

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TARGETED MILP INSTANCE GENERATION VIA FORMULATION CODE RETRIEVAL

Anonymous authors

Paper under double-blind review

ABSTRACT

Efficient and controllable data generation is critical for improving the performance of data-driven Mixed-Integer Linear Programming (MILP) solvers, especially in applications facing data scarcity. However, existing MILP instance generation methods typically require training a separate model for each problem class, which can be computationally intensive and does not allow for the generation of instances with varying sizes and solution difficulties. To address these challenges, we introduce MILP-Retrieval, a framework for targeted MILP instance generation via formulation code retrieval. We first build a diverse MILP library that includes multiple modalities and use it to pretrain an MILP embedding model. Based on the output of this embedding model, we propose a novel similarity metric that accurately measures the similarity between instances of different sizes within the same problem class. MILP-Retrieval leverages this new metric to retrieve the formulation code of a target instance and further tune it. Experimental results demonstrate the effectiveness of generating MILP instances through formulation code retrieval, with the ability to control both the scale and difficulty of the generated instances. This approach provides a novel perspective on MILP instance generation and opens up new possibilities for learning-based solvers.

1 INTRODUCTION

Mixed-Integer Linear Programming (MILP) is widely used in various domains, such as scheduling (Caumond et al., 2009; Floudas & Lin, 2005), logistics (Song et al., 2018; Galvez et al., 2015), and planning (Ren & Gao, 2010). Recently, learning-based solvers (Li et al., 2024; Wang et al., 2023; Ye et al., 2023) have shown promising performance, surpassing traditional solvers (Gurobi Optimization, LLC, 2024; Bolusani et al., 2024; Holmström et al., 2009), offering new opportunities to efficiently tackle complex MILP problems. However, a key challenge in developing learning-based MILP solvers is the scarcity of high-quality data (Gleixner et al., 2021; Bengio et al., 2021). Unlike fields such as natural language processing or computer vision, where large-scale datasets are readily available (Dubey et al., 2024), MILP lacks publicly available, diverse instance datasets. This shortage has led to growing interest in MILP instance generation.

Early approaches to MILP instance generation relied on domain knowledge or heuristics, designing problems with specific mathematical formulations (Rejowski Jr & Pinto, 2004; Morales-España et al., 2013; Moretti et al., 2021) or sampling instances from statistical encodings (Smith-Miles & Bowly, 2015; Bowly et al., 2020). While effective, these methods depended heavily on expert-defined templates, limiting their utility for downstream tasks such as learning-based solvers or solver tuning (Li et al., 2024). More recently, research has shifted toward learning-based paradigms that generate instances from specific problem classes, including methods for restructuring MILP formulations (Yang et al., 2024; Liu et al., 2024b), generating partial structures with Variational Autoencoders (Geng et al., 2023; Guo et al., 2024), and reconstructing constraints with diffusion models (Zhang et al., 2024).

Despite their innovation, these methods face several limitations: they require retraining separate models for each problem class, which is computationally expensive and time-consuming, and they offer limited control over the scale and difficulty of the generated instances.

To address these challenges, we propose MILP-Retrieval, a novel framework for targeted MILP instance generation that retrieves and tunes formulation code rather than reconstructing instance structures from scratch. Our method offers several advantages over prior approaches: (1) it significantly reduces the time and computational cost of instance generation; (2) it provides fine-grained control over the scale and complexity of generated instances by modifying parameters within the formulation code; and (3) it ensures that each generated instance comes with a corresponding mathematical formulation, enhancing transparency and explainability.

Our approach begins by building a large and diverse MILP library. Each entry in this library contains a problem instance, a textual description, and the corresponding formulation code. We then pretrain an MILP embedding model using this library. Using the output of this embedding model, we introduce a novel similarity metric for MILP instances, which we refer to as *embedding metric*. Unlike conventional structural similarity metrics (Geng et al., 2023; Guo et al., 2024), our *embedding metric* capture semantic-level similarities by comparing instance embeddings. This allows for more accurate similarity measurement across instances of the same class but with different scales. MILP-Retrieval then retrieves formulation code from the MILP library based on the target instance and tunes the parameters to control the scale and difficulty of the generated instance.

We conducted extensive experiments to evaluate the generalization and robustness of our approach. The evaluation was performed on two types of datasets: (i) 50 MILP problem classes that were excluded from the training and retrieval library, and (ii) over 300 instances from the real-world benchmark MIPLIB (Gleixner et al., 2021). First, we show that our proposed *embedding metric* significantly outperforms existing metrics. We then compare the similarity between generated and target instances using both metrics. Additionally, we demonstrate the controllability of MILP-Retrieval in generating instances with varying scales and solving complexity, and we highlight how these instances can improve the performance of learning-based MILP solvers. The code and data of the paper are provided at <https://anonymous.4open.science/r/MILP-Retrieval-D830/>.

The main contributions of the paper are as follows.

1. We introduce a novel similarity metric for MILP instances that accurately measures the similarity between problems of the same class but different scales, addressing limitations of previous metrics.
2. We propose MILP-Retrieval, a new framework for instance generation that retrieves and tunes formulation code based on the embedding similarity metric, enabling the generation of instances highly similar to given target instances.
3. We demonstrate the practical potential of MILP-Retrieval in downstream applications, including generating instances with varying scales and difficulties and enhancing learning-based MILP solvers.

2 PRELIMINARY

2.1 MILP PROBLEM AND ITS DATA REPRESENTATIONS

The standard formulation of a Mixed-Integer Linear Programming (MILP) problem is given by:

108

$$\begin{aligned}
 & \min_{x \in \mathbb{R}^n} c^T x, \\
 & \text{subject to} \quad Ax \leq b, \\
 & \quad l \leq x \leq u, \\
 & \quad x_i \in \mathbb{Z}, \quad i \in \mathbb{I}.
 \end{aligned} \tag{1}$$

115 In this formulation, the coefficient matrix $A \in \mathbb{R}^{m \times n}$ represents the constraints structure, $b \in \mathbb{R}^m$
 116 denotes the constraints' right-hand side vector, and $c \in \mathbb{R}^n$ is the objective coefficient. Variables
 117 are bounded within lower $l \in (\mathbb{R} \cup \{-\infty\})^n$ and upper $u \in (\mathbb{R} \cup \{+\infty\})^n$ limits. The
 118 set $\mathbb{I} \subseteq \{1, 2, \dots, n\}$ identifies variables constrained to integer values. We additionally utilize several
 119 alternative MILP data representations, as described below: (Figure 2 illustrates the relationships
 120 among the different forms of MILP data. For examples of these data forms, see Appendix B.3.)

121

Bipartite Graph Representation

122 A bipartite graph representation provides a lossless encoding of MILP
 123 problems (Gasse et al., 2019). Here, variables $\mathcal{V} = \{v_1, v_2, \dots, v_n\}$ and
 124 constraints $\mathcal{C} = \{c_1, c_2, \dots, c_m\}$ are represented as distinct node sets. An
 125 edge $e_{ij} = (v_i, c_j) \in \mathcal{E}$ is present if the variable v_i is part of constraint
 126 c_j . This forms a bipartite graph $\mathcal{G} = (\mathcal{V}, \mathcal{C}, \mathcal{E})$ capturing the structural
 127 relationships between variables and constraints. Additional details regarding
 128 graph features are provided in Appendix B.1.

129

130

131

132

133

134

135

136

137

138

139

140

141

Formulation Code Formulation code represents MILP problems in a generative manner, implemented using the PySCIPOpt library (Bolusani et al., 2024). Each formulation code characterizes a distinct MILP problem class, encapsulating the procedural logic required to generate instances. As illustrated in Figure 2 (highlighted in red), the *parameter* section of the formulation code can be tuned to control various features of the generated instances, such as their size and complexity.

142

143

144

145

146

Textual Description Textual descriptions offer natural language representations of MILP problems generated via methodologies from (Li et al., 2025). Initially, construction code is processed by a Large Language Model (LLM) to extract essential characteristics, including formulation methods and relevant topics. Statistical data of individual MILP instances are integrated to produce comprehensive descriptions combining general problem formulations and specific instance statistics.

147

148

2.2 MILP INSTANCE GENERATION

149

150

151

152

153

154

155

156

Prior learning-based approaches for MILP instance generation (Geng et al., 2023; Yang et al., 2024; Guo et al., 2024; Zhang et al., 2024) typically adopt a class-specific paradigm. Specifically, given a training set $P = \{p_1, p_2, \dots, p_n\}$ belonging to a single problem class, a model is trained and subsequently used to reconstruct instances from a testing set $Q = \{q_1, q_2, \dots, q_m\}$. The generated instances form the set $Q' = \{q'_1, q'_2, \dots, q'_m\}$, and the primary goal is to minimize distributional divergence between Q and Q' . For instance, previous work (Geng et al., 2023) employed Jensen-Shannon divergence (Lin, 1991) to quantify structural similarity between original and generated instances.

157

158

159

160

161

In this paper, we leverage MILP formulation code as backbone for targeted MILP instance generation. Under this new paradigm, a single unified model is trained on MILP problems and associated data across multiple classes, rather than being restricted to a single class. For a testing set of MILP instances $Q = \{q_1, q_2, \dots, q_n\}$, the framework outputs a piece of MILP formulation code c . Executing c directly produces the instance set $Q' = \{q'_1, q'_2, \dots, q'_m\}$. **The objective remains the same: to minimize the divergence between the distributions of Q and Q' .**

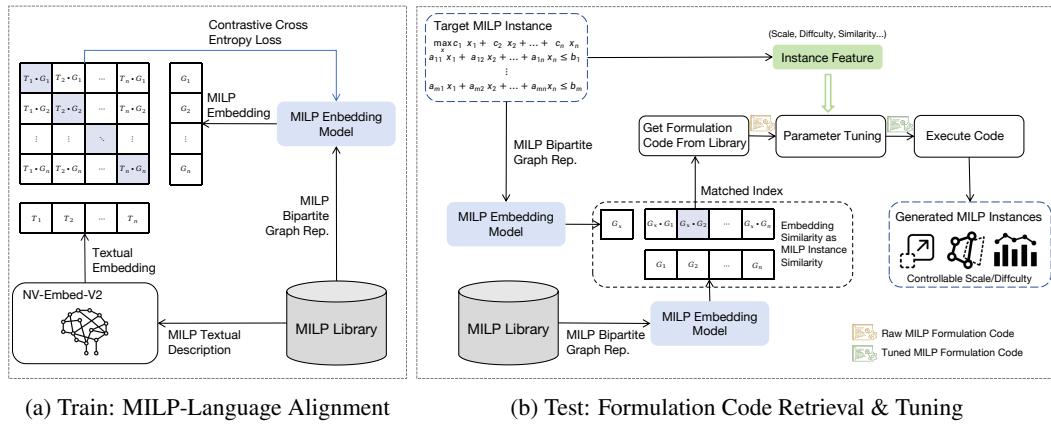


Figure 3: Our proposed framework, MILP-Retrieval, begins by constructing a comprehensive MILP library. Leveraging this library, we train an MILP embedding model following a contrastive learning paradigm. Using embeddings derived from this model, we introduce a novel similarity metric to retrieve formulation codes that best match the target instances. Subsequently, we tune the parameters within the formulation codes to control the size or difficulty of the problem. Finally, the tuned formulation codes are executed to generate the desired MILP problem instances.

3 METHODOLOGY

As illustrated in Figure 3, we first construct a MILP library containing diverse modalities, including MILP instances, formulation codes, bipartite graph representations, and textual descriptions (Appendix B.2). Leveraging this library, we pretrain an MILP embedding model, enabling us to map MILP instances into a unified embedding space (Section 3.1). Utilizing the pretrained embedding model, we propose a novel similarity metric designed to quantify the similarity between MILP instances, which also serves to retrieve the most relevant formulation code from the MILP library (Section 3.2). Once the appropriate formulation code is retrieved, we can further tune its parameters, enabling us to produce instances with varying scales and computational difficulties (Section 3.3).

3.1 PRETRAINING MILP EMBEDDING MODEL

In this subsection, we describe the pretraining process of our MILP embedding model, including the learning scheme, model architecture, training data setup, and preliminary results.

Contrastive Learning Scheme Using the MILP library, we train a powerful MILP embedding model capable of capturing both structural and semantic information. Specifically, we adopt a contrastive training framework inspired by CLIP (Radford et al., 2021), aligning the bipartite graph representation of MILP instances with their corresponding textual descriptions. This alignment enables the model to learn a shared embedding space that effectively captures semantic relationships between different representations of MILP problems. Our goal is to train an MILP embedding model $f_\theta : \mathcal{P} \rightarrow \mathbb{R}^d$, where \mathcal{P} is the space of MILP problems. For the textual embedding component $g_\theta : \mathcal{T} \rightarrow \mathbb{R}^d$, we utilize the state-of-the-art text embedding model NV-Embed-V2 (Lee et al., 2025), freezing its weights during training. The training process employs a symmetric cross-entropy loss (Zhang & Sabuncu, 2018) designed to encourage higher similarity for correct (graph, text) pairs compared to all incorrect pairings.

