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ABSTRACT

Efficient and controllable data generation is critical for improving the performance
of data-driven Mixed-Integer Linear Programming (MILP) solvers, especially in
applications facing data scarcity. However, existing MILP instance generation
methods typically require training a separate model for each problem class, which
can be computationally intensive and does not allow for the generation of instances
with varying sizes and solution difficulties. To address these challenges, we in-
troduce MILP-Retrieval, a framework for targeted MILP instance generation via
formulation code retrieval. We first build a diverse MILP library that includes
multiple modalities and use it to pretrain an MILP embedding model. Based on
the output of this embedding model, we propose a novel similarity metric that
accurately measures the similarity between instances of different sizes within the
same problem class. MILP-Retrieval leverages this new metric to retrieve the
formulation code of a target instance and further tune it. Experimental results
demonstrate the effectiveness of generating MILP instances through formulation
code retrieval, with the ability to control both the scale and difficulty of the gen-
erated instances. This approach provides a novel perspective on MILP instance
generation and opens up new possibilities for learning-based solvers.

1 INTRODUCTION

Mixed-Integer Linear Programming (MILP) is widely used in various domains, such as scheduling
(Caumond et al.l [2009; |[Floudas & Lin, [2005)), logistics (Song et al.l 2018} |Galvez et al., [2015)),
and planning (Ren & Gao} 2010). Recently, learning-based solvers (L1 et al., 2024 Wang et al.,
2023} |Ye et al 2023) have shown promising performance, surpassing traditional solvers (Gurobi
Optimization, LLC}2024;|Bolusanti et al.,[2024; Holmstrom et al.,[2009)), offering new opportunities
to efficiently tackle complex MILP problems. However, a key challenge in developing learning-
based MILP solvers is the scarcity of high-quality data (Gleixner et al.| 2021} |Bengio et al.| 2021}
Unlike fields such as natural language processing or computer vision, where large-scale datasets are
readily available (Dubey et al.,[2024)), MILP lacks publicly available, diverse instance datasets. This
shortage has led to growing interest in MILP instance generation.

Early approaches to MILP instance generation relied on domain knowledge or heuristics, design-
ing problems with specific mathematical formulations (Rejowski Jr & Pinto, 2004; [Morales-Espana
et al., |2013; Moretti et al [2021) or sampling instances from statistical encodings (Smith-Miles
& Bowlyl 2015 Bowly et al., 2020). While effective, these methods depended heavily on expert-
defined templates, limiting their utility for downstream tasks such as learning-based solvers or solver
tuning (Li et al.l [2024). More recently, research has shifted toward learning-based paradigms that
generate instances from specific problem classes, including methods for restructuring MILP formu-
lations (Yang et al.l [2024; [Liu et al.l |2024b), generating partial structures with Variational Autoen-
coders (Geng et al., 2023} |Guo et al., 2024), and reconstructing constraints with diffusion models
(Zhang et al.} 2024).

Despite their innovation, these methods face several limitations: they require retraining separate
models for each problem class, which is computationally expensive and time-consuming, and they
offer limited control over the scale and difficulty of the generated instances.
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To address these challenges, we pro-
pose MILP-Retrieval, a novel frame-
work for targeted MILP instance
generation that retrieves and tunes
formulation code rather than recon-
structing instance structures from
scratch. Our method offers several
advantages over prior approaches:
(1) it significantly reduces the time
and computational cost of instance
generation; (2) it provides fine-
grained control over the scale and
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complexity of generated instances by
modifying parameters within the for-
mulation code; and (3) it ensures that
each generated instance comes with a
corresponding mathematical formu-
lation, enhancing transparency and
explainability.

Figure 1: In MILP instance generation, (a) heuristic algo-
rithms are used to create problem instances; (b) recent ap-
proaches train a separate model for each problem class to
reconstruct problem structures; (c) our method retrieves &
tunes MILP formulation code, and uses it to directly gener-
ates problem instances.

Our approach begins by building a

large and diverse MILP library. Each

entry in this library contains a problem instance, a textual description, and the corresponding formu-
lation code. We then pretrain an MILP embedding model using this library. Using the output of this
embedding model, we introduce a novel similarity metric for MILP instances, which we refer to as
embedding metric. Unlike conventional structural similarity metrics (Geng et al., [2023; |Guo et al.}
2024)), our embedding metric capture semantic-level similarities by comparing instance embeddings.
This allows for more accurate similarity measurement across instances of the same class but with
different scales. MILP-Retrieval then retrieves formulation code from the MILP library based on the
target instance and tunes the parameters to control the scale and difficulty of the generated instance.

We conducted extensive experiments to evaluate the generalization and robustness of our ap-
proach. The evaluation was performed on two types of datasets: (i) 50 MILP problem classes
that were excluded from the training and retrieval library, and (ii) over 300 instances from the
real-world benchmark MIPLIB (Gleixner et al.l 2021). First, we show that our proposed embed-
ding metric significantly outperforms existing metrics. We then compare the similarity between
generated and target instances using both metrics. Additionally, we demonstrate the controlla-
bility of MILP-Retrieval in generating instances with varying scales and solving complexity, and
we highlight how these instances can improve the performance of learning-based MILP solvers.
The code and data of the paper are provided at https://anonymous.4open.science/r/
MILP-Retrieval-D830/l

The main contributions of the paper are as follows.

1. We introduce a novel similarity metric for MILP instances that accurately measures the
similarity between problems of the same class but different scales, addressing limitations
of previous metrics.

2. We propose MILP-Retrieval, a new framework for instance generation that retrieves and
tunes formulation code based on the embedding similarity metric, enabling the generation
of instances highly similar to given target instances.

3. We demonstrate the practical potential of MILP-Retrieval in downstream applications, in-
cluding generating instances with varying scales and difficulties and enhancing learning-
based MILP solvers.

2 PRELIMINARY

2.1 MILP PROBLEM AND ITS DATA REPRESENTATIONS

The standard formulation of a Mixed-Integer Linear Programming (MILP) problem is given by:


https://anonymous.4open.science/r/MILP-Retrieval-D830/
https://anonymous.4open.science/r/MILP-Retrieval-D830/
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In this formulation, the coefficient matrix A € R™*™ represents the constraints structure, b € R™
denotes the constraints’ right-hand side vector, and ¢ € R” is the objective coefficient. Vari-
ables are bounded within lower [ € (R U {—o0})™ and upper v € (R U {+00})" limits. The
setI C {1,2,...,n} identifies variables constrained to integer values. We additionally utilize sev-
eral alternative MILP data representations, as described below: (Figure[2illustrates the relationships
among the different forms of MILP data. For examples of these data forms, see Appendix [B.3])

Bipartite Graph Representation
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tural relationships between variables
and constraints. Additional details re-
garding graph features are provided Figure 2: Relationships among different forms of MILP

in Appendix [B.T] data.

Formulation Code Formulation code represents MILP problems in a generative manner, imple-
mented using the PySCIPOpt library (Bolusani et al., 2024)). Each formulation code characterizes
a distinct MILP problem class, encapsulating the procedural logic required to generate instances.
As illustrated in Figure 2] (highlighted in red), the parameter section of the formulation code can be
tuned to control various features of the generated instances, such as their size and complexity.

Textual Description Textual descriptions offer natural language representations of MILP prob-
lems generated via methodologies from (Li et al., [2025)). Initially, construction code is processed by
a Large Language Model (LLM) to extract essential characteristics, including formulation methods
and relevant topics. Statistical data of individual MILP instances are integrated to produce compre-
hensive descriptions combining general problem formulations and specific instance statistics.

2.2 MILP INSTANCE GENERATION

Prior learning-based approaches for MILP instance generation (Geng et al.l 2023} Yang et al.,[2024;
Guo et al., 2024; [Zhang et al., 2024) typically adopt a class-specific paradigm. Specifically, given

a training set P = {pi1,p2,...,pn} belonging to a single problem class, a model is trained and
subsequently used to reconstruct instances from a testing set @ = {q1, q2, - . ., ¢m }. The generated
instances form the set Q' = {q},45,...,q,,}, and the primary goal is to minimize distributional

divergence between () and @’. For instance, previous work (Geng et al., 2023) employed Jensen-
Shannon divergence (Linl [1991) to quantify structural similarity between original and generated
instances.

In this paper, we leverage MILP formulation code as backbone for targeted MILP instance genera-
tion. Under this new paradigm, a single unified model is trained on MILP problems and associated
data across multiple classes, rather than being restricted to a single class. For a testing set of MILP
instances @ = {q1,¢2, ..., qn}, the framework outputs a piece of MILP formulation code c. Exe-
cuting ¢ directly produces the instance set Q' = {¢},d5, ..., q,,}. The objective remains the same:
to minimize the divergence between the distributions of @ and Q.
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Figure 3: Our proposed framework, MILP-Retrieval, begins by constructing a comprehensive MILP
library. Leveraging this library, we train an MILP embedding model following a contrastive learning
paradigm. Using embeddings derived from this model, we introduce a novel similarity metric to
retrieve formulation codes that best match the target instances. Subsequently, we tune the parameters
within the formulation codes to control the size or difficulty of the problem. Finally, the tuned
formulation codes are executed to generate the desired MILP problem instances.

