
Graph Neural Network Based Action Ranking for
Planning

Rajesh Mangannavar
Oregon State University

Corvallis, OR 97330, USA
mangannr@oregonstate.edu

Stefan Lee
Oregon State University

Corvallis, OR 97330, USA
leestef@oregonstate.edu

Alan Fern
Oregon State University

Corvallis, OR 97330, USA
alan.fern@oregonstate.edu

Prasad Tadepalli
Oregon State University

Corvallis, OR 97330, USA
prasad.tadepalli@oregonstate.edu

Abstract

We propose a novel approach to learn relational policies for classical planning
based on learning to rank actions. We introduce a new graph representation that
explicitly captures action information and propose a Graph Neural Network (GNN)
architecture augmented with Gated Recurrent Units (GRUs) to learn action rankings.
Unlike value-function based approaches that must learn a globally consistent
function, our action ranking method only needs to learn locally consistent ranking.
Our model is trained on data generated from small problem instances that are easily
solved by planners and is applied to significantly larger instances where planning
is computationally prohibitive. Experimental results across standard planning
benchmarks demonstrate that our action-ranking approach not only achieves better
generalization to larger problems than those used in training but also outperforms
multiple baselines (value function and action ranking) methods in terms of success
rate and plan quality.

1 Introduction

Classical planning tackles the problem of finding action sequences to achieve goals in deterministic
environments. While traditional planners can solve small problems optimally using search and
heuristics, they often struggle with scalability in complex problems [2, 17]. This has motivated
research into learning general relational policies from small solved problems, which can then be
applied to significantly larger instances [23]. The key insight behind learning-based planning is that
optimal solutions to small problems often reveal patterns that generalize to bigger problems. For
example, in Blocks World, solutions to 4 block problems can teach a policy to stack blocks bottom-up
that generalizes to problems with 20 or more blocks. The advantage of relational learning is its ability
to capture compositional structure, which in turn enable strong generalization [30, 6] [4, 9].

Learning approaches in automated planning have traditionally focused on learning heuristic functions
to guide search algorithms. These methods typically learn a value function that estimates the distance
to the goal and integrate it within classical search algorithms like A* or greedy best-first search. The
learned heuristics help focus the search but still require explicit search during plan execution.

Recently, several neural approaches have been proposed in the planning domain. Some methods
learn value functions to guide search processes [22, 1], while others learn value functions that induce
greedy policies by selecting actions leading to states with minimum estimated cost-to-go [24, 23].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

While these approaches show promise, they all face a fundamental challenge: value functions are
not only complex and challenging to learn, but since optimal planning is NP-hard in most domains
[5, 11], there is no reason to think that optimal value functions generalize to larger problem sizes. In
our work, instead of trying to learn optimal value functions we focus on learning a policy that ranks
good actions higher in any given state.

Learning to rank approaches have shown promise in planning domains but have primarily focused
on ranking states rather than actions. [10] pioneered this direction by using RankSVM to learn state
rankings using hand-crafted features. More recently, [3], and [13] demonstrated that learning to rank
states can be more effective than learning precise heuristic values, as the relative ordering of states is
sufficient for guiding search. However, these approaches still fundamentally rely on search during
execution, inheriting significant computational overhead. The other drawback is that, while ranking
states is easier than learning the exact value function, they are still trying to learn a globally consistent
state ranking function which is challenging. We overcome this issue in our work by learning only
local ranking over actions in any given state instead of learning a ranking among all possible states.
Unlike other action ranking approaches such as [19], [16], [8], [15], and [25], we explicitly represent
action information in our input state representation.

Our work is inspired by the effectiveness of graph neural networks (GNNs) [20] to represent and
learn general relational policies such as [24, 25, 26, 30] where GNNs have been shown to be able
to learn well over state representations for planning problems [18, 1]. GNNs are especially suited
for these types of problems as they can handle inputs of varied sizes and can learn from graphs of
small size and generalize to larger graphs [12]. This is the property we are looking to exploit - train a
system on small sized planning problems where it is easy to run planners and collect data and use
this learned model to solve larger problems that planners are too slow to solve while simplifying the
learning problem by only learning local action rankings.

To achieve this, we introduce a novel architecture GABAR (GrAph neural network Based Action
Ranking), which directly learns to rank actions rather than estimating value functions. GABAR
consists of three key components: (1) an action-centric graph representation of state that explicitly
captures how objects participate in actions (2) a GNN encoder that processes this rich representation,
and (3) a GRU-based decoder that sequentially constructs parameterized actions. Our key insight
is that ranking actions that are applicable in the same state often turns out to be easier and more
generalizable than ranking states by their distances to the goals. Through experiments on standard
benchmarks, we show that (a) GABAR achieves generalization to significantly larger problems than
those used for training, and (b) it does markedly better on the larger problems when compared to
value-function-based methods or other methods that do not include action information in the graph.

2 Problem Setup

Classical planning deals with finding a sequence of actions that transform an initial state into a
goal state. A classical planning problem is represented as a pair P = ⟨D, I⟩, where D represents a
first-order domain and I contains instance-specific information. The domain D consists of a set of
predicate symbols P with associated arities and a set of action schemas A. Each action schema a ∈ A
is defined by a set of parameters ∆(a) representing variables that can be instantiated, preconditions
pre(a), add effects add(a), and delete effects del(a). The instance information I is a tuple ⟨O, s0, G⟩
where O is a finite set of objects, s0 is the initial state represented as a set of ground atoms p(o1, ..., ok)
where p ∈ P and oi ∈ O, and G is the goal condition also represented as a set of ground atoms.

A state s is a set of ground atoms that are true in that state. An action schema can be grounded
by substituting its parameters with objects from O. A ground action a is applicable in state s if
pre(a) ⊆ s, and results in successor state s′ = (s\del(a))∪add(a). A solution or plan is a sequence
of applicable ground actions that transform the initial state s0 into a state satisfying the goal condition
G. A relational policy maps a problem state to an action. The current paper addresses the following
problem. Given a domain D and a set of training instances of different sizes and their solutions, learn
a relational policy that leads to efficient solutions for larger test instances from the same domain.

2

Figure 1: GABAR’s architecture for action extraction. (a) Graph representation: The input PDDL
problem is converted into a graph with four types of nodes (predicate, object, action schema, and
global) connected by predicate-object and action-object edges that encode state and grounded action
information. (b) GNN encoder: Processes the graph through L rounds of message passing where
edge, node, and global representations are sequentially updated (c) Action decoder: Uses the final
global embedding to construct a grounded action through a GRU-based decoder sequentially - first
selecting an action schema, then iteratively choosing objects for each parameter position until a
complete grounded action is formed.

3 GNN Based Action Ranking

Learning general policies for classical planning domains requires learning to select appropriate
actions effectively to variable-sized states and generalize across problem instances. This section
details each component of GABAR, the graph representation, the GNN encoder and the GRU decoder
in detail and explains how they work together to enable effective action selection.

