163,842-vertex mesh,
and z-score normalized across cortical vertices. The resulting high-resolution, surface-based SUVR
profiles at times ¢ and ¢ + 1 for tau, and at time ¢ for amyloid, constitute the inputs u(t), v(t), u(t + 1)
for our MFG4AD. Network Topology Construction. To capture the anatomically faithful geometric
relationships among cortical vertices, we construct a sparse undirected graph directly from the native
pial-surface mesh generated by FreeSurfer [[13]. Each vertex is treated as a graph node, and edges
are defined according to the triangular tessellation of the cortical surface: two nodes are connected
if they share an edge in the mesh. This results in a biologically grounded graph structure with an
average node degree of approximately 6, preserving submillimeter-scale geometry while adhering
to the true cortical topology. Rather than computing a full pairwise distance matrix, we leverage
the mesh’s intrinsic sparsity, storing only the anatomical edges defined by surface adjacency. This
allows diffusion operations to scale in O(kN) time, where k is the average vertex degree. To simulate
tau propagation, we implement the reaction—diffusion step via vectorized sparse-tensor operations
over this mesh-defined graph, enabling a full forward Euler step across >100k cortical vertices in
milliseconds. The full mesh-based construction process is described in Appendix [A.T]

Experimental Setup. We evaluate the performance of MFG4AD using two longitudinal tau PET
datasets: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [25] and the Open Access Series
of Imaging Studies (OASIS) [28]]. The ADNI dataset includes 134 participants with both tau and
amyloid PET scans, each with 2-6 longitudinal visits, resulting in a total of 631 scan pairs. Subjects
in ADNI are categorized into five diagnostic groups: cognitively normal (CN), subjective memory
complaint (SMC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI),
and AD. The OASIS dataset comprises 77 participants, each with two longitudinal PET scans, and
includes two diagnostic groups: CN and AD. Together, these two datasets provide a diverse and
representative sample across the Alzheimer’s disease spectrum, enabling comprehensive evaluation of
our predictive framework across multiple disease stages. Comparative methods span five categories:
(1) Connectome-Based Network Diffusion Model, NDM [35]. (2) Graph-Based Methods: vanilla
GCN [41] and the advanced GCNII [[7]. (3) Deep Learning Models: deep neural networks (DNN)
composed of MLPs, deep symbolic model (DSM) [26] and vanilla GAN [19]. (4) PDE-Based
Methods: graph neural diffusion (GRAND) [6], Neuro-ODE [8]] and graph neural reaction-diffusion
networks (GREAD) [L1]]. (5) Traditional Regression Model: Ridge regression (a regularized linear
regression model). For all experiments, we conduct 5-fold cross-validation. The evaluation metrics
for testing results include: mean absolute error (MAE) and root mean squared error (RMSE), between
the predicted tau burden and the observed tau SUVR from follow-up PET scans. All models are
trained for 1,000 epochs with Adam [27] optimizer.

y )‘ ‘
3.1 Model Behavior and Ablation Study

Prediction Performance of Future Tau Accu-
mulation. To evaluate the predictive performance
of different computational approaches, we used
baseline tau concentration and combined tau +
amyloid as two types of input, with follow-up tau
SUVR measurements serving as the ground truth.
Prediction errors for each method are summarized Figure 3: The representative examples (reconstruc-
in Table [T} with results from ADNI and OASIS tion error £; < 0.01) between the observed u(t + 1)
shown on the left and right, respectively. Exper- and predicted (¢ + 1) tau SUVRs generated by
imental findings demonstrate that our proposed MFG#AD (left: CN, right: AD). Cognitively normal
method consistently outperforms all competing (CN), Alzheimer’s disease (AD).

approaches. This superior performance stems from the integration of a Wasserstein-1 Lagrangian
GAN, which improves the fidelity of synthesized tau patterns through distributional alignment in
the prediction space, and a reaction—diffusion framework that explicitly captures the biophysical
dynamics of tau propagation modulated by amyloid interaction. Representative predictions generated
by MFG4AD are visualized in Fig. 3] where the absolute difference between observed and predicted