3 METHODOLOGY

As illustrated in Figure[3] we first construct a MILP library containing diverse modalities, including
MILP instances, formulation codes, bipartite graph representations, and textual descriptions (Ap-
pendix [B.2). Leveraging this library, we pretrain an MILP embedding model, enabling us to map
MILP instances into a unified embedding space (Section [3.1)). Utilizing the pretrained embedding
model, we propose a novel similarity metric designed to quantify the similarity between MILP in-
stances, which also serves to retrieve the most relevant formulation code from the MILP library
(Section [3.2). Once the appropriate formulation code is retrieved, we can further tune its param-
eters, enabling us to produce instances with varying scales and computational difficulties (Section

3.1 PRETRAINING MILP EMBEDDING MODEL

In this subsection, we describe the pretraining process of our MILP embedding model, including the
learning scheme, model architecture, training data setup, and preliminary results.

Contrastive Learning Scheme Using the MILP library, we train a powerful MILP embedding
model capable of capturing both structural and semantic information. Specifically, we adopt a con-
trastive training framework inspired by CLIP (Radford et al., 2021), aligning the bipartite graph
representation of MILP instances with their corresponding textual descriptions. This alignment en-
ables the model to learn a shared embedding space that effectively captures semantic relationships
between different representations of MILP problems. Our goal is to train an MILP embedding
model fy : P — R?, where P is the space of MILP problems. For the textual embedding compo-
nentgg : 7 — R4, we utilize the state-of-the-art text embedding model NV-Embed-V2 (Lee et al.,
2023)), freezing its weights during training. The training process employs a symmetric cross-entropy
loss (Zhang & Sabuncu, |2018) designed to encourage higher similarity for correct (graph, text) pairs
compared to all incorrect pairings.

Model Architecture Our MILP embedding model consists of two major components: (1) a bi-
partite Graph Neural Network (GNN) that captures the relational structure between constraints and
variables, and (2) a Transformer-based self-attention module that further updates the learned repre-
sentations. We represent each MILP instance as a bipartite graph (V,C, £), where V denotes nodes
corresponding to variables, C denotes nodes representing constraints, and £ consists of edges con-
necting variables to the constraints in which they appear. To embed the nodes and edges into a shared
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latent space of dimension emb_size, we employ three separate Multi-Layer Perceptrons (MLPs) for
variables, constraints and edges:

x{®) = MLP.(¢;),x{?) = MLP, (v;), x,,; = MLP,(e;), 2)

where v; € V, ¢; € C, and e;; € £ represent the raw input features, xq(jj), xq(ff) are constraint and
variable embeddings at GNN layer k. For message passing, we utilize a Graph Convolution Module

(Kipf & Welling| 2017) as the update function, the updates are performed as follows:

x(FHD) = x (k) +BipartiteConv(xfﬁ),xew), 3)
x(FD = x(®) 4 BipartiteConv (x&k“),xew) 4)

After the bipartite GNN layers, we sample k (specified by hyperparameter) node embeddings ran-
domly. Together with the mean embeddings of all variable nodes X,,, constraint nodes X,,, and the
summary node x;, we form a set of embeddings: {xX1,Xa, ..., Xk, Xy, Xy, Xs }. These embeddings
are then fed into Transformer encoder layers. The output of the Transformer encoder module pro-
duces a contextualized set of embeddings. We apply a final pooling operation to obtain a fixed-size
embedding vector z € R,

3.2 FORMULATION CODE RETRIEVAL

The pretrained MILP embedding model forms the backbone of a novel similarity metric, which we
term the embedding metric. In contrast to traditional MILP similarity metrics, such as those based on
the Jensen-Shannon (JS) divergence between hand-crafted statistical indicators (Geng et al., 2023;
Guo et al.| [2024) (referred to here as the stat metric, with details provided in Appendix @]) our
embedding metric overcomes limitations related to manual feature selection and ineffective pairwise
comparisons.

Inspired by the Fréchet Inception Distance (FID) (Heusel et al.,2017;|Salimans et al., 2016)), a metric
used in the image generation domain to evaluate the quality of generated images which employs
Inception-V3 (Szegedy et al., 2016), we proposed MILP embedding metric. We uses the trained
MILP embedding model to compute the cosine similarity between normalized embedding vectors.
Formally, let P and (@ represent two groups of MILP instances whose similarity is to be evaluated,
and fy denote the MILP embedding model. The embedding metric calculation is as follows:

fo(p) fo(q)
A% P, 5 = 5 = )
PEPAE QT = 1r o1 = o)l
EmbeddingMetric(p, q) = xpxz, 5)

1
EmbeddingMetric(P, Q) = W Z Z EmbeddingMetric(p, ).
PEP qeQ

This metric offers a major advantage over previous approaches: it enables accurate, scale-invariant
similarity assessments between instances of varying sizes but belonging to the same problem class.
This robustness arises from the way the embedding model is trained—instances within a problem
class share similar textual descriptions, allowing the model to learn consistent cross-scale represen-
tations.

Using the pre-built MILP library as well as proposed embedding metric, we propose MILP-
Retrieval, a simple yet efficient framework for MILP instance generation via formulation code
retrieval. Given a group of target MILP instance Q = {q1, 2, ..., qn}, our method retrieves the
most relevant code cj, from MILP library {(p;, ¢;)}_;, where p; represents the i-th instance and c;
represents the corresponding code for generating that instance. The retrieval process identifies cy,
as:

k = argmax,, Z EmbeddingMetric(q;, px)- (6)
i=1
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(a) MILP classes-embed (b) MILP classes-stat  (c) TSP instances-embed  (d) TSP instances-stat

Figure 4: Comparison of similarity matrix between the embedding metric and the stat metric.

Executing cj generates new MILP instances {q, ¢5, - - ., ¢,,, }, effectively approximating the struc-
tural and semantic characteristics of the target instance.

3.3 FORMULATION CODE TUNING

Although retrieval provides formulation codes that generate semantically similar instances, addi-
tional tuning of the formulation code can further control the size and difficulty of the generated
problems while preserving semantic similarity. Here, we introduce two approaches for formulation
code tuning.

Diverse Tuning The goal of this approach is to generate problem instances that are as diverse as
possible in terms of size and solving difficulty. Specifically, we randomize the parameters within
the retrieved formulation codes to create multiple code variants, thereby enriching the diversity of
generated instances. To automate this tuning process, modifications are restricted to numeric and
interval-type parameters in the formulation code. The resulting codes are then validated and filtered
to ensure the feasibility of the generated instances.

Targeted Tuning The objective of this approach is to achieve fine-grained control over the solving
difficulty of generated problems. We treat the MILP formulation code as a black-box function:
the input is the parameter configuration, and the output is the solving time of the generated MILP
instance. Bayesian optimization is then employed to tune this black box. The first application of
Targeted Tuning is to generate maximally difficult problems, where solving time is directly used as
the optimization objective to be maximized. The second application is to generate problems with
difficulty levels as close as possible to a specified target, where the optimization objective becomes
the difference between the actual solving time and the target solving time, which is minimized. This
tuning process is also fully automated by parsing the tunable parameters from the formulation code
and configuring the parameter space for the Bayesian optimizer.

Together, these two tuning strategies enhance the practicality of MILP-Retrieval and provide greater
control over the size and difficulty of generated problems. Further technical details of the formula-
tion code tuning procedure are provided in Appendix B3]

4 EXPERIMENTS

We firstly evaluate the proposed embedding metric by comparing it against existing stat metric,
to demonstrate its superior accuracy. Second, we assess the quality of MILP instances generated
by MILP-Retrieval. The generated instances are evaluated using similarity metrics and compared
against instances produced by several baselines. Additionally, we evaluate the performance of
MILP-Retrieval on downstream tasks. These tasks include improving the performance of learning-
based MILP solvers and generating MILP instances with varying scales and difficulty levels.

4.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on two datasets to ensure a fair and comprehensive evaluation:
(1) the Evolve/Test dataset, containing 50 distinct problem classes, and (2) the widely-used MIPLIB
benchmark (Gleixner et all,[2021). MILP-Retrieval utilizes Evolve/Train as the retrieval library. For
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each problem class in Evolve/Test, we generate 20 instances that
serve both as the training set for learning-based baselines and as
the target instances for MILP-Retrieval. For MIPLIB, we manually
define problem class partitions to support evaluation. Further details
on the datasets are provided in Appendix
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Metrics We employed multiple metrics to comprehensively eval-

uate our proposed approach. Specifically, we evaluate the similarity ~ Figure 5: Problem size and
between generated instances and target instances using both the pro- solving time of 32 TSP in-
posed embedding metric and traditional stat metric. Since MILP-  gtances.