3.1 System Overview

Given a planning instance, I in PDDL format [7], along with the set of ground actions, GABAR
operates by first converting this to a graph structure that makes explicit the relationships between
objects, predicates, and potential actions. This graph is then processed through our neural architecture
to rank actions(as described in Fig 1). Then, the highest-ranked applicable action is executed to
reach the next state I’, and the process repeats. To ensure that the execution terminates, the system
maintains a history of visited states and avoids actions that would lead to previously visited states.
The execution continues until either a goal state is reached or a state is reached with no unvisited
successor states, or the maximum execution length (1000 in our experiments) is exceeded.

3.2 Graph Representation

We introduce a novel graph representation (shown in Fig 2) for classical planning tasks that captures
the structural relationships between objects, predicates, actions, and the semantic information needed
to effectively learn action ranking. Our representation G = (V,E,X,R) consists of a set of nodes V ,
edges E, node features X and edge features R.

The node set V = O ∪ P ∪A ∪ {g} where O, P ,and A represent sets of domain objects, grounded
predicates (predicates instantiated in current and goal states), and action schemas, respectively, and g
is a global node that aggregates graph-level information. The edge set E = Epred ∪Eact, where Epred
is the set of edges between predicates and their argument objects and similarly Eact is the set of edges
between action schemas and their argument objects.

Node Features: The node feature function X : V → Rd maps each node to a feature vector that
encodes type and semantic information. The feature vector is constructed by concatenating several
one-hot encoded segments. For any node v ∈ V , X(v) = [Xtype(v) ∥ Xact(v) ∥ Xpred(v) ∥ Xobj(v)],
where,

• Xtype ∈ {0, 1}3: One-hot encoding of node type (object, predicate, or action)

• Xact ∈ {0, 1}|A|: One-hot encoding of action type (if v is an action node)

3

Figure 2: Example graph construction for a simplified blocksworld problem with only on and clear
predicates. The left side shows the starting and goal states. The O nodes are the object nodes. In
the start state, O3 is on O2 which is on the table, and O1 is on the table. In the goal state, O3 is on
O1 which is on the table, and O2 is on the table. The right side shows the constructed graph with
action nodes (blue), object nodes (yellow), and predicate nodes (red). The “Pick-up” action connects
to object O1, while the “Unstack” action connects to objects O2 and O3. Predicate nodes show the
current state (“Clear” for O1 and O3, “On (O3,O2)”) and goal state (“G-ON(O3,O1)”). Blue edges
represent action-object connections, while red edges represent predicate-object relationships.

• Xpred ∈ {0, 1}2|P |: Encoding for predicates, where first |P | bits indicate predicate type and next
|P | bits indicate goal predicates (if v is a predicate node)

• Xobj ∈ {0, 1}|T |: One-hot encoding of the object type (if v is an object node). T is the set of object
types

Edge Features: The edge feature function R : E → Rk maps each edge to a feature vector that
encodes the type of edge and the information about the role. For any edge e ∈ E, R(e) = [Rtype(e) ∥
Rpred(e) ∥ Ract(e)], where,

• Rtype ∈ {0, 1}2: One-hot encoding of edge type (predicate-object or action-object)
• Rpred ∈ {0, 1}m: For predicate-object edges, one-hot encoding of argument position (m is max

predicate arity)
• Ract ∈ {0, 1}(m+|P |): For action-object edges, concatenation of:

– One-hot encoding of parameter position in action schema (m bits)
– Binary vector indicating which predicates are satisfied by the object in grounded action (|P |

bits). We only encode edge information for the actions that are applicable in the current state.

Global Features: The global node g is initialized with a zero vector in Rh where h is the chosen
hidden representation dimension. This node can be used to aggregate and propagate graph-level
information during message passing. This global node is essential in passing information at each round
from nodes that are far apart. Hence, while nodes get their location information from neighboring
edges, they also receive some global context at each round of the GNN ensuring that the number of
GNN rounds does not become a bottleneck in passing information in large graphs. This is important
since, as problems get larger the graph size grows, but the number of GNN rounds stays constant.
The global node ensures all nodes and edges in the graph have some global context at each step.

This graph representation captures both the structural and semantic information necessary for learning
planning heuristics while maintaining a bounded feature dimension independent of problem size. The
node features encode type and semantic information, while the edge features capture the relationships
between objects, predicates, and actions in the planning domain.

3.3 Neural Architecture

Our neural architecture processes this graph representation through multiple components designed to
handle the challenges of processing variable-sized inputs, capturing long range dependencies between
objects and actions, and making sequential decisions to select actions and their arguments as shown
in algorithm 1. We detail each component below:

3.3.1 GNN Encoder

Graph Neural Networks (GNNs) [20] are particularly well-suited for encoding states in planning
problems as they can naturally process relational structures while being invariant to permutations and

4

Procedure GABAR(G = (V, E))
1: Initialize: {v0

i }i∈V , {e0ij}(i,j)∈E , g0

2: // GNN Encoder
3: for l = 0 to L− 1 do
4: // Edge Update
5: ∀(i, j) ∈ E : el+1

ij = ϕe([e
l
ij ;v

l
i;v

l
j ;g

l])

6: // Node Update
7: ∀i ∈ V: vl+1

i = ϕv([v
l
i;AGG({el+1

ij |
j ∈ N (i)});gl])

8: // Global Update
9: gl+1 = ϕg([g

l;AGG({vl+1
i |i ∈ V});

AGG({el+1
ij |(i, j) ∈ E})])

10: return DECODER(gL, {vL
i }i∈V , A,O, k)

Procedure DECODER(gL, {vL
i }i∈V , A,O, k)

1: h1 = GRU(gL,0)

2: // Select action schema
3: score(a) = MLP(h1 ⊙ vL

a) for each a ∈ A

4: a∗ = argmaxa∈A softmax(score(a))
5: h2 = GRU(h1,v

L
a∗)

6: // Select parameters
7: for i = 1 to required parameter count do
8: score(o) = MLP(hi+1⊙vL

o) for each o ∈ O

9: o∗i = argmaxo∈O softmax(score(o))
10: hi+2 = GRU(hi+1,v

L
o∗i
)

11: return (a∗, o∗1, o
∗
2, . . . , o

∗
n)

Algorithm 1: Graph Attention-Based Action Ranking (GABAR)

handling varying input sizes [29]. This allows them to learn patterns that generalize across different
problem instances within the same domain, regardless of the number of objects involved. The key
insight is that planning states are inherently relational - objects interact through predicates and actions
- and GNNs can capture these relationships through message passing between nodes and edges. The
GNN encoder (Algorithm 1, left side) transforms the input graph into learned embeddings.

Initialization (line 1): We initialize node features, edge features, and a global feature vector from the
input graph. Message Passing (lines 3-9): For L iterations, the encoder performs the following three
update steps. 1) Edge Update (line 5): Each edge updates its representation by combining features
from its connected elements. 2) Node Update (lines 7-8): Each node aggregates information from its
neighboring edges along with global context. 3) Global Update (lines 9-10): The global vector is
updated by aggregating information from all nodes and edges.

The aggregation function (AGG) employs attention mechanisms to weight different elements ac-
cording to their relevance. This architecture makes several key design choices motivated by the
planning domain. First, we explicitly model and update edge representations because edges in our
graph capture crucial information about action applicability. This edge information helps guide
the model toward selecting valid and effective actions. Second, we include a global node that can
rapidly propagate information across the graph. This is important because without the global node,
information would need to flow through many message-passing steps to reach distant parts of the
graph. The global node acts as a shortcut, allowing the model to maintain a comprehensive view of
the planning state even as the number of objects and relations grows. After L rounds of message
passing have been performed, the final global node embedding gl+1 captures the relevant planning
context needed for action selection.