Model Architecture Our MILP embedding model consists of two major components: (1) a bipartite Graph Neural Network (GNN) that captures the relational structure between constraints and variables, and (2) a Transformer-based self-attention module that further updates the learned representations. We represent each MILP instance as a bipartite graph $(\mathcal{V}, \mathcal{C}, \mathcal{E})$, where \mathcal{V} denotes nodes corresponding to variables, \mathcal{C} denotes nodes representing constraints, and \mathcal{E} consists of edges connecting variables to the constraints in which they appear. To embed the nodes and edges into a shared

latent space of dimension `emb_size`, we employ three separate Multi-Layer Perceptrons (MLPs) for variables, constraints and edges:

$$\mathbf{x}_{u_i}^{(0)} = \text{MLP}_c(c_i), \mathbf{x}_{v_i}^{(0)} = \text{MLP}_v(v_i), \mathbf{x}_{e_{ij}} = \text{MLP}_e(e_{ij}), \quad (2)$$

where $v_i \in \mathcal{V}$, $c_i \in \mathcal{C}$, and $e_{ij} \in \mathcal{E}$ represent the raw input features, $\mathbf{x}_{u_i}^{(k)}, \mathbf{x}_{v_i}^{(k)}$ are constraint and variable embeddings at GNN layer k . For message passing, we utilize a Graph Convolution Module (Kipf & Welling, 2017) as the update function, the updates are performed as follows:

$$\mathbf{x}_u^{(k+1)} = \mathbf{x}_u^{(k)} + \text{BipartiteConv}\left(\mathbf{x}_v^{(k)}, \mathbf{x}_{e_{uv}}\right), \quad (3)$$

$$\mathbf{x}_v^{(k+1)} = \mathbf{x}_v^{(k)} + \text{BipartiteConv}\left(\mathbf{x}_u^{(k+1)}, \mathbf{x}_{e_{uv}}\right). \quad (4)$$

After the bipartite GNN layers, we sample k (specified by hyperparameter) node embeddings randomly. Together with the mean embeddings of all variable nodes $\bar{\mathbf{x}}_v$, constraint nodes $\bar{\mathbf{x}}_u$, and the summary node \mathbf{x}_s , we form a set of embeddings: $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k, \bar{\mathbf{x}}_v, \bar{\mathbf{x}}_u, \mathbf{x}_s\}$. These embeddings are then fed into Transformer encoder layers. The output of the Transformer encoder module produces a contextualized set of embeddings. We apply a final pooling operation to obtain a fixed-size embedding vector $\mathbf{z} \in \mathbb{R}^d$.

3.2 FORMULATION CODE RETRIEVAL

The pretrained MILP embedding model forms the backbone of a novel similarity metric, which we term the *embedding metric*. In contrast to traditional MILP similarity metrics, such as those based on the Jensen-Shannon (JS) divergence between hand-crafted statistical indicators (Geng et al., 2023; Guo et al., 2024) (referred to here as the *stat metric*, with details provided in Appendix C.2), our *embedding metric* overcomes limitations related to manual feature selection and ineffective pairwise comparisons.

Inspired by the Fréchet Inception Distance (FID) (Heusel et al., 2017; Salimans et al., 2016), a metric used in the image generation domain to evaluate the quality of generated images which employs Inception-V3 (Szegedy et al., 2016), we proposed MILP *embedding metric*. We use the trained MILP embedding model to compute the cosine similarity between normalized embedding vectors. Formally, let P and Q represent two groups of MILP instances whose similarity is to be evaluated, and f_θ denote the MILP embedding model. The *embedding metric* calculation is as follows:

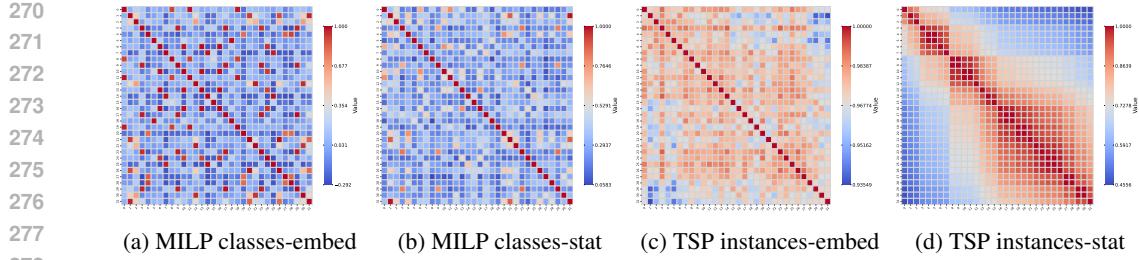
$$\forall p \in P, q \in Q, x_p = \frac{f_\theta(p)}{\|f_\theta(p)\|}, x_q = \frac{f_\theta(q)}{\|f_\theta(q)\|}, \\ \text{EmbeddingMetric}(p, q) = x_p x_q^T, \quad (5)$$

$$\text{EmbeddingMetric}(P, Q) = \frac{1}{|P||Q|} \sum_{p \in P} \sum_{q \in Q} \text{EmbeddingMetric}(p, q).$$

This metric offers a major advantage over previous approaches: it enables accurate, scale-invariant similarity assessments between instances of varying sizes but belonging to the same problem class. This robustness arises from the way the embedding model is trained—instances within a problem class share similar textual descriptions, allowing the model to learn consistent cross-scale representations.

Using the pre-built MILP library as well as proposed *embedding metric*, we propose **MILP-Retrieval**, a simple yet efficient framework for MILP instance generation via formulation code retrieval. Given a group of target MILP instance $Q = \{q_1, q_2, \dots, q_n\}$, our method retrieves the most relevant code c_k from MILP library $\{(p_i, c_i)\}_{i=1}^N$, where p_i represents the i -th instance and c_i represents the corresponding code for generating that instance. The retrieval process identifies c_k as:

$$k = \text{argmax}_k \sum_{i=1}^n \text{EmbeddingMetric}(q_i, p_k). \quad (6)$$

Figure 4: Comparison of similarity matrix between the *embedding metric* and the *stat metric*.

Executing c_k generates new MILP instances $\{q'_1, q'_2, \dots, q'_m\}$, effectively approximating the structural and semantic characteristics of the target instance.

3.3 FORMULATION CODE TUNING

Although retrieval provides formulation codes that generate semantically similar instances, additional tuning of the formulation code can further control the size and difficulty of the generated problems while preserving semantic similarity. Here, we introduce two approaches for formulation code tuning.

Diverse Tuning The goal of this approach is to generate problem instances that are as diverse as possible in terms of size and solving difficulty. Specifically, we randomize the parameters within the retrieved formulation codes to create multiple code variants, thereby enriching the diversity of generated instances. To automate this tuning process, modifications are restricted to numeric and interval-type parameters in the formulation code. The resulting codes are then validated and filtered to ensure the feasibility of the generated instances.

Targeted Tuning The objective of this approach is to achieve fine-grained control over the solving difficulty of generated problems. We treat the MILP formulation code as a black-box function: the input is the parameter configuration, and the output is the solving time of the generated MILP instance. Bayesian optimization is then employed to tune this black box. The first application of Targeted Tuning is to generate maximally difficult problems, where solving time is directly used as the optimization objective to be maximized. The second application is to generate problems with difficulty levels as close as possible to a specified target, where the optimization objective becomes the difference between the actual solving time and the target solving time, which is minimized. This tuning process is also fully automated by parsing the tunable parameters from the formulation code and configuring the parameter space for the Bayesian optimizer.

Together, these two tuning strategies enhance the practicality of MILP-Retrieval and provide greater control over the size and difficulty of generated problems. Further technical details of the formulation code tuning procedure are provided in Appendix B.5.

4 EXPERIMENTS

We firstly evaluate the proposed *embedding metric* by comparing it against existing *stat metric*, to demonstrate its superior accuracy. Second, we assess the quality of MILP instances generated by MILP-Retrieval. The generated instances are evaluated using similarity metrics and compared against instances produced by several baselines. Additionally, we evaluate the performance of MILP-Retrieval on downstream tasks. These tasks include improving the performance of learning-based MILP solvers and generating MILP instances with varying scales and difficulty levels.

4.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on two datasets to ensure a fair and comprehensive evaluation: (1) the *Evolve/Test* dataset, containing 50 distinct problem classes, and (2) the widely-used MIPLIB benchmark (Gleixner et al., 2021). MILP-Retrieval utilizes *Evolve/Train* as the retrieval library. For

324 each problem class in *Evolve/Test*, we generate 20 instances that
 325 serve both as the training set for learning-based baselines and as
 326 the target instances for MILP-Retrieval. For MIPLIB, we manually
 327 define problem class partitions to support evaluation. Further details
 328 on the datasets are provided in Appendix C.3.

329
 330 **Metrics** We employed multiple metrics to comprehensively eval-
 331 uate our proposed approach. Specifically, we evaluate the similarity
 332 between generated instances and target instances using both the pro-
 333 posed *embedding metric* and traditional *stat metric*. Since MILP-
 334 Retrieval can tune formulation code to generate instances at differ-
 335 ent scales and difficulties, we utilize Gurobi (Gurobi Optimization, LLC, 2024) to solve both the
 336 target instances and the generated instances, reporting the solving time. Details on the calculation
 337 of the *stat metric* are provided in Appendix C.2.

338
 339 **Baselines** We compare MILP-Retrieval against a diverse set of baselines. For heuristic generation
 340 method, we compare against *Bowly* (Bowly et al., 2020). For learning-based methods, we evaluate
 341 against the state-of-the-art open-source method *ACM-MILP* (Guo et al., 2024), which adopts a Vari-
 342 ational Autoencoder (VAE) framework. We further implement two LLM-based baselines *GPT-4o*
 343 (Hurst et al., 2024) and *Finetuned LLaMA3-8b* (Dubey et al., 2024), which directly generate MILP
 344 formulation codes from textual descriptions, serving as baselines that generate instances via MILP
 345 formulation code. Implementation details for baselines are provided in Appendix C.1.

346 4.2 MILP SIMILARITY METRIC COMPARISON

347 To illustrate the effectiveness of proposed metric, we conducted two sets of comparative experiments
 348 between the *embedding metric* and *stat metric*.

349 In the first experiment, we evaluated the similarity among the first 32 MILP problem classes in the
 350 *Evolve/Train* dataset. The resulting similarity matrices obtained using the embedding metric and
 351 the stat metric are shown in Figure 4a and 4b, respectively. As illustrated, the *embedding metric*
 352 similarity matrix reveals many high-similarity MILP class pairs that are not captured by the stat
 353 metric. This observation aligns with the design of MILP-Evolve, which constructs problem classes
 354 through evolutionary mechanisms, resulting in semantically related instances.

355 In the second experiment, we generated 32 TSP instances of varying sizes. We firstly visualize
 356 their size and solving time (computed by Gurobi) in Figure 5. The similarity matrices derived
 357 using the *embedding metric* and the *stat metric* are presented in Figure 4c and Figure 4d. The
 358 instances are ordered by problem size in the matrices. Our results demonstrate that embedding
 359 metric generalizes effectively to unseen instances, providing robust similarity measurements for
 360 unseen MILP instances.

361
 362

363 4.3 RESULTS ON TARGETED MILP INSTANCE GENERATION

364 We report the similarity between the generated instances and the target instances using both the
 365 *embedding metric* and the *stat metric* in Table 1 and Table 2. For LLM-based methods, evaluation is
 366 limited to the *Evolve/Test* dataset, as generating MILP formulation codes from textual descriptions is
 367 currently only feasible in this setting. Due to the fact that learning-based methods (e.g., ACM-MILP
 368 (Guo et al., 2024)) require training a separate model for each problem class, we could not evaluate
 369 them across all MILP classes in *Evolve/Test* and MIPLIB. Instead, we selected four problem classes
 370 from *Evolve/Test*: FCNF, TSP, GA, VRP, as well as three widely studied problem classes from
 371 MIPLIB: Nursesched, CVS, and IIS.

372 From the results, we observe that MILP-Retrieval significantly outperforms baselines under the *em-
 373 bedding metric*, but performs less competitively under the *stat metric* compared to learning-based
 374 methods. This is expected, as our framework is designed to generate problem instances that are
 375 semantically similar to the target instances, without necessarily matching their statistical character-
 376 istics. We further discuss the experimental results in Appendix E.

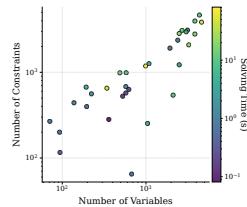


Figure 5: Problem size and solving time of 32 TSP instances.

378 Table 1: Comparison between generated instances and target instances on the *embedding metric*.
379

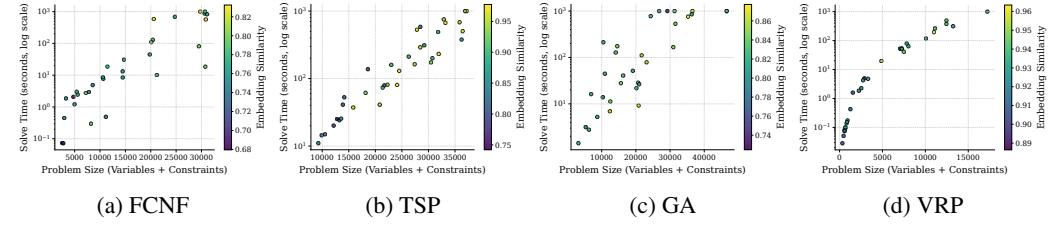
	Method	MILP-Retrieval	Bowly	ACM-MILP	GPT-4o	Finetuned LLaMA 3-8b
Evolve/Test	FCNF	0.705 ± 0.174	-0.079 ± 0.088	0.419 ± 0.143	infeasible	0.076 ± 0.094
	TSP	0.920 ± 0.050	0.041 ± 0.039	infeasible	0.304 ± 0.073	0.399 ± 0.011
	GA	0.734 ± 0.078	0.167 ± 0.087	0.015 ± 0.031	infeasible	0.233 ± 0.027
	VRP	0.960 ± 0.015	0.005 ± 0.055	infeasible	0.347 ± 0.053	infeasible
MIPLIB	Nursesched	0.883 ± 0.085	0.071 ± 0.042	-0.056 ± 0.108	-	-
	CVS	0.814 ± 0.078	-0.105 ± 0.080	0.030 ± 0.106	-	-
	IIS	0.829 ± 0.046	-0.119 ± 0.030	-0.210 ± 0.024	-	-

386
387 Table 2: Comparison between generated instances and target instances on the *stat metric*.
388

	Method	MILP-Retrieval	Bowly	ACM-MILP	GPT-4o	Finetuned LLaMA 3-8b
Evolve/Test	FCNF	0.611 ± 0.006	0.530 ± 0.019	0.795 ± 0.018	infeasible	0.568 ± 0.022
	TSP	0.367 ± 0.129	0.665 ± 0.043	infeasible	0.840 ± 0.059	0.469 ± 0.034
	GA	0.436 ± 0.014	0.479 ± 0.016	0.703 ± 0.003	infeasible	0.311 ± 0.002
	VRP	0.377 ± 0.024	0.672 ± 0.021	infeasible	0.599 ± 0.002	infeasible
MIPLIB	Nursesched	0.231 ± 0.076	0.313 ± 0.046	0.655 ± 0.032	-	-
	CVS	0.430 ± 0.121	0.417 ± 0.032	0.717 ± 0.019	-	-
	IIS	0.234 ± 0.003	0.365 ± 0.004	0.878 ± 0.059	-	-

395
396 Table 3: The performance of Neural Diving on test set of 4 classes of problems. We use each method
397 to generate 40 instances and add them to the training set, we mark the best performance in bold.
398

	Raw	MILP-Retrieval	ACM-MILP	GPT-4o	Finetuned LLaMA 3-8b
FCNF	1604.77 ± 311.27	1117.14 ± 187.68	1520.08 ± 200.01	-	1228.64 ± 399.68
TSP	944.85 ± 98.45	893.47 ± 83.86	-	891.53 ± 83.79	924.40 ± 86.83
GA	-49768.53 ± 53.77	-49991.25 ± 4.92	infeasible	-	-49293 ± 15.23
VRP	911.20 ± 91.02	774.91 ± 52.64	-	827.66 ± 40.98	-

411 Figure 6: Visualization of generated scalable instances through formulation code *diverse tuning*.
412

414 4.4 RESULTS ON DOWNSTREAM TASKS

416 **Enhancing Learning-based Solver** We evaluated our method on multiple ML-based solvers, in-
417 cluding Neural Diving, Predict-and-Search, and Learn-to-Branch (Nair et al., 2020; Han et al., 2023;
418 Gasse et al., 2019). Experiments are also conducted on four problem classes: FCNF, TSP, GA, and
419 VRP. MILP-Retrieval and baseline methods are then used to generate varying numbers of supple-
420 mentary training instances, which are added to the original training set of Neural Diving. The
421 enhanced models are evaluated on the test set. Experimental results of Neural Diving summarized
422 in Table 3 report the objective value for each experiment. Our findings demonstrate that MILP-
423 Retrieval achieves comparable or superior performance to baseline approaches in boosting solver
424 performance. Details of this experiment and additional results can be found in Appendix D.4.

