
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TARGETED MILP INSTANCE GENERATION VIA
FORMULATION CODE RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient and controllable data generation is critical for improving the performance
of data-driven Mixed-Integer Linear Programming (MILP) solvers, especially in
applications facing data scarcity. However, existing MILP instance generation
methods typically require training a separate model for each problem class, which
can be computationally intensive and does not allow for the generation of instances
with varying sizes and solution difficulties. To address these challenges, we in-
troduce MILP-Retrieval, a framework for targeted MILP instance generation via
formulation code retrieval. We first build a diverse MILP library that includes
multiple modalities and use it to pretrain an MILP embedding model. Based on
the output of this embedding model, we propose a novel similarity metric that
accurately measures the similarity between instances of different sizes within the
same problem class. MILP-Retrieval leverages this new metric to retrieve the
formulation code of a target instance and further tune it. Experimental results
demonstrate the effectiveness of generating MILP instances through formulation
code retrieval, with the ability to control both the scale and difficulty of the gen-
erated instances. This approach provides a novel perspective on MILP instance
generation and opens up new possibilities for learning-based solvers.

1 INTRODUCTION

Mixed-Integer Linear Programming (MILP) is widely used in various domains, such as scheduling
(Caumond et al., 2009; Floudas & Lin, 2005), logistics (Song et al., 2018; Galvez et al., 2015),
and planning (Ren & Gao, 2010). Recently, learning-based solvers (Li et al., 2024; Wang et al.,
2023; Ye et al., 2023) have shown promising performance, surpassing traditional solvers (Gurobi
Optimization, LLC, 2024; Bolusani et al., 2024; Holmström et al., 2009), offering new opportunities
to efficiently tackle complex MILP problems. However, a key challenge in developing learning-
based MILP solvers is the scarcity of high-quality data (Gleixner et al., 2021; Bengio et al., 2021).
Unlike fields such as natural language processing or computer vision, where large-scale datasets are
readily available (Dubey et al., 2024), MILP lacks publicly available, diverse instance datasets. This
shortage has led to growing interest in MILP instance generation.

Early approaches to MILP instance generation relied on domain knowledge or heuristics, design-
ing problems with specific mathematical formulations (Rejowski Jr & Pinto, 2004; Morales-España
et al., 2013; Moretti et al., 2021) or sampling instances from statistical encodings (Smith-Miles
& Bowly, 2015; Bowly et al., 2020). While effective, these methods depended heavily on expert-
defined templates, limiting their utility for downstream tasks such as learning-based solvers or solver
tuning (Li et al., 2024). More recently, research has shifted toward learning-based paradigms that
generate instances from specific problem classes, including methods for restructuring MILP formu-
lations (Yang et al., 2024; Liu et al., 2024b), generating partial structures with Variational Autoen-
coders (Geng et al., 2023; Guo et al., 2024), and reconstructing constraints with diffusion models
(Zhang et al., 2024).

Despite their innovation, these methods face several limitations: they require retraining separate
models for each problem class, which is computationally expensive and time-consuming, and they
offer limited control over the scale and difficulty of the generated instances.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Heuristic MILP Instance Generation (b) Learning-based MILP Instance Generation

(c) Targeted Instance Generation via MILP formulation code retrieval

Expert
Algorithm

Generated
Instance

Target
Instance

Generated
Instance

Generative
Model

Output Predict StructureTrain

Execute

Generated
Instance

Tune
Parameters

Embedding
Model

Target
Instance

MILP Library

(Controllable Scale,
Similarity & Diffuculty)

Train
Test

Pretrain Compare
Similarity

Retrieve
Formulation
Code

Figure 1: In MILP instance generation, (a) heuristic algo-
rithms are used to create problem instances; (b) recent ap-
proaches train a separate model for each problem class to
reconstruct problem structures; (c) our method retrieves &
tunes MILP formulation code, and uses it to directly gener-
ates problem instances.

To address these challenges, we pro-
pose MILP-Retrieval, a novel frame-
work for targeted MILP instance
generation that retrieves and tunes
formulation code rather than recon-
structing instance structures from
scratch. Our method offers several
advantages over prior approaches:
(1) it significantly reduces the time
and computational cost of instance
generation; (2) it provides fine-
grained control over the scale and
complexity of generated instances by
modifying parameters within the for-
mulation code; and (3) it ensures that
each generated instance comes with a
corresponding mathematical formu-
lation, enhancing transparency and
explainability.

Our approach begins by building a
large and diverse MILP library. Each
entry in this library contains a problem instance, a textual description, and the corresponding formu-
lation code. We then pretrain an MILP embedding model using this library. Using the output of this
embedding model, we introduce a novel similarity metric for MILP instances, which we refer to as
embedding metric. Unlike conventional structural similarity metrics (Geng et al., 2023; Guo et al.,
2024), our embedding metric capture semantic-level similarities by comparing instance embeddings.
This allows for more accurate similarity measurement across instances of the same class but with
different scales. MILP-Retrieval then retrieves formulation code from the MILP library based on the
target instance and tunes the parameters to control the scale and difficulty of the generated instance.

We conducted extensive experiments to evaluate the generalization and robustness of our ap-
proach. The evaluation was performed on two types of datasets: (i) 50 MILP problem classes
that were excluded from the training and retrieval library, and (ii) over 300 instances from the
real-world benchmark MIPLIB (Gleixner et al., 2021). First, we show that our proposed embed-
ding metric significantly outperforms existing metrics. We then compare the similarity between
generated and target instances using both metrics. Additionally, we demonstrate the controlla-
bility of MILP-Retrieval in generating instances with varying scales and solving complexity, and
we highlight how these instances can improve the performance of learning-based MILP solvers.
The code and data of the paper are provided at https://anonymous.4open.science/r/
MILP-Retrieval-D830/.

The main contributions of the paper are as follows.

1. We introduce a novel similarity metric for MILP instances that accurately measures the
similarity between problems of the same class but different scales, addressing limitations
of previous metrics.

2. We propose MILP-Retrieval, a new framework for instance generation that retrieves and
tunes formulation code based on the embedding similarity metric, enabling the generation
of instances highly similar to given target instances.

3. We demonstrate the practical potential of MILP-Retrieval in downstream applications, in-
cluding generating instances with varying scales and difficulties and enhancing learning-
based MILP solvers.

2 PRELIMINARY

2.1 MILP PROBLEM AND ITS DATA REPRESENTATIONS

The standard formulation of a Mixed-Integer Linear Programming (MILP) problem is given by:

2

https://anonymous.4open.science/r/MILP-Retrieval-D830/
https://anonymous.4open.science/r/MILP-Retrieval-D830/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

min
x∈Rn

cTx,

subject to Ax ≤ b,

l ≤ x ≤ u,

xi ∈ Z, i ∈ I.

(1)

In this formulation, the coefficient matrix A ∈ Rm×n represents the constraints structure, b ∈ Rm

denotes the constraints’ right-hand side vector, and c ∈ Rn is the objective coefficient. Vari-
ables are bounded within lower l ∈ (R ∪ {−∞})n and upper u ∈ (R ∪ {+∞})n limits. The
set I ⊆ {1, 2, . . . , n} identifies variables constrained to integer values. We additionally utilize sev-
eral alternative MILP data representations, as described below: (Figure 2 illustrates the relationships
among the different forms of MILP data. For examples of these data forms, see Appendix B.3.)

 �1 �1 + �2 �2 +…+ �� ��
�11 �1 + �12 �2 +…+ �1� �� ≤ �1

⋮
��1 �1 + ��2 �2 +…+ ����� ≤ ��

max
�

. . .

. . .

MILP Instances

Graph Rep.
Data cost = random.rand(..)
model = Model(“MyMILP")
model.addVar(..)
model.addCons(..)
model.setObjective(..)
params = {‘n_items’: 100,

'density': 0.05, ...}

Formulation Code

The MPS file represents a
mixed integer programming
problem focused on xxx
task. Its objective is to
minimize the total cost
associated with the
selected columns, defined
by the coefficients specific
to this problem. ...

Textual Description

MILP Library

for each MILP instance

Figure 2: Relationships among different forms of MILP
data.

Bipartite Graph Representation
A bipartite graph representation pro-
vides a lossless encoding of MILP
problems (Gasse et al., 2019). Here,
variables V = {v1, v2, . . . , vn} and
constraints C = {c1, c2, . . . , cm} are
represented as distinct node sets. An
edge eij = (vi, cj) ∈ E is present
if the variable vi is part of constraint
cj . This forms a bipartite graph
G = (V, C, E) capturing the struc-
tural relationships between variables
and constraints. Additional details re-
garding graph features are provided
in Appendix B.1.

Formulation Code Formulation code represents MILP problems in a generative manner, imple-
mented using the PySCIPOpt library (Bolusani et al., 2024). Each formulation code characterizes
a distinct MILP problem class, encapsulating the procedural logic required to generate instances.
As illustrated in Figure 2 (highlighted in red), the parameter section of the formulation code can be
tuned to control various features of the generated instances, such as their size and complexity.

Textual Description Textual descriptions offer natural language representations of MILP prob-
lems generated via methodologies from (Li et al., 2025). Initially, construction code is processed by
a Large Language Model (LLM) to extract essential characteristics, including formulation methods
and relevant topics. Statistical data of individual MILP instances are integrated to produce compre-
hensive descriptions combining general problem formulations and specific instance statistics.

2.2 MILP INSTANCE GENERATION

Prior learning-based approaches for MILP instance generation (Geng et al., 2023; Yang et al., 2024;
Guo et al., 2024; Zhang et al., 2024) typically adopt a class-specific paradigm. Specifically, given
a training set P = {p1, p2, . . . , pn} belonging to a single problem class, a model is trained and
subsequently used to reconstruct instances from a testing set Q = {q1, q2, . . . , qm}. The generated
instances form the set Q′ = {q′1, q′2, . . . , q′m}, and the primary goal is to minimize distributional
divergence between Q and Q′. For instance, previous work (Geng et al., 2023) employed Jensen-
Shannon divergence (Lin, 1991) to quantify structural similarity between original and generated
instances.

In this paper, we leverage MILP formulation code as backbone for targeted MILP instance genera-
tion. Under this new paradigm, a single unified model is trained on MILP problems and associated
data across multiple classes, rather than being restricted to a single class. For a testing set of MILP
instances Q = {q1, q2, . . . , qn}, the framework outputs a piece of MILP formulation code c. Exe-
cuting c directly produces the instance set Q′ = {q′1, q′2, . . . , q′m}. The objective remains the same:
to minimize the divergence between the distributions of P and Q′.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

MILP Library

Target MILP Instance

MILP Textual
Description

Textual
Embedding

 �1 �1 + �2 �2 +… + �� ��

�11 �1 + �12 �2 +… + �1� �� ≤ �1

 ⋮
��1 �1 + ��2 �2 +… + ����� ≤ ��

max
�

MILP
Bipartite

Graph Rep.

Parameter Tuning

NV-Embed-V2

�2 ∙ �1�1 ∙ �1 �� ∙ �1

�2 ∙ �2�1 ∙ �2 �� ∙ �2

�1 ∙ �� �2 ∙ �� �� ∙ ��

⋯

⋯

⋯

⋮ ⋮ ⋮⋱

�1 �2 ��

��

�2

�1

⋮

⋯

Train: MILP-Language Alignment Test: Formulation Code Retrieval & Tuning

MILP Embedding
ModelMILP Bipartite

Graph Rep.

MILP Embedding
Model

�1 �2 ��⋯

�� ⋯

MILP Bipartite
Graph Rep.

�� ∙ �1 �� ∙ �2 �� ∙ ��

Execute Code

Instance Feature

Generated MILP Instances

MILP Enbedding
Model

Contrastive Cross
Entropy Loss

MILP
Embedding

Embedding
Similarity as
MILP Instance
Similarity

Controllable Scale/Diffculty

MILP Library

(Scale, Diffculty, Similarity...)

Get Formulation
Code From Library

Matched Index

Raw MILP Formulation Code

Tuned MILP Formulation Code

(a) Train: MILP-Language Alignment

MILP Library

Target MILP Instance

MILP Textual
Description

Textual
Embedding

 �1 �1 + �2 �2 +… + �� ��

�11 �1 + �12 �2 +… + �1� �� ≤ �1

 ⋮
��1 �1 + ��2 �2 +… + ����� ≤ ��

max
�

MILP
Bipartite

Graph Rep.