3.3.2 GRU Decoder

The GRU-based decoder (Algorithm 1, right side) uses the encoded graph to select an action and its
parameters. Initialization (line 1): The decoder initializes its hidden state using the global graph
embedding and a zero vector. Action Schema Selection (lines 3-5): The decoder computes a score
for each potential action schema (line 3). It then Selects the highest-scoring action (line 4) and
updates the hidden state with the selected action’s features (line 5).

Parameter Selection (lines 7-10): For each required parameter position, scores are computed for all
objects using the current hidden state (line 8). The highest-scoring object is selected as the parameter
(line 9). The hidden state is updated with the selected object’s features (line 10). Output (line 11):
The decoder returns the complete action grounding.

This autoregressive approach ensures that each parameter selection is conditioned on the graph
structure, the selected action schema, and all previously selected parameters. By updating the GRU
hidden state with each selection, the model captures dependencies between different components

5

of the action. We repeat this greedily until all action parameters have been extracted. Since greedy
parameter selection is often too myopic, we employ beam search to explore multiple choices in
parallel. For a beam width k, at each step, we maintain the k highest-scoring partial sequences.
The final output is a ranked list of k action groundings (a, o1, . . . , on) along with their accumulated
scores. This process of GRU-based decoding helps generalize the framework to handle actions with
any arity, as we can extract as many objects as necessary for the action selected in the first step of the
decoding. Hence, at any given state, we can use the decoder to extract the ranking over the set of
actions with different arity all at once. This aligns with our goal of learning to rank fully grounded
actions rather than independently optimizing each argument (extended beam search version of the
decoder that maintains multiple candidate action groundings in parallel is provided as algorithm 2 in
the Appendix). While training optimizes for selecting the optimal action, the learned model provides
a ranking of the top k grounded actions during execution. The planner then selects the first legal
action in the current state according to the ranking. It also uses the ranking to avoid cycles - if an
action leads to a state previously visited, then the next best action is considered.

3.4 Data Generation and Training

For each planning domain, we generate training data by solving a set of small problem instances
using an optimal planner. Each training example consists of a planning state s, goal specification G,
and the first action a∗ from the optimal plan from s to G. For states with multiple optimal actions,
we randomly select one to avoid biasing the model.

The state-goal pairs are converted into our graph representation G = (V,E,X,R) as described in the
graph representation section. For each action a∗ in the training data, we create supervision signals in
the form of:

• ya: A one-hot vector over the action schema space indicating the correct action type

• yo = {yo1, ..., yok}: A sequence of k one-hot vectors over the object space, where k is the
maximum number of parameters any action can take, indicating the correct objects for each
parameter position

For action schema selection, the model needs to learn to assign the highest score to the correct action
schema among all possible schemas. For each parameter position, the model needs to learn to assign
the highest score to the correct object among all candidate objects. This is done using the following
loss function.

Loss Function. Given a training instance (G, ya, yo), GABAR computes action scores sa for all
possible action schemas and object scores soi for each parameter position i. The total loss is computed
as L = Laction + Lobjects, where, Lobjects is the sum of cross-entropy losses between softmax(soi)
and yoi for each parameter position i.

Training Procedure. For all domains, we train the model using the Adam optimizer with a learning
rate of 0.0005, 9 rounds of GNN, and batch size of 16, hidden dimensionality of 64. Training
proceeds for a maximum of 500 epochs, and we select the model checkpoint that achieves the lowest
loss on the validation set for evaluation. It takes between 1-2 hours to train a model for each domain
on an RTX 3080.

4 Experiments

We evaluate GABAR’s performance across a diverse set of classical planning domains. Our experi-
ments aim to assess both the quality of learned policies and their ability to generalize to significantly
larger problems than those in training. We selected eight standard planning domains that present
different types of structural complexity and scaling dimensions. The domains are : BlocksWorld,
Gripper, Miconic, Spanner, Logistics, Rovers, Grid and Visitall (More details about domains and
number of training instances in appendix A.1).

We divide the test set for each domain into 3 separate subsets, easy, medium, and hard with increasing
difficulty with problem sizes as defined in table 1 along with the training and validation dataset sizes.
Each test subset has 100 problems. In contrast, the training dataset consists of problems smaller and
simpler than the ones found in the easy subset.

6

Table 1: Distribution of problem sizes across train, validation, and test datasets. The ranges indicate
the number of objects/variables defining each domain’s problem complexity.* In Visitall and Grid,
size refers to number of cells

domain
Train Val Test

domain
Train Val Test

easy med hard easy med hard

Blocks [6, 9] [10] [11, 20] [21, 30] [31, 40] Rovers [3, 9] [10] [11, 30] [31, 50] [51, 70]

Gripper [5, 15] [17] [20, 40] [41, 60] [61, 100] Visitall* [9, 36] [49] [50, 100] [101, 200] [201, 400]

Miconic [1, 9] [10] [20, 40] [41, 60] [61, 100] Grid* [25, 49] [63] [64, 100] [100, 125] [125, 154]

Spanner [2, 9] [10] [11, 20] [21, 30] [31, 40] Logistics [4, 7] [8] [15, 20] [21, 25] [26, 30]

We evaluate GABAR against three state-of-the-art approaches for learning generalized policies: GPL,
ASNets, and GRAPL. Each represents a different architectural paradigm for tackling generalized
planning.

4.1 Baseline Approaches

GPL (Generalized Policy Learning) [24] learns value functions over states using GNNs. It selects
actions by identifying unvisited states with the lowest estimated cost-to-goal. GPL attempts to learn
a globally consistent value function by minimizing the regularized Bellman error |V (s) − (1 +
mins′∈N(s) V (s′))|+max{0, V ∗(s)− V (s)}+max{0, V (s)− δV ∗(s)} where s is state and V (s)
is value function defined as cost to goal.

ASNets (Action Schema Networks) [27] employs a neural network with alternating action and
proposition layers. Each layer contains modules that connect only to related modules in adjacent
layers. ASNets shares weights across modules of the same action schema or predicate, enabling
generalization across problems of varying sizes but limiting its reasoning to a fixed-depth receptive
field.

GRAPL (Graph Relational Action Ranking for Policy Learning) [16] learns to rank actions using
canonical abstractions where objects with identical properties are grouped together. Its neural network
predicts both action probabilities and plan length estimates but lacks the explicit action-object graph
structure and conditional decoding mechanisms of our approach.

Ablations: To assess each component’s contribution to GABAR, we conducted ablation experiments
with three variants:

• GABAR-ACT: Removes action nodes and action-object edges from the graph, using only object
and predicate nodes for decision-making.

• GABAR-CD: Eliminates conditional decoding by selecting action parameters independently rather
than sequentially. This tests the importance of dependencies between action parameters.

• GABAR-RANK: Replaces action ranking with a value function learning objective while maintain-
ing our graph representation.

These ablations isolate our key innovations—action-centric graphs, GRU-based conditional decoding,
and action ranking—to measure their individual impact on performance.