425 **Controllable MILP Instance Generation by Diverse Tuning** We apply *Diverse Tuning* to generate
426 instances that vary widely in both scale and solving difficulty. Experiments are conducted on the
427 same four problem classes, where 32 instances are generated per class under different parameter set-
428 tings. Figure 6 illustrates the distributions of instance sizes and solving times (measured by Gurobi
429 (Gurobi Optimization, LLC, 2024), with a maximum time limit of 1000s) for each class. The results
430 demonstrate that formulation code tuning effectively enables the generation of MILP instances from
431 the same class that differ substantially in scale and difficulty.

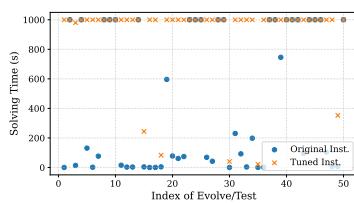


Figure 7: *Targeted Tuning* for maximizing difficulty.

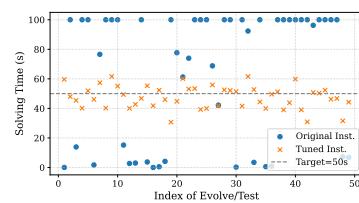


Figure 8: *Targeted Tuning* for matching specified difficulty.

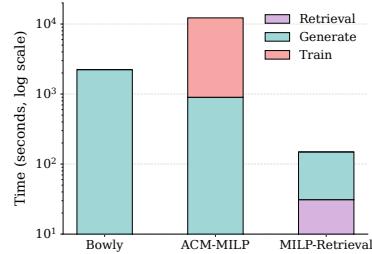


Figure 9: Computational efficiency of Different Methods.

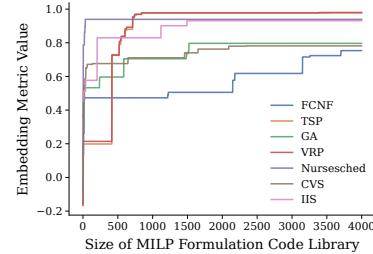


Figure 10: Ablation experiment on formulation code library size.

Controllable MILP Instance Generation by Targeted Tuning We further showcase the use of *Targeted Tuning* to precisely control the solving difficulty of MILP instances. The experiments are performed on the 50 MILP classes from Evolve/Test. In the first case, the goal is to maximize difficulty. We set both the target difficulty and the solving time cutoff to 1000s. As shown in Figure 7, Targeted Tuning successfully adjusts 88% of the 50 classes to reach the desired 1000s solving difficulty. In the second case, the goal is to match specified difficulty level as closely as possible. Using a target solving time of 50s as example (results shown in Figure 8), the generated instances achieve an average deviation of only 12.8% from the target, a substantial improvement over the original instances without tuning. These results verify the effectiveness of formulation code tuning within MILP-Retrieval. Additional experimental details and results are provided in Appendix B.5.

4.5 EXTENSIVE STUDIES

Computational Efficiency We use FCNF as a case study to demonstrate the significant improvement in computational efficiency achieved by MILP-Retrieval. We measure the time required to train the model and generate 1,000 instances, with the results shown in Figure 9. It is worth-noting that training the MILP embedding model took approximately 40 hours. We exclude this from the comparison, as the embedding model is designed to be generalized across different problem classes.

Ablation Study To evaluate the influence of formulation code library size, we limit the size of the retrieval library and observe how similarity (*embedding metric*) between target instances and generated instances changes with reduced library size. The results are reported in Figure 10, showing that our current MILP library is sufficiently large to support robust instance generation.

5 CONCLUSION

In this paper, we propose MILP-Retrieval, a framework for targeted MILP instance generation via formulation code retrieval and parameter tuning. It provides a generalizable solution that efficiently generates problem instances of varying difficulty and scale, thereby improving the performance of learning-based solvers. While its effectiveness depends on the size of the formulation code library, we also explore LLM-based methods to directly generate formulation code from textual descriptions as a baseline. Advancing LLM-based approaches for fine-grained and controllable generation remains a promising direction for future research.

486 ETHICS STATEMENT
487488 The methods proposed in this paper aim to retrieve and tune MILP formulation code for MILP
489 instance generation, which is related to the broader field of neural combinatorial optimization. To
490 our best knowledge, no ethical issues or harmful insights of this work need to be otherwise stated.
491492 REPRODUCIBILITY STATEMENT
493494 The datasets used and the baseline implementation are described in Appendix C. The detailed hy-
495 perimeters and implementation of the models for training and testing are provided in Appendix
496 B. Source code and datasets can be accessed at [https://anonymous.4open.science/r/](https://anonymous.4open.science/r/MILP-Retrieval-D830/)
497 MILP-Retrieval-D830/.
498499 REFERENCES
500501 Egon Balas and Andrew Ho. Set covering algorithms using cutting planes, heuristics, and subgradi-
502 ent optimization: a computational study. *Combinatorial Optimization*, pp. 37–60, 1980.503 Ramón Béjar, Alba Cabisco, Felip Manyà, and Jordi Planes. Generating hard instances for maxsat.
504 In 2009 39th International Symposium on Multiple-Valued Logic, pp. 191–195. IEEE, 2009.505 506 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
507 mization: a methodological tour d’horizon. *European Journal of Operational Research*, 290(2):
508 405–421, 2021.509 510 David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John Hooker. *Decision diagrams for*
511 *optimization*, volume 1. Springer, 2016.512 513 Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim
514 Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
515 Christoph Graczyk, Katrin Halbig, Ivo Hettke, Alexander Hoen, Christopher Hojny, Rolf van der
516 Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Goni Mexi,
517 Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Mark Turner,
518 Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite 9.0. Technical
519 report, Optimization Online, February 2024. URL <https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/>.520 521 Simon Bowly, Kate Smith-Miles, Davaatseren Baatar, and Hans Mittelmann. Generation techniques
522 for linear programming instances with controllable properties. *Mathematical Programming Com-*
523 *putation*, 12(3):389–415, 2020.524 525 Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle routing problem:
526 State of the art classification and review. *Computers & industrial engineering*, 99:300–313, 2016.527 528 Dirk G Cattrysse and Luk N Van Wassenhove. A survey of algorithms for the generalized assignment
529 problem. *European journal of operational research*, 60(3):260–272, 1992.530 531 Anthony Caumond, Philippe Lacomme, Aziz Moukrim, and Nikolay Tchernev. An milp for schedul-
532 ing problems in an fms with one vehicle. *European journal of operational research*, 199(3):
533 706–722, 2009.534 535 Marco Colombi, Renata Mansini, and Martin Savelsbergh. The generalized independent set prob-
536 lem: Polyhedral analysis and solution approaches. *European Journal of Operational Research*,
537 260(1):41–55, 2017.538 539 XTuner Contributors. Xtuner: A toolkit for efficiently fine-tuning llm. [https://github.com/](https://github.com/InternLM/xtuner)
540 InternLM/xtuner, 2023.541 542 Gérard Cornuéjols, Ranjani Sridharan, and Jean-Michel Thizy. A comparison of heuristics and
543 relaxations for the capacitated plant location problem. *European journal of operational research*,
544 50(3):280–297, 1991.

540 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 541 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 542 *arXiv preprint arXiv:2407.21783*, 2024.

543 Christodoulos A Floudas and Xiaoxia Lin. Mixed integer linear programming in process scheduling:
 544 Modeling, algorithms, and applications. *Annals of Operations Research*, 139:131–162, 2005.

545 Daniel Galvez, Auguste Rakotondranaivo, Laure Morel, Mauricio Camargo, and Michel Fick. Re-
 546 verse logistics network design for a biogas plant: An approach based on milp optimization and
 547 analytical hierarchical process (ahp). *Journal of Manufacturing Systems*, 37:616–623, 2015.

548 Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
 549 natorial optimization with graph convolutional neural networks. *Advances in neural information
 550 processing systems*, 32, 2019.

551 Zijie Geng, Xijun Li, Jie Wang, Xiao Li, Yongdong Zhang, and Feng Wu. A deep instance genera-
 552 tive framework for milp solvers under limited data availability. *Advances in Neural Information
 553 Processing Systems*, 36:26025–26047, 2023.

554 Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
 555 Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
 556 driven compilation of the 6th mixed-integer programming library. *Mathematical Programming
 557 Computation*, 13(3):443–490, 2021.

558 Ziao Guo, Yang Li, Chang Liu, Wenli Ouyang, and Junchi Yan. Acm-milp: Adaptive constraint
 559 modification via grouping and selection for hardness-preserving milp instance generation. In
 560 *Forty-first International Conference on Machine Learning*, 2024.

561 Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
 562 Hybrid models for learning to branch. *Advances in neural information processing systems*, 33:
 563 18087–18097, 2020.

564 Prateek Gupta, Elias B Khalil, Didier Chételat, Maxime Gasse, Yoshua Bengio, Andrea Lodi, and
 565 M Pawan Kumar. Lookback for learning to branch. *arXiv preprint arXiv:2206.14987*, 2022.

566 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL <https://www.gurobi.com>.

567 Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
 568 Xiaodong Luo. A GNN-guided predict-and-search framework for mixed-integer linear program-
 569 ming. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 570 <https://openreview.net/forum?id=pHMPgT5xWaE>.

571 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 572 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
 573 neural information processing systems*, 30, 2017.

574 Mike Hewitt, George L Nemhauser, and Martin WP Savelsbergh. Combining exact and heuristic
 575 approaches for the capacitated fixed-charge network flow problem. *INFORMS Journal on Com-
 576 puting*, 22(2):314–325, 2010.

577 Kenneth Holmström, Anders O Göran, and Marcus M Edvall. User’s guide for tomlab/cplex v12. 1.
 578 *Tomlab Optim. Retrieved*, 1:2017, 2009.

579 Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
 580 neighborhoods for integer linear programs with contrastive learning. In *ICML 2023 Workshop:
 581 Sampling and Optimization in Discrete Space*, 2023. URL <https://openreview.net/forum?id=Hamr9UNFRT>.

582 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 583 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 584 arXiv:2410.21276*, 2024.

594 Dukwon Kim and Panos M Pardalos. A solution approach to the fixed charge network flow problem
 595 using a dynamic slope scaling procedure. *Operations Research Letters*, 24(4):195–203, 1999.
 596

597 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
 598 networks. In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=SJU4ayYgl>.
 599

600 Yufei Kuang, Xijun Li, Jie Wang, Fangzhou Zhu, Meng Lu, Zhihai Wang, Jia Zeng, Houqiang Li,
 601 Yongdong Zhang, and Feng Wu. Accelerate presolve in large-scale linear programming via re-
 602 enforcement learning. *CoRR*, abs/2310.11845, 2023. URL <https://doi.org/10.48550/arXiv.2310.11845>.
 603

604 Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
 605 zaro, and Wei Ping. NV-embed: Improved techniques for training LLMs as generalist embedding
 606 models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 607 <https://openreview.net/forum?id=lgsyLSSDRe>.
 608

609 Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combi-
 610 natorial auction algorithms. In *Proceedings of the 2nd ACM conference on Electronic commerce*,
 611 pp. 66–76, 2000.
 612

613 Sirui Li, Janardhan Kulkarni, Ishai Menache, Cathy Wu, and Beibin Li. Towards foundation models
 614 for mixed integer linear programming. In *The Thirteenth International Conference on Learning
 615 Representations*, 2025. URL <https://openreview.net/forum?id=6yENDA7J4G>.
 616

616 Xijun Li, Fangzhou Zhu, Hui-Ling Zhen, Weilin Luo, Meng Lu, Yimin Huang, Zhenan Fan, Zirui
 617 Zhou, Yufei Kuang, Zhihai Wang, et al. Machine learning insides optverse ai solver: Design
 618 principles and applications. *arXiv preprint arXiv:2401.05960*, 2024.
 619

620 Jianhua Lin. Divergence measures based on the shannon entropy. *IEEE Transactions on Information
 621 theory*, 37(1):145–151, 1991.
 622

622 Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Car-
 623 olin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian opti-
 624 mization package for hyperparameter optimization. *Journal of Machine Learning Research*, 23
 625 (54):1–9, 2022.
 626

627 Chang Liu, Zhichen Dong, Haobo Ma, Weilin Luo, Xijun Li, Bowen Pang, Jia Zeng, and Junchi
 628 Yan. L2p-MIP: Learning to presolve for mixed integer programming. In *The Twelfth Interna-
 629 tional Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=McfYbKnpT8>.
 630

631 Haoyang Liu, Jie Wang, Wanbo Zhang, Zijie Geng, Yufei Kuang, Xijun Li, Bin Li, Yongdong
 632 Zhang, and Feng Wu. MILP-studio: MILP instance generation via block structure decompositon.
 633 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b. URL
 634 <https://openreview.net/forum?id=W433RI0VU4>.
 635

636 Rajesh Matai, Surya Prakash Singh, and Murari Lal Mittal. Traveling salesman problem: an
 637 overview of applications, formulations, and solution approaches. *Traveling salesman problem,
 638 theory and applications*, 1(1):1–25, 2010.
 639

639 Germán Morales-España, Jesus M Latorre, and Andres Ramos. Tight and compact milp formulation
 640 for the thermal unit commitment problem. *IEEE Transactions on Power Systems*, 28(4):4897–
 641 4908, 2013.
 642

642 Luca Moretti, Mario Milani, Giovanni Gustavo Lozza, and Giampaolo Manzolini. A detailed milp
 643 formulation for the optimal design of advanced biofuel supply chains. *Renewable Energy*, 171:
 644 159–175, 2021.
 645

646 Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Paweł Lichocki, Ivan Lobov, Bren-
 647 dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
 648 mixed integer programs using neural networks. *arXiv preprint arXiv:2012.13349*, 2020.

