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Abstract

Disobeying the classical wisdom of statistical learning theory, modern deep neural
networks generalize well even though they typically contain millions of parameters.
Recently, it has been shown that the trajectories of iterative optimization algorithms
can possess fractal structures, and their generalization error can be formally linked
to the complexity of such fractals. This complexity is measured by the fractal’s
intrinsic dimension, a quantity usually much smaller than the number of parameters
in the network. Even though this perspective provides an explanation for why
overparametrized networks would not overfit, computing the intrinsic dimension
(e.g., for monitoring generalization during training) is a notoriously difficult task,
where existing methods typically fail even in moderate ambient dimensions. In this
study, we consider this problem from the lens of topological data analysis (TDA)
and develop a generic computational tool that is built on rigorous mathematical
foundations. By making a novel connection between learning theory and TDA, we
first illustrate that the generalization error can be equivalently bounded in terms of
a notion called the ’persistent homology dimension’ (PHD), where, compared with
prior work, our approach does not require any additional geometrical or statistical
assumptions on the training dynamics. Then, by utilizing recently established
theoretical results and TDA tools, we develop an efficient algorithm to estimate
PHD in the scale of modern deep neural networks and further provide visualization
tools to help understand generalization in deep learning. Our experiments show
that the proposed approach can efficiently compute a network’s intrinsic dimension
in a variety of settings, which is predictive of the generalization error.

1 Introduction

In recent years, deep neural networks (DNNs) have become the de facto machine learning tool
and have revolutionized a variety of fields such as natural language processing [DCLT18], image
perception [KSH12, RBH+21], geometry processing [QSMG17, ZBL+20] and 3D vision [DBI18,
GLW+21]. Despite their widespread use, little is known about their theoretical properties. Even
now the top-performing DNNs are designed by trial-and-error, a pesky, burdensome process for the
average practitioner [EMH+19]. Furthermore, even if a top-performing architecture is found, it is
difficult to provide performance guarantees on a large class of real-world datasets.

This lack of theoretical understanding has motivated a plethora of work focusing on explaining
what, how, and why a neural network learns. To answer many of these questions, one naturally
examines the generalization error, a measure quantifying the differing performance on train and
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test data since this provides significant insights into whether the network is learning or simply
memorizing [ZBH+21]. However, generalization in neural networks is particularly confusing as it
refutes the classical proposals of statistical learning theory such as uniform bounds based on the
Rademacher complexity [BM02] and the Vapnik–Chervonenkis (VC) dimension [Vap68].

Instead, recent analyses have started focusing on the dynamics of deep neural networks. [NBMS17,
BO18, GJ16] provide analyses on the final trained network, but these miss out on critical train-
ing patterns. To remedy this, a recent study [SSDE20] connected generalization and the heavy
tailed behavior of network trajectories–a phenomenon which had already been observed in prac-
tice [SSG19, ŞGN+19, SZTG20, GSZ21, CWZ+21, HM20, MM19]. [SSDE20] further showed that
the generalization error can be linked to the fractal dimension of a parametric hypothesis class (which
can then be taken as the optimization trajectories). Hence, the fractal dimension acts as a ‘capacity
metric’ for generalization.

While [SSDE20] brought a new perspective to generalization, several shortcomings prevent ap-
plication in everyday training. In particular, their construction requires several conditions which
may be infeasible in practice: (i) topological regularity conditions on the hypothesis class for fast
computation, (ii) a Feller process assumption on the training algorithm trajectory, and that (iii) the
Feller process exhibits a specific diffusive behavior near a minimum. Furthermore, the capacity
metrics in [SSDE20] are not optimization friendly and therefore can’t be incorporated into training.

In this work, we address these shortcomings by exploiting the recently developed connections between
fractal dimension and topological data analysis (TDA). First, by relating the box dimension [Sch09]
and the recently proposed persistent homology (PH) dimension [Sch20], we relax the assumptions
in [SSDE20] to develop a topological intrinsic dimension (ID) estimator. Then, using this estimator
we develop a general tool for computing and visualizing generalization properties in deep learning.
Finally, by leveraging recently developed differentiable TDA tools [CHU17, CHN19], we employ
our ID estimator to regularize training towards solutions that generalize better, even without having
access to the test dataset.