Evaluation Metrics. We evaluate GABAR using two primary metrics:

• Coverage (C): The percentage of test instances successfully solved within a 1000-step limit.
• Plan Quality Ratio(P): Ratio of plan length produced by Fast Downward (FD) [14] planner to

the plan length produced by the learned policy. FD is run with fd-lama-first setting. We chose
this satisficing configuration over optimal planners since optimal planners fail to solve most test
problems within a reasonable time. While this means we cannot guarantee the optimality of the
reference plans, it provides a practical baseline for assessing solution quality.

High coverage on larger instances demonstrates the model’s ability to learn general action selection
strategies, while plan quality ratio reveals whether these strategies produce efficient plans as problems
scale up.

7

5 Results and Discussions

Table 2: Coverage (C) and plan quality ratio (P) across different domains and difficulty levels.
Turqoise color intensity for C values indicates coverage score (Only values above 50% are highlighted:
Light: 50-74%, Medium: 75-89%, Dark: 90-100%). P values are highlighted in violet with similar
thresholds (No highlight: 0-0.49, Light: 0.5-0.74, Medium: 0.75-0.99, High: 1.0+). Columns are
grouped into Baselines and Ablations. Combined rows show averages across all domains. (*) only
non-zero values from their respective domains were considered

Baselines Ablations

GPL ASNets GRAPL GABAR GABAR-ACT GABAR-CD GABAR-RANK

Domain Diff C↑ P↑ C↑ P↑ C↑ P↑ C↑ P↑ C↑ P↑ C↑ P↑ C↑ P↑

Blocks
E 100 1.1 100 1.6 64 0.65 100 1.5 44 0.65 100 0.92 29 0.79
M 45 0.68 100 1.5 48 0.44 100 1.6 14 0.49 92 0.81 21 0.71
H 10 0.33 92 1.4 38 0.28 100 1.7 4 0.35 81 0.80 9 0.61

Miconic
E 97 0.97 100 1.0 68 0.56 100 1.0 35 0.55 97 0.88 42 0.67
M 37 0.56 100 0.98 65 0.54 100 0.97 18 0.33 94 0.86 29 0.37
H 19 0.29 90 0.92 60 0.49 100 0.95 2 0.27 88 0.83 16 0.29

Spanner
E 73 1.1 78 0.86 22 0.65 94 1.1 31 0.65 87 0.98 57 0.82
M 42 0.56 60 0.69 5 0.55 93 0.99 11 0.27 81 0.93 42 0.77
H 3 0.18 42 0.61 0 - 89 0.91 0 - 62 0.79 12 0.45

Gripper
E 100 1.0 78 0.98 26 0.95 100 1.1 31 0.56 95 1.0 55 0.58
M 56 0.85 54 0.91 12 0.67 100 0.99 23 0.40 92 0.93 43 0.41
H 21 0.74 42 0.88 0 - 100 0.96 9 0.28 87 0.86 21 0.33

Visitall
E 69 1.3 94 0.96 92 1.1 93 1.1 72 1.2 91 1.1 52 0.64
M 15 0.76 86 0.93 88 1.0 91 1.0 64 0.93 89 1.1 46 0.56
H 0 0 64 0.81 78 0.99 88 1.1 44 0.67 83 1.2 39 0.54

Grid
E 74 0.89 52 0.81 20 0.38 100 0.91 21 0.56 79 0.87 17 0.54
M 17 0.61 45 0.66 3 0.28 97 0.85 8 0.46 71 0.65 12 0.28
H 0 0 21 0.60 0 - 92 0.74 0 - 54 0.53 0 -

Logistics
E 56 0.61 39 0.71 32 0.81 90 0.75 12 0.64 31 0.86 41 0.65
M 7 0.21 22 0.55 9 0.45 76 0.65 3 0.49 25 0.54 21 0.49
H 0 0 4 0.39 0 - 71 0.59 0 - 6 0.35 0 -

Rovers
E 64 0.99 67 0.96 21 0.35 87 1.0 22 0.75 44 0.81 33 0.67
M 9 0.32 56 0.87 5 0.19 82 0.96 6 0.66 37 0.63 9 0.56
H 0 0 31 0.64 0 - 77 0.97 0 - 19 0.57 0 -

Combined
E 79.1 0.98 76 0.98 43.5 0.67 95.5 1.04 33.5 0.69 78 0.93 40.2 0.67
M 28.5 0.56 65.4 0.88 29.3 0.51* 92.2 1.01 18.4 0.50 72.7 0.80 27.8 0.51
H 6.5 0.39* 48.5 0.78 22.1 0.58* 89.2 0.99 7.4 0.39* 60 0.73 12.1 0.44*

Table 2 shows the performance of GABAR, its ablations, and the baseline approaches across all
domains. The results demonstrate significant differences in generalization capabilities and solution
quality.

5.1 Generalization Performance

GABAR generalizes remarkably well across all domains, with coverage dropping minimally from
95.5% on easy problems to 89.5% on hard problems. This generalization is particularly evident
in domains like Visitall, where GABAR solves problems 8 times larger than those in training. On
BlocksWorld, Gripper, and Miconic, GABAR achieves 100% success rate at all difficulty levels.

Even in complex domains requiring multi-relation features (Grid, Logistics) or higher arity predi-
cates (Rovers), GABAR maintains strong performance with success rates of 92%, 62%, and 77%

8

respectively on hard instances. This demonstrates that our graph structure effectively encodes critical
problem information, and the decoder successfully captures relationships between actions and their
parameters. We now analyze GABAR against baselines and relevant ablation results, highlighting
how our design choices contribute to performance improvements.

Action Ranking vs. Value Function Learning: GPL uses GNNs to learn value functions over
states, aiming to produce globally consistent estimates of cost-to-goal [24]. As problems grow larger,
maintaining these consistent estimates becomes significantly more challenging. GPL’s coverage
drops to 0% on hard instances of Logistics and Visitall where GABAR maintains 71% and 88%
coverage. Our ablation GABAR-RANK, which replaces action ranking with value function learning
while keeping our graph structure intact, shows a similar pattern—coverage decreases from 89.2%
to just 12.1% on hard problems. The PQR also drops from 0.98 in easy problems to 0.39 in hard
problems for GPL, 0.67 to 0.44 for GABAR-RANK. This parallel between GPL and GABAR-RANK
confirms that directly ranking actions is more effective than learning value functions.

Conditional vs. Non-conditional Decoding: GRAPL also learns action rankings but uses an
abstract state representation without explicit modeling of action parameter dependencies [16]. While
conceptually similar to our approach, GRAPL achieves only moderate performance on easy instances
(43.5% coverage) and struggles on harder problems (22.1% coverage) compared to GABAR’s 95.5%
and 89.2%. Our ablation GABAR-CD, which removes our conditional decoding mechanism, shows a
similar degradation—coverage drops from 89.2% to 60.0% on hard problems overall, with particularly
dramatic decreases in complex domains like Logistics (from 62% to 21%). This comparison highlights
the critical importance of our conditional GRU-based decoder for handling complex dependencies
in domains where objects participate in multiple predicates simultaneously (e.g., a package being
in both a city and a vehicle). The decoder learns relationships between parameter selections by
conditioning each object choice on previously selected objects, enabling the model to capture complex
inter-parameter relationships that GRAPL cannot.