648 David Pisinger. An exact algorithm for large multiple knapsack problems. *European Journal of*
 649 *Operational Research*, 114(3):528–541, 1999.
 650

651 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 652 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 653 models from natural language supervision. In *International conference on machine learning*, pp.
 654 8748–8763. PMLR, 2021.

655 Rubens Rejowski Jr and José Maurício Pinto. Efficient milp formulations and valid cuts for multi-
 656 product pipeline scheduling. *Computers & Chemical Engineering*, 28(8):1511–1528, 2004.
 657

658 Hongbo Ren and Weijun Gao. A milp model for integrated plan and evaluation of distributed energy
 659 systems. *Applied energy*, 87(3):1001–1014, 2010.
 660

661 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 662 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 663 2016.

664 Kate Smith-Miles and Simon Bowly. Generating new test instances by evolving in instance space.
 665 *Computers & Operations Research*, 63:102–113, 2015.
 666

667 Byung Duk Song, Kyungsu Park, and Jonghoe Kim. Persistent uav delivery logistics: Milp formu-
 668 lation and efficient heuristic. *Computers & Industrial Engineering*, 120:418–428, 2018.
 669

670 Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
 671 neighborhood search algorithm for mixed integer programs. *arXiv preprint arXiv:2107.10201*,
 672 2021.

673 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
 674 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on*
 675 *computer vision and pattern recognition*, pp. 2818–2826, 2016.
 676

677 Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
 678 Learning to cut. In *International conference on machine learning*, pp. 9367–9376. PMLR, 2020.
 679

680 Haoyu Peter Wang, Jialin Liu, Xiaohan Chen, Xinshang Wang, Pan Li, and Wotao Yin. DIG-
 681 MILP: a deep instance generator for mixed-integer linear programming with feasibility guar-
 682 antee. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=MywlrEaFqR>.
 683

684 Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, and
 685 Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
 686 model. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 687 <https://openreview.net/forum?id=Zob4P9bRNcK>.
 688

689 Tianxing Yang, Huigen Ye, and Hua Xu. Learning to generate scalable milp instances. In *Pro-
 690 ceedings of the Genetic and Evolutionary Computation Conference Companion*, pp. 159–162,
 691 2024.

692 Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn&gbdt-guided fast opti-
 693 mizing framework for large-scale integer programming. In *International Conference on Machine*
 694 *Learning*, pp. 39864–39878. PMLR, 2023.

695 Huigen Ye, Hua Xu, and Hongyan Wang. Light-MILPopt: Solving large-scale mixed integer linear
 696 programs with lightweight optimizer and small-scale training dataset. In *The Twelfth International*
 697 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=2oWRumm67L>.
 698

699 Yahong Zhang, Chenchen Fan, Donghui Chen, Congrui Li, Wenli Ouyang, Mingda Zhu, and Junchi
 700 Yan. Milp-fbgen: Lp/milp instance generation with feasibility/boundedness. In *Forty-first Inter-
 701 national Conference on Machine Learning*, 2024.

702 Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
703 with noisy labels. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
704 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Cur-
705 ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/f2925f97bc13ad2852a7a551802feea0-Paper.pdf.
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 TABLE OF CONTENTS FOR APPENDIX
757

758	A Related Works	16
759		
760		
761	B Implementation Details of MILP-Retrieval	16
762	B.1 Details of Bipartite Graph Features	16
763	B.2 Details of MILP Libraries <i>Evolve/Train</i> and <i>Evolve/Test</i>	16
764	B.3 Samples of Different Forms of MILP Data	17
765	B.4 Details of MILP Embedding Model	20
766	B.4.1 Derivation of Loss Function	20
767	B.4.2 Prompt details of NV-Embed-V2	21
768	B.4.3 Training Details	21
769	B.5 Details of Formulation Code Tuning	21
770		
771		
772	C More Details on Experimental Setup	24
773		
774	C.1 Details of Baselines	24
775	C.1.1 ‘GPT-4o’ Baseline	24
776	C.1.2 ‘Finetuned LLaMA 3-8b’ Baseline	24
777	C.1.3 ‘Bowly’ Baseline	25
778	C.1.4 ‘ACM-MILP’ Baseline	25
779	C.2 Details of <i>stat metric</i>	25
780	C.3 Details of Dataset	26
781		
782		
783	D Extensive Experiment Results	26
784		
785		
786	D.1 More Results on <i>embedding metric</i>	26
787	D.2 More Results on MIPLIB	30
788	D.3 More Results on <i>Evolve/Test</i> Dataset	32
789	D.4 Details and Additional Results on Enhancing Learning-based Solver	32
790	D.4.1 Introduction of Underlying Learning-based Solver	32
791	D.4.2 Additional Results on Enhancing Learning-based Solver	32
792		
793		
794		
795		
796		
797	E Discussions	34
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A RELATED WORKS
811

812 **Machine Learning on MILP** Machine learning methods have demonstrated superior performance over traditional algorithms in solving various combinatorial optimization problems due to
813 their ability to capture the characteristics of similar problems. These approaches can be broadly
814 classified into two categories. The first category involves integrating learning-based modules into
815 traditional solvers by replacing or augmenting key components, such as branching (Gasse et al.,
816 2019; Gupta et al., 2020; 2022), cut selection (Tang et al., 2020; Wang et al., 2023), and presolve
817 (Kuang et al., 2023; Liu et al., 2024a). The second category focuses on improving the solution
818 search process itself. Techniques such as predict-and-optimize (Han et al., 2023; Ye et al., 2023;
819 2024) and large neighborhood search (Sonnerat et al., 2021; Huang et al., 2023) utilize predictive
820 models to guide the solver toward promising regions of the solution space, thereby enhancing efficiency
821 and solution quality. A key challenge in both categories is the availability of sufficient MILP
822 data for training these models. This challenge highlights the critical need for generating diverse and
823 high-quality MILP instances.
824

825 **MILP Instance Generation** The field of MILP instance generation has traditionally relied on
826 heuristic methods to create problem instances tailored to specific types or statistical characteristics
827 (Smith-Miles & Bowly, 2015; Bowly et al., 2020). While effective in controlled scenarios, these
828 methods often lack the flexibility to address broader applications or more diverse instance distributions.
829 Learning-based MILP generation methods use model to learn the distribution of the problems
830 and reconstruct them. For example, some methods focus on restructuring the problem’s underlying
831 structure (Liu et al., 2024b; Yang et al., 2024), while others utilize paradigms like VAE or diffusion
832 models to reconstruct problem constraints (Geng et al., 2023; Wang et al., 2024; Guo et al., 2024;
833 Zhang et al., 2024). Recent work (Li et al., 2025) proposes a novel approach for generating diverse
834 MILP problems. Our approach MILP-Retrieval, along with the concept of MILP *embedding metric*,
835 offers a novel perspective on MILP instance generation.
836

837 B IMPLEMENTATION DETAILS OF MILP-RETRIEVAL
838839 B.1 DETAILS OF BIPARTITE GRAPH FEATURES
840

841 To encode an MILP instance as a corresponding bipartite graph, we incorporate information about
842 both variables and constraints into the node features of the graph representation. The specific node
843 features used in our encoding are detailed in Table 4.
844

845 Additionally, the bipartite graph features include solution-related information about the MILP in-
846 stance. To obtain this data, we solve each problem instance using Gurobi (Gurobi Optimization,
847 LLC, 2024), with a computation time limit of 50 seconds per instance. This ensures a standard-
848 ized and practical approach to extracting solution-based features while maintaining computational
849 efficiency.
850

851 B.2 DETAILS OF MILP LIBRARIES *Evolve/Train* AND *Evolve/Test*
852

853 We construct the MILP libraries following the method proposed in MILP-Evolve (Li et al., 2025),
854 which leverages LLMs to evolve MILP formulation code and generate diversified MILP instances.
855 This approach guarantees that all generated instances are feasible. Based on this method, we build
856 two separate libraries—*Evolve/Train* and *Evolve/Test*—for training and testing purposes, respec-
857 tively.
858

859 The *Evolve/Train* library is evolved from eight seed classes (IS, SC, CA, CFL, KS, GIS, NF, and
860 SAT), resulting in 4,000 formulation codes and 59,033 corresponding MILP instances, graphs, and
861 textual descriptions. This library is used both to train the MILP embedding model and as the retrieval
862 corpus for MILP-Retrieval. In contrast, the *Evolve/Test* library is evolved from four disjoint seed
863 classes (FCNF, TSP, GA, and VRP), yielding 50 formulation codes and 672 corresponding MILP
864 instances, graphs, and textual descriptions. The seed classes of *Evolve/Train* and *Evolve/Test* are
865 completely disjoint.
866

864
865
866
867 Table 4: Node type features and descriptions for Variables and Constraints.
868
869
870
871
872
873
874
875

Node Type	Feature	Description
Vars	norm coef	Objective coefficient, normalized by objective norm
	type	Var type (binary, integer, impl. integer, continuous), one-hot
	has lb	Lower bound indicator
	has ub	Upper bound indicator
	solval	Solution value
	solfrac	Solution value fractionality
	sol_is_at_lb	Solution value equals lower bound
	sol_is_at_ub	Solution value equals upper bound
	basestat	Simplex basis status (lower, basic, upper, zero), one-hot
Cons	rank	Rank of a row
	norm_nnzrs	Fraction of nonzero entries
	bias	Unshifted side normalized by row norm
	row_is_at_lhs	Row value equals left hand side
	row_is_at_rhs	Row value equals right hand side
	dualsol	Dual LP solution of a row, normalized by row and objective norm
	norm_intcols	Fraction of integral columns in the row

884 Each MILP class generates 20 instances, which are subsequently filtered by solving with a time limit
885 of 50 seconds; instances without feasible solutions are removed. After filtering, the final datasets
886 consist of 59,033 instances in *Evolve/Train* and 672 instances in *Evolve/Test*.

887 The evolution process was carried out using GPT-4o-mini as the LLM. Starting from the seed
888 classes, constructing both libraries required approximately four weeks and incurred a total cost of
889 around \$50. Further details on the class generation procedure can be found in (Li et al., 2025).
890 The sources of the seed classes are summarized in Table 5, and the distribution of variables and
891 constraints in *Evolve/Train* is visualized in Figure 11.

892
893 Table 5: 8 Seed Classes for *Evolve/Train* and 4 Seed Classes for *Evolve/Test*.
894

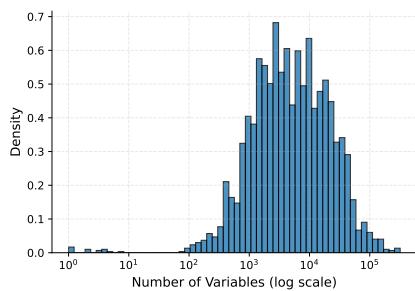
Dataset	Abbreviation	Full Name	Reference
Evolve/Train	IS	Maximum Independent Set	(Bergman et al., 2016)
	SC	Set Cover	(Balas & Ho, 1980)
	CA	Combinatorial Auction	(Leyton-Brown et al., 2000)
	CFL	Capacitated Facility Location	(Cornuéjols et al., 1991)
	Knapsack	Multiple Knapsack	(Pisinger, 1999)
	GIS	Generalized Independent Set	(Colombi et al., 2017)
	NF	Multicommodity Network Flow	(Hewitt et al., 2010)
	SAT	Max Satisfiability	(Béjar et al., 2009)
Evolve/Test	FCNF	Fixed-Charge Network Flow	(Kim & Pardalos, 1999)
	TSP	Traveling Salesman Problem	(Matai et al., 2010)
	GA	Generalized Assignment	(Cattrysse & Van Wassenhove, 1992)
	VRP	Vehicle Routing Problem	(Braekers et al., 2016)

909
910 B.3 SAMPLES OF DIFFERENT FORMS OF MILP DATA
911

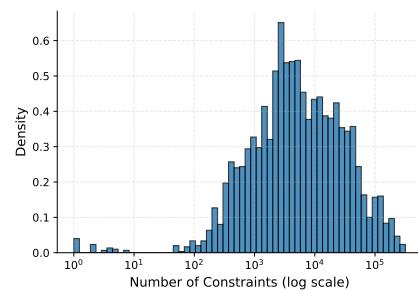
912 Here we provide a sample of code and textual description in MILP Data, which comes from the Set
913 Cover problem and is one of the seed classes of *Evolve/Train*. Lines 91-96 in the code correspond
914 to the parameter part of the code, which can be used by formulation code tuning to adjust the size
915 and difficulty of the generated instance.

916
917 **Formulation Code**

918
919
920
921
922
923
924
925
926
927



(a) Distribution of Number of Variables.



(b) Distribution of Number of Constraints.

928
929
930

Figure 11: Visualization of All Instances in Evolve/Train.