Retrieval can tune formulation code to generate instances at differ-

ent scales and difficulties, we utilize Gurobi (Gurobi Optimization, LLC| [2024) to solve both the
target instances and the generated instances, reporting the solving time. Details on the calculation
of the stat metric are provided in Appendix[C.2]

Baselines We compare MILP-Retrieval against a diverse set of baselines. For heuristic generation
method, we compare against Bowly (Bowly et al.l |2020). For learning-based methods, we evaluate
against the state-of-the-art open-source method ACM-MILP (Guo et al., 2024}, which adopts a Vari-
ational Autoencoder (VAE) framework. We further implement two LLM-based baselines GPT-40
(Hurst et al., 2024) and Finetuned LLaMA3-8b (Dubey et al.,[2024), which directly generate MILP
formulation codes from textual descriptions, serving as baselines that generate instances via MILP
formulation code. Implementation details for baselines are provided in Appendix

4.2 MILP SIMILARITY METRIC COMPARISON

To illustrate the effectiveness of proposed metric, we conducted two sets of comparative experiments
between the embedding metric and stat metric.

In the first experiment, we evaluated the similarity among the first 32 MILP problem classes in the
Evolve/Train dataset. The resulting similarity matrices obtained using the embedding metric and
the stat metric are shown in Figure #a] and [4b] respectively. As illustrated, the embedding metric
similarity matrix reveals many high-similarity MILP class pairs that are not captured by the stat
metric. This observation aligns with the design of MILP-Evolve, which constructs problem classes
through evolutionary mechanisms, resulting in semantically related instances.

In the second experiment, we generated 32 TSP instances of varying sizes. We firstly visualize
their size and solving time (computed by Gurobi) in Figure [5] The similarity matrices derived
using the embedding metric and the stat metric are presented in Figure 4c| and Figure The
instances are ordered by problem size in the matrices. Our results demonstrate that embedding
metric generalizes effectively to unseen instances, providing robust similarity measurements for
unseen MILP instances.

4.3 RESULTS ON TARGETED MILP INSTANCE GENERATION

We report the similarity between the generated instances and the target instances using both the
embedding metric and the stat metric in Table[T]and Table[2] For LLM-based methods, evaluation is
limited to the Evolve/Test dataset, as generating MILP formulation codes from textual descriptions is
currently only feasible in this setting. Due to the fact that learning-based methods (e.g., ACM-MILP
(Guo et al.} |2024)) require training a separate model for each problem class, we could not evaluate
them across all MILP classes in Evolve/Test and MIPLIB. Instead, we selected four problem classes
from Evolve/Test: FCNF, TSP, GA, VRP, as well as three widely studied problem classes from
MIPLIB: Nursesched, CVS, and IIS.

From the results, we observe that MILP-Retrieval significantly outperforms baselines under the em-
bedding metric, but performs less competitively under the stat metric compared to learning-based
methods. This is expected, as our framework is designed to generate problem instances that are
semantically similar to the target instances, without necessarily matching their statistical character-
istics. We further discuss the experimental results in Appendix [E]
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Table 1: Comparison between generated instances and target instances on the embedding metric.

Method MILP-Retrieval Bowly ACM-MILP GPT-40 Finetuned LLaMA 3-8b
FCNF 0.705 £0.174 -0.079+0.088 0.419 +0.143 infeasible 0.076 £ 0.094
Evolve/Test TSP 0.920 £0.050  0.041 £0.039 infeasible 0.304 £ 0.073 0.399 +£0.011
GA 0.734 £0.078  0.167 £0.087  0.015+0.031 infeasible 0.233 £0.027
VRP 0.960 +0.015  0.005 £ 0.055 infeasible 0.347 £ 0.053 infeasible
Nursesched | 0.883£0.085 0.071£0.042 -0.056 +0.108 - -
MIPLIB CVsS 0.814£0.078 -0.105+0.080 0.030 +0.106 - -
1IS 0.829 £0.046  -0.119+0.030 -0.210 +0.024 - -

Table 2: Comparison between generated instances and target instances on the stat metric.

Method MILP-Retrieval Bowly ACM-MILP GPT-40 Finetuned LLaMA 3-8b
FCNF 0.611+0.006 0.530+0.019 0.795 +0.018 infeasible 0.568 +£0.022
Evolve/Test TSP 0.367£0.129  0.665 £0.043 infeasible 0.1_340 + _().059 0.469 +0.034
GA 0.436 £0.014 0.479+0.016 0.703 + 0.003 infeasible 0.311 £0.002
VRP 0.377£0.024  0.672 + 0.021 infeasible 0.599 £ 0.002 infeasible
Nursesched | 0.231+0.076  0.313 £0.046  0.655 + 0.032 - -
MIPLIB CVsS 0.430+0.121  0.417+0.032 0.717 £ 0.019 - -
1IS 0.234+0.003  0.365+0.004 0.878 + 0.059 - -

Table 3: The performance of Neural Diving on test set of 4 classes of problems. We use each method
to generate 40 instances and add them to the training set, we mark the best performance in bold.

Raw MILP-Retrieval ACM-MILP GPT-40 Finetuned LLaMA 3-8b
FCNF | 1604.77 £311.27 1117.14 +187.68 1520.08 + 200.01 - 1228.64 +399.68
TSP 944.85 +98.45 893.47 + 83.86 - 891.53 + 83.79 924.40 + 86.83
GA -49768.53 £ 53.77  -49991.25 + 4.92 infeasible - -49293 + 15.23
VRP 911.20 £91.02 774.91 + 52.64 - 827.66 +40.98 -
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Figure 6: Visualization of generated scalable instances through formulation code diverse tuning.
4.4 RESULTS ON DOWNSTREAM TASKS

Enhancing Learning-based Solver We evaluated our method on multiple ML-based solvers, in-
cluding Neural Diving, Predict-and-Search, and Learn-to-Branch (Nair et al.,[2020; Han et al., 2023}
Gasse et al.| |2019). Experiments are also conducted on four problem classes: FCNF, TSP, GA, and
VRP. MILP-Retrieval and baseline methods are then used to generate varying numbers of supple-
mentary training instances, which are added to the original training set of Neural Diving. The
enhanced models are evaluated on the test set. Experimental results of Neural Diving summarized
in Table [3| report the objective value for each experiment. Our findings demonstrate that MILP-
Retrieval achieves comparable or superior performance to baseline approaches in boosting solver
performance. Details of this experiment and additional results can be found in Appendix

Controllable MILP Instance Generation by Diverse Tuning We apply Diverse Tuning to gener-
ate instances that vary widely in both scale and solving difficulty. Experiments are conducted on the
same four problem classes, where 32 instances are generated per class under different parameter set-
tings. Figure[6]illustrates the distributions of instance sizes and solving times (measured by Gurobi
(Gurobi Optimization, LLC|[2024)), with a maximum time limit of 1000s) for each class. The results
demonstrate that formulation code tuning effectively enables the generation of MILP instances from
the same class that differ substantially in scale and difficulty.
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Controllable MILP Instance Generation by Targeted Tuning We further showcase the use of
Targeted Tuning to precisely control the solving difficulty of MILP instances. The experiments are
performed on the 50 MILP classes from Evolve/Test. In the first case, the goal is to maximize
difficulty. We set both the target difficulty and the solving time cutoff to 1000s. As shown in Figure
Targeted Tuning successfully adjusts 88% of the 50 classes to reach the desired 1000s solving
difficulty. In the second case, the goal is to match specified difficulty level as closely as possible.
Using a target solving time of 50s as example (results shown in Figure [§)), the generated instances
achieve an average deviation of only 12.8% from the target, a substantial improvement over the
original instances without tuning. These results verify the effectiveness of formulation code tuning
within MILP-Retrieval. Additional experimental details and results are provided in Appendix [B.5]

4.5 EXTENSIVE STUDIES

Computational Efficiency We use FCNF as a case study to demonstrate the significant improve-
ment in computational efficiency achieved by MILP-Retrieval. We measure the time required to
train the model and generate 1,000 instances, with the results shown in Figure[9] It is worth-noting
that training the MILP embedding model took approximately 40 hours. We exclude this from the
comparison, as the embedding model is designed to be generalized across different problem classes.

Ablation Study To evaluate the influence of formulation code library size, we limit the size of
the retrieval library and observe how similarity (embedding metric) between target instances and
generated instances changes with reduced library size. The results are reported in Figure [I0} show
that our current MILP library is sufficiently large to support robust instance generation.

5 CONCLUSION

In this paper, we propose MILP-Retrieval, a framework for targeted MILP instance generation via
formulation code retrieval and parameter tuning. It provides a generalizable solution that efficiently
generates problem instances of varying difficulty and scale, thereby improving the performance of
learning-based solvers. While its effectiveness depends on the size of the formulation code library,
we also explore LLM-based methods to directly generate formulation code from textual descrip-
tions as a baseline. Advancing LLM-based approaches for fine-grained and controllable generation
remains a promising direction for future research.
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ETHICS STATEMENT

The methods proposed in this paper aim to retrieve and tune MILP formulation code for MILP
instance generation, which is related to the broader field of neural combinatorial optimization. To
our best knowledge, no ethical issues or harmful insights of this work need to be otherwise stated.