Our experiments demonstrate that this new measure of intrinsic dimension correlates highly with
generalization error, regardless of the choice of optimizer. Furthermore, as a proof of concept,
we illustrate that our topological regularizer is able to improve the test accuracy and lower the
generalization error. In particular, this improvement is most pronounced when the learning rate/batch
size normally results in a poorer test accuracy.

Overall, our contributions are summarized as follows:

• We make a novel connection between statistical learning theory and TDA in order to develop a
generic computational framework for the generalization error. We remove the topological regularity
condition and the decomposable Feller assumption on training trajectories, which were required in
[SSDE20]. This leads to a more generic capacity metric.

• Using insights from our above methodology, we leverage the differentiable properties of persistent
homology to regularize neural network training. Our findings also provide the first steps towards
theoretically justifying recent topological regularization methods [BGND+19, CNBW19].

• We provide extensive experiments to illustrate the theory, strength, and flexibility of our framework.

We believe that the novel connections and the developed framework will open new theoretical and
computational directions in the theory of deep learning. To foster further developments at the the
intersection of persistent homology and statistical learning theory, we release our source code under:
https://github.com/tolgabirdal/PHDimGeneralization.

2 Related Work

Intrinsic dimension in deep networks Even though a large number of parameters are required
to train deep networks [FC18], modern interpretations of deep networks avoid correlating model
over-fitting or generalization to parameter counting. Instead, contemporary studies measure model
complexity through the degrees of freedom of the parameter space [JFH15, GJ16], compressibility
(pruning) [BO18] or intrinsic dimension [ALMZ19, LFLY18, MWH+18]. Tightly related to the ID,
Janson et al. [JFH15] investigated the degrees of freedom [Ghr10] in deep networks and expected
difference between test error and training error. Finally, LDMNet [ZQH+18] explicitly penalizes the
ID regularizing the network training.

2

https://github.com/tolgabirdal/PHDimGeneralization


Generalization bounds Several studies have provided theoretical justification to the observations
that trained neural networks live in a lower-dimensional space, and this is related to the generalization
performance. In particular, compression-based generalization bounds [AGNZ18, SAM+20, SAN20,
HJTW21, BSE+21] have shown that the generalization error of a neural network can be much lower
if it can be accurately represented in lower dimensional space. Approaching the problem from a
geometric viewpoint, [SSDE20] showed that the generalization error can be formally linked to the
fractal dimension of a parametric hypothesis class. This dimension indeed the plays role of the
intrinsic dimension, which can be much smaller than the ambient dimension. When the hypothesis
class is chosen as the trajectories of the training algorithm, [SSDE20] further showed that the error
can be linked to the heavy-tail behavior of the trajectories.

Deep networks & topology Previous works have linked neural network training and topological
invariants, although all analyze the final trained network [FGFAEV21]. For example, in [RTB+19],
the authors construct Neural Persistence, a measure on neural network layer weights. They further-
more show that Neural Persistence reflects many of the properties of convergence and can classify
weights based on whether they overfit, underfit, or exactly fit the data. In a parallel line of work,
[DZF19] analyze neural network training by calculating topological properties of the underlying
graph structure. This is expanded upon in [CMEM20], where the authors compute correlations
between neural network weights and show that the homology is linked with the generalization error.

However, these previous constructions have been done mostly in an adhoc manner. As a result, many
of the results are mostly empirical and work must still be done to show that these methods hold
theoretically. Our proposed method, by contrast, is theoretically well-motivated and uses tools from
statistical persistent homology theory to formally links the generalization error with the network
training trajectory topology.

We also would like to note that prior work has incorporated topological loss functions to help
normalize training. In particular, [BGND+19] constructed a topological normalization term for
GANs to help maintain the geometry of the generated 3d point clouds.

3 Preliminaries & Technical Background

We imagine a point cloud W = {wi ∈ Rd} as a geometric realization of a d-dimensional topological
space W ⊂ W ⊂ Rd. Bδ(x) ⊂ Rd denotes the closed ball centered around x ∈ Rd with radius δ.