931

```

932
933     1 import random
934     2 import time
935     3 import scipy
936     4 import numpy as np
937     5 import networkx as nx
938     6 from pyscipopt import Model, quicksum
939
940     7
941     8 class SetCover:
942         9     def __init__(self, parameters, seed=None):
943             10         for key, value in parameters.items():
944                 11                     setattr(self, key, value)
945
946             12             self.seed = seed
947             13             if self.seed:
948                 14                     random.seed(seed)
949                 15                     np.random.seed(seed)
950
951             16
952             17 ###### Data Generation #####
953             18     def generate_instance(self):
954                 19                     nnzrs = int(self.n_rows * self.n_cols * self.density)
955
956                 20                     # compute number of rows per column
957                     indices = np.random.choice(self.n_cols, size=nnzrs) # random column indexes
958                     indices[:2 * self.n_cols] = np.repeat(np.arange(self.
959                         n_cols), 2) # force at least 2 rows per col
960                     col_nrows = np.unique(indices, return_counts=True)
961
962                     # for each column, sample random rows
963                     indices[:self.n_rows] = np.random.permutation(self.
964                         n_rows) # force at least 1 column per row
965                     i = 0
966                     indptr = [0]
967                     for n in col_nrows:
968                         # empty column, fill with random rows
969                         if i >= self.n_rows:
970                             indices[i:i+n] = np.random.choice(self.n_rows,
971                                 size=n, replace=False)
972
973                         # partially filled column, complete with random rows
974                         among remaining ones
975                         elif i + n > self.n_rows:
976                             remaining_rows = np.setdiff1d(np.arange(self.
977                                 n_rows), indices[i:self.n_rows],
978                                 assume_unique=True)

```



```

1026
1027     'density': 0.05,
1028     'max_coef': 100,
1029   }
1030
1031   set_cover_problem = SetCover(parameters, seed=seed)
1032   instance = set_cover_problem.generate_instance()
1033   solve_status, solve_time = set_cover_problem.solve(instance)
1034
1035   print(f"Solve Status: {solve_status}")
1036   print(f"Solve Time: {solve_time:.2f} seconds")
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

```

Textual Description

The MPS file, named ‘SetCover’, represents a mixed integer programming problem focused on a Set Cover optimization task. Its objective is to minimize the total cost associated with the selected columns, defined by the coefficients specific to this problem. The formulation leverages inequalities to ensure that each of the 750 constraints guarantees that every row is covered by at least one selected column. The decision variables are binary, reflecting the choice of each column’s inclusion in the cover. The file employs a structured approach for encoding the problem, facilitating efficient solving by optimization algorithms.

B.4 DETAILS OF MILP EMBEDDING MODEL

Below we provide more details about the embedding model.

B.4.1 DERIVATION OF LOSS FUNCTION

Let $(\mathcal{P}_i, \mathcal{T}_i)$ for $i = 1, \dots, N$ be a batch of N matched MILP–text pairs, f_θ be the MILP embedding model, producing an MILP embedding $\mathbf{p}_i = f_\theta(\mathcal{P}_i) \in \mathbb{R}^d$, g_θ be the text encoder, producing a text embedding $\mathbf{t}_i = g_\theta(\mathcal{T}_i) \in \mathbb{R}^d$. Both \mathbf{p}_i and \mathbf{t}_i are typically L2-normalized to have unit length, $\|\mathbf{p}_i\|_2 = 1$, $\|\mathbf{t}_i\|_2 = 1$. For each MILP–text pair (i, j) in the batch, we define the similarity score as the dot product: $s_{ij} = \mathbf{p}_i^\top \mathbf{t}_j$.

Our training objective is a bidirectional contrastive objective: it treats each MILP instance \mathbf{p}_i as a query and tries to classify the correct text \mathbf{t}_i among all texts $\{\mathbf{t}_j\}$, and symmetrically, each text \mathbf{t}_i tries to classify the correct MILP instances \mathbf{v}_i among all instances $\{\mathbf{v}_j\}$.

For a fixed MILP embedding \mathbf{p}_i , the MILP-to-text cross-entropy loss is:

$$\ell_i^{(\text{MILP-to-Text})} = -\log\left(\frac{\exp(s_{ii})}{\sum_{j=1}^N \exp(s_{ij})}\right)$$

Similarly, for a fixed text embedding \mathbf{t}_i , the text-to-MILP cross-entropy loss is:

$$\ell_i^{(\text{Text-to-MILP})} = -\log\left(\frac{\exp(s_{ii})}{\sum_{j=1}^N \exp(s_{ji})}\right)$$

To incorporate both MILP-to-text and text-to-MILP objectives, the final symmetric loss sums these two cross-entropy terms for each pair and then averages over the batch:

$$\mathcal{L} = \frac{1}{2N} \sum_{i=1}^N \ell_i^{(\text{MILP-to-Text})} + \ell_i^{(\text{Text-to-MILP})}$$

1080

B.4.2 PROMPT DETAILS OF NV-EMBED-V2

1081

1082 We use NV-Embed-v2 (Lee et al., 2025) as the text embedding model in the training paradigm (see
 1083 Figure 3a) and freeze its parameters during training. NV-Embed-V2 is an instruction embedding
 1084 model, and we use the following prompt as the instruction:

1085

1086

1087

1088

1089

1090

1091

Prompt for Text Embedding Model

Given a linguistic description, retrieve the corresponding Mixed-Integer Linear Programming problem.

1092

B.4.3 TRAINING DETAILS

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

We trained the MILP embedding model on the *Evolve/Train* dataset, which contains a total of 59,033 (MILP instance, textual description) pairs. We randomly divided it into a training set and a validation set in a ratio of 9:1, using the training set as training data. To evaluate training progress, we track 4-way and 10-way retrieval accuracies on the validation set, which measure whether the model can correctly match a MILP problem to its textual description (or vice versa) among 4 or 10 candidates, respectively. Figure 12 shows the validation accuracy curves during training, demonstrating that the model effectively learns to capture the semantics of MILP problems through our proposed contrastive framework. These retrieval accuracies serve as intermediate metrics for assessing the quality of the learned MILP embeddings. The training process was completed on a single Nvidia H100 and took about 40 hours. We provide the hyperparameters used for training in Table 6.

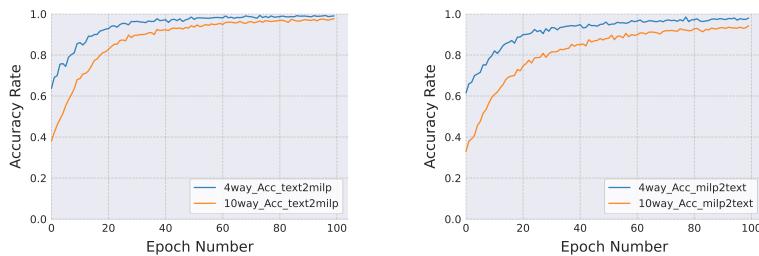


Figure 12: The Text-to-MILP and MILP-to-Text Accuracy Rate curves with respect to epoch number.

1111

1112

1113

1114

1115

Table 6: Hyperparameter of MILP embedding model.

1116

1117

Name	Value	Name	Value
Embed_Size	64	Num. of GCN Layers	2
Num. of Sampled Nodes	512	Num. of Attention Layers	6
Embedding Space	\mathbb{R}^{4096}	Epoch Number	100
Learning Rate	0.001	Batch Size	64
Num. of Attention Heads	8	Optimizer	Adam

1123

1124

B.5 DETAILS OF FORMULATION CODE TUNING

1125

1126

1127

1128

1129

1130

1131

1132

1133

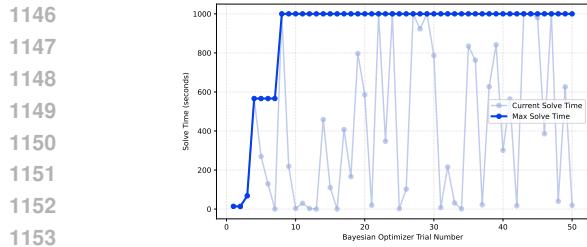
This appendix expands the implementation details for the two tuning strategies introduced in Section 3.3. We first parse the formulation code using Python’s `ast` to locate tunable parameters in the “parameter” block. Two parameter types are supported: (i) *value* (scalar numeric, integer or real), and (ii) *interval* (lower/upper bounds). For *Diverse Tuning* (Algorithm 1), we draw multiplicative scale factors from a log-uniform range and rewrite the code accordingly. For *Targeted Tuning* (Algorithm 2), we treat the formulation as a black-box generator and apply Bayesian Optimization (BO) over the parameter space. Each candidate parameterization yields a temporary instance that is solved (with a time limit); the result is used to accept/reject instances (diverse tuning) or to guide the BO loop (targeted tuning).

1134 In the *Diverse Tuning* setting, we (i) sample multiplicative scales from $[0.1, 10]$ on a log scale; (ii)
 1135 preserve integer parameters by rounding to the nearest valid integer; (iii) keep interval ordering by
 1136 enforcing $\ell' < u'$ (with a small jitter if needed); (iv) discard infeasible instances and instances
 1137 solved in less than 5 seconds as trivial; and (v) cap solving at 1000 seconds (treating timeouts as
 1138 1000). All experiments use PySCIPoP 5.2.1 (Bolusani et al., 2024).

1139 In the *Targeted Tuning* setting, we employ smac3 (Lindauer et al., 2022) as the Bayesian optimizer,
 1140 with a maximum of 50 trials. For cases where the objective is to maximize solving time, we cap the
 1141 runtime of each trial at 1000s. For cases where the goal is to match a specified solving time, we set
 1142 the target time to 50s and limit each trial to 100s. Optimization traces for both cases are provided in
 1143 Figures 13 and 14 as illustrative examples.

1144

1145



1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480<br

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200

Algorithm 2 Targeted Tuning via Black-Box Optimization

1201 **Require:** Formulation code c ; evaluation budget B ; time limit t_{\max} ; trivial cutoff t_{\min} ; objective
 1202 $\text{obj} \in \{\text{MAXDIFFICULTY}, \text{HITTARGET}\}$; target time T (only if $\text{obj} = \text{HITTARGET}$)
 1203 **Ensure:** Best parameterization \mathbf{x}^* , instance q^* , and measured solve time τ^*
 1204 1: Construct search domain \mathcal{X} from tunable parameters in c (respect bounds and integrality)
 1205 2: **Define** $\text{EVALUATE}(\mathbf{x})$:
 1206 3: $c' \leftarrow \text{SETPARAMETER}(c, \mathbf{x})$; $q \leftarrow \text{GENERATEINSTANCE}(c')$
 1207 4: $(\text{feasible}, \tau) \leftarrow \text{SOLVE}(q, t_{\max})$ {Timeouts return $\tau = t_{\max}$ }
 1208 5: **if** not feasible **or** $\tau < t_{\min}$ **then**
 1209 6: $y \leftarrow \begin{cases} 0 & \text{if } \text{obj} = \text{MAXDIFFICULTY} \\ -|t_{\min} - T| & \text{if } \text{obj} = \text{HITTARGET} \end{cases}$
 1210 7: **else**
 1211 8: $y \leftarrow \begin{cases} \tau & \text{if } \text{obj} = \text{MAXDIFFICULTY} \\ -|\tau - T| & \text{if } \text{obj} = \text{HITTARGET} \end{cases}$
 1212 9: **end if**
 1213 10: **return** (y, q, τ)
 1214 11: Initialize a black-box optimizer $O \leftarrow \text{INITIALIZEBO}(\mathcal{X})$
 1215 12: Optionally warm-start O with a few random evaluations of $\text{EVALUATE}(\cdot)$
 1216 13: Incumbent \leftarrow None
 1217 14: **for** $t = 1$ **to** B **do**
 1218 15: $\mathbf{x}_t \leftarrow O.\text{PROPOSE}()$
 1219 16: $(y_t, q_t, \tau_t) \leftarrow \text{EVALUATE}(\mathbf{x}_t)$
 1220 17: $O.\text{OBSERVE}(\mathbf{x}_t, y_t)$
 1221 18: **if** Incumbent = None **or** y_t improves over Incumbent.y **then**
 1222 19: Incumbent $\leftarrow (\mathbf{x}_t, q_t, \tau_t, y_t)$
 1223 20: **end if**
 1224 21: **end for**
 1225 22: $(\mathbf{x}^*, q^*, \tau^*, -) \leftarrow \text{Incumbent}$
 1226 23: **return** $(\mathbf{x}^*, q^*, \tau^*)$

1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242 C MORE DETAILS ON EXPERIMENTAL SETUP
12431244 C.1 DETAILS OF BASELINES
12451246 C.1.1 ‘GPT-4O’ BASELINE
12471248 Our implemented ‘GPT-4o’ baseline uses GPT-4o (Hurst et al., 2024) as the underlying LLM to eval-
1249 uate its capability to directly generate MILP formulation code from textual description. We conduct
1250 experiments on the *Evolve/Test* dataset, which contains instances paired with textual descriptions. A
1251 few-shot prompting approach is employed to guide the LLM in generating MILP formulation code.
1252 Specifically, we randomly select three (textual description, code) pairs from the *Evolve/Train* dataset
1253 as examples, and use a target textual description from *Evolve/Test* as the test input. For each test
1254 case, we repeat the experiment 10 times and report the best result. The prompt used in this process
1255 is as follows:
12561257 **Prompt for GPT-4o**1258 Please generate Python code for the Mixed-Integer Linear Programming problem cor-
1259 responding to the description below.