Action-Centric Graph Structure: ASNets employs alternating action and proposition layers with
a fixed-depth receptive field [27], limiting its ability to reason about long chains of dependencies.
While ASNets performs reasonably on medium-difficulty problems, it generalizes poorly to larger
instances—achieving only 21%, 4%, and 31% coverage on hard instances of Grid, Logistics, and
Rovers, compared to GABAR’s 92%, 62%, and 77%. Although we don’t have a perfect ablation
parallel for ASNets, our GABAR-ACT ablation (removing action nodes) shows catastrophic perfor-
mance drops from 95.5% to 33.5% on easy problems and from 89.2% to just 7.4% on hard problems.
This suggests that explicit action-object relationship modeling in the graph structure is critical for
robust generalization.

These comparisons demonstrate that GABAR’s superior performance stems from the synergistic
combination of three key ideas: (1) an action-centric graph representation that captures relationships
between actions and objects, (2) conditional decoding that models dependencies between action
parameters, and (3) direct action ranking that avoids the challenges of learning globally consistent
value functions. The ablation studies confirm that each component addresses these limitations present
in current approaches to generalized planning.

6 Conclusion and Future Work

We presented GABAR, a novel graph-based architecture for learning generalized policies in classical
planning through action ranking. Our key contributions include (1) an action-centric graph represen-
tation that explicitly captures action-object relationships, (2) a GNN architecture augmented with
global nodes and GRUs for effective information propagation, and (3) a sequential decoder that learns
to construct complete grounded actions. First, GABAR shows strong generalization capabilities,
successfully solving problems significantly larger than those used in training. The system maintains
high coverage (89%) even on the hardest test instances that are up to 8 times larger than training prob-
lems. This generalization is particularly significant in complex domains like logistics and grid that
require coordinating multiple entities. Second, our extensive baseline and ablation studies validate
that this superior performance stems from the synergistic combination of our core design choices.
Our comparison with the value-based GPL baseline and our GABAR-RANK ablation confirms that
directly ranking local actions is a more robust and generalizable strategy for large problems than
learning a globally consistent value function . Furthermore, the significant performance gap between

9

GABAR and both the GRAPL baseline and our GABAR-CD (non-conditional) ablation highlights the
critical importance of the conditional decoder for handling complex action-parameter dependencies .
Finally, comparisons against ASNets and the failure of the GABAR-ACT (no action nodes) ablation
show that explicitly modeling action-object relationships within the graph is essential for robust
generalization. The primary challenge for the proposed method is the graph representation’s growth
rate, particularly for domains with high-arity actions or predicates. Future work could explore more
compact representations while maintaining expressiveness and investigate ways of pruning irrelevant
actions in the graph. Other future work could also include expanding the representation to handle
uncertainty and solve more real-world problems such as object rearrangement.

7 Acknowledgments

The authors acknowledge the support of Army Research Office under grant W911NF2210251

References
[1] Dillon Z Chen, Sylvie Thiébaux, and Felipe Trevizan. Learning domain-independent heuris-

tics for grounded and lifted planning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 20078–20086, 2024.

[2] Dillon Z Chen, Pulkit Verma, Siddharth Srivastava, Michael Katz, and Sylvie Thiébaux. Ai
planning: A primer and survey (preliminary report). arXiv preprint arXiv:2412.05528, 2024.

[3] Leah Chrestien, Stefan Edelkamp, Antonin Komenda, and Tomas Pevny. Optimize planning
heuristics to rank, not to estimate cost-to-goal. Advances in Neural Information Processing
Systems, 36, 2024.

[4] Sašo Džeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning. Machine
learning, 43:7–52, 2001.

[5] Kutluhan Erol, Dana S. Nau, and V.S. Subrahmanian. Complexity, decidability and undecid-
ability results for domain-independent planning. Artificial Intelligence, 76(1):75–88, 1995.
Planning and Scheduling.

[6] Alan Fern, Sungwook Yoon, and Robert Givan. Approximate policy iteration with a policy
language bias. Advances in neural information processing systems, 16, 2003.

[7] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing temporal planning
domains. Journal of artificial intelligence research, 20:61–124, 2003.

[8] Sankalp Garg, Aniket Bajpai, et al. Size independent neural transfer for rddl planning. In
Proceedings of the International Conference on Automated Planning and Scheduling, volume 29,
pages 631–636, 2019.

[9] Sankalp Garg, Aniket Bajpai, et al. Symbolic network: generalized neural policies for relational
mdps. In International Conference on Machine Learning, pages 3397–3407. PMLR, 2020.

[10] Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning to rank for
synthesizing planning heuristics. arXiv preprint arXiv:1608.01302, 2016.

[11] Naresh Gupta and Dana S Nau. On the complexity of blocks-world planning. Artificial
intelligence, 56(2-3):223–254, 1992.

[12] William L Hamilton. Graph representation learning. Morgan & Claypool Publishers, 2020.

[13] Mingyu Hao, Felipe Trevizan, Sylvie Thiébaux, Patrick Ferber, and Jörg Hoffmann. Guiding
gbfs through learned pairwise rankings. In Thirty-Third International Joint Conference on Arti-
ficial Intelligence {IJCAI-24}, pages 6724–6732. International Joint Conferences on Artificial
Intelligence Organization, 2024.

[14] Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

10

[15] Jaromír Janisch, Tomáš Pevnỳ, and Viliam Lisỳ. Symbolic relational deep reinforcement
learning based on graph neural networks and autoregressive policy decomposition. arXiv
preprint arXiv:2009.12462, 2020.

[16] Rushang Karia and Siddharth Srivastava. Learning generalized relational heuristic networks
for model-agnostic planning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 8064–8073, 2021.

[17] Rajesh Mangannavar, Alan Fern, and Prasad Tadepalli. Hierarchical object-oriented pomdp
planning for object rearrangement. arXiv preprint arXiv:2412.01348, 2024.

[18] Rajesh Mangannavar and Prasad Tadepalli. Gammazero: Learning to guide pomdp belief space
search with graph representations. arXiv preprint arXiv:2510.14035, 2025.

[19] Or Rivlin, Tamir Hazan, and Erez Karpas. Generalized planning with deep reinforcement
learning. arXiv preprint arXiv:2005.02305, 2020.

[20] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[21] Jendrik Seipp, Álvaro Torralba, and Jörg Hoffmann. PDDL generators. https://doi.org/
10.5281/zenodo.6382173, 2022.

[22] William Shen, Felipe Trevizan, and Sylvie Thiébaux. Learning domain-independent planning
heuristics with hypergraph networks. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 30, pages 574–584, 2020.

[23] Simon Ståhlberg, Blai Bonet, and Hector Geffner. Learning general optimal policies with graph
neural networks: Expressive power, transparency, and limits. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 32, pages 629–637, 2022.

[24] Simon Ståhlberg, Blai Bonet, and Hector Geffner. Learning generalized policies without
supervision using gnns. arXiv preprint arXiv:2205.06002, 2022.

[25] Simon Ståhlberg, Blai Bonet, and Hector Geffner. Learning general policies with policy
gradient methods. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, volume 19, pages 647–657, 2023.