Figure 1: A visualization
of a Vietoris-Rips complex
computed using persistent
homology (PH).

Persistent Homology From a topological perspective, W can be
viewed a cell complex composed of the disjoint union of k-dimensional
balls or cells σ ∈ W glued together. For k = 0, 1, 2, . . . , we form

a chain complex C(W) = . . . Ck+1(W)
∂k+1−−−→ Ck(W)

∂k−→ . . . by se-
quencing chain groupsCk(W), whose elements are equivalence classes of
cycles, via boundary maps ∂k : Ck(W) 7→ Ck−1(W) with ∂k−1◦∂k ≡ 0.
In this paper, we work with finite simplicial complexes restricting the
cells to be simplices.

The kth homology group or k-dimensional homology is then defined as the
equivalence classes of k-dimensional cycles who differ only by a bound-
ary, or in other words, the quotient group Hk(W) = Zk(W)/Yk(W)
where Zk(W) = ker ∂k and Yk(W) = im ∂k+1. The generators or ba-
sis of H0(W), H1(W) and H2(W) describe the shape of the topological
spaceW by its connected components, holes and cavities, respectively.
Their ranks are related to the Betti numbers i.e.βk = rank(Hk).

Definition 1 (Čech and Vietoris-Rips Complexes). For W a set of fine points in a metric space, the
Čech cell complex Čechr(W ) is constructed using the intersection of r-balls around W , Br(W ):
Čechr(W ) =

{
Q ⊂ W : ∩x∈QBr(x) 6= 0

}
. The construction of such complex is intricate.

Instead, the Vietoris-Rips complex VRr(W ) closely approximates Čechr(W ) using only the pairwise
distances or the intersection of two r-balls [RB21]: Wr = VRr(W ) =

{
Q ⊂ W : ∀x, x′ ∈

Q, Br(x) ∩Br(x′) 6= 0
}

.
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Definition 2 (Persistent Homology). PH indicates a multi-scale version of homology applied over a
filtration {Wt}t := VR(W ) : ∀(s ≤ t)Ws ⊂ Wt ⊂ W , keeping track of holes created (born) or
filled (died) as t increases. Each persistence module PHk(VR(W )) = {γi}i keeps track of a single
k-persistence cycle γi from birth to death. We denote the entire lifetime of cycle γ as I(γ) and
its length as |I(γ)| = death(γ)− birth(γ). We will also use persistence diagrams, 2D plots of all
persistence lifetimes (death vs. birth). Note that for PH0, the Čech and VR complexes are equivalent.

Lifetime intervals are instrumental in TDA as they allow for extraction of topological features or
summaries. Note that, each birth-death pair can be mapped to the cells that respectively created
and destroyed the homology class, defining a unique map for a persistence diagram, which lends
itself to differentibility [BGND+19, CHN19, CHU17]. We conclude this brief section by referring
the interested reader to the well established literature of persistent homology [Car14, EH10] for a
thorough understanding.

Intrinsic Dimension The intrinsic dimension of a space can be measured by using various notions.
In this study, we will consider two notions of dimension, namely the upper-box dimension (also called
the Minkowski dimension) and the persistent homology dimension. The box dimension is based on
covering numbers and can be linked to generalization via [SSDE20], whereas the PH dimension is
based on the notions defined earlier in this section.

We start by the box dimension.

Definition 3 (Upper-Box Dimension). For a bounded metric space W , let Nδ(W) denote the
maximal number of disjoint closed δ-balls with centers inW . The upper box dimension is defined as:

dimBoxW = lim sup
δ→0

(
log(Nδ(W))/log(1/δ)

)
. (1)

We proceed with the PH dimension. First let us define an intermediate construct, which will play a
key role in our computational tools.

Definition 4 (α-Weighted Lifetime Sum). For a finite set W ⊂ W ⊂ Rd, the weighted ith homology
lifetime sum is defined as follows:

Eiα(W ) =
∑

γ∈PHi(VR(W ))

|I(γ)|α, (2)

where PHi(VR(W )) is the i-dimensional persistent homology of the Čech complex on a finite point
set W contained inW and |I(γ)| is the persistence lifetime as explained above.