1260 {target desc}

1261 Sample description 1:

1262 {sample_desc1}

1263 Sample code 1:

1264 {sample_code1}

1265 Sample description 2:

1266 {sample_desc2}

1267 Sample code 2:

1268 {sample_code2}

1269 Sample description 3:

1270 {sample_desc3}

1271 Sample code 3:

1272 {sample_code3}

1273 C.1.2 ‘FINETUNED LLaMA 3-8B’ BASELINE
12741275 We implemented another baseline, Finetuned LLaMA 3-8b, which also takes the textual description
1276 of a MILP problem as input and generates the corresponding formulation code. This baseline is
1277 evaluated on the *Evolve/Test* dataset to assess the performance of the fine-tuned model. We use
1278 LLaMA 3-8b-instruct (Dubey et al., 2024) as the base model and perform supervised fine-tuning
1279 (SFT). The SFT dataset is constructed using all samples from the *Evolve/Train*, where each sample
1280 is a (textual description, formulation code) pair in the following format:
12811282 **SFT Data Format**1283
1284 1 messages = [
1285 2 {"role": "system", "content": "You are an expert in Mixed-
1286 Integer Linear Programming."},
1287 3 {"role": "user", "content": "Please generate Python code for
1288 the Mixed-Integer Linear Programming problem
1289 corresponding to the description below. \n" +
1290 description},
1291 4 {"role": "assistant", "content": code}
1292 5]
1293

1296 During testing, we use the same user prompt as input and feed the code generated by the fine-tuned
 1297 model into GPT-4o for validation, ensuring the output code is free of syntax errors. The prompt used
 1298 for code checking is as follows:
 1299

1300 **Prompt for Code Checking**
 1301

1302 Identify and fix the errors in this code, then output the complete corrected code.
 1303

1304 {code}
 1305

1306 We perform full-parameter fine-tuning on LLaMA-3-8b-instruct using the XTuner framework (Con-
 1307 tributors, 2023), with the hyperparameters listed in Table 7. Fine-tuning is conducted on 8 Nvidia
 1308 H100 GPUs and takes approximately 6 hours. During testing, we also repeat each experiment 10
 1309 times and report the best result.
 1310

1311 Table 7: Hyperparameter of Finetuning LLaMA-3-8b.
 1312

Name	Value	Name	Value
Epoch Num	8	Learning Rate	2e-5
Batch Size	1	Accumulate Counts	16

1316
 1317 **C.1.3 ‘BOWLY’ BASELINE**
 1318

1319 For the ‘Bowly’ baseline, we use the official implementation from <https://github.com/simonbowly/mip-generators>, which generates MILP instances based on several specified
 1320 statistical indicators (e.g., coefficient matrix density, fraction violation rate, etc.). To provide the
 1321 required inputs, we wrote a script to compute these statistical indicators from the target instances.
 1322

1323
 1324 **C.1.4 ‘ACM-MILP’ BASELINE**
 1325

1326 For the ‘ACM-MILP’ baseline, we use the official implementation provided at <https://github.com/Thinklab-SJTU/ACM-MILP>. For each type of MILP problem, we generate
 1327 20 instances to serve as both the training set and the target instances. The trained model is then
 1328 used to reconstruct these 20 problems. We adopt the same hyperparameters as those used for the
 1329 preset ‘CA’ problem, and set the reconstruction ratio to 0.1. It is important to note that ACM-MILP
 1330 does not guarantee the feasibility of the generated problems—for example, in our experiments, the
 1331 instances generated for TSP and VRP were infeasible.
 1332

1333 **C.2 DETAILS OF *stat metric***
 1334

1335 Table 8: Evaluation metrics used in similarity comparison.
 1336

Name	Explanation
coef.dens	Fraction of non-zero entries in coefficient matrix.
cons_degree_mean	Mean degree of constraint vertices.
cons_degree_std	Std of degrees of constraint vertices.
var_degree_mean	Mean degree of variable vertices.
var_degree_std	Std of degrees of variance vertices.
lhs_mean	Mean of non-zero entries in coefficient matrix.
lhs_std	Std of non-zero entries in coefficient matrix.
rhs_mean	Mean of RHS values.
rhs_std	Std of RHS values.
modularity	Modularity of the graph.
clustering_coef	Clustering coefficient of the graph.

1348 In previous work (Geng et al., 2023; Guo et al., 2024), graph statistical metrics were used to evaluate
 1349 the similarity between generated instances and target instances. The full list of metrics is provided

in Table 8. For each individual metric, they calculate the Jensen-Shannon (JS) divergence. Let JS_i denote the JS divergence for the i^{th} metric. The similarity score for the i^{th} metric is defined as:

$$\text{score}_i = (\max(JS) - JS_i) / (\max(JS) - \min(JS)). \quad (7)$$

The overall similarity score is the average of all the scores:

$$\text{score} = \frac{1}{11} \sum_{i=1}^{11} \text{score}_i. \quad (8)$$

In our implementation of the *stat metric*, we make two modifications to the above method. First, we remove the *clustering coefficient* metric, as it is always zero for bipartite graphs. Second, we adapt the metric to compute pairwise similarity rather than comparing entire distributions. Existing approaches rely on JS divergence, which is only suitable for comparing two sufficiently large sets of instances. However, in our experimental setting, each group of instances is relatively small—sometimes as few as five instances (e.g., when generating a specific problem class from MIPLIB). In such cases, computing JS divergence leads to high variance.

To address this, we instead use the Jaccard similarity, defined as follows where stat_i represents the i^{th} statistical indicator:

$$\begin{aligned} \text{StatMetric}(p, q) &= \frac{1}{10} \sum_{i=1}^{10} \frac{\min(\text{Stat}_i(p), \text{Stat}_i(q))}{\max(\text{Stat}_i(p), \text{Stat}_i(q))}, \\ \text{StatMetric}(P, Q) &= \frac{1}{|P||Q|} \sum_{p \in P} \sum_{q \in Q} \text{StatMetric}(p, q). \end{aligned} \quad (9)$$

C.3 DETAILS OF DATASET

In the experiments corresponding to Tables 1 and 2, we used two types of datasets. The first type includes the first four MILP classes from *Evolve/Test* (FCNF, TSP, GA, VRP). For each problem class, we generated 20 instances, which served both as target instances and as training/testing data for ACM-MILP. For the three datasets from MIPLIB (Nursesched, CVS, IIS), we used all available instances provided by MIPLIB as target instances for MILP-Retrieval, and also as training/testing data for ACM-MILP. The dataset statistics are summarized in Table 9.

Table 9: Dataset Statistics of Targeted MILP Instance Generation Experiment.

Problem Source	Problem Class	Instance Num.	Average $ \mathcal{V} $	Average $ \mathcal{C} $	Average $ \mathcal{E} $
Evolve/Test	FCNF	20	1096	594	2192
	TSP	20	1604	1567	7592
	GA	20	125000	750	250000
	VRP	20	1088	1153	7168
MIPLIB	NurseSched	5	19501	7231	373018
	CVS	5	2536	3397	9150
	IIS	2	256	7551	99552

D EXTENSIVE EXPERIMENT RESULTS

D.1 MORE RESULTS ON *embedding metric*

We conducted a large-scale experiment to evaluate the performance of the embedding metric on MIPLIB (Gleixner et al., 2021). In the MIPLIB Collection Set, most instances are labeled with a *Group* tag, where instances sharing the same tag are considered to belong to the same problem class. We filtered the Collection Set to include only those groups where every instance has a *Group* tag and can produce a feasible solution within 100 seconds, in order to exclude ultra-scale instances.

Then we filter the group with only one instance. After this filtering process, we obtained 99 classes comprising a total of 361 instances from the original 1,065 instances in the MIPLIB Collection Set (including previous used Nursesched, CVS, IIS classes). All filtered classes and instances are listed in Table 10.

Table 10: Filtered Classes and Instances from MIPLIB Collection Set.

MILP Class	Instances
prod	prod1, prod2
rococo	rococoB10-011000, rococoC11-010100, rococoC12-010001, rococoC10-001000, rococoC11-011100
iis	iis-hc-cov, iis-glass-cov
sing	sing326, sing44, sing11, sing5, sing17
shipschedule	shipschedule8shipsmixuci, shipschedule6shipsmixi, shipschedule3shipsi
blp	blp-ar98, blp-ir98, blp-ic97, blp-ic98
vpp	vpphard2, vpphard
diameterc	diameterc-mstc-v20a190d5i, diameterc-msts-v40a100d5i
tanglegram	tanglegram6, tanglegram4
pr-product	p200x1188c, sp150x300d, r50x360, p500x2988, p500x2988d, p500x2988c
mine	mine-166-5, mine-90-10
momentum	momentum1, momentum2, momentum3
opm2	opm2-z6-s1, opm2-z10-s4, opm2-z8-s0, opm2-z12-s8, opm2-z7-s8
acc-tight	acc-tight2, acc-tight4, acc-tight5
map	map14860-20, map10, map06, map18, map16715-04
sp9	sp98ir, sp98ic, sp98ar, sp97ar, sp97ic
ab	ab71-20-100, ab51-40-100, ab69-40-100, ab72-40-100, ab67-40-100
bppc	bppc8-02, bppc6-06, bppc8-09, bppc6-02, bppc4-08
gmu	gmu-35-40, gmut-76-40, gmut-76-50, gmut-75-50, gmu-35-50
dws	dws012-02, dws008-01, dws008-03, dws012-03, dws012-01
decomp	decomp2, decomp1
eil	eilA101-2, eilC76-2, eil33-2
gasprod	gasprod2-1, gasprod1-3, gasprod1-1, gasprod1-2, gasprod2-2
ran	ran12x21, ran13x13, ran14x18-disj-8
evalaprime	evalaprime5x5opt, evalaprime6x6opt
assign	assign1-5-8, assign1-10-4
ofi	ofi, ofi2
fhnw-schedule	fhnw-schedule-pair400, fhnw-schedule-pair200, fhnw-schedule-pairb200, fhnw-schedule-pair100, fhnw-schedule-pairb400
cmflsp	cmflsp50-24-8-8, cmflsp50-24-10-4, cmflsp40-24-10-7, cmflsp40-36-2-10, cmflsp60-36-2-6
csched	csched008, csched007, csched010
network_design	germany50-UUM, cost266-UUE, ta2-UUE, dfn-bwin-DBE, ta1-UUM
ger50	ger50-17-ptp-pop-6t, ger50-17-trans-dfn-3t, ger50-17-trans-pop-3t, ger50-17-ptp-pop-3t, ger50_17_trans
fastxgemm	fastxgemm-n2r6s0t2, fastxgemm-n3r21s3t6, fastxgemm-n3r22s4t6, fastxgemm-n3r23s5t6, fastxgemm-n2r7s4t1
triptim	triptim8, triptim4, triptim7, triptim1, triptim2
gen-ip	gen-ip002, gen-ip021, gen-ip054, gen-ip036, gen-ip016
snp	snp-10-004-052,.snp-02-004-104,.snp-10-052-052,.snp-04-052-052,.snp-06-004-052
satellites	satellites2-40, satellites3-25, satellites2-60-fs, satellites2-25, satellites4-25
rmatr	rmatr200-p10, rmatr100-p5, rmatr200-p5, rmatr100-p10, rmatr200-p20
dano	dano3mip, dano3.5, danooint, dano3.3
cvrp	cvrpp-n16k8vrpi, cvrpa-n64k9vrpi, cvrpb-n45k5vrpi, cvrpsimple2i

Continued on next page

1458	Continued from previous page
1459	MILP Class Instances
1460	f2gap f2gap401600, f2gap201600, f2gap801600, f2gap40400
1461	sorrell sorrell4, sorrell3, sorrell8, sorrell7
1462	uccase uccase8, uccase12, uccase9, uccase10, uccase7
1463	nu120 nu120-pr9, nu120-pr12
1464	nursesched nursesched-medium04, nursesched-medium-hint03, nursesched-sprint-hidden09, nursesched-sprint-late03, nursesched-sprint02
1465	berlin berlin_5_8_0, berlin
1466	nxy-z n6-3, n13-3, n7-3, n5-3, n9-3
1467	tbfp tbfp-bigm, tbfp-network
1468	nh97 nh97_tension, nh97_potential
1469	qnet qnet1, qnet1_o
1470	markshare markshare1, markshare_4_0, markshare_5_0, markshare2
1471	timtab timtab1, timtab1CUTS
1472	swath swath3, swath2, swath1, swath
1473	app app2-1, app1-1, app3, app2-2, app1-2
1474	core core2586-950, core4872-1529, core4284-1064, core2536-691
1475	allcolor allcolor58, allcolor10
1476	reblock reblock166, reblock420, reblock354, reblock115
1477	pizza pizza78i, pizza27i
1478	roi roi5alpha10n8, roi2alpha3n4
1479	graphdraw graphdraw-gemcutter, graphdraw-grafo2, graphdraw-opmanager, graphdraw-mainerd, graphdraw-domain
1480	genus genus-sym-g31-8, genus-sym-grafo5708-48, genus-sym-g62-2, genus-g31-8, genus-g61-25
1481	ex ex9, ex1010-pi, ex10, exp-1-500-5-5
1482	nexp nexp-150-20-1-5, nexp-150-20-8-5, nexp-50-20-4-2, nexp-50-20-1-1
1483	aflow aflow40b, aflow30a
1484	splice splice1k1i, splice1k1
1485	fcnf g200x740, h80x6320, h80x6320d, k16x240b, h50x2450
1486	pigeon pigeon-10, pigeon-08, pigeon-13, pigeon-20, pigeon-16
1487	lectsched lectsched-1, lectsched-4-obj, lectsched-5-obj, lectsched-3, lectsched-2
1488	adult adult-regularized, adult-max5features
1489	xmas xmas10, xmas10-2
1490	shiftreg shiftreg1-4, shiftreg2-7, shiftreg5-1
1491	beasley beasleyC2, beasleyC3, beasleyC1
1492	seymour seymour1, seymour
1493	cvs cvs16r89-60, cvs16r128-89, cvs08r139-94, cvs16r106-72, cvs16r70-62
1494	nseq n2seq36f, n3seq24, n2seq36q, n3div36
1495	k1mushroom k1mushroomi, k1mushroom
1496	mc mc7, mc8, mc11
1497	traininstance traininstance2, traininstance6
1498	sct sct2, sct31, sct32, sct5, sct1
1499	tpl-tub tpl-tub-ws1617, tpl-tub-ss16
1500	mas mas76, mas74
1501	gsvm gsvm2rl9, gsvm2rl3, gsvm2rl5, gsvm2rl12, gsvm2rl11
1502	physiciansched physiciansched5-3, physiciansched6-1, physiciansched3-4, physiciansched3-3, physiciansched6-2
1503	bienst bienst1, bienst2
1504	drayage drayage-100-12, drayage-25-23, drayage-25-27, drayage-25-32, drayage-100-23
1505	milo milo-v12-6-r1-58-1, milo-v12-6-r1-75-1, milo-v13-4-3d-3-0, milo-v12-6-r2-40-1, milo-v13-4-3d-4-0
1506	leo leo2, leo1