REPRODUCIBILITY STATEMENT

The datasets used and the baseline implementation are described in Appendix [C] The detailed hy-
permeters and implementation of the models for training and testing are provided in Appendix
Source code and datasets can be accessed at https://anonymous.4open.science/r/
MILP-Retrieval-D830/l
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A RELATED WORKS

Machine Learning on MILP Machine learning methods have demonstrated superior perfor-
mance over traditional algorithms in solving various combinatorial optimization problems due to
their ability to capture the characteristics of similar problems. These approaches can be broadly
classified into two categories. The first category involves integrating learning-based modules into
traditional solvers by replacing or augmenting key components, such as branching (Gasse et al.,
2019; |Gupta et al.| 2020} 2022), cut selection (Tang et al., [2020; [Wang et al., [2023), and presolve
(Kuang et al) [2023 [Liu et al 2024a)). The second category focuses on improving the solution
search process itself. Techniques such as predict-and-optimize (Han et al., 2023} |Ye et al.| [2023;
2024) and large neighborhood search (Sonnerat et al., 2021; [Huang et al.l 2023) utilize predictive
models to guide the solver toward promising regions of the solution space, thereby enhancing effi-
ciency and solution quality. A key challenge in both categories is the availability of sufficient MILP
data for training these models. This challenge highlights the critical need for generating diverse and
high-quality MILP instances.

MILP Instance Generation The field of MILP instance generation has traditionally relied on
heuristic methods to create problem instances tailored to specific types or statistical characteristics
(Smith-Miles & Bowlyl 2015; [Bowly et al., [2020). While effective in controlled scenarios, these
methods often lack the flexibility to address broader applications or more diverse instance distribu-
tions. Learning-based MILP generation methods use model to learn the distribution of the problems
and reconstruct them. For example, some methods focus on restructuring the problem’s underlying
structure (Liu et al.,[2024b} |Yang et al., 2024), while others utilize paradigms like VAE or diffusion
models to reconstruct problem constraints (Geng et al.l [2023; Wang et al., 2024; |Guo et al., 2024;
Zhang et al.| 2024). Recent work (Li et al., [2025) proposes a novel approach for generating diverse
MILP problems. Our approach MILP-Retrieval, along with the concept of MILP embedding metric,
offers a novel perspective on MILP instance generation.

B IMPLEMENTATION DETAILS OF MILP-RETRIEVAL

B.1 DETAILS OF BIPARTITE GRAPH FEATURES

To encode an MILP instance as a corresponding bipartite graph, we incorporate information about
both variables and constraints into the node features of the graph representation. The specific node
features used in our encoding are detailed in Table ]

Additionally, the bipartite graph features include solution-related information about the MILP in-
stance. To obtain this data, we solve each problem instance using Gurobi (Gurobi Optimization,
LLC, 2024), with a computation time limit of 50 seconds per instance. This ensures a standard-
ized and practical approach to extracting solution-based features while maintaining computational
efficiency.

B.2 DETAILS OF MILP LIBRARIES Evolve/Train AND Evolve/Test

We construct the MILP libraries following the method proposed in MILP-Evolve (L1 et al.| 2025)),
which leverages LLMs to evolve MILP formulation code and generate diversified MILP instances.
This approach guarantees that all generated instances are feasible. Based on this method, we build
two separate libraries—Evolve/Train and Evolve/Test—for training and testing purposes, respec-
tively.

The Evolve/Train library is evolved from eight seed classes (IS, SC, CA, CFL, KS, GIS, NF, and
SAT), resulting in 4,000 formulation codes and 59,033 corresponding MILP instances, graphs, and
textual descriptions. This library is used both to train the MILP embedding model and as the retrieval
corpus for MILP-Retrieval. In contrast, the Evolve/Test library is evolved from four disjoint seed
classes (FCNF, TSP, GA, and VRP), yielding 50 formulation codes and 672 corresponding MILP
instances, graphs, and textual descriptions. The seed classes of Evolve/Train and Evolve/Test are
completely disjoint.
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Table 4: Node type features and descriptions for Variables and Constraints.

Node Type Feature Description
norm coef Objective coefficient, normalized by objective norm
type Var type (binary, integer, impl. integer, continuous), one-hot
has 1b Lower bound indicator
has ub Upper bound indicator
Vars solval Solution value
solfrac Solution value fractionality
sol_is_at_lb Solution value equals lower bound
sol_is_at_ub Solution value equals upper bound
basestat Simplex basis status (lower, basic, upper, zero), one-hot
rank Rank of a row
norm-nnzrs Fraction of nonzero entries
bias Unshifted side normalized by row norm
Cons row_is_at_lhs Row value equals left hand side
row_is_at_rhs Row value equals right hand side
dualsol Dual LP solution of a row, normalized by row and objective norm
norm_intcols Fraction of integral columns in the row

Each MILP class generates 20 instances, which are subsequently filtered by solving with a time limit
of 50 seconds; instances without feasible solutions are removed. After filtering, the final datasets
consist of 59,033 instances in Evolve/Train and 672 instances in Evolve/Test.

The evolution process was carried out using GPT-40-mini as the LLM. Starting from the seed
classes, constructing both libraries required approximately four weeks and incurred a total cost of
around $50. Further details on the class generation procedure can be found in (Li et al.l 2025).
The sources of the seed classes are summarized in Table [5] and the distribution of variables and
constraints in Evolve/Train is visualized in Figure[TT]

Table 5: 8 Seed Classes for Evolve/Train and 4 Seed Classes for Evolve/Test.

Dataset Abbreviation Full Name Reference
IS Maximum Independent Set (Bergman et al.,|2016)
SC Set Cover (Balas & Ho\, [1980)
CA Combinatorial Auction (Leyton-Brown et al.}2000)
Evolve/Train CFL Capacitated Facility Location (Cornugjols et al.,|1991)
Knapsack Multiple Knapsack (Pisinger, [1999)
GIS Generalized Independent Set (Colombi et al.l[2017)
NF Multicommodity Network Flow (Hewitt et al., 2010)
SAT Max Satisfiability (Béjar et al.| [2009)
FCNF Fixed-Charge Network Flow (Kim & Pardalos},|1999)
Evolve/Test TSP Traveling Salesman Problem (Matazi et al.,[2010)
GA Generalized Assignment (Cattrysse & Van Wassenhovel |1992))
VRP Vehicle Routing Problem (Braekers et al.,[2016)

B.3 SAMPLES OF DIFFERENT FORMS OF MILP DATA

Here we provide a sample of code and textual description in MILP Data, which comes from the Set
Cover problem and is one of the seed classes of Evolve/Train. Lines 91-96 in the code correspond
to the parameter part of the code, which can be used by formulation code tuning to adjust the size
and difficulty of the generated instance.

Formulation Code
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(a) Distribution of Number of Variables.
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(b) Distribution of Number of Constraints.

Figure 11: Visualization of All Instances in Evolve/Train.

1 import random
2 import time
3 import scipy
4 import numpy as np
5 import networkx as nx
6 from pyscipopt import Model, quicksum
7
8 class SetCover:
9 def __init__ (self, parameters, seed=None):
10 for key, value in parameters.items () :
11 setattr (self, key, value)
12
13 self.seed = seed
14 if self.seed:
15 random. seed (seed)
16 np.random. seed (seed)
17
18 FHEHHEH A EHHE Data Generation #####4FFEFFSHFHEH
19 def generate_instance (self):
20 nnzrs = int (self.n_rows * self.n_cols % self.density)
21
22 # compute number of rows per column
23 indices = np.random.choice(self.n_cols, size=nnzrs) f#
random column indexes
24 indices[:2 * self.n_cols] = np.repeat (np.arange (self.
n_cols), 2) # force at leats 2 rows per col
25 _, col_nrows = np.unique (indices, return_counts=True)
26
27 # for each column, sample random rows
28 indices[:self.n_rows] = np.random.permutation (self.
n_rows) # force at least 1 column per row
29 i=0
30 indptr = [0]
31 for n in col_nrows:
32 # empty column, fill with random rows
33 if 1 >= self.n_rows:
34 indices[i:1i+n] = np.random.choice (self.n_rows,
size=n, replace=False)
35
36 # partially filled column, complete with random rows
among remaining ones
37 elif i + n > self.n_rows:
38 remaining_rows = np.setdiffld(np.arange (self.
n_rows), indices[i:self.n_rows],
assume_unique=True)

18
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72
73
74
75

76
77

78
79

indices[self.n_rows:i+n] = np.random.choice (
remaining_rows, size=i+n-self.n_rows,
replace=False)

i +=n
indptr.append (i)