Now, we are ready to define the PH dimension, which is the key notion in this paper.

Definition 5 (Persistent Homology Dimension). The PHi-dimension of a bounded metric spaceW
is defined as follows:

dimi
PHW := inf

{
α : Eiα(W ) < C; ∃C > 0,∀ finite W ⊂ W

}
. (3)

In words, dimi
PHW is the smallest exponent α for which Eiα is uniformly bounded for all finite

subsets ofW .

4 Generalization Error via Persistent Homology Dimension

In this section, we will illustrate that the generalization error can be linked to the PH0 dimension.
Our approach is based on the following fundamental result.

Theorem 1 ([KLS06, Sch19]). LetW ⊂ Rd be a bounded set. Then, it holds that:

dimPHW := dim0
PHW = dimBoxW.

In the light of this theorem, we combine the recent result showing that the generalization error can be
linked to the box dimension [SSDE20], and Theorem 1, which shows that, for bounded subsets of
Rd, the box dimension and the PH dimension of order 0 agree.
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By following the notation of [SSDE20], we consider a standard supervised learning setting, where
the data space is denoted by Z = X × Y , and X and Y respectively denote the features and the
labels. We assume that the data is generated via an unknown data distribution D and we have access
to a training set of n points, i.e., S = {z1, . . . , zn}, with the samples {zi}ni=1 are independent and
identically (i.i.d.) drawn from D.

We further consider a parametric hypothesis classW ⊂ Rd, that potentially depends on S. We choose
W to be optimization trajectories given by a training algorithm A, which returns the entire (random)
trajectory of the network weights in the time frame [0, T ], such that [A(S)]t = wt being the network
weights returned byA at ‘time’ t, and t is a continuous iteration index. Then, in the setW , we collect
all the network weights that appear in the optimization trajectory:

W := {w ∈ Rd : ∃t ∈ [0, T ], w = [A(S)]t}

where we will set T = 1, without loss of generality.

To measure the quality of a parameter vector w ∈ W , we use a loss function ` : Rd ×Z 7→ R+, such
that `(w, z) denotes the loss corresponding to a single data point z. We then denote the population
and empirical risks respectively by R(w) := Ez[`(w, z)] and R̂(w, S) := 1

n

∑n
i=1 `(w, zi). The

generalization error is hence defined as |R̂(w, S)−R(w)|.
We now recall [SSDE20, Asssumption H4], which is a form of algorithmic stability [BE02]. Let us
first introduce the required notation. For any δ > 0, consider the fixed grid on Rd,

G =

{(
(2j1 + 1)δ

2
√
d

, . . . ,
(2jd + 1)δ

2
√
d

)
: ji ∈ Z, i = 1, . . . , d

}
,

and define the set Nδ := {x ∈ G : Bδ(x) ∩W 6= ∅}, that is the collection of the centers of each ball
that intersectW .
H1. Let Z∞ := (Z × Z × · · · ) denote the countable product endowed with the product topology
and let B be the Borel σ-algebra generated by Z∞. Let F,G be the sub-σ-algebras of B generated
by the collections of random variables given by {R̂(w, S) : w ∈ Rd, n ≥ 1} and

{
1 {w ∈ Nδ} :

δ ∈ Q>0, w ∈ G,n ≥ 1
}

respectively. There exists a constant M ≥ 1 such that for any A ∈ F,

B ∈ G we have P [A ∩B] ≤MP [A]P[B].

The next result forms our main observation, which will lead to our methodological developments.
Proposition 1. LetW ⊂ Rd be a (random) compact set. Assume that H1 holds, ` is bounded by B
and L-Lipschitz continuous in w. Then, for n sufficiently large, we have

sup
w∈W

|R̂(w, S)−R(w)| ≤ 2B

√
[dimPHW + 1] log2(nL2)

n
+

log(7M/γ)

n
, (4)

with probability at least 1− γ over S ∼ D⊗n.