Parameter Tuning

NV-Embed-V2

�2 ∙ �1�1 ∙ �1 �� ∙ �1

�2 ∙ �2�1 ∙ �2 �� ∙ �2

�1 ∙ �� �2 ∙ �� �� ∙ ��

⋯

⋯

⋯

⋮ ⋮ ⋮⋱

�1 �2 ��

��

�2

�1

⋮

⋯

Train: MILP-Language Alignment Test: Formulation Code Retrieval & Tuning

MILP Embedding
ModelMILP Bipartite

Graph Rep.

MILP Embedding
Model

�1 �2 ��⋯

�� ⋯

MILP Bipartite
Graph Rep.

�� ∙ �1 �� ∙ �2 �� ∙ ��

Execute Code

Instance Feature

Generated MILP Instances

MILP Enbedding
Model

Contrastive Cross
Entropy Loss

MILP
Embedding

Embedding
Similarity as
MILP Instance
Similarity

Controllable Scale/Diffculty

MILP Library

(Scale, Diffculty, Similarity...)

Get Formulation
Code From Library

Matched Index

Raw MILP Formulation Code

Tuned MILP Formulation Code

(b) Test: Formulation Code Retrieval & Tuning

Figure 3: Our proposed framework, MILP-Retrieval, begins by constructing a comprehensive MILP
library. Leveraging this library, we train an MILP embedding model following a contrastive learning
paradigm. Using embeddings derived from this model, we introduce a novel similarity metric to
retrieve formulation codes that best match the target instances. Subsequently, we tune the parameters
within the formulation codes to control the size or difficulty of the problem. Finally, the tuned
formulation codes are executed to generate the desired MILP problem instances.

3 METHODOLOGY

As illustrated in Figure 3, we first construct a MILP library containing diverse modalities, including
MILP instances, formulation codes, bipartite graph representations, and textual descriptions (Ap-
pendix B.2). Leveraging this library, we pretrain an MILP embedding model, enabling us to map
MILP instances into a unified embedding space (Section 3.1). Utilizing the pretrained embedding
model, we propose a novel similarity metric designed to quantify the similarity between MILP in-
stances, which also serves to retrieve the most relevant formulation code from the MILP library
(Section 3.2). Once the appropriate formulation code is retrieved, we can further tune its param-
eters, enabling us to produce instances with varying scales and computational difficulties (Section
3.3).

3.1 PRETRAINING MILP EMBEDDING MODEL

In this subsection, we describe the pretraining process of our MILP embedding model, including the
learning scheme, model architecture, training data setup, and preliminary results.

Contrastive Learning Scheme Using the MILP library, we train a powerful MILP embedding
model capable of capturing both structural and semantic information. Specifically, we adopt a con-
trastive training framework inspired by CLIP (Radford et al., 2021), aligning the bipartite graph
representation of MILP instances with their corresponding textual descriptions. This alignment en-
ables the model to learn a shared embedding space that effectively captures semantic relationships
between different representations of MILP problems. Our goal is to train an MILP embedding
model fθ : P → Rd, where P is the space of MILP problems. For the textual embedding compo-
nent gθ : T → Rd, we utilize the state-of-the-art text embedding model NV-Embed-V2 (Lee et al.,
2025), freezing its weights during training. The training process employs a symmetric cross-entropy
loss (Zhang & Sabuncu, 2018) designed to encourage higher similarity for correct (graph, text) pairs
compared to all incorrect pairings.

Model Architecture Our MILP embedding model consists of two major components: (1) a bi-
partite Graph Neural Network (GNN) that captures the relational structure between constraints and
variables, and (2) a Transformer-based self-attention module that further updates the learned repre-
sentations. We represent each MILP instance as a bipartite graph (V, C, E), where V denotes nodes
corresponding to variables, C denotes nodes representing constraints, and E consists of edges con-
necting variables to the constraints in which they appear. To embed the nodes and edges into a shared

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

latent space of dimension emb size, we employ three separate Multi-Layer Perceptrons (MLPs) for
variables, constraints and edges:

x(0)
ui

= MLPc(ci),x
(0)
vi = MLPv(vi),xeij = MLPe(eij), (2)

where vi ∈ V , ci ∈ C, and eij ∈ E represent the raw input features, x(k)
ui ,x

(k)
vi are constraint and

variable embeddings at GNN layer k. For message passing, we utilize a Graph Convolution Module
(Kipf & Welling, 2017) as the update function, the updates are performed as follows:

xu(k+1) = xu(k) + BipartiteConv
(
xv(k),xeuv

)
, (3)

xv(k+1) = xv(k) + BipartiteConv
(
xu(k+1),xeuv

)
. (4)

After the bipartite GNN layers, we sample k (specified by hyperparameter) node embeddings ran-
domly. Together with the mean embeddings of all variable nodes xv , constraint nodes xu, and the
summary node xs, we form a set of embeddings: {x1,x2, . . . ,xk,xv,xu,xs}. These embeddings
are then fed into Transformer encoder layers. The output of the Transformer encoder module pro-
duces a contextualized set of embeddings. We apply a final pooling operation to obtain a fixed-size
embedding vector z ∈ Rd.

3.2 FORMULATION CODE RETRIEVAL

The pretrained MILP embedding model forms the backbone of a novel similarity metric, which we
term the embedding metric. In contrast to traditional MILP similarity metrics, such as those based on
the Jensen-Shannon (JS) divergence between hand-crafted statistical indicators (Geng et al., 2023;
Guo et al., 2024) (referred to here as the stat metric, with details provided in Appendix C.2), our
embedding metric overcomes limitations related to manual feature selection and ineffective pairwise
comparisons.

Inspired by the Fréchet Inception Distance (FID) (Heusel et al., 2017; Salimans et al., 2016), a metric
used in the image generation domain to evaluate the quality of generated images which employs
Inception-V3 (Szegedy et al., 2016), we proposed MILP embedding metric. We uses the trained
MILP embedding model to compute the cosine similarity between normalized embedding vectors.
Formally, let P and Q represent two groups of MILP instances whose similarity is to be evaluated,
and fθ denote the MILP embedding model. The embedding metric calculation is as follows:

∀p ∈ P, q ∈ Q,xp =
fθ(p)

||fθ(p)||
, xq =

fθ(q)

||fθ(q)||
,

EmbeddingMetric(p, q) = xpx
T
q ,

EmbeddingMetric(P,Q) =
1

|P ||Q|
∑
p∈P

∑
q∈Q

EmbeddingMetric(p, q).

(5)

This metric offers a major advantage over previous approaches: it enables accurate, scale-invariant
similarity assessments between instances of varying sizes but belonging to the same problem class.
This robustness arises from the way the embedding model is trained—instances within a problem
class share similar textual descriptions, allowing the model to learn consistent cross-scale represen-
tations.

Using the pre-built MILP library as well as proposed embedding metric, we propose MILP-
Retrieval, a simple yet efficient framework for MILP instance generation via formulation code
retrieval. Given a group of target MILP instance Q = {q1, q2, . . . , qn}, our method retrieves the
most relevant code ck from MILP library {(pi, ci)}Ni=1, where pi represents the i-th instance and ci
represents the corresponding code for generating that instance. The retrieval process identifies ck
as:

k = argmaxk

n∑
i=1

EmbeddingMetric(qi, pk). (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

0.292

0.031

0.354

0.677

1.000

Va
lu

e

(a) MILP classes-embed

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

0.0583

0.2937

0.5291

0.7646

1.0000

Va
lu

e

(b) MILP classes-stat

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

0.93549

0.95162

0.96774

0.98387

1.00000

Va
lu

e

(c) TSP instances-embed

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

0.4556

0.5917

0.7278

0.8639

1.0000

Va
lu

e

(d) TSP instances-stat

Figure 4: Comparison of similarity matrix between the embedding metric and the stat metric.

Executing ck generates new MILP instances {q′1, q′2, . . . , q′m}, effectively approximating the struc-
tural and semantic characteristics of the target instance.

3.3 FORMULATION CODE TUNING

Although retrieval provides formulation codes that generate semantically similar instances, addi-
tional tuning of the formulation code can further control the size and difficulty of the generated
problems while preserving semantic similarity. Here, we introduce two approaches for formulation
code tuning.

Diverse Tuning The goal of this approach is to generate problem instances that are as diverse as
possible in terms of size and solving difficulty. Specifically, we randomize the parameters within
the retrieved formulation codes to create multiple code variants, thereby enriching the diversity of
generated instances. To automate this tuning process, modifications are restricted to numeric and
interval-type parameters in the formulation code. The resulting codes are then validated and filtered
to ensure the feasibility of the generated instances.

Targeted Tuning The objective of this approach is to achieve fine-grained control over the solving
difficulty of generated problems. We treat the MILP formulation code as a black-box function:
the input is the parameter configuration, and the output is the solving time of the generated MILP
instance. Bayesian optimization is then employed to tune this black box. The first application of
Targeted Tuning is to generate maximally difficult problems, where solving time is directly used as
the optimization objective to be maximized. The second application is to generate problems with
difficulty levels as close as possible to a specified target, where the optimization objective becomes
the difference between the actual solving time and the target solving time, which is minimized. This
tuning process is also fully automated by parsing the tunable parameters from the formulation code
and configuring the parameter space for the Bayesian optimizer.

Together, these two tuning strategies enhance the practicality of MILP-Retrieval and provide greater
control over the size and difficulty of generated problems. Further technical details of the formula-
tion code tuning procedure are provided in Appendix B.5.

4 EXPERIMENTS

We firstly evaluate the proposed embedding metric by comparing it against existing stat metric,
to demonstrate its superior accuracy. Second, we assess the quality of MILP instances generated
by MILP-Retrieval. The generated instances are evaluated using similarity metrics and compared
against instances produced by several baselines. Additionally, we evaluate the performance of
MILP-Retrieval on downstream tasks. These tasks include improving the performance of learning-
based MILP solvers and generating MILP instances with varying scales and difficulty levels.

4.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on two datasets to ensure a fair and comprehensive evaluation:
(1) the Evolve/Test dataset, containing 50 distinct problem classes, and (2) the widely-used MIPLIB
benchmark (Gleixner et al., 2021). MILP-Retrieval utilizes Evolve/Train as the retrieval library. For

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

102 103

Number of Variables

102

103

N
um

be
r

of
 C

on
st

ra
in

ts

10−1

100

101 Solving Tim
e (s)

Figure 5: Problem size and
solving time of 32 TSP in-
stances.

each problem class in Evolve/Test, we generate 20 instances that
serve both as the training set for learning-based baselines and as
the target instances for MILP-Retrieval. For MIPLIB, we manually
define problem class partitions to support evaluation. Further details
on the datasets are provided in Appendix C.3.

Metrics We employed multiple metrics to comprehensively eval-
uate our proposed approach. Specifically, we evaluate the similarity
between generated instances and target instances using both the pro-
posed embedding metric and traditional stat metric. Since MILP-
Retrieval can tune formulation code to generate instances at differ-
ent scales and difficulties, we utilize Gurobi (Gurobi Optimization, LLC, 2024) to solve both the
target instances and the generated instances, reporting the solving time. Details on the calculation
of the stat metric are provided in Appendix C.2.

Baselines We compare MILP-Retrieval against a diverse set of baselines. For heuristic generation
method, we compare against Bowly (Bowly et al., 2020). For learning-based methods, we evaluate
against the state-of-the-art open-source method ACM-MILP (Guo et al., 2024), which adopts a Vari-
ational Autoencoder (VAE) framework. We further implement two LLM-based baselines GPT-4o
(Hurst et al., 2024) and Finetuned LLaMA3-8b (Dubey et al., 2024), which directly generate MILP
formulation codes from textual descriptions, serving as baselines that generate instances via MILP
formulation code. Implementation details for baselines are provided in Appendix C.1.

4.2 MILP SIMILARITY METRIC COMPARISON

To illustrate the effectiveness of proposed metric, we conducted two sets of comparative experiments
between the embedding metric and stat metric.

In the first experiment, we evaluated the similarity among the first 32 MILP problem classes in the
Evolve/Train dataset. The resulting similarity matrices obtained using the embedding metric and
the stat metric are shown in Figure 4a and 4b, respectively. As illustrated, the embedding metric
similarity matrix reveals many high-similarity MILP class pairs that are not captured by the stat
metric. This observation aligns with the design of MILP-Evolve, which constructs problem classes
through evolutionary mechanisms, resulting in semantically related instances.

In the second experiment, we generated 32 TSP instances of varying sizes. We firstly visualize
their size and solving time (computed by Gurobi) in Figure 5. The similarity matrices derived
using the embedding metric and the stat metric are presented in Figure 4c and Figure 4d. The
instances are ordered by problem size in the matrices. Our results demonstrate that embedding
metric generalizes effectively to unseen instances, providing robust similarity measurements for
unseen MILP instances.