Continued on next page

1512 Continued from previous page

1513 MILP Class	1513 Instances
1514 set3	1514 set3-16, set3-09, set3-10, set3-15, set3-20
1515 radiation	1515 radiationm18-12-05, radiationm40-10-02
1516 chromaticindex	1516 chromaticindex128-5, chromaticindex256-8, chromaticindex512-7, 1517 chromaticindex32-8, chromaticindex1024-7
1518 air	1518 air03, air05, air04
1519 graph	1519 graph20-80-1rand, graph40-20-1rand, graph20-20-1rand, 1520 graph40-40-1rand, graph40-80-1rand
1521 n37	1521 n370b, n3700, n3707, n3709, n3705
1522 30_70_45	1522 30_70_45_095_98, 30_70_45_05_100, 30_70_45_095_100
1523 bley	1523 bley_xs2, bley_xl1, bley_xs1, bley_xs1noM
1524 bmocbd	1524 bmocbd2, bmocbd3, bmocbd
1525 piperout	1525 piperout-03, piperout-08, piperout-27, piperout-d20, piperout-d27
1526 hgms	1526 hgms62, hgms-det, hgms30
1527 mspsp	1527 mspspard03i, mspspard01i

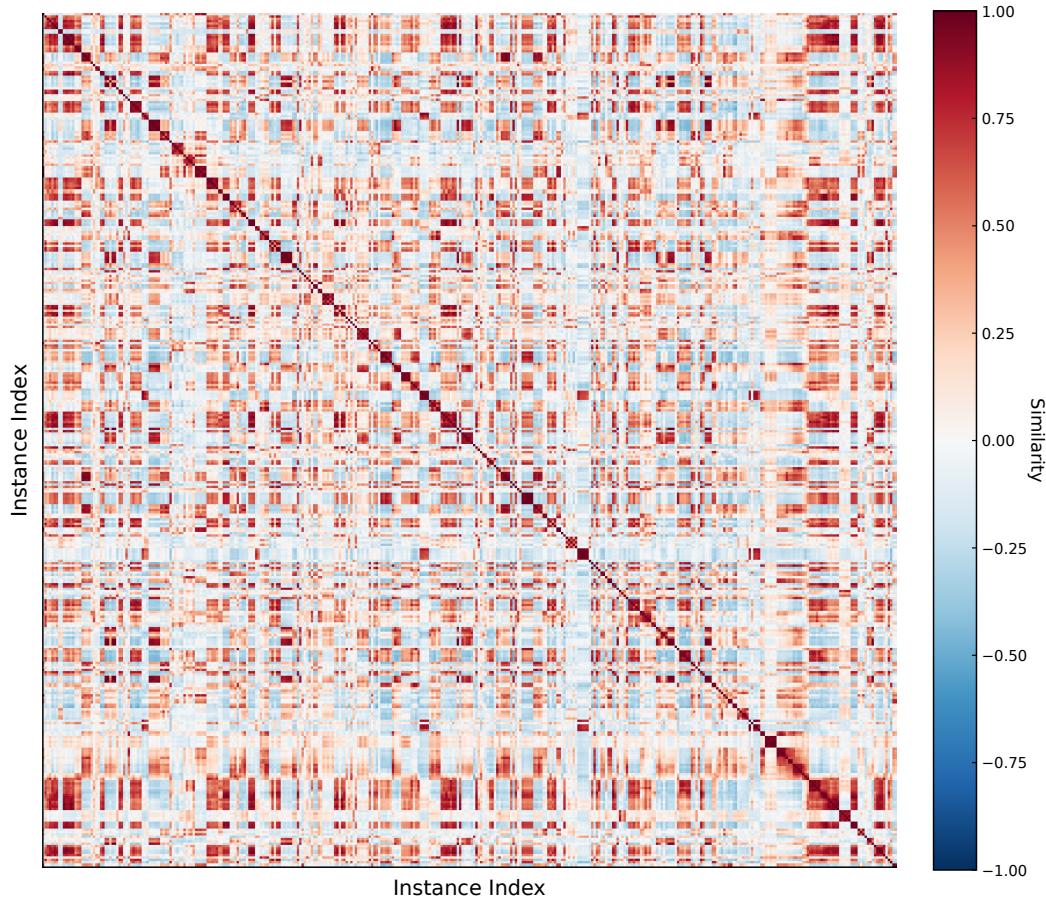


Figure 15: Similarity Matrix of *embedding metric* on 361 instances (99 classes) from MIPLIB.

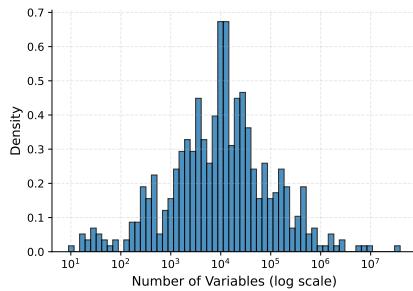
1562 We computed the pairwise similarity among the 361 instances using the *embedding metric*. The
1563 instance indices follow the same order as presented in Table 10. The results are visualized in Figure
1564 15. In the figure, red indicates higher similarity while blue indicates lower similarity. Since the
1565 indices of instances from the same problem class are placed consecutively, we observe that many
red-colored squares appear along the diagonal of the similarity matrix. This suggests that different

1566 instances from the same class—often with significantly varying sizes—can still yield high similarity
 1567 scores under the *embedding metric*. Moreover, there are also numerous red squares off the diagonal
 1568 (though generally with lower similarity than those on the diagonal), indicating that the *embedding*
 1569 *metric* is capable of discovering related classes within MIPLIB.

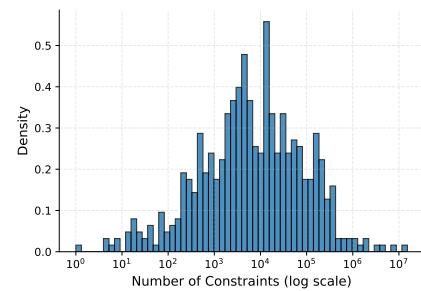
1570 The experimental results demonstrate that the *embedding metric* effectively distinguishes unseen
 1571 instances from MIPLIB, providing strong evidence of its robustness.
 1572

1573 D.2 MORE RESULTS ON MIPLIB

1575 We further evaluate the performance of MILP-Retrieval on the exact same dataset as listed in Table
 1576 10. We first visualize the distribution of number of variables/constraints of the instances in Figure
 1577 16, showing that compared to the Evolve/Train visualized in Figure 11, the filtered MIPLIB has a
 1578 greater diversity.
 1579



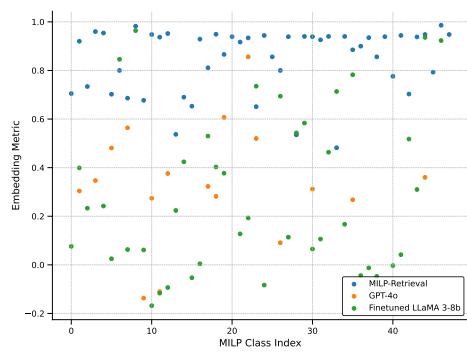
1580 (a) Distribution of Number of Variables.
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589



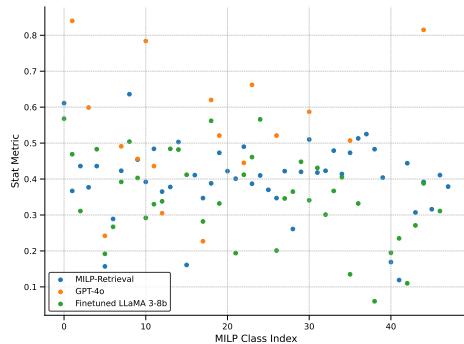
1590 (b) Distribution of Number of Constraints.
 1591
 1592
 1593

Figure 16: Visualization of All Instances in filtered MIPLIB.

1594 We then evaluate MILP-Retrieval on the same dataset, results are presented in Table 11. For each
 1595 problem class, we report the similarity between the target instances and the generated instances,
 1596 using both *embedding metric* and *stat metric*. The results are presented in Table 11. It is worth
 1597 highlighting that across all MILP classes, the average *embedding metric* is 0.701, while the average
 1598 *stat metric* is 0.236. These results indicate that in most cases, MILP-Retrieval is able to generate
 1599 instances with relatively high *embedding metric* to the corresponding target instances.
 1600



1601 Figure 17: Comparison on *embedding metric*.
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611



1612 Figure 18: Comparison on *stat metric*.
 1613
 1614
 1615
 1616
 1617

Table 12: Feasible Rate of Generated Formulation Code.

Method	1-shot	4-shots	10-shots
GPT-4o	2/50	6/50	17/50
Finetuned LLaMA 3-8b	14/50	26/50	42/50

1620

1621

1622

1623

1624

1625

1626

Table 11: Feasible Rate of Generated Formulation Code.

MILP Class	<i>embedding metric</i>	<i>stat metric</i>	MILP Class	<i>embedding metric</i>	<i>stat metric</i>
prod	0.81 ± 0.039	0.122 ± 0.02	rococo	0.854 ± 0.055	0.17 ± 0.089
iis	0.829 ± 0.046	0.234 ± 0.003	sing	0.911 ± 0.042	0.23 ± 0.05
shipschedule	0.876 ± 0.035	0.113 ± 0.027	blp	0.862 ± 0.078	0.096 ± 0.005
vpp	0.418 ± 0.513	0.312 ± 0.019	diameterc	0.81 ± 0.092	0.1 ± 0.015
tanglegram	0.817 ± 0.071	0.115 ± 0.027	pr-product	0.711 ± 0.404	0.271 ± 0.072
mine	0.679 ± 0.157	0.269 ± 0.034	momentum	0.426 ± 0.312	0.246 ± 0.054
opm2	0.861 ± 0.053	0.296 ± 0.043	acc-tight	0.914 ± 0.036	0.497 ± 0.014
map	0.93 ± 0.03	0.111 ± 0.003	sp9	0.481 ± 0.341	0.324 ± 0.035
ab	0.668 ± 0.094	0.099 ± 0.001	bppc	0.667 ± 0.169	0.225 ± 0.024
gmu	0.92 ± 0.025	0.289 ± 0.034	dws	0.762 ± 0.054	0.106 ± 0.007
decomp	0.593 ± 0.246	0.46 ± 0.103	eil	0.97 ± 0.019	0.212 ± 0.022
gasprod	0.523 ± 0.26	0.171 ± 0.04	ran	0.715 ± 0.236	0.236 ± 0.069
evalaprime	0.772 ± 0.17	0.324 ± 0.023	assign	0.67 ± 0.128	0.12 ± 0.009
ofi	0.814 ± 0.045	0.142 ± 0.002	fhnw-schedule	0.751 ± 0.081	0.277 ± 0.052
cmflsp	0.931 ± 0.021	0.311 ± 0.031	csched	0.51 ± 0.563	0.247 ± 0.026
network_design	0.304 ± 0.358	0.274 ± 0.079	ger50	0.376 ± 0.346	0.235 ± 0.038
fastxgemm	0.896 ± 0.066	0.064 ± 0.021	triptim	0.714 ± 0.326	0.183 ± 0.067
gen-ip	0.249 ± 0.342	0.167 ± 0.065	snp	0.799 ± 0.096	0.322 ± 0.008
satellites	0.565 ± 0.259	0.12 ± 0.079	rmatr	0.809 ± 0.101	0.252 ± 0.038
dano	0.771 ± 0.099	0.324 ± 0.056	cvrp	0.86 ± 0.093	0.429 ± 0.07
f2gap	0.467 ± 0.11	0.118 ± 0.056	sorrell	0.909 ± 0.037	0.301 ± 0.07
uccase	0.092 ± 0.383	0.391 ± 0.056	nu120	0.875 ± 0.033	0.153 ± 0.018
nursesched	0.883 ± 0.085	0.231 ± 0.076	berlin	0.388 ± 0.61	0.48 ± 0.146
nxy-z	0.746 ± 0.046	0.226 ± 0.04	tbfp	0.414 ± 0.541	0.247 ± 0.207
nh97	0.212 ± 0.474	0.08 ± 0.039	qnet	0.845 ± 0.083	0.285 ± 0.002
markshare	0.669 ± 0.288	0.218 ± 0.094	timtab	0.66 ± 0.215	0.312 ± 0.047
swath	0.881 ± 0.027	0.109 ± 0.002	app	0.307 ± 0.489	0.23 ± 0.064
core	0.818 ± 0.076	0.122 ± 0.005	allcolor	0.82 ± 0.075	0.168 ± 0.019
reblock	0.81 ± 0.077	0.326 ± 0.036	pizza	0.914 ± 0.037	0.298 ± 0.014
roi	0.438 ± 0.329	0.115 ± 0.04	graphdraw	0.544 ± 0.246	0.235 ± 0.046
genus	0.943 ± 0.027	0.34 ± 0.029	ex	0.098 ± 0.513	0.305 ± 0.158
nexp	0.344 ± 0.462	0.382 ± 0.063	aflow	0.874 ± 0.044	0.322 ± 0.022
splice	0.89 ± 0.077	0.195 ± 0.051	fcnf	0.361 ± 0.482	0.291 ± 0.123
pigeon	0.764 ± 0.143	0.202 ± 0.036	lectsched	0.601 ± 0.104	0.306 ± 0.007
adult	0.923 ± 0.013	0.177 ± 0.024	xmas	0.734 ± 0.245	0.159 ± 0.005
shiftreg	0.728 ± 0.083	0.16 ± 0.006	beasley	0.985 ± 0.005	0.436 ± 0.041
seymour	0.385 ± 0.475	0.106 ± 0.001	cvs	0.814 ± 0.078	0.430 ± 0.121
nseq	0.361 ± 0.315	0.142 ± 0.023	k1mushroom	0.767 ± 0.195	0.246 ± 0.086
mc	0.97 ± 0.015	0.362 ± 0.009	traininstance	0.86 ± 0.021	0.269 ± 0.023
sct	0.491 ± 0.192	0.216 ± 0.034	tpl-tub	0.778 ± 0.053	0.267 ± 0.002
mas	0.649 ± 0.053	0.174 ± 0.015	gsvm	0.65 ± 0.172	0.098 ± 0.032
physiciansched	0.723 ± 0.408	0.271 ± 0.046	bienst	0.945 ± 0.018	0.196 ± 7.377
drayage	0.957 ± 0.014	0.293 ± 0.035	milo	0.917 ± 0.043	0.271 ± 0.014
leo	0.762 ± 0.022	0.131 ± 0.006	set3	0.802 ± 0.05	0.432 ± 0.014
radiation	0.579 ± 0.069	0.282 ± 0.03	chromaticindex	0.662 ± 0.09	0.148 ± 0.025
air	0.866 ± 0.066	0.163 ± 0.067	graph	0.919 ± 0.065	0.239 ± 0.157
n37	0.761 ± 0.036	0.477 ± 0.002	30_70_45	0.94 ± 0.044	0.295 ± 0.106
bley	0.481 ± 0.398	0.134 ± 0.074	bmocbd	0.882 ± 0.108	0.405 ± 0.012
piperout	0.68 ± 0.129	0.221 ± 0.104	hgms	0.057 ± 0.465	0.066 ± 0.002
msppsp	0.908 ± 0.015	0.373 ± 0.012			