# objective coefficients
¢ = np.random.randint (self.max_coef, size=self.n_cols)
1

# sparce CSC to sparse CSR matrix
A = scipy.sparse.csc_matrix(
(np.ones (len(indices), dtype=int), indices,
indptr),
shape=(self.n_rows, self.n_cols)).tocsr()
indices_csr = A.indices
indptr_csr = A.indptr

res = {’'c’': c,
"indptr_csr’: indptr_csr,
"indices_csr’: indices_csr}

return res

FHfHHfH#FFHFFF#ESE PySCIPOpt Modeling #######FH##FHHFFFH
def solve(self, instance):

c = instance[’c’]

indptr_csr = instance[’indptr_csr’]

indices_csr = instance[’indices_csr’]

model = Model ("SetCover")
var_names = {}

# Create variables and set objective
for j in range(self.n_cols):
var_names[j] = model.addVar (vtype="B", name=f"x_{7j}
, obj=c[Jj])

# Add constraints to ensure each row is covered
for row in range(self.n_rows):
cols = indices_csr[indptr_csr[row] :indptr_csr[row +
11]
model.addCons (quicksum(var_names[]j] for j in cols)
>= 1, f"c_{row}l")

# Set objective: Minimize total cost
objective_expr = quicksum(var_names([j] x c[j] for J in
range (self.n_cols))

model.setObjective (objective_expr, "minimize")

start_time = time.time ()
model.optimize ()
end_time = time.time ()

return model.getStatus (), end_time - start_time

__name_ == '_ _main_ ’:

seed = 42

parameters = {
"n_rows’: 750,

"n_cols’: 1500,

+
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94 "density’: 0.05,

95 "max_coef’: 100,

96 }

97

98 set_cover_problem = SetCover (parameters, seed=seed)

99 instance = set_cover_problem.generate_instance ()

100 solve_status, solve_time = set_cover_problem.solve (instance)
101

102 print (f"Solve Status: {solve_status}")

103 print (f"Solve Time: {solve_time:.2f} seconds")

Textual Description

The MPS file, named ‘SetCover’, represents a mixed integer programming problem
focused on a Set Cover optimization task. Its objective is to minimize the total cost
associated with the selected columns, defined by the coefficients specific to this problem.
The formulation leverages inequalities to ensure that each of the 750 constraints guarantees
that every row is covered by at least one selected column. The decision variables are binary,
reflecting the choice of each column’s inclusion in the cover. The file employs a structured
approach for encoding the problem, facilitating efficient solving by optimization algorithms.

B.4 DETAILS OF MILP EMBEDDING MODEL

Below we provide more details about the embedding model.

B.4.1 DERIVATION OF LOSS FUNCTION

Let (P;, T;) fori = 1,..., N be a batch of N matched MILP—text pairs, fy be the MILP embedding
model, producing an MILP embedding p; = f3(P;) € RY, gg be the text encoder, producing a
text embedding t; = go(7;) € R?. Both p; and t; are typically L2-normalized to have unit length,
[Ilpill2 = 1, ||ti]]2 = 1. For each MILP—text pair (4, j) in the batch, we define the similarity score as
the dot product: s;; = p;t;.

Our training objective is a bidirectional contrastive objective: it treats each MILP instance p; as a
query and tries to classify the correct text t; among all texts {t;}, and symmetrically, each text t;
tries to classify the correct MILP instances v; among all instances {v; }.

For a fixed MILP embedding p;, the MILP-to-text cross-entropy loss is:

eiMILP—to—Text) _ —log( eXP(Su‘) )

M=z

exp(si;)

J

Il
—

Similarly, for a fixed text embedding t;, the text-to-MILP cross-entropy loss is:

eiText-to-MILP) _ —log( eXP(Su‘) )

M=z

exp(s;;)

j=1
To incorporate both MILP-to-text and text-to-MILP objectives, the final symmetric loss sums these
two cross-entropy terms for each pair and then averages over the batch:

N
1
_ (MILP-to-Text) (Text-to-MILP)
L= gu2b +4
i=1

20



Under review as a conference paper at ICLR 2026

B.4.2 PROMPT DETAILS OF NV-EMBED-V?2

We use NV-Embed-v2 (Lee et al.,|2025)) as the text embedding model in the training paradigm (see
Figure and freeze its parameters during training. NV-Embed-V2 is an instruction embedding
model, and we use the following prompt as the instruction:

Prompt for Text Embedding Model

Given a linguistic description, retrieve the corresponding Mixed-Integer Linear Pro-
gramming problem.

B.4.3 TRAINING DETAILS

We trained the MILP embedding model on the Evolve/Train dataset, which contains a total of 59,033
(MILP instance, textual description) pairs. We randomly divided it into a training set and a valida-
tion set in a ratio of 9:1, using the training set as training data. To evaluate training progress, we
track 4-way and 10-way retrieval accuracies on the validation set, which measure whether the model
can correctly match a MILP problem to its textual description (or vice versa) among 4 or 10 candi-
dates, respectively. Figure [I2]shows the validation accuracy curves during training, demonstrating
that the model effectively learns to capture the semantics of MILP problems through our proposed
contrastive framework. These retrieval accuracies serve as intermediate metrics for assessing the
quality of the learned MILP embeddings. The training process was completed on a single Nvidia
H100 and took about 40 hours. We provide the hyperparameters used for training in Table [6]

1.0 1.0

. //W

6

o

Accuracy Rate
°
=

Accuracy Rate

o
N

0.2
—— 4way_Acc_text2milp —— 4way_Acc_milp2text

10way_Acc_text2milp 10way_Acc_milp2text

o
o
o
5}

20 40 60 80 100 0 20 40 60 80 100
Epoch Number Epoch Number

Figure 12: The Text-to-MILP and MILP-to-Text Accuracy Rate curves with respect to epoch num-
ber.

Table 6: Hyperparameter of MILP embedding model.

Name Value | Name Value
Embed_Size 64 Num. of GCN Layers 2
Num. of Sampled Nodes 512 | Num. of Attention Layers 6
Embedding Space [R4096 Epoch Number 100
Learning Rate 0.001 Batch Size 64
Num. of Attention Heads 8 Optimizer Adam

B.5 DETAILS OF FORMULATION CODE TUNING

This appendix expands the implementation details for the two tuning strategies introduced in Section
[3.3] We first parse the formulation code using Python’s ast to locate tunable parameters in the “pa-
rameter” block. Two parameter types are supported: (i) value (scalar numeric, integer or real), and
(ii) interval (lower/upper bounds). For Diverse Tuning (Algorithm[I)), we draw multiplicative scale
factors from a log-uniform range and rewrite the code accordingly. For Targeted Tuning (Algorithm
[2), we treat the formulation as a black-box generator and apply Bayesian Optimization (BO) over
the parameter space. Each candidate parameterization yields a temporary instance that is solved
(with a time limit); the result is used to accept/reject instances (diverse tuning) or to guide the BO
loop (targeted tuning).
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In the Diverse Tuning setting, we (i) sample multiplicative scales from [0.1, 10] on a log scale; (ii)
preserve integer parameters by rounding to the nearest valid integer; (iii) keep interval ordering by
enforcing ¢/ < «’ (with a small jitter if needed); (iv) discard infeasible instances and instances
solved in less than 5 seconds as trivial; and (v) cap solving at 1000 seconds (treating timeouts as
1000). All experiments use PySCIPOpt 5.2.1 (Bolusani et al., 2024).

In the Targeted Tuning setting, we employ smac3 (Lindauer et al.,|2022) as the Bayesian optimizer,
with a maximum of 50 trials. For cases where the objective is to maximize solving time, we cap the
runtime of each trial at 1000s. For cases where the goal is to match a specified solving time, we set
the target time to 50s and limit each trial to 100s. Optimization traces for both cases are provided in
Figures [I3]and [T4] as illustrative examples.

a Current Solve Time é

e —— Max Solve Time S

5 a0 H
2

o o 10 20 30 40 50
0 0 20 20 50 Bayesian Optimizer Trial Number

30
Bayesian Optimizer Trial Number

Figure 14: Example Optimization trace
for the case of matching a specified tar-
get time (50s).

Figure 13: Example optimization trace
for the case of maximizing solving time.