4.3 RESULTS ON TARGETED MILP INSTANCE GENERATION

We report the similarity between the generated instances and the target instances using both the
embedding metric and the stat metric in Table 1 and Table 2. For LLM-based methods, evaluation is
limited to the Evolve/Test dataset, as generating MILP formulation codes from textual descriptions is
currently only feasible in this setting. Due to the fact that learning-based methods (e.g., ACM-MILP
(Guo et al., 2024)) require training a separate model for each problem class, we could not evaluate
them across all MILP classes in Evolve/Test and MIPLIB. Instead, we selected four problem classes
from Evolve/Test: FCNF, TSP, GA, VRP, as well as three widely studied problem classes from
MIPLIB: Nursesched, CVS, and IIS.

From the results, we observe that MILP-Retrieval significantly outperforms baselines under the em-
bedding metric, but performs less competitively under the stat metric compared to learning-based
methods. This is expected, as our framework is designed to generate problem instances that are
semantically similar to the target instances, without necessarily matching their statistical character-
istics. We further discuss the experimental results in Appendix E.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison between generated instances and target instances on the embedding metric.

Method MILP-Retrieval Bowly ACM-MILP GPT-4o Finetuned LLaMA 3-8b

Evolve/Test

FCNF 0.705 ± 0.174 -0.079 ± 0.088 0.419 ± 0.143 infeasible 0.076 ± 0.094
TSP 0.920 ± 0.050 0.041 ± 0.039 infeasible 0.304 ± 0.073 0.399 ± 0.011
GA 0.734 ± 0.078 0.167 ± 0.087 0.015 ± 0.031 infeasible 0.233 ± 0.027

VRP 0.960 ± 0.015 0.005 ± 0.055 infeasible 0.347 ± 0.053 infeasible

MIPLIB
Nursesched 0.883 ± 0.085 0.071 ± 0.042 -0.056 ± 0.108 - -

CVS 0.814 ± 0.078 -0.105 ± 0.080 0.030 ± 0.106 - -
IIS 0.829 ± 0.046 -0.119 ± 0.030 -0.210 ± 0.024 - -

Table 2: Comparison between generated instances and target instances on the stat metric.

Method MILP-Retrieval Bowly ACM-MILP GPT-4o Finetuned LLaMA 3-8b

Evolve/Test

FCNF 0.611 ± 0.006 0.530 ± 0.019 0.795 ± 0.018 infeasible 0.568 ± 0.022
TSP 0.367 ± 0.129 0.665 ± 0.043 infeasible 0.840 ± 0.059 0.469 ± 0.034
GA 0.436 ± 0.014 0.479 ± 0.016 0.703 ± 0.003 infeasible 0.311 ± 0.002

VRP 0.377 ± 0.024 0.672 ± 0.021 infeasible 0.599 ± 0.002 infeasible

MIPLIB
Nursesched 0.231 ± 0.076 0.313 ± 0.046 0.655 ± 0.032 - -

CVS 0.430 ± 0.121 0.417 ± 0.032 0.717 ± 0.019 - -
IIS 0.234 ± 0.003 0.365 ± 0.004 0.878 ± 0.059 - -

Table 3: The performance of Neural Diving on test set of 4 classes of problems. We use each method
to generate 40 instances and add them to the training set, we mark the best performance in bold.

Raw MILP-Retrieval ACM-MILP GPT-4o Finetuned LLaMA 3-8b
FCNF 1604.77 ± 311.27 1117.14 ± 187.68 1520.08 ± 200.01 - 1228.64 ± 399.68
TSP 944.85 ± 98.45 893.47 ± 83.86 - 891.53 ± 83.79 924.40 ± 86.83
GA -49768.53 ± 53.77 -49991.25 ± 4.92 infeasible - -49293 ± 15.23

VRP 911.20 ± 91.02 774.91 ± 52.64 - 827.66 ± 40.98 -

5000 10000 15000 20000 25000 30000
Problem Size (Variables + Constraints)

10−1

100

101

102

103

So
lv

e
Ti

m
e

(s
ec

on
ds

, l
og

 s
ca

le
)

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

E
m

be
dd

in
g

Si
m

ila
ri

ty

(a) FCNF

10000 15000 20000 25000 30000 35000
Problem Size (Variables + Constraints)

101

102

103

So
lv

e
Ti

m
e

(s
ec

on
ds

, l
og

 s
ca

le
)

0.75

0.80

0.85

0.90

0.95

E
m

be
dd

in
g

Si
m

ila
ri

ty

(b) TSP

10000 20000 30000 40000
Problem Size (Variables + Constraints)

101

102

103

So
lv

e
Ti

m
e

(s
ec

on
ds

, l
og

 s
ca

le
)

0.74

0.76

0.78

0.80

0.82

0.84

0.86

E
m

be
dd

in
g

Si
m

ila
ri

ty

(c) GA

0 5000 10000 15000
Problem Size (Variables + Constraints)

10−1

100

101

102

103
So

lv
e

Ti
m

e
(s

ec
on

ds
, l

og
 s

ca
le

)

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

E
m

be
dd

in
g

Si
m

ila
ri

ty

(d) VRP

Figure 6: Visualization of generated scalable instances through formulation code diverse tuning.

4.4 RESULTS ON DOWNSTREAM TASKS

Enhancing Learning-based Solver We evaluate the effectiveness of MILP-Retrieval in improv-
ing MILP solvers using Neural Diving (Nair et al., 2020), a representative learning-based method.
Experiments are also conducted on four problem classes: FCNF, TSP, GA, and VRP. MILP-Retrieval
and baseline methods are then used to generate varying numbers of supplementary training instances,
which are added to the original training set of Neural Diving. The enhanced models are evaluated on
the test set. Experimental results summarized in Table 3 report the objective value for each experi-
ment. Our findings demonstrate that MILP-Retrieval achieves comparable or superior performance
to baseline approaches in boosting solver performance. Details of this experiment can be found in
Appendix D.4.

Controllable MILP Instance Generation by Diverse Tuning We apply Diverse Tuning to gener-
ate instances that vary widely in both scale and solving difficulty. Experiments are conducted on the
same four problem classes, where 32 instances are generated per class under different parameter set-
tings. Figure 6 illustrates the distributions of instance sizes and solving times (measured by Gurobi
(Gurobi Optimization, LLC, 2024), with a maximum time limit of 1000s) for each class. The results
demonstrate that formulation code tuning effectively enables the generation of MILP instances from
the same class that differ substantially in scale and difficulty.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Index of Evolve/Test

0

200

400

600

800

1000

So
lv

in
g

Ti
m

e
(s

)

Original Inst.
Tuned Inst.

Figure 7: Targeted Tuning for max-
imizing difficulty.

0 10 20 30 40 50
Index of Evolve/Test

0

20

40

60

80

100

So
lv

in
g

Ti
m

e
(s

)

Original Inst.
Tuned Inst.
Target=50s

Figure 8: Targeted Tuning for
matching specified difficulty.

Bowly ACM-MILP MILP-Retrieval
101

102

103

104

Ti
m

e
(s

ec
on

ds
, l

og
 s

ca
le

)

Retrieval
Generate
Train

Figure 9: Computational efficiency
of Different Methods.

0 500 1000 1500 2000 2500 3000 3500 4000
Size of MILP Formulation Code Library

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

E
m

be
dd

in
g

M
et

ri
c

Va
lu

e

FCNF
TSP
GA
VRP
Nursesched
CVS
IIS

Figure 10: Ablation experiment on
formulation code library size.

Controllable MILP Instance Generation by Targeted Tuning We further showcase the use of
Targeted Tuning to precisely control the solving difficulty of MILP instances. The experiments are
performed on the 50 MILP classes from Evolve/Test. In the first case, the goal is to maximize
difficulty. We set both the target difficulty and the solving time cutoff to 1000s. As shown in Figure
7, Targeted Tuning successfully adjusts 88% of the 50 classes to reach the desired 1000s solving
difficulty. In the second case, the goal is to match specified difficulty level as closely as possible.
Using a target solving time of 50s as example (results shown in Figure 8), the generated instances
achieve an average deviation of only 12.8% from the target, a substantial improvement over the
original instances without tuning. These results verify the effectiveness of formulation code tuning
within MILP-Retrieval. Additional experimental details and results are provided in Appendix B.5.

4.5 EXTENSIVE STUDIES

Computational Efficiency We use FCNF as a case study to demonstrate the significant improve-
ment in computational efficiency achieved by MILP-Retrieval. We measure the time required to
train the model and generate 1,000 instances, with the results shown in Figure 9. It is worth-noting
that training the MILP embedding model took approximately 40 hours. We exclude this from the
comparison, as the embedding model is designed to be generalized across different problem classes.

Ablation Study To evaluate the influence of formulation code library size, we limit the size of
the retrieval library and observe how similarity (embedding metric) between target instances and
generated instances changes with reduced library size. The results are reported in Figure 10, show
that our current MILP library is sufficiently large to support robust instance generation.

5 CONCLUSION

In this paper, we propose MILP-Retrieval, a framework for targeted MILP instance generation via
formulation code retrieval and parameter tuning. It provides a generalizable solution that efficiently
generates problem instances of varying difficulty and scale, thereby improving the performance of
learning-based solvers. While its effectiveness depends on the size of the formulation code library,
we also explore LLM-based methods to directly generate formulation code from textual descrip-
tions as a baseline. Advancing LLM-based approaches for fine-grained and controllable generation
remains a promising direction for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The methods proposed in this paper aim to retrieve and tune MILP formulation code for MILP
instance generation, which is related to the broader field of neural combinatorial optimization. To
our best knowledge, no ethical issues or harmful insights of this work need to be otherwise stated.

REPRODUCIBILITY STATEMENT

The datasets used and the baseline implementation are described in Appendix C. The detailed hy-
permeters and implementation of the models for training and testing are provided in Appendix
B. Source code and datasets can be accessed at https://anonymous.4open.science/r/
MILP-Retrieval-D830/.

REFERENCES

Egon Balas and Andrew Ho. Set covering algorithms using cutting planes, heuristics, and subgradi-
ent optimization: a computational study. Combinatorial Optimization, pp. 37–60, 1980.

Ramón Béjar, Alba Cabiscol, Felip Manyà, and Jordi Planes. Generating hard instances for maxsat.
In 2009 39th International Symposium on Multiple-Valued Logic, pp. 191–195. IEEE, 2009.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John Hooker. Decision diagrams for
optimization, volume 1. Springer, 2016.

Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionı́sio, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf van der
Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Gioni Mexi,
Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Mark Turner,
Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite 9.0. Techni-
cal report, Optimization Online, February 2024. URL https://optimization-online.
org/2024/02/the-scip-optimization-suite-9-0/.

Simon Bowly, Kate Smith-Miles, Davaatseren Baatar, and Hans Mittelmann. Generation techniques
for linear programming instances with controllable properties. Mathematical Programming Com-
putation, 12(3):389–415, 2020.

Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle routing problem:
State of the art classification and review. Computers & industrial engineering, 99:300–313, 2016.

Dirk G Cattrysse and Luk N Van Wassenhove. A survey of algorithms for the generalized assignment
problem. European journal of operational research, 60(3):260–272, 1992.

Anthony Caumond, Philippe Lacomme, Aziz Moukrim, and Nikolay Tchernev. An milp for schedul-
ing problems in an fms with one vehicle. European journal of operational research, 199(3):
706–722, 2009.

Marco Colombi, Renata Mansini, and Martin Savelsbergh. The generalized independent set prob-
lem: Polyhedral analysis and solution approaches. European Journal of Operational Research,
260(1):41–55, 2017.

XTuner Contributors. Xtuner: A toolkit for efficiently fine-tuning llm. https://github.com/
InternLM/xtuner, 2023.

Gérard Cornuéjols, Ranjani Sridharan, and Jean-Michel Thizy. A comparison of heuristics and
relaxations for the capacitated plant location problem. European journal of operational research,
50(3):280–297, 1991.

10

https://anonymous.4open.science/r/MILP-Retrieval-D830/
https://anonymous.4open.science/r/MILP-Retrieval-D830/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://github.com/InternLM/xtuner
https://github.com/InternLM/xtuner

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Christodoulos A Floudas and Xiaoxia Lin. Mixed integer linear programming in process scheduling:
Modeling, algorithms, and applications. Annals of Operations Research, 139:131–162, 2005.

Daniel Galvez, Auguste Rakotondranaivo, Laure Morel, Mauricio Camargo, and Michel Fick. Re-
verse logistics network design for a biogas plant: An approach based on milp optimization and
analytical hierarchical process (ahp). Journal of Manufacturing Systems, 37:616–623, 2015.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Zijie Geng, Xijun Li, Jie Wang, Xiao Li, Yongdong Zhang, and Feng Wu. A deep instance genera-
tive framework for milp solvers under limited data availability. Advances in Neural Information
Processing Systems, 36:26025–26047, 2023.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443–490, 2021.