Proof. By using the same proof technique as [SSDE20, Theorem 2], we can show that (4) holds
with dimBoxW in place of dimPHW . Since W is bounded, we have dimBoxW = dimPHW by
Theorem 1. The result follows.

This result shows that the generalization error of the trajectories of a training algorithm is deeply
linked to its topological properties as measured by the PH dimension. Thanks to novel connection,
we have now access to the rich TDA toolbox, to be used for different purposes.

4.1 Analyzing Deep Network Dynamics via Persistent Homology

By exploiting TDA tools, our goal in this section is to develop an algorithm to compute dimPHW for
two main purposes. The first goal is to predict the generalization performance by using dimPH. By
this approach, we can use dimPH for hyperparameter tuning without having access to test data. The
second goal is to incorporate dimPH as a regularizer to the optimization problem in order to improve
generalization. Note that similar topological regularization strategies have already been proposed
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Algorithm 1: Computation of dimPH.

1 input :The set of iterates W = {wi}Ki=1, smallest sample size nmin, and a skip step ∆, α
2 output :dimPHW
3 n← nmin, E ← []
4 while n ≤ K do
5 Wn ← sample(W,n) // random sampling

6 Wn ← VR(Wn) // Vietoris-Rips filtration

7 E[i]← Eα(Wn) ,
∑
γ∈PH0(Wn)

|I(γ)|α // compute lifetime sums from PH

8 n← n+ ∆

9 m, b← fitline (log(nmin : ∆ : K), log(E)) // power law on Ei
1(W )

10 dimPHW ← α
1−m

[BGND+19, CNBW19] without a formal link to generalization. In this sense, our observations form
the first step towards theoretically linking generalization and TDA.

In [SSDE20], to develop a computational approach, the authors first linked the intrinsic dimension to
certain statistical properties of the underlying training algorithm, which can be then estimated. To
do so, they required an additional topological regularity condition, which necessitates the existence
of an ‘Ahlfors regular’ measure defined onW , i.e., a finite Borel measure µ such that there exists
s, r0 > 0 where 0 < ars ≤ µ(Br(x)) ≤ brs < ∞, holds for all x ∈ W, 0 < r ≤ r0. This
assumption was used to link the box dimension to another notion called Hausdorff dimension, which
can be then linked to statistical properties of the training trajectories under further assumptions (see
Section 1). An interesting asset of our approach is that, we do not require this condition and thanks to
the following result, we are able to develop an algorithm to directly estimate dimPHW , while staying
agnostic to the finer topological properties ofW .
Proposition 2. Let W ⊂ Rd be a bounded set with dimPHW =: d?. Then, for all ε > 0 and
α ∈ (0, d? + ε), there exists a constant Dα,ε, such that the following inequality holds for all n ∈ N+

and all collections Wn = {w1, . . . , wn} with wi ∈ W , i = 1, . . . , n:

E0
α(Wn) ≤ Dα,εn

d?+ε−α
d?+ε . (5)

Proof. Since W is bounded, we have dimBoxW = d? by Theorem 1. Fix ε > 0. Then, by
Definition 3, there exists δ0 = δ0(ε) > 0 and a finite constant Cε > 0 such that for all δ ≤ δ0 the
following inequality holds:

Nδ(W) ≤ Cεδ−(d
?+ε). (6)

Then, the result directly follows from [Sch20, Proposition 21].

This result suggests a simple strategy to estimate an upper bound of the intrinsic dimension from
persistent homology. In particular, we note that rewriting (5) for logarithmic values give us that(

1− α

d∗ + ε

)
log n+ logDα,ε ≥ logE0

α. (7)

If logE0
α and log n are sampled from the data and give an empirical slope m, then we see that

d∗ + ε ≤ m
1−α . In many cases, we see that d∗ ≈ α

1−m (as further explained in Sec. 5.2), so we take
α

1−m as our PH dimension estimation. We provide the full algorithm for computing this from our
sampled data in Alg. 1. Note that our algorithm is similar to that proposed in [AAF+20], although
our method works for sets rather than probability measures. In our implementation we compute the
homology by the celebrated Ripser package [Bau21] unless otherwise specified.