Algorithm 1 Diverse Tuning via Randomized Parameter Perturbations

Require: Formulation code ¢; desired number of accepted instances k; scale range [a, b] (default
[0.1, 10]); trivial cutoff #,,;, (default 5 s); time limit £, (default 1000s)
Ensure: Accepted instances Q = {(g;, 7, w;) }£_, with solve time 7; > #.,in
1: Q <, Success <+ 0
2: Parse tunable parameters w = (w1, . .., w, ) from the parameter block of ¢ {w; can be a scalar
or an interval [¢;, u;]}

3: while Success < k do

4: fori=1tondo

5: if w; is a scalar value then

6: Draw s; ~ LogUniform(a, b)

7: w} < round_if_int(w; - s;)

8: w} < clamp_if_bounded(w})

9: else if w; is an interval [¢;, u;] then
10 Draw s; ~ LogUniform(a, b)

11: 0} < round_if _int(¢; - s;), w}  round_if_int(u; - s;)
12: if ¢, > u) then

13: (€5, u}) < repair (¢}, u})

14: end if

15: w} < [0, u}]

16: end if

17:  end for

18: ¢’ + SETPARAMETER(c, w’)

19: ¢ < GENERATEINSTANCE(()

20:  (feasible, 7) <~ SOLVE(q', tmax) {7 is wall-clock solve time; timeouts yield 7 = ¢y,ax }
21:  if feasible and 7 > t,,;, then

22: Q«+ QU{(¢,7,w")}, Success « Success + 1

23:  endif

24: end while

25: return Q
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Algorithm 2 Targeted Tuning via Black-Box Optimization

Require: Formulation code c; evaluation budget B; time limit ¢,,,y; trivial cutoff ¢,,;,; objective

obj € {MAXDIFFICULTY, HITTARGET}; target time 7" (only if obj = HITTARGET)

Ensure: Best parameterization x*, instance ¢*, and measured solve time 7*

1:
2:
3:

ook

e &S

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

Construct search domain X" from tunable parameters in ¢ (respect bounds and integrality)
Define EVALUATE(x):

¢ + SETPARAMETER(c,x); ¢ < GENERATEINSTANCE(c')

(feasible, 7) — SOLVE(q, tmax) {Timeouts return 7 = ¢yax }

if not feasible or 7 < t,;» then

0 if obj = MAXDIFFICULTY
v {—|tmin T| if obj = HITTARGET
else
T if obj = MAXDIFFICULTY
v {—|T —T| if obj = HITTARGET
end if

return (y, q, 7)
Initialize a black-box optimizer O <— INITIALIZEBO(X)
Optionally warm-start O with a few random evaluations of EVALUATE(+)
Incumbent <— None
fort =1to B do
x; < O.PROPOSE()
(yt, Gt, 7¢) < EVALUATE(x:)
O.OBSERVE(X¢, yt)
if Incumbent = None or y; improves over Incumbent.y then
Incumbent < (X, q¢, T¢, Yt )
end if
end for
(x*,¢*, 7", _) + Incumbent
return (x*,¢*,7*)
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C MORE DETAILS ON EXPERIMENTAL SETUP

C.1 DETAILS OF BASELINES
C.1.1 ‘GPT-40’ BASELINE

Our implemented ‘GPT-40’ baseline uses GPT-40 (Hurst et al.,2024]) as the underlying LLM to eval-
uate its capability to directly generate MILP formulation code from textual description. We conduct
experiments on the Evolve/Test dataset, which contains instances paired with textual descriptions. A
few-shot prompting approach is employed to guide the LLM in generating MILP formulation code.
Specifically, we randomly select three (textual description, code) pairs from the Evolve/Train dataset
as examples, and use a target textual description from Evolve/Test as the test input. For each test
case, we repeat the experiment 10 times and report the best result. The prompt used in this process
is as follows:

Prompt for GPT-40

Please generate Python code for the Mixed-Integer Linear Programming problem cor-
responding to the description below.
{target desc}

Sample description 1:
{sample_desc1}
Sample code 1:
{sample_codel}

Sample description 2:
{sample_desc2}
Sample code 2:
{sample_code2}

Sample description 3:
{sample_desc3}
Sample code 3:
{sample_code3}

C.1.2 ‘FINETUNED LLAMA 3-8B’ BASELINE

We implemented another baseline, Finetuned LLaMA 3-8b, which also takes the textual description
of a MILP problem as input and generates the corresponding formulation code. This baseline is
evaluated on the Evolve/Test dataset to assess the performance of the fine-tuned model. We use
LLaMA 3-8b-instruct (Dubey et al.| [2024) as the base model and perform supervised fine-tuning
(SFT). The SFT dataset is constructed using all samples from the Evolve/Train, where each sample
is a (textual description, formulation code) pair in the following format:

SFT Data Format

1 messages = [

2 {"role": "system", "content": "You are an expert in Mixed-
Integer Linear Programming."},
3 {"role": "user", "content": "Please generate Python code for

the Mixed-Integer Linear Programming problem
corresponding to the description below. \n" +
description},

{"role": "assistant", "content": code}

(O N
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During testing, we use the same user prompt as input and feed the code generated by the fine-tuned
model into GPT-40 for validation, ensuring the output code is free of syntax errors. The prompt used
for code checking is as follows:

Prompt for Code Checking
Identify and fix the errors in this code, then output the complete corrected code.

{code}

We perform full-parameter fine-tuning on LLaMA-3-8b-instruct using the XTuner framework (Con-
tributors}, |2023), with the hyperparameters listed in Table [/l Fine-tuning is conducted on 8 Nvidia
H100 GPUs and takes approximately 6 hours. During testing, we also repeat each experiment 10
times and report the best result.

Table 7: Hyperparameter of Finetuning LLaMA-3-8b.

Name Value Name Value
Epoch Num 8 Learning Rate 2e-5
Batch Size 1 Accumulate Counts 16

C.1.3 ‘BOWLY’ BASELINE

For the ‘Bowly’ baseline, we use the official implementation from https://github.com/
simonbowly/mip—generators, which generates MILP instances based on several specified
statistical indicators (e.g., coefficient matrix density, fraction violation rate, etc.). To provide the
required inputs, we wrote a script to compute these statistical indicators from the target instances.

C.1.4 °‘ACM-MILP’ BASELINE

For the ‘ACM-MILP’ baseline, we use the official implementation provided at https://
github.com/Thinklab-SJTU/ACM-MILP. For each type of MILP problem, we generate
20 instances to serve as both the training set and the target instances. The trained model is then
used to reconstruct these 20 problems. We adopt the same hyperparameters as those used for the
preset ‘CA’ problem, and set the reconstruction ratio to 0.1. It is important to note that ACM-MILP
does not guarantee the feasibility of the generated problems—for example, in our experiments, the
instances generated for TSP and VRP were infeasible.

C.2 DETAILS OF stat metric

Table 8: Evaluation metrics used in similarity comparison.

Name Explanation
coef_dens Fraction of non-zero entries in coefficient matrix.
cons_degree_mean Mean degree of constraint vertices.
cons_degree_std Std of degrees of constraint vertices.
var_degree_mean Mean degree of variable vertices.
var_degree_std Std of degrees of variance vertices.
lhs_mean Mean of non-zero entries in coefficient matrix.
lhs_std Std of non-zero entries in coefficient matrix.
rhs_mean Mean of RHS values.
rhs_std Std of RHS values.
modularity Modularity of the graph.
clustering_coef Clustering coefficient of the graph.

In previous work (Geng et al.|[2023;|Guo et al.| 2024), graph statistical metrics were used to evaluate
the similarity between generated instances and target instances. The full list of metrics is provided
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in Table[8] For each individual metrlc they calculate the Jensen- Shannon Ads) dlvergence Let JS,
denote the JS divergence for the i" metric. The similarity score for the i metric is defined as:

score; = (max(JS) — JS;)/(max(JS) — min(JS5)). (7

The overall similarity score is the average of all the scores:
core ! Z score ()
S =— ;-
11 & !

In our implementation of the stat metric, we make two modifications to the above method. First,
we remove the clustering coefficient metric, as it is always zero for bipartite graphs. Second, we
adapt the metric to compute pairwise similarity rather than comparing entire distributions. Ex-
isting approaches rely on JS divergence, which is only suitable for comparing two sufficiently
large sets of instances. However, in our experimental setting, each group of instances is relatively
small—sometimes as few as five instances (e.g., when generating a specific problem class from
MIPLIB). In such cases, computing JS divergence leads to high variance.

To address this, we instead use the Jaccard similarity, defined as followswhere stat; represents the
1-th statistical indicator:

10
1 n(Stat; (p), Stat; (q))
StatMet —
atMetric(p, ¢ ~ 10 Zl max(Stat;(p), Stat;(q))’ ©)
StatMetric(P, Q) = \PHQ| Z Z StatMetric(p, q).

PEP qEQ

C.3 DETAILS OF DATASET

In the experiments corresponding to Tables |1{and |2} we used two types of datasets. The first type
includes the first four MILP classes from Evolve/Test (FCNF, TSP, GA, VRP). For each problem
class, we generated 20 instances, which served both as target instances and as training/testing data
for ACM-MILP. For the three datasets from MIPLIB (Nursesched, CVS, IIS), we used all available
instances provided by MIPLIB as target instances for MILP-Retrieval, and also as training/testing
data for ACM-MILP. The dataset statistics are summarized in Table [0l

Table 9: Dataset Statistics of Targeted MILP Instance Generation Experiment.