Ziao Guo, Yang Li, Chang Liu, Wenli Ouyang, and Junchi Yan. Acm-milp: Adaptive constraint
modification via grouping and selection for hardness-preserving milp instance generation. In
Forty-first International Conference on Machine Learning, 2024.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

Prateek Gupta, Elias B Khalil, Didier Chetélat, Maxime Gasse, Yoshua Bengio, Andrea Lodi, and
M Pawan Kumar. Lookback for learning to branch. arXiv preprint arXiv:2206.14987, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A GNN-guided predict-and-search framework for mixed-integer linear program-
ming. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=pHMpgT5xWaE.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Mike Hewitt, George L Nemhauser, and Martin WP Savelsbergh. Combining exact and heuristic
approaches for the capacitated fixed-charge network flow problem. INFORMS Journal on Com-
puting, 22(2):314–325, 2010.

Kenneth Holmström, Anders O Göran, and Marcus M Edvall. User’s guide for tomlab/cplex v12. 1.
Tomlab Optim. Retrieved, 1:2017, 2009.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In ICML 2023 Workshop:
Sampling and Optimization in Discrete Space, 2023. URL https://openreview.net/
forum?id=Hamr9UNFRT.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

11

https://www.gurobi.com
https://www.gurobi.com
https://openreview.net/forum?id=pHMpgT5xWaE
https://openreview.net/forum?id=Hamr9UNFRT
https://openreview.net/forum?id=Hamr9UNFRT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dukwon Kim and Panos M Pardalos. A solution approach to the fixed charge network flow problem
using a dynamic slope scaling procedure. Operations Research Letters, 24(4):195–203, 1999.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Yufei Kuang, Xijun Li, Jie Wang, Fangzhou Zhu, Meng Lu, Zhihai Wang, Jia Zeng, Houqiang Li,
Yongdong Zhang, and Feng Wu. Accelerate presolve in large-scale linear programming via re-
inforcement learning. CoRR, abs/2310.11845, 2023. URL https://doi.org/10.48550/
arXiv.2310.11845.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. NV-embed: Improved techniques for training LLMs as generalist embedding
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=lgsyLSsDRe.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combi-
natorial auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce,
pp. 66–76, 2000.

Sirui Li, Janardhan Kulkarni, Ishai Menache, Cathy Wu, and Beibin Li. Towards foundation models
for mixed integer linear programming. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=6yENDA7J4G.

Xijun Li, Fangzhou Zhu, Hui-Ling Zhen, Weilin Luo, Meng Lu, Yimin Huang, Zhenan Fan, Zirui
Zhou, Yufei Kuang, Zhihai Wang, et al. Machine learning insides optverse ai solver: Design
principles and applications. arXiv preprint arXiv:2401.05960, 2024.

Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
theory, 37(1):145–151, 1991.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Car-
olin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian opti-
mization package for hyperparameter optimization. Journal of Machine Learning Research, 23
(54):1–9, 2022.

Chang Liu, Zhichen Dong, Haobo Ma, Weilin Luo, Xijun Li, Bowen Pang, Jia Zeng, and Junchi
Yan. L2p-MIP: Learning to presolve for mixed integer programming. In The Twelfth Interna-
tional Conference on Learning Representations, 2024a. URL https://openreview.net/
forum?id=McfYbKnpT8.

Haoyang Liu, Jie Wang, Wanbo Zhang, Zijie Geng, Yufei Kuang, Xijun Li, Bin Li, Yongdong
Zhang, and Feng Wu. MILP-studio: MILP instance generation via block structure decomposition.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b. URL
https://openreview.net/forum?id=W433RI0VU4.

Rajesh Matai, Surya Prakash Singh, and Murari Lal Mittal. Traveling salesman problem: an
overview of applications, formulations, and solution approaches. Traveling salesman problem,
theory and applications, 1(1):1–25, 2010.

Germán Morales-España, Jesus M Latorre, and Andres Ramos. Tight and compact milp formulation
for the thermal unit commitment problem. IEEE Transactions on Power Systems, 28(4):4897–
4908, 2013.

Luca Moretti, Mario Milani, Giovanni Gustavo Lozza, and Giampaolo Manzolini. A detailed milp
formulation for the optimal design of advanced biofuel supply chains. Renewable Energy, 171:
159–175, 2021.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

12

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.48550/arXiv.2310.11845
https://doi.org/10.48550/arXiv.2310.11845
https://openreview.net/forum?id=lgsyLSsDRe
https://openreview.net/forum?id=6yENDA7J4G
https://openreview.net/forum?id=McfYbKnpT8
https://openreview.net/forum?id=McfYbKnpT8
https://openreview.net/forum?id=W433RI0VU4

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

David Pisinger. An exact algorithm for large multiple knapsack problems. European Journal of
Operational Research, 114(3):528–541, 1999.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Rubens Rejowski Jr and José Maurı́cio Pinto. Efficient milp formulations and valid cuts for multi-
product pipeline scheduling. Computers & Chemical Engineering, 28(8):1511–1528, 2004.

Hongbo Ren and Weijun Gao. A milp model for integrated plan and evaluation of distributed energy
systems. Applied energy, 87(3):1001–1014, 2010.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Kate Smith-Miles and Simon Bowly. Generating new test instances by evolving in instance space.
Computers & Operations Research, 63:102–113, 2015.

Byung Duk Song, Kyungsu Park, and Jonghoe Kim. Persistent uav delivery logistics: Milp formu-
lation and efficient heuristic. Computers & Industrial Engineering, 120:418–428, 2018.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
Learning to cut. In International conference on machine learning, pp. 9367–9376. PMLR, 2020.

Haoyu Peter Wang, Jialin Liu, Xiaohan Chen, Xinshang Wang, Pan Li, and Wotao Yin. DIG-
MILP: a deep instance generator for mixed-integer linear programming with feasibility guar-
antee. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=MywlrEaFqR.

Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, and
Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
model. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=Zob4P9bRNcK.

Tianxing Yang, Huigen Ye, and Hua Xu. Learning to generate scalable milp instances. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 159–162,
2024.

Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn&gbdt-guided fast opti-
mizing framework for large-scale integer programming. In International Conference on Machine
Learning, pp. 39864–39878. PMLR, 2023.

Huigen Ye, Hua Xu, and Hongyan Wang. Light-MILPopt: Solving large-scale mixed integer linear
programs with lightweight optimizer and small-scale training dataset. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=2oWRumm67L.

Yahong Zhang, Chenchen Fan, Donghui Chen, Congrui Li, Wenli Ouyang, Mingda Zhu, and Junchi
Yan. Milp-fbgen: Lp/milp instance generation with feasibility/boundedness. In Forty-first Inter-
national Conference on Machine Learning, 2024.

13

https://openreview.net/forum?id=MywlrEaFqR
https://openreview.net/forum?id=MywlrEaFqR
https://openreview.net/forum?id=Zob4P9bRNcK
https://openreview.net/forum?id=2oWRumm67L
https://openreview.net/forum?id=2oWRumm67L

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/f2925f97bc13ad2852a7a551802feea0-Paper.pdf.

14

https://proceedings.neurips.cc/paper_files/paper/2018/file/f2925f97bc13ad2852a7a551802feea0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/f2925f97bc13ad2852a7a551802feea0-Paper.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

TABLE OF CONTENTS FOR APPENDIX

A Related Works 16

B Implementation Details of MILP-Retrieval 16

B.1 Details of Bipartite Graph Features . 16

B.2 Details of MILP Libraries Evolve/Train and Evolve/Test 16

B.3 Samples of Different Forms of MILP Data . 17

B.4 Details of MILP Embedding Model . 20

B.4.1 Derivation of Loss Function . 20

B.4.2 Prompt details of NV-Embed-V2 . 21

B.4.3 Training Details . 21

B.5 Details of Formulation Code Tuning . 21

C More Details on Experimental Setup 24

C.1 Details of Baselines . 24

C.1.1 ‘GPT-4o’ Baseline . 24

C.1.2 ‘Finetuned LLaMA 3-8b’ Baseline . 24

C.1.3 ‘Bowly’ Baseline . 25

C.1.4 ‘ACM-MILP’ Baseline . 25

C.2 Details of stat metric . 25

C.3 Details of Dataset . 26

D Extensive Experiment Results 26

D.1 More Results on embedding metric . 26

D.2 More Results on MIPLIB . 30

D.3 More Results on Evolve/Test Dataset . 32

D.4 Details and Additional Results on Enhancing Learning-based Solver 32

D.4.1 Introduction of Underlying Learning-based Solver: Neural Diving 32

D.4.2 Experiments on Enhancing Learning-based Solver 32

E Discussions 33

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A RELATED WORKS

Machine Learning on MILP Machine learning methods have demonstrated superior perfor-
mance over traditional algorithms in solving various combinatorial optimization problems due to
their ability to capture the characteristics of similar problems. These approaches can be broadly
classified into two categories. The first category involves integrating learning-based modules into
traditional solvers by replacing or augmenting key components, such as branching (Gasse et al.,
2019; Gupta et al., 2020; 2022), cut selection (Tang et al., 2020; Wang et al., 2023), and presolve
(Kuang et al., 2023; Liu et al., 2024a). The second category focuses on improving the solution
search process itself. Techniques such as predict-and-optimize (Han et al., 2023; Ye et al., 2023;
2024) and large neighborhood search (Sonnerat et al., 2021; Huang et al., 2023) utilize predictive
models to guide the solver toward promising regions of the solution space, thereby enhancing effi-
ciency and solution quality. A key challenge in both categories is the availability of sufficient MILP
data for training these models. This challenge highlights the critical need for generating diverse and
high-quality MILP instances.

MILP Instance Generation The field of MILP instance generation has traditionally relied on
heuristic methods to create problem instances tailored to specific types or statistical characteristics
(Smith-Miles & Bowly, 2015; Bowly et al., 2020). While effective in controlled scenarios, these
methods often lack the flexibility to address broader applications or more diverse instance distribu-
tions. Learning-based MILP generation methods use model to learn the distribution of the problems
and reconstruct them. For example, some methods focus on restructuring the problem’s underlying
structure (Liu et al., 2024b; Yang et al., 2024), while others utilize paradigms like VAE or diffusion
models to reconstruct problem constraints (Geng et al., 2023; Wang et al., 2024; Guo et al., 2024;
Zhang et al., 2024). Recent work (Li et al., 2025) proposes a novel approach for generating diverse
MILP problems. Our approach MILP-Retrieval, along with the concept of MILP embedding metric,
offers a novel perspective on MILP instance generation.

B IMPLEMENTATION DETAILS OF MILP-RETRIEVAL

B.1 DETAILS OF BIPARTITE GRAPH FEATURES

To encode an MILP instance as a corresponding bipartite graph, we incorporate information about
both variables and constraints into the node features of the graph representation. The specific node
features used in our encoding are detailed in Table 4.

Additionally, the bipartite graph features include solution-related information about the MILP in-
stance. To obtain this data, we solve each problem instance using Gurobi (Gurobi Optimization,
LLC, 2024), with a computation time limit of 50 seconds per instance. This ensures a standard-
ized and practical approach to extracting solution-based features while maintaining computational
efficiency.

B.2 DETAILS OF MILP LIBRARIES Evolve/Train AND Evolve/Test

We construct the MILP libraries following the method proposed in MILP-Evolve (Li et al., 2025),
which leverages LLMs to evolve MILP formulation code and generate diversified MILP instances.
This approach guarantees that all generated instances are feasible. Based on this method, we build
two separate libraries—Evolve/Train and Evolve/Test—for training and testing purposes, respec-
tively.

The Evolve/Train library is evolved from eight seed classes (IS, SC, CA, CFL, KS, GIS, NF, and
SAT), resulting in 4,000 formulation codes and 59,033 corresponding MILP instances, graphs, and
textual descriptions. This library is used both to train the MILP embedding model and as the retrieval
corpus for MILP-Retrieval. In contrast, the Evolve/Test library is evolved from four disjoint seed
classes (FCNF, TSP, GA, and VRP), yielding 50 formulation codes and 672 corresponding MILP
instances, graphs, and textual descriptions. The seed classes of Evolve/Train and Evolve/Test are
completely disjoint.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Node type features and descriptions for Variables and Constraints.