density



tau SUVR remains below 0.01, i.e., {1 = |u(t + 1) — 4(¢t + 1)| < 0.01. Additional visualizations are
provided in Appendix [A.2] We further compared prediction errors (MAE and RMSE) across diagnos-
tic groups in the ADNI and OASIS cohorts (Fig. ). In ADNI, both metrics are low, particularly in
the EMCI and LMCI groups, with the lowest MAE observed in EMCI (0.0600 + 0.0253) and the
lowest RMSE in LMCI (0.0787 £ 0.0072). In contrast, OASIS exhibits higher errors in both CN and
AD groups, especially in AD (RMSE = 0.7040 + 0.130), likely reflecting greater cohort heterogeneity.
Nevertheless, our method maintains the best overall predictive accuracy across all settings. To further
assess spatial modeling fidelity, we visualized cortical maps of vertex-wise absolute prediction errors
on ADNI and OASIS datasets (Fig. dp). Both datasets exhibit localized discrepancies, with larger
deviations concentrated in temporal and medial regions known for high tau variability. Overall,
ADNI shows lower error magnitudes compared to OASIS, supporting the robustness of our model
across heterogeneous populations. Finally, we evaluated model performance by comparing predicted
and ground-truth mean tau SUVR values for each diagnostic subgroup (Fig. k). A simple linear
regression was performed to quantify the agreement between predicted and observed values across
subjects. In ADNI (left), strong linear relationships were observed across all disease stages, with
a mean slope of 0.98 + 0.06 and R? of 0.91 + 0.07 (CN/SMC: 1.052 10.822; EMCI: 0.97510.953;
LMCI: 1.001 1 0.895; AD: 1.12510.982). In OASIS (right), the mean slope was 0.90 £ 0.16 with
R? of 0.660 + 0.17 (CN: 1.007 1 0.785; AD: 0.784 10.535). These results indicate strong agreement
between predicted and observed tau SUVR values, particularly in earlier disease stages and in the
ADNI cohort, highlighting the stability and generalizability of our predictive framework.

Table 1: Prediction performance (MAE/RMSE) on ADNI and OASIS. “*’ denotes the significant
improvement (p-value <0.01, paried t-test.)

| ADNI OASIS ADNI OASIS
Model
‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE ‘ MAE RMSE
DNN 0.156;0_026 0.235;0_047 0.476;0092 0.6383:0_119 0.1483:0_025 0.237;}:0_053 04497;‘:0029 0.6685:0_027
GCN 0'158$().017 0'249*1().032 0'458*10.057 0'637*:k0.()64 0'157*:k0.()15 0'249*1[).029 0'459;&0.058 0'641*10.()66
GCNII 0.1’78’%0'032 0.299§le068 0.488% ¢ 055 0.666)%0.082 0.127)%0.008 O.ISQj;O‘(315 0.4693 g 060 O 649}0 087
NDM 0.108%4 031 0.135%0 039 | 0-48410.212 0.613%0 555 | 01017 g5 0-1321% g6 | 0-4590.194 0.589%0 246
Neuro-ODE | 0.127 o 01 0.190+0.020 | 0-485£0.045 0.65530 009 | 0-1275000s 0-189%0 015 | 048750 054 0-664%0 o1
GRAND 0.181550'031 0.?;05&&0.068 0.49530.057 0.667?0.079 0.214)%0.028 0'340304061 0.469}0.060 0649;0 087
qREAD 0163;0_021 0.269;0_051 0.4887 0644 0-6857 ¢ gos 0‘195*i0.024 0 344%0_086 044633[1069 0 653;0 092
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Figure 4: (a) Comparison of prediction errors across diagnostic subgroups in the ADNI (left) and OASIS (right)
cohorts. (b) Vertex-wise absolute error maps show spatial patterns of prediction errors, with larger deviations in
temporal and medial regions. (c) Predicted vs. observed mean tau SUVR values for each subgroup.



Ablation Study. To tease apart the roles of the two mechanistic terms in our model, we ablate the
diffusion component (S) and reaction term (R), the results are summarized in Fig[5] Removing
either component results in a noticeable degradation in performance, confirming that both processes
are necessary for precise tau-propagation modelling. Eliminating the reaction term produces the
larger error increase, underscoring amyloid burden as a key modulator of tau dynamics, whereas
suppressing diffusion breaks the spatial continuity required to capture network-based spread. The
learned scaling factors {p; = 0.94, us = 0.97, u3 = 1.33} make this balance explicit: advection
(1) and diffusion (o) contribute almost equally, while the amyloid—tau interaction term p3 arries
the greatest weight. This slightly elevated interaction coefficient, paired with near-unity transport
coefficients, yields a physiologically plausible picture in which Aj “hot-spots” seed local tau build-
up, then the advection—diffusion machinery conveys pathology throughout the connectome. Such
dynamics mirror Braak staging [3] patterns and recent multimodal PET observations, and support the
biological view that A deposition primes regions for accelerated tau spread once both pathologies

co-localise, an effect repeatedly reported in experimental studies [20]. 0.08
S R R4y

w 007

3.2 Biologically-Informed Interpretation of Tau Propagation <§( 0.06

Tau Propagation Pathways on the Cortical Surface. Fig. [f]illus- 0.05

trates the modeled evolution of tau pathology across different stages
of AD in both the ADNI (top) and OASIS (bottqrn) .datasets.. qu egch Figure 5: Ablation of diffu-
group (CN, EMCI, LMCI, AD), we present the initial tau distribution sion (S) and reaction (R) com-
po, the follow-up accumulation pq, and the estimated propagation field  ponents on performance.