[26] Simon Ståhlberg, Blai Bonet, and Hector Geffner. Learning general policies for classical
planning domains: Getting beyond c _2. arXiv preprint arXiv:2403.11734, 2024.

[27] Sam Toyer, Sylvie Thiébaux, Felipe Trevizan, and Lexing Xie. Asnets: Deep learning for
generalised planning. Journal of Artificial Intelligence Research, 68:1–68, 2020.

[28] Karthik Valmeekam, Kaya Stechly, Atharva Gundawar, and Subbarao Kambhampati. A system-
atic evaluation of the planning and scheduling abilities of the reasoning model o1. Transactions
on Machine Learning Research, 2025.

[29] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[30] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl
Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Relational deep reinforcement
learning. arXiv preprint arXiv:1806.01830, 2018.

A Appendix

A.1 Domain descriptions

Blocks World involves manipulating blocks to achieve specific tower configurations. The domain’s
complexity scales with the number of blocks (6-9 blocks for training/validation, 10-40 blocks for
testing).

11

https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173

Table 3: Number of training datapoints per domain

Domain Training Datapoints
Blocksworld 3,348
Gripper 6,287
Miconic 4,458
Spanner 3,801
Logistics 6,556
Rovers 3,874
VisitAll 3,654
Grid 6,880

Gripper requires a robot with two grippers to transport balls between rooms. The domain scales
primarily with the number of balls to be moved (5-17 balls for training/validation, up to 100 balls for
testing).

Miconic involves controlling an elevator to transport passengers between floors. The domain
complexity increases along two dimensions: the number of passengers (1-10 for training/validation,
20-100 for testing) and the number of floors (2-20 for training/validation, 11-30 for testing).

Logistics involves transporting packages between locations using trucks (for intra-city transport)
and airplanes (for inter-city transport). The domain scales with both the number of cities (4-8 for
training/validation, 15-30 for testing) and packages (3-9 for training/validation, 10-24 for testing).

Visitall requires an agent to visit all cells in a grid. The domain scales with grid size (9-49 cells
for training/validation, up to 400 cells for testing - testing problems 8 times larger than the training
dataset).

Grid involves navigating through a grid where certain doors are locked and require specific keys to
open. The number of locks (3) and keys (5) remain the same across training and testing while varying
the size of the grid (7×9 for training/validation to 11×14 for testing - a 150% increase in cells).

Spanner requires tightening nuts at one end of a corridor with spanners collected along the way.
Number of locations varies from 10-20 in training and testing, the number of spanners varies from
2-10 in training and 11 to 40 in testing.

Rovers requires multiple rovers equipped with different capabilities to perform experiments and send
results back to the lander. Training and validation instances use 2-5 rovers and 3-10 waypoints; those
for testing have 3-7 rovers and 11-70 waypoints.

Table 3 contains information about number of datapoints used for each domain 1. All problems were
generated using openly available PDDL-generators [21].

A.2 Ablations

We present more ablations on our method in this section to further analyze the contribution of different
components in our GABAR architecture. The two configurations tested are:

• GABAR-G: An ablated version of GABAR that removes the global node from the graph neural
network. Without the global node, the model lacks a centralized representation that aggregates infor-
mation across the entire state, potentially limiting its ability to reason about complex relationships
spanning multiple objects.

• GABAR-ACT_CD: A severely limited version that removes both the action representation from
the graph and the conditional decoding mechanism. This baseline lacks the capability to explicitly
represent actions in the state graph and cannot condition parameter selection on previously chosen
actions, effectively testing the importance of both structured action representation and sequential
decision-making. Results Discussion

1Code : https://anonymous.4open.science/r/ltp-4741/ . Dataset submitted as supplementary
material

12

https://anonymous.4open.science/r/ltp-4741/

Table 4: Performance across domains and difficulty levels. Coverage (C) indicates percentage of test
instances solved within 1000 steps. Plan Quality Ratio (P) reported only for solved instances. Turqoise
color intensity for C values indicates coverage score (Only values above 50% are highlighted). P
values are highlighted in violet with similar thresholds. Combined rows show averages across all
domains. (*) only non-zero values from their respective domains were considered.

ACT_CD GABAR GABAR-G

Domain Diff C↑ P↑ C↑ P↑ C↑ P↑

Blocks
E 11 0.33 100 1.5 100 1.2
M 8 0.31 100 1.6 88 1.2
H 0 - 100 1.7 32 0.70

Miconic
E 8 0.32 100 1.0 95 0.95
M 3 0.27 100 0.97 70 0.87
H 0 - 100 0.95 56 0.73

Spanner
E 12 0.43 94 1.1 82 0.93
M 1 0.24 93 0.99 74 0.81
H 0 - 89 0.91 54 0.62

Gripper
E 15 0.58 100 1.1 95 1.0
M 5 0.34 100 0.99 92 0.95
H 0 - 100 0.96 77 0.90

Visitall
E 23 0.58 93 1.1 77 0.96
M 19 0.55 91 1.0 66 0.83
H 16 0.48 88 1.1 29 0.51

Grid
E 0 - 100 0.91 79 0.83
M 0 - 97 0.85 68 0.62
H 0 - 92 0.74 33 0.41

Logistics
E 0 - 90 0.75 45 0.43
M 0 - 76 0.65 22 0.33
H 0 - 71 0.59 4 0.21

Rovers
E 3 0.45 87 1.0 77 0.85
M 0 - 82 0.96 72 0.79
H 0 - 77 0.97 55 0.65

Combined
E 9 0.44* 95.5 1.04 80.2 0.89
M 4.5 0.34* 92.2 1.01 69.2 0.79
H 2 0.48* 89.2 0.99 42.5 0.59

The results from Table 4 clearly demonstrate the effectiveness of our complete GABAR architecture
compared to its ablated counterparts:

Overall Performance: GABAR significantly outperforms both ablated versions across all domains
and difficulty levels. With average coverage of 95.5%, 92.2%, and 89.2% for easy, medium, and hard
problems respectively, GABAR demonstrates robust generalization capabilities.

GABAR v/s GABAR-G : The dramatic performance drop from GABAR to GABAR-G (especially
on hard problems where coverage falls from 89.2% to 42.5%) highlights the critical importance of the
global node in our architecture. This component enables effective information aggregation across the
entire state graph, substantially improving the model’s ability to handle complex planning scenarios.
This degradation in quality suggests that the global node plays a crucial role in helping the model
learn strategic action selection rather than just locally reasonable choices.

GABAR v/s GABAR-ACT_CD : The extremely poor performance of GABAR-ACT_CD (with
coverage below 10% in most domains and near-zero on harder problems) confirms that both action
representation within the graph and conditional decoding are essential components. Without them, the

13

model fails to capture the relationship between actions and their parameters or to maintain consistency
in sequential decisions.

Plan Quality: Beyond just solving more problems, GABAR consistently generates higher-quality
plans (as measured by PQR) compared to its ablated counterparts. This indicates that the full model
not only finds solutions but discovers more efficient paths to the goal.

A.3 LLM Comparisons

To evaluate the relative capabilities of our approach against state-of-the-art language models, we
conducted experiments using OpenAI’s O3 model and Gemini-2.5-Pro (both released in 2025).
Following the methodology of [28], we adopted their One-Shot prompting technique to generate
prompts for our planning problems. We extracted the generated plans from model responses and
validated them against problem constraints.