1669

1670

1671

1672

1673

1674 D.3 MORE RESULTS ON *Evolve/Test* DATASET
16751676 We provide the experimental results of MILP-Retrieval and two LLM-based baselines(GPT-4o,
1677 Finetuned LLaMA 3-8b) on the full Evolve/Test dataset, which includes 50 MILP classes. The
1678 LLM-based baselines are evaluated by directly inputting the textual description of the target in-
1679 stance. The LLM-based baselines are tested under a 10-shot setting, where each experiment is
1680 repeated 10 times, and the best result is reported. In the figure, missing entries for the LLM-based
1681 baselines indicate that the method failed to generate a feasible formulation code for those instances.1682 This experiment serves as a supplement to the Evolve/Test results presented in Tables 1 and 2,
1683 with the results shown in Figure 17 and 18. Additionally, we report the proportion of successful
1684 formulation code generations by the LLM-based baselines across different numbers of trials, as
1685 presented in Table 12. These results demonstrate that MILP-Retrieval maintains strong performance
1686 even on larger-scale datasets, highlighting its robustness.1687
1688 D.4 DETAILS AND ADDITIONAL RESULTS ON ENHANCING LEARNING-BASED SOLVER
16891690 D.4.1 INTRODUCTION OF UNDERLYING LEARNING-BASED SOLVER
16911692 **Neural Diving** (Nair et al., 2020) is a machine learning approach for solving MILP problems that
1693 focuses on generating high-quality joint variable assignments. It trains a GNN to produce multiple
1694 partial assignments for the variables within a MILP instance. These partial assignments effectively
1695 define smaller, more manageable sub-MILPs. These sub-MILPs, with their reduced complexity
1696 due to many variables being fixed, are then solved using a standard MILP solver, such as SCIP, to
1697 complete the assignments and construct high-quality solutions.1698 **Learn-to-Branch** (Gasse et al., 2019) is an imitation-learning approach to improve variable selec-
1699 tion in branch-and-bound for MILPs. It represents each MILP as a bipartite graph and encodes solver
1700 states with rich node and edge features. A lightweight graph convolutional neural network performs
1701 message passing between variables and constraints, producing scores used to choose branching vari-
1702 ables. The model is trained via behavioral cloning to imitate strong branching decisions using a
1703 cross-entropy loss. This GCNN architecture reduces feature engineering, is efficient at inference
1704 time, and generalizes to larger problem instances while outperforming existing learning-based and
1705 hand-crafted branching rules.1706 **Predict-and-Search** (Han et al., 2023) proposes a GNN-guided framework for solving MILPs more
1707 efficiently. First, each MILP instance is encoded as a bipartite graph, and a graph neural network
1708 is trained via supervised distribution learning to predict marginal probabilities for all binary vari-
1709 ables, indicating how likely each variable is to take value 1 in high-quality solutions. Instead of
1710 fixing variables directly, the method constructs a trust region neighborhood around a partial solution
1711 derived from these predictions. A MILP solver then searches within this restricted region to find
1712 a high-quality feasible solution. This approach improves solution quality over SCIP, Gurobi, and
1713 fixing-based neural methods.1714 We used a third-party implementation of these frameworks provided by [https://github.com/](https://github.com/thuiai/MILPBench)
1715 [thuiai/MILPBench](https://github.com/thuiai/MILPBench), which network structure is exactly the same as described.1716
1717 D.4.2 ADDITIONAL RESULTS ON ENHANCING LEARNING-BASED SOLVER
17181719 To simulate a data-scarce setting, we randomly generate 5 instances per problem class to serve as
1720 the training set, and 15 instances as the test set. These 5 instances also act as the target instances for
1721 MILP-Retrieval, as well as the training data for other learning-based baseline methods.1722 For Neural Diving, we firstly conduct an ablation study on the number of instances generated by
1723 each method, with the results shown in Table 13, 14, 15 and 16. We mark ‘-’ for the cases where the
1724 original method cannot generate a feasible instance, and we mark ‘infeasible’ for the cases where
1725 Neural Diving cannot find a feasible solution (that is, the predicted partial solution has violated
1726 the constraints). These results demonstrate that MILP-Retrieval can effectively enhance the per-
1727 formance of Neural Diving and, and in most cases it outperforms the baseline methods.

1728
1729
1730
1731
1732 Table 13: Neural Diving Experimental results on **FCNF** problem with respect to the number of
1733 problems generated by each method. We use each method to generate different numbers (10, 20, 40,
1734 80) of instances and add them to the training set.
1735

FCNF	Raw	MILP-Retrieval	ACM-MILP	GPT-4o	Finetuned LLaMA 3-8b
10		1456.77 \pm 244.39	1888.65 \pm 266.46	-	1299.69 \pm 205.35
20		1266.71 \pm 190.74	1767.03 \pm 245.33	-	1160.32 \pm 168.10
40	1604.77 \pm 311.27	1117.14 \pm 187.68	1520.08 \pm 200.00	-	1228.64 \pm 399.68
80		1612.60 \pm 249.79	1781.44 \pm 253.04	-	1096.72 \pm 182.26

1736
1737
1738
1739
1740
1741 Table 14: Neural Diving Experimental results on **TSP** problem with respect to the number of prob-
1742 lems generated by each method. We use each method to generate different numbers (10, 20, 40, 80)
1743 of instances and add them to the training set.
1744

FCNF	Raw	MILP-Retrieval	ACM-MILP	GPT-4o	Finetuned LLaMA 3-8b
10		891.53 \pm 83.79	-	890.79 \pm 82.84	895.40 \pm 82.55
20		891.53 \pm 83.79	-	infeasible	infeasible
40	944.85 \pm 98.45	891.47 \pm 83.86	-	891.53 \pm 83.79	924.40 \pm 86.83
80		935.13 \pm 94.76	-	infeasible	991.2 \pm 92.46

1745
1746
1747
1748
1749
1750
1751 Table 15: Neural Diving Experimental results on **GA** problem with respect to the number of prob-
1752 lems generated by each method. We use each method to generate different numbers (10, 20, 40, 80)
1753 of instances and add them to the training set.
1754

GA	Raw	MILP-Retrieval	ACM-MILP	GPT-4o	Finetuned LLaMA 3-8b
10		-49989.60 \pm 4.98	infeasible	-	-49999.93 \pm 0.26
20		-49999.93 \pm 0.26	infeasible	-	infeasible
40	-49768.53 \pm 53.77	-49991.25 \pm 4.92	infeasible	-	-49293.00 \pm 15.23
80		-49997.53 \pm 1.41	infeasible	-	-49129.60 \pm 13.40

1755
1756
1757
1758
1759
1760
1761 Table 16: Neural Diving Experimental results on **VRP** problem with respect to the number of prob-
1762 lems generated by each method. We use each method to generate different numbers (10, 20, 40, 80)
1763 of instances and add them to the training set.
1764

VRP	Raw	MILP-Retrieval	ACM-MILP	GPT-4o	Finetuned LLaMA 3-8b
10		infeasible	-	infeasible	-
20		infeasible	-	infeasible	-
40	911.20 \pm 91.02	774.91 \pm 52.64	-	827.65 \pm 40.98	-
80		773.08 \pm 44.13	-	infeasible	-

1768
1769 For Predict-and-Search, when collecting training data, we set a maximum solving time of 3600
1770 seconds for each problem and gather 500 solution trajectories for training. The data is split into
1771 training and validation sets with a 4:1 ratio, and Gurobi 12.0 is used as the solver. In Table 17, we
1772 report the average solving time on the test set as well as the optimality gap (in percentage) between
1773 the obtained solutions and the ground-truth optimal solutions.

1774
1775
1776
1777 Table 17: The result of Predict-and-Search framework. We reported the average solution time on the
1778 test set, and the values in parentheses are the gaps between the obtained solutions and the optimal
1779 solution to the problem.

	Raw	MILP-Retrieval	ACM-MILP	GPT-4o	Finetuned LLaMA 3-8b
FCNF	150.40 (0.0689)	147.32 (0.0689)	150.45 (0.0689)	-	148.21 (0.0689)
TSP	0.783 (0)	0.767 (0)	-	0.755 (0)	0.769 (0)
GA	36.46 (0)	35.52 (0)	36.30 (0)	-	36.51 (0)
VRP	222.67 (0.00974)	215.35 (0.00974)	-	221.60 (0.00974)	-

1782 For Learn-to-Branch, we use the same training/testing data split and also limit data collection for
 1783 each problem to 3600 seconds. Evaluation is conducted with SCIP 8.0.3, which is compatible with
 1784 Ecole 0.8.1. Table 18 reports the results for Learn-to-Branch.

1786 Table 18: The result of Learn-to-Branch framework. We reported the average solution time on the
 1787 test set.

	Raw	MILP-Retrieval	ACM-MILP	GPT-4o	Finetuned LLaMA 3-8b
FCNF	240.33	235.38	236.24	-	244.13
TSP	15.87	15.22	-	15.05	15.54
GA	36.65	36.38	36.55	-	36.55
VRP	353.49	355.57	-	351.20	-

1795 Overall, across both tasks, we observe that in most cases the problems generated by MILP-Retrieval
 1796 strengthen solver performance under data-scarce settings and outperform existing baselines.

1799 E DISCUSSIONS

1802 **In this section, we present a more in-depth discussion of our work in a Q&A format.**

1803 **Q1:** How can we ensure that MILP-Retrieval consistently retrieves sufficiently similar instances for
 1804 any given MILP problem?

1806 Our method does not guarantee this for all MILP instances. However, it is important to note that
 1807 the three components of our approach—the retrieve-and-generate paradigm, the formulation code
 1808 library, and the MILP embedding model—are decoupled. This design allows future advancements
 1809 in either the construction of more diverse MILP libraries or the development of improved MILP
 1810 embedding models to be directly integrated into our framework. In this work, we employ the existing
 1811 MILP-Evolve method to generate a diverse MILP library and provide extensive empirical evidence
 1812 demonstrating the viability of our retrieve-and-generate paradigm.

1813 **Q2:** What are the broader connections between this work and the field of machine learning?

1814 *Reverse image search* has been a significant research topic in computer vision and machine learning
 1815 in recent years, with applications such as finding similar images, identifying image sources, and re-
 1816 trievring relevant information about images. Analogously, our proposed framework, MILP-Retrieval,
 1817 can be seen as enabling *reverse MILP search*—a powerful retrieval tool tailored to the domain of
 1818 MILP problems, which encompass the majority of combinatorial optimization problems. We also
 1819 demonstrate the effectiveness of this tool in downstream tasks that aim to enhance learning-based
 1820 MILP solvers.

1821 **Q3:** Is there a risk of bias in the MILP embedding model?

1823 Yes, since all embedding models are trained on finite datasets, they inevitably carry some bias and
 1824 cannot perfectly capture the distribution of real-world data. To mitigate this issue, we utilize the
 1825 state-of-the-art method for generating MILP libraries to construct a sufficiently large and diverse
 1826 dataset, helping to reduce the impact of bias on the embedding model.

1827 **Q4:** Why does MILP-Retrieval perform poorly under the *stat metric*, and why does ACM-MILP
 1828 perform poorly under the *embedding metric*?

1829 The MILP embedding model implemented in our work is aligned with the semantic structure of the
 1830 problem, rather than its size. As shown in Figure 4, the statistical metric is sensitive to size differ-
 1831 ences among instances within the same problem category, whereas the embedding metric empha-
 1832 sizes structural and semantic similarities. MILP-Retrieval aims to retrieve instances that are seman-
 1833 tically similar to the target instance, which does not necessarily ensure similarity in size—resulting
 1834 in lower scores on the stat metric. In contrast, ACM-MILP reconstructs parts of the original problem
 1835 while preserving its size, but this can alter the semantic content, leading to poorer performance on
 the embedding metric.

1836 **Q5:** Why does MILP-Retrieval underperform compared to LLM-based baselines in some experi-
1837 ments of enhancing learning-based solver?

1838 In our experiments, the LLM-based baselines (GPT-4o, Finetuned LLaMA 3-8b) generate formula-
1839 tion code based on textual descriptions of the problem. They are not capable of directly generating
1840 formulation code from target instances, and therefore can only be evaluated on synthetic datasets like
1841 Evolve/Test, which include textual descriptions, but not on real-world benchmarks such as MIPLIB.
1842 As such, these experimental results are not fully comparable. We opted to implement the LLM-
1843 based baselines using textual descriptions because, to the best of our knowledge, there are currently
1844 no available Graph-Language Models (GLMs) capable of jointly processing graph-structured data
1845 and natural language inputs.

1846 **Q6:** Why does MILP-Retrieval underperform compared to LLM-based baselines in some experi-
1847 ments of enhancing learning-based solver?

1848 In our experiments, the LLM-based baselines (GPT-4o, Finetuned LLaMA 3-8b) generate formula-
1849 tion code based on textual descriptions of the problem. They are not capable of directly generating
1850 formulation code from target instances, and therefore can only be evaluated on synthetic datasets like
1851 Evolve/Test, which include textual descriptions, but not on real-world benchmarks such as MIPLIB.
1852 As such, these experimental results are not fully comparable. We opted to implement the LLM-
1853 based baselines using textual descriptions because, to the best of our knowledge, there are currently
1854 no available Graph-Language Models (GLMs) capable of jointly processing graph-structured data
1855 and natural language inputs.

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889