Problem Source | Problem Class | Instance Num. Average [V| Average |C| Average |£]
FCNF 20 1096 594 2192
Evolve/Test TSP 20 1604 1567 7592
GA 20 125000 750 250000
VRP 20 1088 1153 7168
NurseSched 5 19501 7231 373018
MIPLIB CVS 5 2536 3397 9150
IIS 2 256 7551 99552

D EXTENSIVE EXPERIMENT RESULTS

D.1 MORE RESULTS ON embedding metric

We conducted a large-scale experiment to evaluate the performance of the embedding metric on
MIPLIB (Gleixner et al.l [2021). In the MIPLIB Collection Set, most instances is labeled with a
Group tag, where instances sharing the same tag are considered to belong to the same problem
class. We filtered the Collection Set to include only those groups where every instance has a Group
tag and can produce a feasible solution within 100 seconds, in order to exclude ultra-scale instances.
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Then we filter the group with only one instance. After this filtering process, we obtained 99 classes
comprising a total of 361 instances from the original 1,065 instances in the MIPLIB Collection Set
(including previous used Nursesched, CVS, IIS classes). All filtered classes and instances are listed
in Table

Table 10: Filtered Classes and Instances from MIPLIB Collection Set.

MILP Class Instances

prod prodl, prod2

rococo rococoB10-011000, rococoC11-010100, rococoC12-010001,
rococoC10-001000, rococoC11-011100

1is iis-hc-cov, iis-glass-cov

sing sing326, sing44, singl 1, sing5, sing17

shipschedule shipschedule8shipsmixuci, shipschedule6shipsmixi, shipschedule3shipsi

blp blp-ar98, blp-ir98, blp-ic97, blp-ic98

vpp vpphard2, vpphard

diameterc diameterc-mstc-v20a190d5i, diameterc-msts-v40a100d5i1

tanglegram tanglegram6, tanglegram4

pr-product p200x1188c, sp150x300d, r50x360, p5S00x2988, p500x2988d,
p500x2988c

mine mine-166-5, mine-90-10

momentum momentum]1, momentum2, momentum3

opm?2 opm?2-z6-s1, opm2-z10-s4, opm2-z8-s0, opm2-z12-s8, opm2-z7-s8

acc-tight acc-tight2, acc-tight4, acc-tight5

map map14860-20, map10, map06, map18, map16715-04

sp9 sp98ir, sp98ic, sp98ar, sp97ar, sp97ic

ab ab71-20-100, ab51-40-100, ab69-40-100, ab72-40-100, ab67-40-100

bppc bppc8-02, bppc6-06, bppc8-09, bppc6-02, bppc4-08

gmu gmu-35-40, gmut-76-40, gmut-76-50, gmut-75-50, gmu-35-50

dws dws012-02, dws008-01, dws008-03, dws012-03, dws012-01

decomp decomp?2, decompl

eil eilA101-2, eilC76-2, eil33-2

gasprod gasprod2-1, gasprodl1-3, gasprodl-1, gasprod1-2, gasprod2-2

ran ran12x21, ran13x13, ran14x18-disj-8

evalaprime evalaprimeSx5opt, evalaprime6x60opt

assign assignl-5-8, assignl-10-4

ofi of1, ofi2

fhnw-schedule fhnw-schedule-paira400, fhnw-schedule-paira200,
fhnw-schedule-pairb200, fhnw-schedule-pairal00,
fhnw-schedule-pairb400

cmflsp cmflsp50-24-8-8, cmflsp50-24-10-4, cmflsp40-24-10-7,
cmflsp40-36-2-10, cmflsp60-36-2-6

csched csched008, csched007, csched010

network_design germanyS50-UUM, cost266-UUE, ta2-UUE, dfn-bwin-DBE, tal-UUM

ger50 ger50-17-ptp-pop-6t, ger50-17-trans-dfn-3t, ger50-17-trans-pop-3t,
ger50-17-ptp-pop-3t, ger50_17 _trans

fastxgemm fastxgemm-n2r6s0t2, fastxgemm-n3r21s3t6, fastxgemm-n3r22s4t6,
fastxgemm-n3r23s5t6, fastxgemm-n2r7s4tl

triptim triptim8, triptim4, triptim?7, triptim1, triptim2

gen-ip gen-ip002, gen-ip021, gen-ip054, gen-ip036, gen-ip016

snp snp-10-004-052, snp-02-004-104, snp-10-052-052, snp-04-052-052,
snp-06-004-052

satellites satellites2-40, satellites3-25, satellites2-60-fs, satellites2-25, satellites4-25

rmatr rmatr200-p10, rmatr100-p5, rmatr200-p5, rmatr100-p10, rmatr200-p20

dano dano3mip, dano3_5, danoint, dano3_3

cvIp cvrpp-n16k8vrpi, cvrpa-n64k9vrpi, cvrpb-n45kSvrpi, cvrpsimple2i

Continued on next page
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Continued from previous page

MILP Class Instances

f2gap 12gap401600, f2gap201600, f2gap801600, f2gap40400

sorrell sorrell4, sorrell3, sorrell8, sorrell7

uccase uccaseg, uccasel2, uccase9, uccasel0, uccase7

nul20 nul20-pr9, nul20-pri2

nursesched nursesched-medium04, nursesched-medium-hint03,
nursesched-sprint-hidden09, nursesched-sprint-late03,
nursesched-sprint02

berlin berlin_5_8_0, berlin

nxy-z n6-3, n13-3, n7-3, n5-3, n9-3

tbfp tbfp-bigm, tbfp-network

nh97 nh97 _tension, nh97_potential

gnet gnetl, gnetl_o

markshare marksharel, markshare_4_0, markshare_5_0, markshare2

timtab timtabl, timtabl CUTS

swath swath3, swath2, swath1, swath

app app2-1, app1-1, app3, app2-2, app1-2

core core2586-950, cored872-1529, core4284-1064, core2536-691

allcolor allcolor58, allcolor10

reblock reblock166, reblock420, reblock354, reblock115

pizza pizza78i, pizza2Ti

roi roiSalphalOn8, roi2alpha3n4

graphdraw graphdraw-gemcutter, graphdraw-grafo2, graphdraw-opmanager,
graphdraw-mainerd, graphdraw-domain

genus genus-sym-g31-8, genus-sym-grafo5708-48, genus-sym-g62-2,
genus-g31-8, genus-g61-25

ex ex9, ex1010-pi, ex10, exp-1-500-5-5

nexp nexp-150-20-1-5, nexp-150-20-8-5, nexp-50-20-4-2, nexp-50-20-1-1

aflow aflow40b, aflow30a

splice splicelkli, splicelkl

fenf 2200x740, h80x6320, h80x6320d, k16x240b, h50x2450

pigeon pigeon-10, pigeon-08, pigeon-13, pigeon-20, pigeon-16

lectsched lectsched-1, lectsched-4-obj, lectsched-5-obj, lectsched-3, lectsched-2

adult adult-regularized, adult-max5Sfeatures

Xxmas xmas10, xmas10-2

shiftreg shiftreg1-4, shiftreg2-7, shiftreg5-1

beasley beasleyC2, beasleyC3, beasleyC1

seymour seymourl, seymour

cvs cvs16r89-60, cvs16r128-89, cvs08r139-94, cvs16r106-72, cvs16r70-62

nseq n2seq36f, n3seq24, n2seq36q, n3div36

k1mushroom k1mushroomi, klmushroom

mc mc7, me8, mcll

traininstance traininstance?2, traininstance6

sct sct2, sct31, sct32, sct5, sctl

tpl-tub tpl-tub-ws1617, tpl-tub-ss16

mas mas76, mas74

gsvm gsvm?2rl9, gsvm?2rl3, gsvm?2rl5, gsvm2rl12, gsvm?2rl11

physiciansched physiciansched5-3, physiciansched6-1, physiciansched3-4,
physiciansched3-3, physiciansched6-2

bienst bienst1, bienst2

drayage drayage-100-12, drayage-25-23, drayage-25-27, drayage-25-32,
drayage-100-23

milo milo-v12-6-r1-58-1, milo-v12-6-r1-75-1, milo-v13-4-3d-3-0,
milo-v12-6-r2-40-1, milo-v13-4-3d-4-0

leo leo2, leol

Continued on next page
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MILP Class Instances

set3 set3-16, set3-09, set3-10, set3-15, set3-20

radiation radiationm18-12-05, radiationm40-10-02

chromaticindex chromaticindex128-5, chromaticindex256-8, chromaticindex512-7,
chromaticindex32-8, chromaticindex1024-7

air air03, air05, airO4

graph graph20-80-1rand, graph40-20-1rand, graph20-20-1rand,
graph40-40-1rand, graph40-80-1rand

n37 n370b, n3700, n3707, n3709, n3705

307045 30.70-45_095_98, 30_-70-45_05-100, 30_-70_45_095_100

bley bley_xs2, bley_xI1, bley_xs1, bley_xsInoM

bmocbd bmocbd2, bmocbd3, bmocbd

piperout piperout-03, piperout-08, piperout-27, piperout-d20, piperout-d27

hgms hgms62, hgms-det, hgms30

mspsp mspsphard03i, mspsphardO1i
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Instance Index

Figure 15: Similarity Matrix of embedding metric on 361 instances (99 classes) from MIPLIB.