v. The flow fields (last column of each group) reveal the direction and

magnitude of tau propagation, where red colors indicate stronger spread flux. The color intensity
in p maps indicates the population-averaged tau accumulation, while the flow field v captures the
dominant direction and strength of tau transport across the cortical surface. A clear progression in
tau flow strength is observed across disease stages: CN individuals exhibit minimal propagation,
while tau flow becomes progressively more prominent in EMCI, LMCI, and reaches its peak in AD.
This trend is consistent in both datasets and reflects the escalating spatial spread of tau pathology
as the disease advances. Notably, the temporal lobe (indicated in red regions) shows strong and
persistent involvement, serving as a key hub for tau diffusion in later stages. Importantly, these mod-
eled propagation patterns align with established neuropathological findings, where tau pathology is
known to originate in the transentorhinal and entorhinal cortex, before spreading to the hippocampus
and neocortex in a stereotyped fashion [3]]. This consistency with Braak [3]] staging reinforces the
biological plausibility of our model in capturing disease-relevant tau dynamics.

0.04

New Insights into A3-Tau Interactions in AD. To probe the mechanistic basis of A/5—tau interac-
tions, we analyzed the symbolic reaction functions R;(u, v) learned by our model, where each term
encodes how amyloid burden v; at region j contributes to tau accumulation at region ¢. By systemati-
cally scanning across all cortical vertices, we generated a spatial map (Fig.[7) in which darker shading
highlights regions whose amyloid load most strongly drives downstream tau propagation. Two princi-
pal epicenters emerge: (1) Medial Temporal Lobe (pink dashed region) encompassing the entorhinal
cortex and parahippocampal gyrus, the canonical nidus of early tauopathy (Braak I-II) [3]]. Elevated
amyloid levels in this region precipitate a cascade of tau spreading into neighboring isocortical terri-
tories. (2) Medial Prefrontal Cortex (blue dashed region) consistent with Thal A phases 1-2 [37]],
where surpassing an amyloid threshold triggers accelerated propagation from the medial temporal hub
into anterior cortical areas, reinforcing the pathological cascade. To illustrate a representative sym-
bolic reaction law, we selected a vertex in the oc-temp_med-Parahip region. Its update is given by
w(t+1) = —0.09%ug4+0.02xvg; —0.2%5in(2.2xv9) +1.9+1.9/(exp(3.5%v16)+ 1), where uyy cor-
responds to the S_calcarine region, vg; to S_cingul-Mid-Ant, vg to G_cingul-Post-dorsal,
and vy to G_front_sup-parahippocampal. These interconnected nodes form the entorhi-
nal-hippocampal—cingulate loop—a circuit widely recognized as the earliest site of tau accumulation
in AD (Braak I-III). As a downstream hub of this loop, oc-temp_med-Parahip exhibits tau increase
at t + 1 that is jointly driven by local A—tau interactions and diffusion flux from upstream medial
nodes. In contrast, remote regions such as G_orbital (orbital frontal cortex) typically become
involved only in later Braak stages and do not participate in this early propagation network. For exam-
ple, —0.09u44: The negative coefficient from the calcarine cortex (a primary visual region affected
in late Braak stages V—VI) may reflect a dampening influence on tau accumulation in early-stage
regions—potentially capturing long-range regulatory effects in network dynamics. Constant term



Po
Figure 6: Visualization of tau propagation across stages of AD progression in ADNI (top) and OASIS (bottom).

(+1.9): Captures the intrinsic baseline accumulation of tau in the medial temporal lobe, consistent
with spontaneous age-related tauopathy in entorhinal and parahippocampal areas [4]. Last term
1.9/(exp(3.5 % v16) + 1): A sigmoid-shaped AS term, indicative of a saturating dose-response,
reflects known dynamics where tau is more sensitive to A at subthreshold levels but less responsive
once amyloid burden becomes extensive [24]]. Taking together, these results show that MFG4AD
learns biologically meaningful reaction laws, linking local A burden and network connectivity to
tau spread [33]]. The derived symbolic equations reveal early epicenters and propagation trajectories
consistent with Braak I-III staging, offering interpretable and predictive insights into AD progression.
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Figure 7: The brain surface mapping of AfS-tau interaction. Dark color indicates active involvement of amyloid
cascade in the tau propagation.