On computational complexity. Computing the Vietoris Rips complex is an active area of research,
as the worst-case time complexity is meaningless due to natural sparsity [Zom10]. Therefore, to
calculate the time complexity of our estimator, we focus on analyzing the PH computation from
the output simplices: calculating PH takes O(pw) time, where w < 2.4 is the constant of matrix
multiplication and p is the number of simplices produced in the filtration [BP19]. Since we compute
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Figure 2: PH-dimension vs test accuracy for different models and datasets. The rows correspond
to the model and dataset, and the columns correspond to the batch size (50 and 100 for the top and
bottom row respectively). The graphed points are marked with different colors corresponding to
the learning rate. Note that the PH dimension is inversely correlated with test accuracy and is thus
positively correlated with generalization error.

with 0th order homology, this would imply that the computational complexity is O(nw), where n is
the number of points. In particular, this means that estimating the PH dimension would take O(knw)
time, where k is the number of samples taken assuming that samples are evenly spaced in [0, n].

4.2 Regularizing Deep Networks via Persistent Homology

Motivated by our results in proposition 2, we theorize that controlling dimPHW would help in
reducing the generalization error. Towards this end, we develop a regularizer for our training
procedure which seeks to minimize dimPHW during train time. If we let L be our vanilla loss
function, then we will instead optimize over our topological loss function Lλ := L+ λ dimPHW ,
where λ ≥ 0 controls the scale of the regularization andW now denotes a sliding window of iterates
(e.g., the latest 50 iterates during training). This way, we aim to regularize the loss by considering the
dimension of the ongoing training trajectory.

In Alg. 1, we let wi be the stored weights from previous iterations for i ∈ {1, . . . ,K − 1} and let
wK be the current weight iteration. Since the persistence diagram computation and linear regression
are differentiable, this means that our estimate for dimPH is also differentiable, and, if wk is sampled
as in Alg. 1, is connected in the computation graph with wK . We incorporate our regularizer into
the network training using PyTorch [PGM+19] and the associated persistent homology package
torchph [CHU17, CHN19].

5 Experimental Evaluations

This section presents our experimental results in two parts: (i) analyzing and quantifying generaliza-
tion in practical deep networks on real data, (ii) ablation studies on a random diffusion process. In all
the experiments we will assume that the intrinsic dimension is strictly larger than 1, hence we will set
α = 1, unless specified otherwise. Further details are reported in the supplementary document.

5.1 Analyzing and Visualizing Deep Networks

Measuring generalization. We first verify our main claim by showing that our persistent homol-
ogy dimension derived from topological analysis of the training trajectories correctly measures of
generalization. To demonstrate this, we apply our analysis to a wide variety of networks, training
procedures, and hyperparameters. In particular, we train AlexNet [KSH12], a 5-layer (fcn-5) and
7-layer (fcn-7) fully connected networks, and a 9-layer convolutional netowork (cnn-9) on MNIST,
CIFAR10 and CIFAR100 datasets for multiple batch sizes and learning rates until convergence. For
AlexNet, we consider 1000 iterates prior to convergence and, for the others, we only consider 200.
Then, we estimate dimPH on the last iterates by using Alg. 1. For varying n, we randomly pick n of
last iterates and compute E0

α, and then we use the relation given in (5).
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Figure 3: (Estimated) persistent homology dimension vs generalization error (training accuracy
- test accuracy) for different datasets (top row CIFAR10, bottom row CIFAR100) and optimizers
on AlexNet. We plot the data points and lines of best fit. Note that the PH dimension is directly
correlated with the generalization error and is consistent across datasets and optimizers.

We obtain the ground truth (GT) generalization error as the gap between training and test accura-
cies. Fig. 2 plots the PH-dimension with respect to test accuracy and signals a strong correlation of
our PH-dimension and actual performance gap. The lower the PH-dimension, the higher the test
accuracy. Note that this results aligns well with that of [SSDE20]. The figure also shows that the
intrinsic dimensions across different datasets can be similar, even if the parameters of the models
can vary greatly. This supports the recent hypothesis that what matters for the generalization is
the effective capacity and not the parameter count. In fact, the dimension should be as minimal as
possible without collapsing important representation features onto the same dimension. The findings
in Fig. 2 are further augmented with results in Fig. 3, where a similar pattern is observed on AlexNet
and CIFAR100.