Table 5: Comparative performance of GABAR against state-of-the-art Large Language Models
(OpenAI-O3 and Gemini-2.5-Pro) using a One-Shot prompting methodology. GABAR substantially
outperforms both LLMs in Coverage (C↑) and Plan Quality (P↑) across all difficulties. The
performance gap widens significantly on medium (M) and hard (H) problems, where LLM coverage
collapses, highlighting their limitations in complex problems. Turqoise color intensity for C values
indicates coverage score (Only values above 50% are highlighted). P values are highlighted in violet
with similar thresholds. Combined rows show averages across all domains. (*) only non-zero values
from their respective domains were considered.

OpenAI-O3 Gemini2.5-Pro GABAR

Domain Diff C↑ P↑ C↑ P↑ C↑ P↑

Blocks
E 73 1.03 81 1.1 100 1.5
M 41 0.95 47 0.86 100 1.6
H 4 0.61 12 0.81 100 1.7

Miconic
E 56 0.81 79 0.86 100 1.0
M 12 0.69 36 0.58 100 0.97
H 0 - 12 0.51 100 0.95

Spanner
E 38 0.81 42 0.75 94 1.1
M 13 0.77 10 0.64 93 0.99
H 0 - 0 - 89 0.91

Gripper
E 39 0.89 55 0.95 100 1.1
M 7 0.75 12 0.81 100 0.99
H 0 - 0 - 100 0.96

Visitall
E 37 0.88 43 0.97 93 1.1
M 18 0.73 27 0.96 91 1.0
H 0 - 0 - 88 1.1

Grid
E 22 0.81 26 0.67 100 0.91
M 7 0.71 13 0.56 97 0.85
H 0 - 0 - 92 0.74

Logistics
E 5 0.77 13 0.68 90 0.75
M 0 - 0 - 76 0.65
H 0 - 0 - 71 0.59

Rovers
E 12 0.78 43 0.45 87 1.0
M 0 - 13 0.33 82 0.96
H 0 - 0 - 77 0.97

Combined
E 33.4 0.85 44.0 0.8 95.5 1.04
M 11.6 0.77* 17.1 0.68* 92.2 1.01
H 0.4 0.61* 1.5 0.51* 89.2 0.99

14

Table 5 presents the comparative results. GABAR demonstrates substantially superior performance
across all difficulty levels. On easy problems, while Gemini-2.5-Pro achieves the highest coverage
among LLMs at 44.0%, GABAR reaches 95.5% coverage with better plan quality (1.04 vs 0.80).
OpenAI-O3 achieves 33.4% coverage with a plan quality of 0.85.

The performance gap widens substantially on medium-difficulty problems. Gemini-2.5-Pro maintains
17.1% coverage while OpenAI-O3 drops to 11.6%, compared to GABAR’s 92.2%. Both LLMs also
show degraded plan quality (0.68-0.77) while GABAR maintains 1.01. This suggests that as planning
complexity increases, language models struggle with both solution generation and plan quality.

On hard problems, both language models demonstrate severe limitations. OpenAI-O3 achieves only
0.4% coverage (solving problems in a single domain: Blocks), while Gemini-2.5-Pro reaches 3.0%
(succeeding in Blocks and Miconic). Their plan quality on these rare successes remains substantially
lower (0.61 and 0.51 respectively) compared to GABAR’s consistent 0.99 across all domains.

These results highlight fundamental differences in approach. While LLMs rely on pattern matching
from training data and struggle with systematic reasoning over complex state spaces, GABAR’s
architecture explicitly learns structural relationships between actions, objects, and predicates through
its graph-based representation. This structural inductive bias, combined with conditional decoding
mechanisms, enables GABAR to maintain robust performance as problem complexity scales—a
critical requirement for practical planning applications.

A.4 Plan Length and Coverage Analysis

In addition to coverage metrics, we analyze the efficiency of generated plans through plan length
measurements. Plan length represents the number of actions in the solution found by each method,
with shorter plans indicating more efficient solutions. However, raw plan length comparisons are
fundamentally misleading when methods achieve different coverage rates because methods that solve
fewer problems inherently select for simpler instances within each difficulty category, artificially
deflating their average plan lengths. To address this selection bias, we report the Plan Quality Ratio
(PQR) as our primary efficiency metric. PQR is computed as the ratio of the learned policy’s plan
length to Fast Downward’s plan length, but crucially, only for problems successfully solved by
both methods. This metric eliminates the confounding factor of different methods tackling different
problem subsets—a method that solves only 10% of the easiest problems might show excellent raw
plan lengths, but its PQR reveals the true efficiency when compared fairly on the same problem
instances. For this reason, PQR serves as the main plan quality metric throughout our evaluation,
providing meaningful comparisons even when coverage rates differ substantially between methods.

A.4.1 Understanding Plan Length in Context of Coverage

We present the Plan length (PL) results for all baselines and GABAR in Table 6. GABAR demonstrates
high efficiency when coverage differences are properly contextualized. While GABAR does not
always achieve the absolute lowest plan lengths, its performance becomes exceptional considering
that it consistently solves significantly more problems than competitors across the entire spectrum of
problem complexity.

The apparent discrepancies in plan length are largely explained by coverage differences between
methods. When GPL achieves a lower plan length of 27 on Spanner-Easy compared to GABAR’s
31, GPL only covers 73% of problems while GABAR covers 94%. Similarly, on Visitall-Easy, GPL
achieves a plan length of 79 with only 69% coverage, while GABAR produces plans of length 103
but solves 93% of problems. The additional problems that GABAR solves likely represent more
complex instances requiring longer plans, explaining the higher average plan length.

When examining cases with comparable coverage, GABAR’s plan length performance becomes
more impressive. On Blocks-Medium and Blocks-Hard, where GABAR maintains 100% coverage
compared to ASNets’ 100% and 92% respectively, GABAR achieves superior plan lengths of 76 and
125 compared to ASNets’ 79 and 156. This demonstrates that when solving the same problem set,
GABAR produces more efficient plans than the baselines.

The combined results further reinforce this analysis. GABAR’s average plan lengths of 76, 108,
and 147 represent solutions to 95.5%, 92.2%, and 89.2% of all problems respectively. In contrast,
competitors with seemingly better plan lengths like GPL (69, 148, 265) only solve 79.1%, 28.5%,

15

and 6.5% of problems. The dramatic coverage drop as difficulty increases explains why baselines
maintain apparently stable plan lengths—they increasingly solve only the simplest instances while
GABAR continues to tackle the complete problem set, including the most complex cases that naturally
require longer plans.

This selection bias is precisely why PQR provides a more meaningful comparison. By evaluating
plan quality only on problems that both the learned policy and Fast Downward successfully solve,
PQR eliminates the confounding factor of different methods tackling different problem subsets. Even
when the baselines achieve lower average plan lengths across their limited coverage, their PQR
values remain inferior to GABAR’s, confirming that GABAR’s comprehensive coverage does not
compromise solution quality when compared fairly on equivalent problem sets.