4 Conclusion

In this work, we introduced MFG4AD, a unified, physics-informed deep learning framework that: (1)
models tau spread as a network-constrained reaction—diffusion process with a data-driven symbolic
law for tau—amyloid crosstalk; (2) casts this system as an equivalent potential mean field game,
linking classical PDE theory to tau propagation; and (3) employs a Wasserstein-1 Lagrangian GAN
to learn optimal transport flows for accurate tau forecasting. On ADNI and OASIS cohorts, MFG4AD
delivers state-of-the-art predictions for unseen subjects and resolves tau-flow directions, pinpointing
peak-flux hotspots, while also uncovering an explicit, interpretable reaction law, offering a powerful
combination of predictive performance and mechanistic insight into Alzheimer’s pathology.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer to the abstract and introduction parts.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Appendix [A.3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please refer to Sec.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Please refer to Appendix [A.2]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please refer to https://github.com/Dandy5721/MFG4AD2025,
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Appendix and Sec.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Please refer to Table[T]and Fig. [5]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Appendix [A.2]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Please refer to the whole manuscript.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to Appendix [A.4]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Please refer to Appendix [A.2]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We uploaded the code of our model into GitHub.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Brain Network Construction from Cortical Surface Mesh

To capture anatomically faithful pathways for tau propagation along the cortical mantle, we con-
structed a sparse, geometry-aware graph based on the native cortical surface topology. Specifically,
we utilized the 1h/rh.pial surface mesh of the left/right hemisphere generated by FreeSurfer [13],
which represents the cortical sheet as a triangular mesh composed of N = 163,842 vertices and
approximately 327,680 faces.

Each triangular face defines three local connections between mesh vertices. We constructed a graph
G = (X, &, D) by treating each vertex as a node z; € X, and adding an undirected edge (z;,z;) € £
if the vertices x; and x; are connected by at least one triangle. This results in a topology-preserving
adjacency matrix D € RV *Y encoding binary connectivity that reflects local anatomical continuity.

To integrate geometric information relevant to spatial diffusion, we assigned edge weights based on
the Euclidean distance between connected vertices. For each edge (x;, =), the weight was defined
as:

Dyy = [l2i = ]|, = /(@i = a)? + (b = ;) + (e = ¢;)? (13)

where z; = (aj, b;, ¢;),z; = (a;, bj, ¢;) € R3 denote the 3D coordinates of vertices x; and
(Note, we use x; ; to represent the index and coordinates of the node uniformly for simplicity). The
resulting weighted adjacency matrix provides a biologically plausible scaffold for modeling local
propagation dynamics constrained to the cortical surface, the illustration is shown in Fig. [§]

Figure 8: An illustration of constructing brain network topology.

The constructed graph exhibits an average node degree of approximately 6, consistent with the local
connectivity induced by the triangular tessellation of the cortical sheet. In contrast to conventional
k-nearest-neighbor (KNN) graphs that are built solely based on Euclidean proximity, this approach
ensures geometric and topological consistency by avoiding spurious long-range connections that may
cross sulcal boundaries or violate the anatomical folding patterns.

To support downstream spectral and learning-based analyses, we further derived the symmetrically
normalized graph Laplacian: Ly, = I — A~'/2DA~1/2 where A is the diagonal degree matrix

with A“ = Z] D”

Finally, for compatibility with graph learning frameworks such as PyTorch Geometric, we exported the

graph as an edge list edge_index € Z>*!¢| and a corresponding edge weight vector edge_weight €
RI€I.

Our approach leverages the native triangular mesh of the cortical surface, where each node is con-
nected to its immediate neighbors based on surface topology. This results in a fixed and biologically
grounded neighborhood structure, typically with an average node degree of 6. The mesh graph strictly
adheres to the geometry of the cortical sheet, preserving anatomical continuity and avoiding non-local
shortcuts.

This anatomically faithful structure is especially important for modeling prion-like tau propagation,
which is believed to follow trans-neuronal transmission along physically connected pathways. Clava-
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guera et al. [12]], for example, demonstrated that tau pathology spreads from the injection site to
anatomically connected regions, supporting the need for realistic graph representations that reflect
underlying biological constraints.