Node Type Feature Description

Vars

norm coef Objective coefficient, normalized by objective norm
type Var type (binary, integer, impl. integer, continuous), one-hot

has lb Lower bound indicator
has ub Upper bound indicator
solval Solution value
solfrac Solution value fractionality

sol is at lb Solution value equals lower bound
sol is at ub Solution value equals upper bound

basestat Simplex basis status (lower, basic, upper, zero), one-hot

Cons

rank Rank of a row
norm nnzrs Fraction of nonzero entries

bias Unshifted side normalized by row norm
row is at lhs Row value equals left hand side
row is at rhs Row value equals right hand side

dualsol Dual LP solution of a row, normalized by row and objective norm
norm intcols Fraction of integral columns in the row

Each MILP class generates 20 instances, which are subsequently filtered by solving with a time limit
of 50 seconds; instances without feasible solutions are removed. After filtering, the final datasets
consist of 59,033 instances in Evolve/Train and 672 instances in Evolve/Test.

The evolution process was carried out using GPT-4o-mini as the LLM. Starting from the seed
classes, constructing both libraries required approximately four weeks and incurred a total cost of
around $50. Further details on the class generation procedure can be found in (Li et al., 2025).
The sources of the seed classes are summarized in Table 5, and the distribution of variables and
constraints in Evolve/Train is visualized in Figure 11.

Table 5: 8 Seed Classes for Evolve/Train and 4 Seed Classes for Evolve/Test.

Dataset Abbreviation Full Name Reference

Evolve/Train

IS Maximum Independent Set (Bergman et al., 2016)
SC Set Cover (Balas & Ho, 1980)
CA Combinatorial Auction (Leyton-Brown et al., 2000)
CFL Capacitated Facility Location (Cornuéjols et al., 1991)

Knapsack Multiple Knapsack (Pisinger, 1999)
GIS Generalized Independent Set (Colombi et al., 2017)
NF Multicommodity Network Flow (Hewitt et al., 2010)
SAT Max Satisfiability (Béjar et al., 2009)

Evolve/Test

FCNF Fixed-Charge Network Flow (Kim & Pardalos, 1999)
TSP Traveling Salesman Problem (Matai et al., 2010)
GA Generalized Assignment (Cattrysse & Van Wassenhove, 1992)

VRP Vehicle Routing Problem (Braekers et al., 2016)

B.3 SAMPLES OF DIFFERENT FORMS OF MILP DATA

Here we provide a sample of code and textual description in MILP Data, which comes from the Set
Cover problem and is one of the seed classes of Evolve/Train. Lines 91-96 in the code correspond
to the parameter part of the code, which can be used by formulation code tuning to adjust the size
and difficulty of the generated instance.

Formulation Code

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

100 101 102 103 104 105

Number of Variables (log scale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

(a) Distribution of Number of Variables.

100 101 102 103 104 105

Number of Constraints (log scale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

(b) Distribution of Number of Constraints.

Figure 11: Visualization of All Instances in Evolve/Train.

1 import random
2 import time
3 import scipy
4 import numpy as np
5 import networkx as nx
6 from pyscipopt import Model, quicksum
7
8 class SetCover:
9 def __init__(self, parameters, seed=None):

10 for key, value in parameters.items():
11 setattr(self, key, value)
12
13 self.seed = seed
14 if self.seed:
15 random.seed(seed)
16 np.random.seed(seed)
17
18 ################# Data Generation #################
19 def generate_instance(self):
20 nnzrs = int(self.n_rows * self.n_cols * self.density)
21
22 # compute number of rows per column
23 indices = np.random.choice(self.n_cols, size=nnzrs) #

random column indexes
24 indices[:2 * self.n_cols] = np.repeat(np.arange(self.

n_cols), 2) # force at leats 2 rows per col
25 _, col_nrows = np.unique(indices, return_counts=True)
26
27 # for each column, sample random rows
28 indices[:self.n_rows] = np.random.permutation(self.

n_rows) # force at least 1 column per row
29 i = 0
30 indptr = [0]
31 for n in col_nrows:
32 # empty column, fill with random rows
33 if i >= self.n_rows:
34 indices[i:i+n] = np.random.choice(self.n_rows,

size=n, replace=False)
35
36 # partially filled column, complete with random rows

among remaining ones
37 elif i + n > self.n_rows:
38 remaining_rows = np.setdiff1d(np.arange(self.

n_rows), indices[i:self.n_rows],
assume_unique=True)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

39 indices[self.n_rows:i+n] = np.random.choice(
remaining_rows, size=i+n-self.n_rows,
replace=False)

40
41 i += n
42 indptr.append(i)
43
44 # objective coefficients
45 c = np.random.randint(self.max_coef, size=self.n_cols) +

1
46
47 # sparce CSC to sparse CSR matrix
48 A = scipy.sparse.csc_matrix(
49 (np.ones(len(indices), dtype=int), indices,

indptr),
50 shape=(self.n_rows, self.n_cols)).tocsr()
51 indices_csr = A.indices
52 indptr_csr = A.indptr
53
54 res = {’c’: c,
55 ’indptr_csr’: indptr_csr,
56 ’indices_csr’: indices_csr}
57
58 return res
59
60 ################# PySCIPOpt Modeling #################
61 def solve(self, instance):
62 c = instance[’c’]
63 indptr_csr = instance[’indptr_csr’]
64 indices_csr = instance[’indices_csr’]
65
66 model = Model("SetCover")
67 var_names = {}
68
69 # Create variables and set objective
70 for j in range(self.n_cols):
71 var_names[j] = model.addVar(vtype="B", name=f"x_{j}"

, obj=c[j])
72
73 # Add constraints to ensure each row is covered
74 for row in range(self.n_rows):
75 cols = indices_csr[indptr_csr[row]:indptr_csr[row +

1]]
76 model.addCons(quicksum(var_names[j] for j in cols)

>= 1, f"c_{row}")
77
78 # Set objective: Minimize total cost
79 objective_expr = quicksum(var_names[j] * c[j] for j in

range(self.n_cols))
80
81 model.setObjective(objective_expr, "minimize")
82
83 start_time = time.time()
84 model.optimize()
85 end_time = time.time()
86
87 return model.getStatus(), end_time - start_time
88
89 if __name__ == ’__main__’:
90 seed = 42
91 parameters = {
92 ’n_rows’: 750,
93 ’n_cols’: 1500,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

94 ’density’: 0.05,
95 ’max_coef’: 100,
96 }
97
98 set_cover_problem = SetCover(parameters, seed=seed)
99 instance = set_cover_problem.generate_instance()

100 solve_status, solve_time = set_cover_problem.solve(instance)
101
102 print(f"Solve Status: {solve_status}")
103 print(f"Solve Time: {solve_time:.2f} seconds")

Textual Description

The MPS file, named ‘SetCover’, represents a mixed integer programming problem
focused on a Set Cover optimization task. Its objective is to minimize the total cost
associated with the selected columns, defined by the coefficients specific to this problem.
The formulation leverages inequalities to ensure that each of the 750 constraints guarantees
that every row is covered by at least one selected column. The decision variables are binary,
reflecting the choice of each column’s inclusion in the cover. The file employs a structured
approach for encoding the problem, facilitating efficient solving by optimization algorithms.

B.4 DETAILS OF MILP EMBEDDING MODEL

Below we provide more details about the embedding model.

B.4.1 DERIVATION OF LOSS FUNCTION

Let (Pi, Ti) for i = 1, . . . , N be a batch of N matched MILP–text pairs, fθ be the MILP embedding
model, producing an MILP embedding pi = fθ(Pi) ∈ Rd, gθ be the text encoder, producing a
text embedding ti = gθ(Ti) ∈ Rd. Both pi and ti are typically L2-normalized to have unit length,
∥pi∥2 = 1, ∥ti∥2 = 1. For each MILP–text pair (i, j) in the batch, we define the similarity score as
the dot product: sij = p⊤

i tj .

Our training objective is a bidirectional contrastive objective: it treats each MILP instance pi as a
query and tries to classify the correct text ti among all texts {tj}, and symmetrically, each text ti
tries to classify the correct MILP instances vi among all instances {vj}.
For a fixed MILP embedding pi, the MILP-to-text cross-entropy loss is:

ℓ(MILP-to-Text)
i = − log(

exp(sii)
N∑
j=1

exp(sij)

)

Similarly, for a fixed text embedding ti, the text-to-MILP cross-entropy loss is:

ℓ(Text-to-MILP)
i = − log(

exp(sii)
N∑
j=1

exp(sji)

)

To incorporate both MILP-to-text and text-to-MILP objectives, the final symmetric loss sums these
two cross-entropy terms for each pair and then averages over the batch:

L =
1

2N

N∑
i=1

ℓ(MILP-to-Text)
i + ℓ(Text-to-MILP)

i

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.4.2 PROMPT DETAILS OF NV-EMBED-V2

We use NV-Embed-v2 (Lee et al., 2025) as the text embedding model in the training paradigm (see
Figure 3a) and freeze its parameters during training. NV-Embed-V2 is an instruction embedding
model, and we use the following prompt as the instruction:

Prompt for Text Embedding Model

Given a linguistic description, retrieve the corresponding Mixed-Integer Linear Pro-
gramming problem.

B.4.3 TRAINING DETAILS

We trained the MILP embedding model on the Evolve/Train dataset, which contains a total of 59,033
(MILP instance, textual description) pairs. We randomly divided it into a training set and a valida-
tion set in a ratio of 9:1, using the training set as training data. To evaluate training progress, we
track 4-way and 10-way retrieval accuracies on the validation set, which measure whether the model
can correctly match a MILP problem to its textual description (or vice versa) among 4 or 10 candi-
dates, respectively. Figure 12 shows the validation accuracy curves during training, demonstrating
that the model effectively learns to capture the semantics of MILP problems through our proposed
contrastive framework. These retrieval accuracies serve as intermediate metrics for assessing the
quality of the learned MILP embeddings. The training process was completed on a single Nvidia
H100 and took about 40 hours. We provide the hyperparameters used for training in Table 6.

0 20 40 60 80 100
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

4way_Acc_text2milp
10way_Acc_text2milp

0 20 40 60 80 100
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

4way_Acc_milp2text
10way_Acc_milp2text

Figure 12: The Text-to-MILP and MILP-to-Text Accuracy Rate curves with respect to epoch num-
ber.

Table 6: Hyperparameter of MILP embedding model.

Name Value Name Value
Embed Size 64 Num. of GCN Layers 2

Num. of Sampled Nodes 512 Num. of Attention Layers 6
Embedding Space R4096 Epoch Number 100

Learning Rate 0.001 Batch Size 64
Num. of Attention Heads 8 Optimizer Adam

B.5 DETAILS OF FORMULATION CODE TUNING

This appendix expands the implementation details for the two tuning strategies introduced in Section
3.3. We first parse the formulation code using Python’s ast to locate tunable parameters in the “pa-
rameter” block. Two parameter types are supported: (i) value (scalar numeric, integer or real), and
(ii) interval (lower/upper bounds). For Diverse Tuning (Algorithm 1), we draw multiplicative scale
factors from a log-uniform range and rewrite the code accordingly. For Targeted Tuning (Algorithm
2), we treat the formulation as a black-box generator and apply Bayesian Optimization (BO) over
the parameter space. Each candidate parameterization yields a temporary instance that is solved
(with a time limit); the result is used to accept/reject instances (diverse tuning) or to guide the BO
loop (targeted tuning).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

In the Diverse Tuning setting, we (i) sample multiplicative scales from [0.1, 10] on a log scale; (ii)
preserve integer parameters by rounding to the nearest valid integer; (iii) keep interval ordering by
enforcing ℓ′ < u′ (with a small jitter if needed); (iv) discard infeasible instances and instances
solved in less than 5 seconds as trivial; and (v) cap solving at 1000 seconds (treating timeouts as
1000). All experiments use PySCIPOpt 5.2.1 (Bolusani et al., 2024).

In the Targeted Tuning setting, we employ smac3 (Lindauer et al., 2022) as the Bayesian optimizer,
with a maximum of 50 trials. For cases where the objective is to maximize solving time, we cap the
runtime of each trial at 1000s. For cases where the goal is to match a specified solving time, we set
the target time to 50s and limit each trial to 100s. Optimization traces for both cases are provided in
Figures 13 and 14 as illustrative examples.

0 10 20 30 40 50
Bayesian Optimizer Trial Number

0

200

400

600

800

1000

So
lv

e
Ti

m
e

(s
ec

on
ds

)

Current Solve Time
Max Solve Time

Figure 13: Example optimization trace
for the case of maximizing solving time.

0 10 20 30 40 50
Bayesian Optimizer Trial Number

0

20

40

60

80

100

So
lv

e
Ti

m
e

(s
ec

on
ds

)

Target=50s
Current Solve Time
Best Matched Time

Figure 14: Example Optimization trace
for the case of matching a specified tar-
get time (50s).