Table 6: Comparative performance of GABAR against baseline methods (GPL, ASNets, GRAPL).
Metrics include Coverage (C↑), Plan Quality Ratio (P↑), and absolute Plan Length (PL↓). Turqoise
color intensity for C values indicates coverage score (Only values above 50% are highlighted). P
values are highlighted in violet with similar thresholds. Combined rows show averages across all
domains. (*) only non-zero values from their respective domains were considered.

GPL ASNets GRAPL GABAR

Domain Diff C↑ P↑ PL↓ C↑ P↑ PL↓ C↑ P↑ PL↓ C↑ P↑ PL↓

Blocks
E 100 1.1 55 100 1.6 38 64 0.65 79 100 1.5 41
M 45 0.68 137 100 1.5 79 48 0.44 214 100 1.6 76
H 10 0.33 423 92 1.4 156 38 0.28 585 100 1.7 125

Miconic
E 97 0.97 167 100 1.0 162 68 0.56 252 100 1.0 160
M 37 0.56 235 100 0.98 180 65 0.54 280 100 0.97 181
H 19 0.29 448 90 0.92 209 60 0.49 329 100 0.95 202

Spanner
E 73 1.1 27 78 0.86 36 22 0.65 35 94 1.1 31
M 42 0.56 61 60 0.69 55 5 0.55 50 93 0.99 44
H 3 0.18 208 42 0.61 79 - - - 89 0.91 67

Gripper
E 100 1.0 82 78 0.98 76 26 0.95 61 100 1.1 78
M 56 0.85 128 54 0.91 118 12 0.67 128 100 0.99 133
H 21 0.74 139 42 0.88 131 - - - 100 0.96 156

Visitall
E 69 1.3 79 94 0.96 121 92 1.1 106 93 1.1 103
M 15 0.76 188 86 0.93 194 88 1.0 181 91 1.0 179
H - - - 64 0.81 333 78 0.99 272 88 1.1 243

Grid
E 74 0.89 41 52 0.81 47 20 0.38 77 100 0.91 45
M 17 0.61 66 45 0.66 73 3 0.28 143 97 0.85 63
H - - - 21 0.60 101 - - - 92 0.74 98

Logistics
E 56 0.61 117 39 0.71 101 32 0.81 88 90 0.75 127
M 7 0.21 305 22 0.55 138 9 0.45 169 76 0.65 159
H - - - 4 0.39 217 - - - 71 0.59 232

Rovers
E 64 0.99 17 67 0.96 19 21 0.35 44 87 1.0 21
M 9 0.32 78 56 0.87 36 5 0.19 125 82 0.96 33
H - - - 31 0.64 55 - - - 77 0.97 45

Combined
E 79.1 0.98 69 76.0 0.98 73 43.5 0.67 91 95.5 1.04 76
M 28.5 0.56 148 65.4 0.88 111 29.3 0.51 172 92.2 1.01 108
H 6.5 0.39* 265 48.5 0.78 158 22.1 0.58* 276 89.2 0.99 147

A.5 Beam Search Action Decoder

The beam search action decoder (Algorithm 2) enhances the basic greedy decoder by maintaining
multiple candidate sequences at each decoding step.

16

Initialization (line 1): Similar to the greedy approach, the decoder initializes its hidden state using
the global graph embedding and a zero vector.

Action Schema Selection (lines 2-5): Instead of selecting only the highest-scoring action schema,
beam search maintains the top-k action schemas. For each action schema a ∈ A, a score sa
is computed (line 3). The k highest-scoring actions form the initial beam B0 (lines 4-5), each
representing a partial sequence with an action schema, an empty parameter list, the initial hidden
state, and the action score.

Parameter Selection with Beam Search (lines 6-15): During each decoding step, the algorithm
expands all sequences in the current beam by considering the top-k object candidates for the next
parameter position:

• For each sequence in the current beam Bt−1 (line 9), scores are computed for all objects using the
current hidden state (line 10).

• The top-k objects O∗ are identified (line 11).
• Each sequence is expanded with each of these top-k objects (lines 12-14), creating k × |Bt−1| new

candidate sequences in B′
t.

• The hidden state is updated for each new sequence (line 13).
• The beam is pruned to keep only the k highest-scoring expanded sequences (line 15), forming the

new beam Bt.

Output (line 16): After processing all parameter positions, the algorithm returns the set of completed
sequences, each forming a fully grounded action.

In our implementation, we set k = 2 for the beam search. This parameter choice provides a reasonable
trade-off between exploration and computational efficiency. A beam width of 2 allows the decoder
to maintain alternative sequences when faced with uncertainty, which is particularly important for
handling invalid actions that might need to be discarded. Setting a larger beam width provides better
results theoretically but increases computational cost without proportional benefits in our domains.

Procedure ACTIONDECODERBEAM(gL, {vL
i }i∈V , A,O, k)

1: h0 = GRU(gL,0)

2: // Step 1: Action schema selection
3: sa = MLP(h0 ⊙ vL

a),∀a ∈ A

4: A∗ = {a1, a2, . . . , ak} = top-k
a∈A

(sa)

5: B0 = {(aj , [], h0, saj
)|aj ∈ A∗}

6: // Step 2: Parameter selection with beam search
7: for t = 1 to max_params do
8: B′

t = ∅
9: for (a, [o1, . . . , ot−1], ht−1, s) ∈ Bt−1 do
10: so = MLP(ht−1 ⊙ vL

o),∀o ∈ O

11: O∗ = {o1, o2, . . . , ok} = top-k
o∈O

(so)

12: for oj ∈ O∗ do
13: ht = GRU(ht−1,v

L
oj)

14: B′
t = B′

t ∪ {(a, [o1, . . . , ot−1, oj], ht, s+ soj)}
15: Bt = top-k

b∈B′
t

(score(b))

16: return {(a, [o1, o2, . . . , on])|(a, [o1, o2, . . . , on], h, s) ∈ Bmax_params}

Algorithm 2: Beam Search Action Decoder

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper claims that action ranking for planning using an action centric graph
representation is better than value function learning. We show that through our results and
ablations in table 2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed at the end of conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18

Answer: [NA]

Justification: The paper does not contain theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide graph construction details in section 3.2 and our model running
description in Algorithm 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Link to code provided in appendix. Data submitted in supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Information provided in Section 3.4, training procedure.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We present 48 results per method, and have results for a total of 9 methods (7
in main paper and 2 more in appendix), resulting in a total of 432 results. Hence, providing
error bars for all would be highly space consuming. We ensure statistical significance by
running our system on a large number of problems for each setting. Number of scenes
described in experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information provided in Section 3.4, training procedure.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There were no human subjects involved in this research and it uses only open
source data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

21

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the sources used to generate our data in the appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

22

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code is linked in the appendix and the test dataset is generated using open
source code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The work does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The work does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

23

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem Setup
	GNN Based Action Ranking
	System Overview
	Graph Representation
	Neural Architecture
	GNN Encoder
	GRU Decoder

	Data Generation and Training

	Experiments
	Baseline Approaches

	Results and Discussions
	Generalization Performance

	Conclusion and Future Work
	Acknowledgments
	Appendix
	Domain descriptions
	Ablations
	LLM Comparisons
	Plan Length and Coverage Analysis
	Understanding Plan Length in Context of Coverage

	Beam Search Action Decoder