Can dimPH capture intrinsic properties of trajectories? After revealing that our ID estimation
is a gauge for generalization, we set out to investigate whether it really hinges on the intrinsic
properties of the data. We train several instances of 7-fcn for different learning rates and batch
sizes. We compute the PH-dimension of each network using training trajectories. We visualize the
following in the rows of Fig. 4 sorted by dimPH: (i) 200× 200 distance matrix of the sequence of
iterates w1, . . . , wK (which is the basis for PH computations), (ii) corresponding logE0

α=1 estimates
as we sweep over n in an increasing fashion, (iii) persistence diagrams per each distance matrix. It
is clear that there is a strong correlation between dimPH and the structure of the distance matrix.
As dimension increases, matrix of distances become non-uniformly pixelated. The slope estimated
from the total edge lengths the second row is a quantity proportional to our dimension. Note that the
slope decreases as our estimte increases (hence generalization tends to decrease). We further observe
clusters emerging in the persistence diagram. The latter has also been reported for better generalizing
networks, though using a different notion of a topological space [BGND+19].

Is dimPH a real indicator of generalization? To quantitatively assess the quality of our complexity
measure, we gather two statistics: (i) we report the average p-value over different batch sizes for
AlexNet trained with SGD on the Cifar100 dataset. The value of p = 0.0157 < 0.05 confirms
the statistical significance. Next, we follow the recent literature [JFY+20] and consult the Kendall
correlation coefficient (KCC). Similar to the p-value experiment above, we compute KCC for
AlexNet+SGD for different batch sizes (64, 100, 128) and attain (0.933, 0.357, 0.733) respectively.
Note that, a positive correlation signals that the test gap closes as dimPH decreases. Both of
these experiments agree with our theoretical insights that connect generalization to a topological
characteristic of a neural network: intrinsic dimension of training trajectories.

Effect of different training algorithms. We also verify that our method is algorithm-agnostic and
does not require assumptions on the training algorithm. In particular, we show that our above analyses
extend to both the RMSProp [TH12] and Adam [KB15] optimizer. Our results are visualized in Fig. 3.
We plot the dimension with respect to the generalization error for varying optimizers and batch sizes;
our results verify that the generalization error (which is inversely related to the test accuracy) is
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Figure 4: We visualize topological information for a 7-layer fully connected network on CIFAR10 data.
In the top row, we visualize the distance matrices computed between network weights corresponding
to the last 200 iterations of training. In the middle, we visualize the corresponding behavior of our
estimator as we increase the number of samples. In the bottom row, we visualize the 0-th order
persistent diagrams for the full data. As our PH dimension decreases, the matrix becomes more
segmented, the estimator slope decreases, and the persistent diagram becomes sparser. We provide
more information about these results in the supplement.

positively correlated with the PH dimension. This corroborates our previous results in Fig. 2 and in
particular shows that our dimension estimator of test gap is indeed algorithm-agnostic.
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Figure 5: Effect of regularization on test ac-
curacy for various learning rates. Our regular-
ization is consistently able to produce higher
accuracies, and this effect is more pronounced
when the network has a lower test accuracy.

Encouraging generalization via regularization
dimPH. We furthermore verify that our topological
regularizer is able to help control the test gap in
accordance with our theory. We train a Lenet-5 network
[LBBH98] on Cifar10 [Kri09] and compare a clean
trianing with a training with our topological regularizer
with λ set to 1. We train for 200 epochs with a batch
size of 128 and report the train and test accuracies
in Fig. 5 over a variety of learning rates. We tested over
10 trials and found that, with p < 0.05 for all cases
except lr = 0.01, the results are different.