A.2 TImplementation Details and Experimental Results

The pseudocode for our method is presented in Algorithm[I} The full implementation—including all
hyperparameter settings—is available from our anonymous GitHub repository: https://github,
com/Dandy5721/MFG4AD2025|

Algorithm 1 Training MFG4AD for Tau Dynamics

Require: For each subject, u(t), u(t+1) € RY (tauattimestand t +1) v(t) € RY (amyloid
at time t) , the coordinates of each vertex x; C X, learning rates n¢,ng > 0, clip threshold
b > 0, critic steps n¢, the weight of reconstruction \
1: while not converged do
2 Build graph G = (X, D) with distances d;; = ||z; — x|
3 fork=1,...,ncdo
4: /l — CRITIC UPDATE —
5: Obtain flow field v € RV >4 by Gy
6
7
8

Predict 4(t 4 1) via Eq. (12)
Define the loss of Critic: Lo+ + SN Co (it +1)) — &£ 3N Co(uilt + 1))

Gradient-ascent step ¢ < ¢ +nc VLo > Spectral Norm enforces 1-Lipschitz
9: end for
10: /l — GENERATOR UPDATE —
1: v+ Gy(u(t), v(t)) > Gy is composed of S., R, and Hy

12 a(t+1) «+ Eq.

13: Generator loss: L + —+ Zi\il Co (4(t+1)) + A4 Zfil |t (t 4+ 1) —u (t + 1)|4
14: Gradient-descent step 0 < 6 — ng VoLg

15: end while

More visualization results generated by our proposed MFG4AD on ADNI and OASIS datasets in Fig.
O]

Figure 9: The representative examples (reconstruction error £1 < 0.02) between the observed u (¢ + 1) and
predicted (¢ + 1) tau SUVRs generated by MFG4AD (left: ADNI, right: OASIS). Cognitively normal (CN),
early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI).

All experiments were conducted on an RTX A5000 GPU. The corresponding inference times are
reported in Table |2} The main cost of NMD is the diffusion kernel e~#£* which involves matrix
exponential operation.

Table 2: The inference time for each model.

Model DNN GCN GCNII NDM Neuro-ODE -

Time(s) 0.05 0.09 0.18 0.63 0.04 -
Model GRAND GREAD DSM GAN Ridge MFG4AD
Time (s) 0.14 0.36 0.26 0.05 0.01 0.27
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A.3 Discussion and Limitation

As a proof-of-concept, we leverage the analytic reaction—diffusion laws discovered by our model to
ask a fundamental question: Does amyloid drive tau aggregation locally within the same region, or
remotely across distinct cortical areas? By fitting symbolic expressions at every vertex, we observe
a hybrid interaction: amyloid deposits both amplify tau buildup in their own region and “prime”
downstream nodes for accelerated spread. In addition, our current framework fits an independent
reaction law at each of the 100K surface vertices, which greatly increases computation and memory
costs. To address this, we distill these per-vertex laws into a single, regionally parameterized global
reaction function defined over cortical subdomains of 1,000 vertices each—preserving interpretability
while enabling fast, large-scale prediction.

The surface-based mesh graph constructed from cortical triangular tessellation provides an anatom-
ically faithful substrate for modeling prion-like tau propagation along the cortical mantle. This
structure is especially suited for simulating local trans-neuronal spread that adheres to physical
cortical continuity, which characterizes the early stages of pathological tau aggregation. To cap-
ture long-range propagation, future extensions may incorporate structural connectivity data (e.g.,
tractography-based inter-regional projections).

In the future, we will cross-validate our framework on additional AD and AD-related cohorts, extend
the symbolic module to capture interactions with other biomarkers (e.g. neuroinflammation, synaptic
loss), and perform disease simulations driven by our reaction—diffusion engine to test hypothetical
interventions before clinical trials.

A4 Impact Statement

From a machine-learning perspective, our work introduces a physics-informed Wasserstein La-
grangian GAN combined with symbolic regression to learn interpretable, PDE-like reaction—diffusion
dynamics directly on irregular cortical graphs, bridging black-box GNNs and white-box biophysical
models and yielding reusable “reaction—diffusion engines” for spatiotemporal forecasting. From
a neuroscience standpoint, the same framework uncovers explicit amyloid—tau interaction kernels
and cortical propagation pathways, quantitatively reproducing tau-spread patterns consistent with
Braak staging and pinpointing vulnerable hub regions whose amyloid burden drives downstream
aggregation, thereby providing a data-driven foundation for mechanistic hypothesis testing and
targeted intervention in Alzheimer’s disease. Ultimately, by translating these mechanistic insights
into personalized predictive tools, our approach paves the way for earlier diagnosis and more effective,
tailored therapies in clinical practice.
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