Algorithm 1 Diverse Tuning via Randomized Parameter Perturbations

Require: Formulation code c; desired number of accepted instances k; scale range [a, b] (default
[0.1, 10]); trivial cutoff tmin (default 5 s); time limit tmax (default 1000 s)

Ensure: Accepted instances Q = {(qi, τi,wi)}ki=1 with solve time τi ≥ tmin

1: Q ←, Success← 0
2: Parse tunable parameters w = (w1, . . . , wn) from the parameter block of c {wi can be a scalar

or an interval [ℓi, ui]}
3: while Success < k do
4: for i = 1 to n do
5: if wi is a scalar value then
6: Draw si ∼ LogUniform(a, b)
7: w′

i ← round if int(wi · si)
8: w′

i ← clamp if bounded(w′
i)

9: else if wi is an interval [ℓi, ui] then
10: Draw si ∼ LogUniform(a, b)
11: ℓ′i ← round if int(ℓi · si), u′

i ← round if int(ui · si)
12: if ℓ′i ≥ u′

i then
13: (ℓ′i, u

′
i)← repair(ℓ′i, u

′
i)

14: end if
15: w′

i ← [ℓ′i, u
′
i]

16: end if
17: end for
18: c′ ← SETPARAMETER(c,w′)
19: q′ ← GENERATEINSTANCE(c′)
20: (feasible, τ)← SOLVE(q′, tmax) {τ is wall-clock solve time; timeouts yield τ = tmax}
21: if feasible and τ ≥ tmin then
22: Q ← Q∪ {(q′, τ,w′)}, Success← Success + 1
23: end if
24: end while
25: return Q

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 2 Targeted Tuning via Black-Box Optimization

Require: Formulation code c; evaluation budget B; time limit tmax; trivial cutoff tmin; objective
obj ∈ {MAXDIFFICULTY, HITTARGET}; target time T (only if obj = HITTARGET)

Ensure: Best parameterization x⋆, instance q⋆, and measured solve time τ⋆

1: Construct search domain X from tunable parameters in c (respect bounds and integrality)
2: Define EVALUATE(x):
3: c′ ← SETPARAMETER(c,x); q ← GENERATEINSTANCE(c′)
4: (feasible, τ)← SOLVE(q, tmax) {Timeouts return τ = tmax}
5: if not feasible or τ < tmin then

6: y ←
{
0 if obj = MAXDIFFICULTY

−|tmin − T | if obj = HITTARGET
7: else

8: y ←
{
τ if obj = MAXDIFFICULTY

−|τ − T | if obj = HITTARGET
9: end if

10: return (y, q, τ)
11: Initialize a black-box optimizer O← INITIALIZEBO(X)
12: Optionally warm-start O with a few random evaluations of EVALUATE(·)
13: Incumbent← None
14: for t = 1 to B do
15: xt ← O.PROPOSE()
16: (yt, qt, τt)← EVALUATE(xt)
17: O.OBSERVE(xt, yt)
18: if Incumbent = None or yt improves over Incumbent.y then
19: Incumbent← (xt, qt, τt, yt)
20: end if
21: end for
22: (x⋆, q⋆, τ⋆,)← Incumbent
23: return (x⋆, q⋆, τ⋆)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C MORE DETAILS ON EXPERIMENTAL SETUP

C.1 DETAILS OF BASELINES

C.1.1 ‘GPT-4O’ BASELINE

Our implemented ‘GPT-4o’ baseline uses GPT-4o (Hurst et al., 2024) as the underlying LLM to eval-
uate its capability to directly generate MILP formulation code from textual description. We conduct
experiments on the Evolve/Test dataset, which contains instances paired with textual descriptions. A
few-shot prompting approach is employed to guide the LLM in generating MILP formulation code.
Specifically, we randomly select three (textual description, code) pairs from the Evolve/Train dataset
as examples, and use a target textual description from Evolve/Test as the test input. For each test
case, we repeat the experiment 10 times and report the best result. The prompt used in this process
is as follows:

Prompt for GPT-4o

Please generate Python code for the Mixed-Integer Linear Programming problem cor-
responding to the description below.
{target desc}

Sample description 1:
{sample desc1}
Sample code 1:
{sample code1}

Sample description 2:
{sample desc2}
Sample code 2:
{sample code2}

Sample description 3:
{sample desc3}
Sample code 3:
{sample code3}

C.1.2 ‘FINETUNED LLAMA 3-8B’ BASELINE

We implemented another baseline, Finetuned LLaMA 3-8b, which also takes the textual description
of a MILP problem as input and generates the corresponding formulation code. This baseline is
evaluated on the Evolve/Test dataset to assess the performance of the fine-tuned model. We use
LLaMA 3-8b-instruct (Dubey et al., 2024) as the base model and perform supervised fine-tuning
(SFT). The SFT dataset is constructed using all samples from the Evolve/Train, where each sample
is a (textual description, formulation code) pair in the following format:

SFT Data Format

1 messages = [
2 {"role": "system", "content": "You are an expert in Mixed-

Integer Linear Programming."},
3 {"role": "user", "content": "Please generate Python code for

the Mixed-Integer Linear Programming problem
corresponding to the description below. \n" +
description},

4 {"role": "assistant", "content": code}
5]

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

During testing, we use the same user prompt as input and feed the code generated by the fine-tuned
model into GPT-4o for validation, ensuring the output code is free of syntax errors. The prompt used
for code checking is as follows:

Prompt for Code Checking

Identify and fix the errors in this code, then output the complete corrected code.

{code}

We perform full-parameter fine-tuning on LLaMA-3-8b-instruct using the XTuner framework (Con-
tributors, 2023), with the hyperparameters listed in Table 7. Fine-tuning is conducted on 8 Nvidia
H100 GPUs and takes approximately 6 hours. During testing, we also repeat each experiment 10
times and report the best result.

Table 7: Hyperparameter of Finetuning LLaMA-3-8b.

Name Value Name Value
Epoch Num 8 Learning Rate 2e-5
Batch Size 1 Accumulate Counts 16

C.1.3 ‘BOWLY’ BASELINE

For the ‘Bowly’ baseline, we use the official implementation from https://github.com/
simonbowly/mip-generators, which generates MILP instances based on several specified
statistical indicators (e.g., coefficient matrix density, fraction violation rate, etc.). To provide the
required inputs, we wrote a script to compute these statistical indicators from the target instances.

C.1.4 ‘ACM-MILP’ BASELINE

For the ‘ACM-MILP’ baseline, we use the official implementation provided at https://
github.com/Thinklab-SJTU/ACM-MILP. For each type of MILP problem, we generate
20 instances to serve as both the training set and the target instances. The trained model is then
used to reconstruct these 20 problems. We adopt the same hyperparameters as those used for the
preset ‘CA’ problem, and set the reconstruction ratio to 0.1. It is important to note that ACM-MILP
does not guarantee the feasibility of the generated problems—for example, in our experiments, the
instances generated for TSP and VRP were infeasible.

C.2 DETAILS OF stat metric

Table 8: Evaluation metrics used in similarity comparison.

Name Explanation
coef dens Fraction of non-zero entries in coefficient matrix.

cons degree mean Mean degree of constraint vertices.
cons degree std Std of degrees of constraint vertices.
var degree mean Mean degree of variable vertices.
var degree std Std of degrees of variance vertices.

lhs mean Mean of non-zero entries in coefficient matrix.
lhs std Std of non-zero entries in coefficient matrix.

rhs mean Mean of RHS values.
rhs std Std of RHS values.

modularity Modularity of the graph.
clustering coef Clustering coefficient of the graph.

In previous work (Geng et al., 2023; Guo et al., 2024), graph statistical metrics were used to evaluate
the similarity between generated instances and target instances. The full list of metrics is provided

25

https://github.com/simonbowly/mip-generators
https://github.com/simonbowly/mip-generators
https://github.com/Thinklab-SJTU/ACM-MILP
https://github.com/Thinklab-SJTU/ACM-MILP

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

in Table 8. For each individual metric, they calculate the Jensen-Shannon (JS) divergence. Let JSi

denote the JS divergence for the ith metric. The similarity score for the ith metric is defined as:

scorei = (max(JS)− JSi)/(max(JS)−min(JS)). (7)

The overall similarity score is the average of all the scores:

score =
1

11

11∑
i=1

scorei. (8)

In our implementation of the stat metric, we make two modifications to the above method. First,
we remove the clustering coefficient metric, as it is always zero for bipartite graphs. Second, we
adapt the metric to compute pairwise similarity rather than comparing entire distributions. Ex-
isting approaches rely on JS divergence, which is only suitable for comparing two sufficiently
large sets of instances. However, in our experimental setting, each group of instances is relatively
small—sometimes as few as five instances (e.g., when generating a specific problem class from
MIPLIB). In such cases, computing JS divergence leads to high variance.

To address this, we instead use the Jaccard similarity, defined as followswhere stati represents the
i-th statistical indicator:

StatMetric(p, q) =
1

10

10∑
i=1

min(Stati(p),Stati(q))
max(Stati(p),Stati(q))

,

StatMetric(P,Q) =
1

|P ||Q|
∑
p∈P

∑
q∈Q

StatMetric(p, q).
(9)

C.3 DETAILS OF DATASET

In the experiments corresponding to Tables 1 and 2, we used two types of datasets. The first type
includes the first four MILP classes from Evolve/Test (FCNF, TSP, GA, VRP). For each problem
class, we generated 20 instances, which served both as target instances and as training/testing data
for ACM-MILP. For the three datasets from MIPLIB (Nursesched, CVS, IIS), we used all available
instances provided by MIPLIB as target instances for MILP-Retrieval, and also as training/testing
data for ACM-MILP. The dataset statistics are summarized in Table 9.

Table 9: Dataset Statistics of Targeted MILP Instance Generation Experiment.

Problem Source Problem Class Instance Num. Average |V| Average |C| Average |E|

Evolve/Test

FCNF 20 1096 594 2192
TSP 20 1604 1567 7592
GA 20 125000 750 250000

VRP 20 1088 1153 7168

MIPLIB
NurseSched 5 19501 7231 373018

CVS 5 2536 3397 9150
IIS 2 256 7551 99552

D EXTENSIVE EXPERIMENT RESULTS

D.1 MORE RESULTS ON embedding metric

We conducted a large-scale experiment to evaluate the performance of the embedding metric on
MIPLIB (Gleixner et al., 2021). In the MIPLIB Collection Set, most instances is labeled with a
Group tag, where instances sharing the same tag are considered to belong to the same problem
class. We filtered the Collection Set to include only those groups where every instance has a Group
tag and can produce a feasible solution within 100 seconds, in order to exclude ultra-scale instances.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Then we filter the group with only one instance. After this filtering process, we obtained 99 classes
comprising a total of 361 instances from the original 1,065 instances in the MIPLIB Collection Set
(including previous used Nursesched, CVS, IIS classes). All filtered classes and instances are listed
in Table 10.

Table 10: Filtered Classes and Instances from MIPLIB Collection Set.