Our topological optimizer is able to produce the best
improvements when our network is not able to converge
well. These results show that our regularizer behaves as
expected: the regularizer is able to recover poor training
dynamics. We note that this experiment uses a simple architecture and as such, it presents a proof
of concept. We do not aim for the state of the art results. Furthermore, we directly compared
our approach with the generalization estimator of [CMEM20], which most closely resembles our
construction. In particular, we found their method does not scale and is often numerically unreliable.
For example, their methodology grows quadratically with respect to number of network weights
and linearly with the dataset size, while our method does not scale much beyond memory usage
with vectorized computation. Furthermore, for many of our test networks, their metric space
construction (which is based off of the correlation between activation functions and used for the
Vietoris-Rips complex) would be numerically brittle and result in degenerate persistent homology.
These prevent [CMEM20] to be applicable in this scenario.

5.2 Ablation Studies

To assess the quality of our dimension estimator, we now perform ablation studies, on a synthetic
data whose the ground truth ID is known. To this end, we use the synthetic experimental setting
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Figure 6: Estimated intrinsic dimension vs ground-truth intrinsic dimension for different dimension
estimators on synthetic diffusion data. Our PH0 (yellow) and PH0RANSAC (purple) estimators
coincide as the linear regression step of our computation is well behaved. We note that our persistent
homology dimension estimation is able to accurately recover the ground truth.

presented in [SSDE20] (see the supplementary document for details), and we simulate a d = 128
dimensional stable Levy process with varying number of points 100 ≤ n ≤ 1500 and tail indices
1 ≤ β ≤ 2. Note that the tail index equals the intrinsic dimension in this case, which is an order of
magnitude lower for this experiment.

Can dimPH match the ground truth ID? We first try to predict the GT intrinsic dimension
running Alg. 1 on this data. We also estimate the TwoNN dimension [FdRL17] to quantify how
the state of the art ID estimators correlate with GT in such heavy tailed regime. Our results are
plotted in Fig. 6. Note that as n increases our estimator becomes smoother and well approximates
the GT up to a slight over-estimation, a repeatedly observed phenomenon [CCCR15]. TwoNN does
not guarantee recovering the box-dimension. While it is found to be useful in estimating the ID of
data [ALMZ19], we find it to be less desirable in a heavy-tailed regime as reflected in the plots. Our
supplementary material provides further results on other, non-dynamics like synthetic dataset such as
points on a sphere where TwoNN can perform better. We also include a robust line fitting variant of
our approach PH0-RANSAC, where a random sample consensus is applied iteratively. Though, as
our data is not outlier-corrupted, we do not observe a large improvement.
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Figure 7: dimPH estimate versus vari-
ous α on the synthetic diffusion data. Our
estimate of α = 1 provides a very good
estimate for a wide variety of intrinsic di-
mensions.

Effect of α on dimension estimation. While our theory
requires α to be smaller than the intrinsic dimension of the
trajectories, in all of our experiments we fix α = 1.0. It
is of curiosity whether such choice hampers our estimates.
To see the effect, we vary α in range [0.5, 2.5] and plot our
estimates in Fig. 7. It is observed (blue curve) that our dimen-
sion estimate follows a U-shaped trend with increasing α.
We indicate the GT ID by a dashed red line and our estimate
as a dashed green line. Ideally, these two horizontal lines
should overlap. It is noticeable that, given the oracle for GT
ID, it might be possible to optimize for an α?. Yet, such
information is not available for the deep networks. Never-
theless, α = 1 seems to yield reasonable performance and
we leave the estimation of a better α for future work. We
provide additional results in our supplementary material.

6 Conclusion

In this paper, we developed novel connections between dimPH of the training trajectory and the
generalization error. Using these insights, we proposed a method for estimating the dimPH from
data and, unlike previous work [SSDE20], our approach does not presuppose any conditions on the
trajectory and offers a simple algorithm. By leveraging the differentiability of PH computation, we
showed that we can use dimPH as a regularizer during training, which improved the performance in
different setups.

Societal Impact and Limitations. We believe that our study will not pose any negative societal or
ethical consequences due to its theoretical nature. The main limitation of our study is that it solely
considers the terms E0

α, whereas PH offers a much richer structure. Hence, as our next step, we
will explore finer ways to incorporate PH in generalization performance. We will further extend our
results in terms of dimensions of measures by using the techniques presented in [CDE+21].
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