MILP Class Instances
prod prod1, prod2
rococo rococoB10-011000, rococoC11-010100, rococoC12-010001,

rococoC10-001000, rococoC11-011100
iis iis-hc-cov, iis-glass-cov
sing sing326, sing44, sing11, sing5, sing17
shipschedule shipschedule8shipsmixuci, shipschedule6shipsmixi, shipschedule3shipsi
blp blp-ar98, blp-ir98, blp-ic97, blp-ic98
vpp vpphard2, vpphard
diameterc diameterc-mstc-v20a190d5i, diameterc-msts-v40a100d5i
tanglegram tanglegram6, tanglegram4
pr-product p200x1188c, sp150x300d, r50x360, p500x2988, p500x2988d,

p500x2988c
mine mine-166-5, mine-90-10
momentum momentum1, momentum2, momentum3
opm2 opm2-z6-s1, opm2-z10-s4, opm2-z8-s0, opm2-z12-s8, opm2-z7-s8
acc-tight acc-tight2, acc-tight4, acc-tight5
map map14860-20, map10, map06, map18, map16715-04
sp9 sp98ir, sp98ic, sp98ar, sp97ar, sp97ic
ab ab71-20-100, ab51-40-100, ab69-40-100, ab72-40-100, ab67-40-100
bppc bppc8-02, bppc6-06, bppc8-09, bppc6-02, bppc4-08
gmu gmu-35-40, gmut-76-40, gmut-76-50, gmut-75-50, gmu-35-50
dws dws012-02, dws008-01, dws008-03, dws012-03, dws012-01
decomp decomp2, decomp1
eil eilA101-2, eilC76-2, eil33-2
gasprod gasprod2-1, gasprod1-3, gasprod1-1, gasprod1-2, gasprod2-2
ran ran12x21, ran13x13, ran14x18-disj-8
eva1aprime eva1aprime5x5opt, eva1aprime6x6opt
assign assign1-5-8, assign1-10-4
ofi ofi, ofi2
fhnw-schedule fhnw-schedule-paira400, fhnw-schedule-paira200,

fhnw-schedule-pairb200, fhnw-schedule-paira100,
fhnw-schedule-pairb400

cmflsp cmflsp50-24-8-8, cmflsp50-24-10-4, cmflsp40-24-10-7,
cmflsp40-36-2-10, cmflsp60-36-2-6

csched csched008, csched007, csched010
network design germany50-UUM, cost266-UUE, ta2-UUE, dfn-bwin-DBE, ta1-UUM
ger50 ger50-17-ptp-pop-6t, ger50-17-trans-dfn-3t, ger50-17-trans-pop-3t,

ger50-17-ptp-pop-3t, ger50 17 trans
fastxgemm fastxgemm-n2r6s0t2, fastxgemm-n3r21s3t6, fastxgemm-n3r22s4t6,

fastxgemm-n3r23s5t6, fastxgemm-n2r7s4t1
triptim triptim8, triptim4, triptim7, triptim1, triptim2
gen-ip gen-ip002, gen-ip021, gen-ip054, gen-ip036, gen-ip016
snp snp-10-004-052, snp-02-004-104, snp-10-052-052, snp-04-052-052,

snp-06-004-052
satellites satellites2-40, satellites3-25, satellites2-60-fs, satellites2-25, satellites4-25
rmatr rmatr200-p10, rmatr100-p5, rmatr200-p5, rmatr100-p10, rmatr200-p20
dano dano3mip, dano3 5, danoint, dano3 3
cvrp cvrpp-n16k8vrpi, cvrpa-n64k9vrpi, cvrpb-n45k5vrpi, cvrpsimple2i
Continued on next page

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Continued from previous page
MILP Class Instances
f2gap f2gap401600, f2gap201600, f2gap801600, f2gap40400
sorrell sorrell4, sorrell3, sorrell8, sorrell7
uccase uccase8, uccase12, uccase9, uccase10, uccase7
nu120 nu120-pr9, nu120-pr12
nursesched nursesched-medium04, nursesched-medium-hint03,

nursesched-sprint-hidden09, nursesched-sprint-late03,
nursesched-sprint02

berlin berlin 5 8 0, berlin
nxy-z n6-3, n13-3, n7-3, n5-3, n9-3
tbfp tbfp-bigm, tbfp-network
nh97 nh97 tension, nh97 potential
qnet qnet1, qnet1 o
markshare markshare1, markshare 4 0, markshare 5 0, markshare2
timtab timtab1, timtab1CUTS
swath swath3, swath2, swath1, swath
app app2-1, app1-1, app3, app2-2, app1-2
core core2586-950, core4872-1529, core4284-1064, core2536-691
allcolor allcolor58, allcolor10
reblock reblock166, reblock420, reblock354, reblock115
pizza pizza78i, pizza27i
roi roi5alpha10n8, roi2alpha3n4
graphdraw graphdraw-gemcutter, graphdraw-grafo2, graphdraw-opmanager,

graphdraw-mainerd, graphdraw-domain
genus genus-sym-g31-8, genus-sym-grafo5708-48, genus-sym-g62-2,

genus-g31-8, genus-g61-25
ex ex9, ex1010-pi, ex10, exp-1-500-5-5
nexp nexp-150-20-1-5, nexp-150-20-8-5, nexp-50-20-4-2, nexp-50-20-1-1
aflow aflow40b, aflow30a
splice splice1k1i, splice1k1
fcnf g200x740, h80x6320, h80x6320d, k16x240b, h50x2450
pigeon pigeon-10, pigeon-08, pigeon-13, pigeon-20, pigeon-16
lectsched lectsched-1, lectsched-4-obj, lectsched-5-obj, lectsched-3, lectsched-2
adult adult-regularized, adult-max5features
xmas xmas10, xmas10-2
shiftreg shiftreg1-4, shiftreg2-7, shiftreg5-1
beasley beasleyC2, beasleyC3, beasleyC1
seymour seymour1, seymour
cvs cvs16r89-60, cvs16r128-89, cvs08r139-94, cvs16r106-72, cvs16r70-62
nseq n2seq36f, n3seq24, n2seq36q, n3div36
k1mushroom k1mushroomi, k1mushroom
mc mc7, mc8, mc11
traininstance traininstance2, traininstance6
sct sct2, sct31, sct32, sct5, sct1
tpl-tub tpl-tub-ws1617, tpl-tub-ss16
mas mas76, mas74
gsvm gsvm2rl9, gsvm2rl3, gsvm2rl5, gsvm2rl12, gsvm2rl11
physiciansched physiciansched5-3, physiciansched6-1, physiciansched3-4,

physiciansched3-3, physiciansched6-2
bienst bienst1, bienst2
drayage drayage-100-12, drayage-25-23, drayage-25-27, drayage-25-32,

drayage-100-23
milo milo-v12-6-r1-58-1, milo-v12-6-r1-75-1, milo-v13-4-3d-3-0,

milo-v12-6-r2-40-1, milo-v13-4-3d-4-0
leo leo2, leo1
Continued on next page

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Continued from previous page
MILP Class Instances
set3 set3-16, set3-09, set3-10, set3-15, set3-20
radiation radiationm18-12-05, radiationm40-10-02
chromaticindex chromaticindex128-5, chromaticindex256-8, chromaticindex512-7,

chromaticindex32-8, chromaticindex1024-7
air air03, air05, air04
graph graph20-80-1rand, graph40-20-1rand, graph20-20-1rand,

graph40-40-1rand, graph40-80-1rand
n37 n370b, n3700, n3707, n3709, n3705
30 70 45 30 70 45 095 98, 30 70 45 05 100, 30 70 45 095 100
bley bley xs2, bley xl1, bley xs1, bley xs1noM
bmocbd bmocbd2, bmocbd3, bmocbd
piperout piperout-03, piperout-08, piperout-27, piperout-d20, piperout-d27
hgms hgms62, hgms-det, hgms30
mspsp mspsphard03i, mspsphard01i

Instance Index

In
st

an
ce

 In
de

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Sim
ilarity

Figure 15: Similarity Matrix of embedding metric on 361 instances (99 classes) from MIPLIB.

We computed the pairwise similarity among the 361 instances using the embedding metric. The
instance indices follow the same order as presented in Table 10. The results are visualized in Figure
15. In the figure, red indicates higher similarity while blue indicates lower similarity. Since the
indices of instances from the same problem class are placed consecutively, we observe that many
red-colored squares appear along the diagonal of the similarity matrix. This suggests that different

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

instances from the same class—often with significantly varying sizes—can still yield high similarity
scores under the embedding metric. Moreover, there are also numerous red squares off the diagonal
(though generally with lower similarity than those on the diagonal), indicating that the embedding
metric is capable of discovering related classes within MIPLIB.

The experimental results demonstrate that the embedding metric effectively distinguishes unseen
instances from MIPLIB, providing strong evidence of its robustness.

D.2 MORE RESULTS ON MIPLIB

We further evaluate the performance of MILP-Retrieval on the exact same dataset as listed in Table
10. We first visualize the distribution of number of variables/constraints of the instances in Figure
16, showing that compared to the Evolve/Train visualized in Figure 11, the filtered MIPLIB has a
greater diversity.

101 102 103 104 105 106 107

Number of Variables (log scale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

(a) Distribution of Number of Variables.

100 101 102 103 104 105 106 107

Number of Constraints (log scale)

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

(b) Distribution of Number of Constraints.

Figure 16: Visualization of All Instances in filtered MIPLIB.

We then evaluate MILP-Retrieval on the same dataset, results are presented in Table 11. For each
problem class, we report the similarity between the target instances and the generated instances,
using both embedding metric and stat metric. The results are presented in Table 11. It is worth
highlighting that across all MILP classes, the average embedding metric is 0.701, while the average
stat metric is 0.236. These results indicate that in most cases, MILP-Retrieval is able to generate
instances with relatively high embedding metric to the corresponding target instances.

0 10 20 30 40
MILP Class Index

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Em
be

dd
in

g
M

et
ric

MILP-Retrieval
GPT-4o
Finetuned LLaMA 3-8b

Figure 17: Comparison on embedding met-
ric.

0 10 20 30 40
MILP Class Index

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

St
at

 M
et

ric

MILP-Retrieval
GPT-4o
Finetuned LLaMA 3-8b

Figure 18: Comparison on stat metric.

Table 12: Feasible Rate of Generated Formulation Code.

Method 1-shot 4-shots 10-shots
GPT-4o 2/50 6/50 17/50
Finetuned LLaMA 3-8b 14/50 26/50 42/50

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 11: Feasible Rate of Generated Formulation Code.

MILP Class embedding metric stat metric MILP Class embedding metric stat metric
prod 0.81 ± 0.039 0.122 ± 0.02 rococo 0.854 ± 0.055 0.17 ± 0.089
iis 0.829 ± 0.046 0.234 ± 0.003 sing 0.911 ± 0.042 0.23 ± 0.05
shipschedule 0.876 ± 0.035 0.113 ± 0.027 blp 0.862 ± 0.078 0.096 ± 0.005
vpp 0.418 ± 0.513 0.312 ± 0.019 diameterc 0.81 ± 0.092 0.1 ± 0.015
tanglegram 0.817 ± 0.071 0.115 ± 0.027 pr-product 0.711 ± 0.404 0.271 ± 0.072
mine 0.679 ± 0.157 0.269 ± 0.034 momentum 0.426 ± 0.312 0.246 ± 0.054
opm2 0.861 ± 0.053 0.296 ± 0.043 acc-tight 0.914 ± 0.036 0.497 ± 0.014
map 0.93 ± 0.03 0.111 ± 0.003 sp9 0.481 ± 0.341 0.324 ± 0.035
ab 0.668 ± 0.094 0.099 ± 0.001 bppc 0.667 ± 0.169 0.225 ± 0.024
gmu 0.92 ± 0.025 0.289 ± 0.034 dws 0.762 ± 0.054 0.106 ± 0.007
decomp 0.593 ± 0.246 0.46 ± 0.103 eil 0.97 ± 0.019 0.212 ± 0.022
gasprod 0.523 ± 0.26 0.171 ± 0.04 ran 0.715 ± 0.236 0.236 ± 0.069
eva1aprime 0.772 ± 0.17 0.324 ± 0.023 assign 0.67 ± 0.128 0.12 ± 0.009
ofi 0.814 ± 0.045 0.142 ± 0.002 fhnw-schedule 0.751 ± 0.081 0.277 ± 0.052
cmflsp 0.931 ± 0.021 0.311 ± 0.031 csched 0.51 ± 0.563 0.247 ± 0.026
network design 0.304 ± 0.358 0.274 ± 0.079 ger50 0.376 ± 0.346 0.235 ± 0.038
fastxgemm 0.896 ± 0.066 0.064 ± 0.021 triptim 0.714 ± 0.326 0.183 ± 0.067
gen-ip 0.249 ± 0.342 0.167 ± 0.065 snp 0.799 ± 0.096 0.322 ± 0.008
satellites 0.565 ± 0.259 0.12 ± 0.079 rmatr 0.809 ± 0.101 0.252 ± 0.038
dano 0.771 ± 0.099 0.324 ± 0.056 cvrp 0.86 ± 0.093 0.429 ± 0.07
f2gap 0.467 ± 0.11 0.118 ± 0.056 sorrell 0.909 ± 0.037 0.301 ± 0.07
uccase 0.092 ± 0.383 0.391 ± 0.056 nu120 0.875 ± 0.033 0.153 ± 0.018
nursesched 0.883 ± 0.085 0.231 ± 0.076 berlin 0.388 ± 0.61 0.48 ± 0.146
nxy-z 0.746 ± 0.046 0.226 ± 0.04 tbfp 0.414 ± 0.541 0.247 ± 0.207
nh97 0.212 ± 0.474 0.08 ± 0.039 qnet 0.845 ± 0.083 0.285 ± 0.002
markshare 0.669 ± 0.288 0.218 ± 0.094 timtab 0.66 ± 0.215 0.312 ± 0.047
swath 0.881 ± 0.027 0.109 ± 0.002 app 0.307 ± 0.489 0.23 ± 0.064
core 0.818 ± 0.076 0.122 ± 0.005 allcolor 0.82 ± 0.075 0.168 ± 0.019
reblock 0.81 ± 0.077 0.326 ± 0.036 pizza 0.914 ± 0.037 0.298 ± 0.014
roi 0.438 ± 0.329 0.115 ± 0.04 graphdraw 0.544 ± 0.246 0.235 ± 0.046
genus 0.943 ± 0.027 0.34 ± 0.029 ex 0.098 ± 0.513 0.305 ± 0.158
nexp 0.344 ± 0.462 0.382 ± 0.063 aflow 0.874 ± 0.044 0.322 ± 0.022
splice 0.89 ± 0.077 0.195 ± 0.051 fcnf 0.361 ± 0.482 0.291 ± 0.123
pigeon 0.764 ± 0.143 0.202 ± 0.036 lectsched 0.601 ± 0.104 0.306 ± 0.007
adult 0.923 ± 0.013 0.177 ± 0.024 xmas 0.734 ± 0.245 0.159 ± 0.005
shiftreg 0.728 ± 0.083 0.16 ± 0.006 beasley 0.985 ± 0.005 0.436 ± 0.041
seymour 0.385 ± 0.475 0.106 ± 0.001 cvs 0.814 ± 0.078 0.430 ± 0.121
nseq 0.361 ± 0.315 0.142 ± 0.023 k1mushroom 0.767 ± 0.195 0.246 ± 0.086
mc 0.97 ± 0.015 0.362 ± 0.009 traininstance 0.86 ± 0.021 0.269 ± 0.023
sct 0.491 ± 0.192 0.216 ± 0.034 tpl-tub 0.778 ± 0.053 0.267 ± 0.002
mas 0.649 ± 0.053 0.174 ± 0.015 gsvm 0.65 ± 0.172 0.098 ± 0.032
physiciansched 0.723 ± 0.408 0.271 ± 0.046 bienst 0.945 ± 0.018 0.196 ± 7.377
drayage 0.957 ± 0.014 0.293 ± 0.035 milo 0.917 ± 0.043 0.271 ± 0.014
leo 0.762 ± 0.022 0.131 ± 0.006 set3 0.802 ± 0.05 0.432 ± 0.014
radiation 0.579 ± 0.069 0.282 ± 0.03 chromaticindex 0.662 ± 0.09 0.148 ± 0.025
air 0.866 ± 0.066 0.163 ± 0.067 graph 0.919 ± 0.065 0.239 ± 0.157
n37 0.761 ± 0.036 0.477 ± 0.002 30 70 45 0.94 ± 0.044 0.295 ± 0.106
bley 0.481 ± 0.398 0.134 ± 0.074 bmocbd 0.882 ± 0.108 0.405 ± 0.012
piperout 0.68 ± 0.129 0.221 ± 0.104 hgms 0.057 ± 0.465 0.066 ± 0.002
mspsp 0.908 ± 0.015 0.373 ± 0.012

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

D.3 MORE RESULTS ON Evolve/Test DATASET

We provide the experimental results of MILP-Retrieval and two LLM-based baselines(GPT-4o,
Finetuned LLaMA 3-8b) on the full Evolve/Test dataset, which includes 50 MILP classes. The
LLM-based baselines are evaluated by directly inputting the textual description of the target in-
stance. The LLM-based baselines are tested under a 10-shot setting, where each experiment is
repeated 10 times, and the best result is reported. In the figure, missing entries for the LLM-based
baselines indicate that the method failed to generate a feasible formulation code for those instances.

This experiment serves as a supplement to the Evolve/Test results presented in Tables 1 and 2,
with the results shown in Figure 17 and 18. Additionally, we report the proportion of successful
formulation code generations by the LLM-based baselines across different numbers of trials, as
presented in Table 12. These results demonstrate that MILP-Retrieval maintains strong performance
even on larger-scale datasets, highlighting its robustness.

D.4 DETAILS AND ADDITIONAL RESULTS ON ENHANCING LEARNING-BASED SOLVER

D.4.1 INTRODUCTION OF UNDERLYING LEARNING-BASED SOLVER: NEURAL DIVING

Introduced by (Nair et al., 2020), Neural Diving is a machine learning approach for solving MILP
problems that focuses on generating high-quality joint variable assignments. It trains a GNN to
produce multiple partial assignments for the variables within a MILP instance. These partial assign-
ments effectively define smaller, more manageable sub-MILPs. These sub-MILPs, with their re-
duced complexity due to many variables being fixed, are then solved using a standard MILP solver,
such as SCIP, to complete the assignments and construct high-quality solutions.

The training process for the Neural Diving model utilizes high-quality, though not necessarily op-
timal, assignments found by a conventional MILP solver on a training set of MILP instances. A
key aspect is that the model learns from all available feasible solutions, not just the optimal ones,
and does not strictly require optimal assignments, which can be costly to obtain. The training aims
to teach the model to assign higher probabilities to feasible assignments that yield better objective
values. For handling general variables, Neural Diving reframes the prediction task as a sequence of
binary predictions based on the binary representation of the target value, predicting bits sequentially
from most to least significant.

We used a third-party implementation of Neural Diving provided by https://github.com/
thuiar/MILPBench, which network structure is exactly the same as described in (Nair et al.,
2020). The training epoch is uniformly set to 200 to ensure loss convergence.

D.4.2 EXPERIMENTS ON ENHANCING LEARNING-BASED SOLVER

To simulate a data-scarce setting, we randomly generate 5 instances per problem class to serve as
the training set for Neural Diving, and 15 instances as the test set. These 5 instances also act as the
target instances for MILP-Retrieval, as well as the training data for other learning-based baseline
methods.

In the experiments presented in Table 3, we use MILP-Retrieval and various baseline methods to
generate 40 instances per problem type, which are then added to the training set of Neural Diving.
We also conduct an ablation study on the number of instances generated by each method, with the
results shown in Table 13, 14, 15 and 16.

In Tables 3 and 13-16, we mark ‘-’ for the cases where the original method cannot generate a feasible
instance, and we mark ‘infeasible’ for the cases where Neural Diving cannot find a feasible solution
(that is, the predicted partial solution has violated the constraints). These results demonstrate that
MILP-Retrieval can effectively enhance the performance of Neural Diving and, and in most cases it
outperforms the baseline methods.

32

https://github.com/thuiar/MILPBench
https://github.com/thuiar/MILPBench

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 13: Experimental results on FCNF problem with respect to the number of problems generated
by each method. We use each method to generate different numbers (10, 20, 40, 80) of instances
and add them to the training set of Neural Diving.

FCNF Raw MILP-Retrieval ACM-MILP GPT-4o Finetuned LLaMA 3-8b
10

1604.77 ± 311.27

1456.77 ± 244.39 1888.65 ± 266.46 - 1299.69 ± 205.35
20 1266.71 ± 190.74 1767.03 ± 245.33 - 1160.32 ± 168.10
40 1117.14 ± 187.68 1520.08 ± 200.00 - 1228.64 ± 399.68
80 1612.60 ± 249.79 1781.44 ± 253.04 - 1096.72 ± 182.26

Table 14: Experimental results on TSP problem with respect to the number of problems generated
by each method. We use each method to generate different numbers (10, 20, 40, 80) of instances
and add them to the training set of Neural Diving.

TSP Raw MILP-Retrieval ACM-MILP GPT-4o Finetuned LLaMA 3-8b
10

944.85 ± 98.45

891.53 ± 83.79 - 890.79 ± 82.84 895.40 ± 82.55
20 891.53 ± 83.79 - infeasible infeasible
40 893.47 ± 83.86 - 891.53 ± 83.79 924.40 ± 86.83
80 935.13 ± 94.76 - infeasible 991.2 ± 92.46

Table 15: Experimental results on GA problem with respect to the number of problems generated
by each method. We use each method to generate different numbers (10, 20, 40, 80) of instances
and add them to the training set of Neural Diving.

GA Raw MILP-Retrieval ACM-MILP GPT-4o Finetuned LLaMA 3-8b
10

-49768.53 ± 53.77

-49989.60 ± 4.98 infeasible - -49999.93 ± 0.26
20 -49999.93 ± 0.26 infeasible - infeasible
40 -49991.25 ± 4.92 infeasible - -49293.00 ± 15.23
80 -49997.53 ± 1.41 infeasible - -49129.60 ± 13.40

Table 16: Experimental results on VRP problem with respect to the number of problems generated
by each method. We use each method to generate different numbers (10, 20, 40, 80) of instances
and add them to the training set of Neural Diving.

VRP Raw MILP-Retrieval ACM-MILP GPT-4o Finetuned LLaMA 3-8b
10

911.20 ± 91.02

infeasible - infeasible -
20 infeasible - infeasible -
40 774.91 ± 52.64 - 827.65 ± 40.98 -
80 773.08 ± 44.13 - infeasible -

E DISCUSSIONS

In this section, we present a more in-depth discussion of our work in a Q&A format.

Q1: How can we ensure that MILP-Retrieval consistently retrieves sufficiently similar instances for
any given MILP problem?

Our method does not guarantee this for all MILP instances. However, it is important to note that
the three components of our approach—the retrieve-and-generate paradigm, the formulation code
library, and the MILP embedding model—are decoupled. This design allows future advancements
in either the construction of more diverse MILP libraries or the development of improved MILP
embedding models to be directly integrated into our framework. In this work, we employ the existing
MILP-Evolve method to generate a diverse MILP library and provide extensive empirical evidence
demonstrating the viability of our retrieve-and-generate paradigm.

Q2: What are the broader connections between this work and the field of machine learning?

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Reverse image search has been a significant research topic in computer vision and machine learning
in recent years, with applications such as finding similar images, identifying image sources, and re-
trieving relevant information about images. Analogously, our proposed framework, MILP-Retrieval,
can be seen as enabling reverse MILP search—a powerful retrieval tool tailored to the domain of
MILP problems, which encompass the majority of combinatorial optimization problems. We also
demonstrate the effectiveness of this tool in downstream tasks that aim to enhance learning-based
MILP solvers.

Q3: Is there a risk of bias in the MILP embedding model?

Yes, since all embedding models are trained on finite datasets, they inevitably carry some bias and
cannot perfectly capture the distribution of real-world data. To mitigate this issue, we utilize the
state-of-the-art method for generating MILP libraries to construct a sufficiently large and diverse
dataset, helping to reduce the impact of bias on the embedding model.

Q4: Why does MILP-Retrieval perform poorly under the stat metric, and why does ACM-MILP
perform poorly under the embedding metric?

The MILP embedding model implemented in our work is aligned with the semantic structure of the
problem, rather than its size. As shown in Figure 4, the statistical metric is sensitive to size differ-
ences among instances within the same problem category, whereas the embedding metric empha-
sizes structural and semantic similarities. MILP-Retrieval aims to retrieve instances that are seman-
tically similar to the target instance, which does not necessarily ensure similarity in size—resulting
in lower scores on the stat metric. In contrast, ACM-MILP reconstructs parts of the original problem
while preserving its size, but this can alter the semantic content, leading to poorer performance on
the embedding metric.

Q5: Why does MILP-Retrieval underperform compared to LLM-based baselines in some experi-
ments of enhancing learning-based solver?

In our experiments, the LLM-based baselines (GPT-4o, Finetuned LLaMA 3-8b) generate formula-
tion code based on textual descriptions of the problem. They are not capable of directly generating
formulation code from target instances, and therefore can only be evaluated on synthetic datasets like
Evolve/Test, which include textual descriptions, but not on real-world benchmarks such as MIPLIB.
As such, these experimental results are not fully comparable. We opted to implement the LLM-
based baselines using textual descriptions because, to the best of our knowledge, there are currently
no available Graph-Language Models (GLMs) capable of jointly processing graph-structured data
and natural language inputs.

34

	Related Works
	Implementation Details of MILP-Retrieval
	Details of Bipartite Graph Features
	Details of MILP Libraries Evolve/Train and Evolve/Test
	Samples of Different Forms of MILP Data
	Details of MILP Embedding Model
	Derivation of Loss Function
	Prompt details of NV-Embed-V2
	Training Details

	Details of Formulation Code Tuning

	More Details on Experimental Setup
	Details of Baselines
	`GPT-4o' Baseline
	`Finetuned LLaMA 3-8b' Baseline
	`Bowly' Baseline
	`ACM-MILP' Baseline

	Details of stat metric
	Details of Dataset

	Extensive Experiment Results
	More Results on embedding metric
	More Results on MIPLIB
	More Results on Evolve/Test Dataset
	Details and Additional Results on Enhancing Learning-based Solver
	Introduction of Underlying Learning-based Solver: Neural Diving
	Experiments on Enhancing Learning-based Solver

	Discussions