We computed the pairwise similarity among the 361 instances using the embedding metric. The
instance indices follow the same order as presented in Table[T0] The results are visualized in Figure
[I3] In the figure, red indicates higher similarity while blue indicates lower similarity. Since the
indices of instances from the same problem class are placed consecutively, we observe that many
red-colored squares appear along the diagonal of the similarity matrix. This suggests that different
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instances from the same class—often with significantly varying sizes—can still yield high similarity
scores under the embedding metric. Moreover, there are also numerous red squares off the diagonal
(though generally with lower similarity than those on the diagonal), indicating that the embedding
metric is capable of discovering related classes within MIPLIB.

The experimental results demonstrate that the embedding metric effectively distinguishes unseen
instances from MIPLIB, providing strong evidence of its robustness.

D.2 MORE RESULTS ON MIPLIB

We further evaluate the performance of MILP-Retrieval on the exact same dataset as listed in Table
10l We first visualize the distribution of number of variables/constraints of the instances in Figure
16 showing that compared to the Evolve/Train visualized in Figure [T1] the filtered MIPLIB has a
greater diversity.

0.5
0.41

0.3

Density

0.2

0.14

0.0+
10% 10° 10% 108
Number of Variables (log scale)

107 10°

10!

102 10°  10* 105  10°
Number of Constraints (log scale)

107

10!

102

(a) Distribution of Number of Variables. (b) Distribution of Number of Constraints.

Figure 16: Visualization of All Instances in filtered MIPLIB.

We then evaluate MILP-Retrieval on the same dataset, results are presented in Table @ For each
problem class, we report the similarity between the target instances and the generated instances,
using both embedding metric and stat metric. The results are presented in Table 11. It is worth
highlighting that across all MILP classes, the average embedding metric is 0.701, while the average
stat metric is 0.236. These results indicate that in most cases, MILP-Retrieval is able to generate
instances with relatively high embedding metric to the corresponding target instances.

Embedding Metric
Stat Metric

. . .
.
° .
.
.
. o MILP-Retrieval . .
o © GPT-4o o MILP-Retrieval

o Finetuned LLaMA 3-8b 01| . Gprao
T T T T T  Finetuned LLaMA 3-8b

0 10 20 30 40 - - | | |
MILP Class Index 0 10 30 40

—0.2
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MILP Class Index

Figure 17: Comparison on embedding met-

ric Figure 18: Comparison on stat metric.

Table 12: Feasible Rate of Generated Formulation Code.

Method 1-shot | 4-shots | 10-shots
GPT-40 2/50 6/50 17/50
Finetuned LLaMA 3-8b | 14/50 | 26/50 42/50
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Table 11: Feasible Rate of Generated Formulation Code.

MILP Class embedding metric stat metric MILP Class embedding metric stat metric
prod 0.81 +0.039 0.122 £ 0.02 | rococo 0.854 + 0.055 0.17 +0.089
iis 0.829 £ 0.046 0.234 £0.003 | sing 0.911 +0.042 0.23 £0.05
shipschedule 0.876 £ 0.035 0.113 £0.027 | blp 0.862 + 0.078 0.096 + 0.005
vpp 0.418 £0.513 0.312+£0.019 | diameterc 0.81 +0.092 0.1 £0.015
tanglegram 0.817 +0.071 0.115 +0.027 | pr-product 0.711 £ 0.404 0.271 £ 0.072
mine 0.679 + 0.157 0.269 + 0.034 | momentum 0.426 £0.312 0.246 + 0.054
opm?2 0.861 + 0.053 0.296 + 0.043 | acc-tight 0.914 + 0.036 0.497 £ 0.014
map 0.93+0.03 0.111 +0.003 | sp9 0.481 + 0.341 0.324 + 0.035
ab 0.668 + 0.094 0.099 + 0.001 | bppc 0.667 + 0.169 0.225 £ 0.024
gmu 0.92 +0.025 0.289 + 0.034 | dws 0.762 + 0.054 0.106 + 0.007
decomp 0.593 + 0.246 046 +0.103 | eil 0.97 £0.019 0.212 +£0.022
gasprod 0.523 +£0.26 0.171 £0.04 | ran 0.715 £ 0.236 0.236 + 0.069
evalaprime 0.772 £ 0.17 0.324 £ 0.023 | assign 0.67 +0.128 0.12 + 0.009
ofi 0.814 £ 0.045 0.142 £ 0.002 | thnw-schedule 0.751 + 0.081 0.277 £ 0.052
cmflsp 0.931 +0.021 0.311 £ 0.031 | csched 0.51 +0.563 0.247 £ 0.026
network _design 0.304 + 0.358 0.274 £ 0.079 | ger50 0.376 + 0.346 0.235 £ 0.038
fastxgemm 0.896 + 0.066 0.064 £ 0.021 | triptim 0.714 £ 0.326 0.183 £ 0.067
gen-ip 0.249 £0.342 0.167 £ 0.065 | snp 0.799 £ 0.096 0.322 + 0.008
satellites 0.565 + 0.259 0.12+0.079 | rmatr 0.809 + 0.101 0.252 £ 0.038
dano 0.771 £ 0.099 0.324 £ 0.056 | cvrp 0.86 +0.093 0.429 £ 0.07
f2gap 0.467 £0.11 0.118 £0.056 | sorrell 0.909 + 0.037 0.301 £ 0.07
uccase 0.092 +0.383 0.391 £0.056 | nul20 0.875 £0.033 0.153 £0.018
nursesched 0.883 £ 0.085 0.231 £0.076 | berlin 0.388 £0.61 0.48 £0.146
nxy-z 0.746 £ 0.046 0.226 £0.04 | tbfp 0.414 £0.541 0.247 £ 0.207
nh97 0.212 £0.474 0.08 £0.039 | qnet 0.845 +0.083 0.285 = 0.002
markshare 0.669 + 0.288 0.218 £0.094 | timtab 0.66 +0.215 0.312 +0.047
swath 0.881 +0.027 0.109 £0.002 | app 0.307 £ 0.489 0.23 £ 0.064
core 0.818 £0.076 0.122 £ 0.005 | allcolor 0.82 £0.075 0.168 = 0.019
reblock 0.81 +0.077 0.326 £0.036 | pizza 0.914 £ 0.037 0.298 +£0.014
roi 0.438 £ 0.329 0.115+0.04 | graphdraw 0.544 £ 0.246 0.235 £ 0.046
genus 0.943 +0.027 0.34£0.029 | ex 0.098 +£0.513 0.305 £0.158
nexp 0.344 £ 0.462 0.382£0.063 | aflow 0.874 £ 0.044 0.322 +0.022
splice 0.89 £ 0.077 0.195£0.051 | fenf 0.361 +0.482 0.291 £0.123
pigeon 0.764 £ 0.143 0.202 £ 0.036 | lectsched 0.601 = 0.104 0.306 = 0.007
adult 0.923 +£0.013 0.177 £0.024 | xmas 0.734 £ 0.245 0.159 £ 0.005
shiftreg 0.728 £ 0.083 0.16 £ 0.006 | beasley 0.985 £ 0.005 0.436 + 0.041
seymour 0.385 £ 0.475 0.106 £ 0.001 | cvs 0.814 £ 0.078 0.430 £ 0.121
nseq 0.361 £0.315 0.142 £ 0.023 | klmushroom 0.767 £ 0.195 0.246 = 0.086
mc 0.97£0.015 0.362 £ 0.009 | traininstance 0.86 +0.021 0.269 + 0.023
sct 0.491 £0.192 0.216 £0.034 | tpl-tub 0.778 £ 0.053 0.267 = 0.002
mas 0.649 £ 0.053 0.174 £0.015 | gsvm 0.65+0.172 0.098 £ 0.032
physiciansched 0.723 £ 0.408 0.271 £ 0.046 | bienst 0.945 £0.018 0.196 £7.377
drayage 0.957 £0.014 0.293 £0.035 | milo 0.917 £0.043 0.271 £0.014
leo 0.762 £ 0.022 0.131 £0.006 | set3 0.802 £ 0.05 0.432 +0.014
radiation 0.579 £ 0.069 0.282£0.03 | chromaticindex 0.662 + 0.09 0.148 + 0.025
air 0.866 + 0.066 0.163 £ 0.067 | graph 0.919 £ 0.065 0.239 £ 0.157
n37 0.761 £ 0.036 0.477 £0.002 | 307045 0.94 +0.044 0.295 £ 0.106
bley 0.481 +0.398 0.134 +£0.074 | bmocbd 0.882 +0.108 0.405 £ 0.012
piperout 0.68 £0.129 0.221 £0.104 | hgms 0.057 £ 0.465 0.066 + 0.002
mspsp 0.908 + 0.015 0.373 £ 0.012
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D.3 MORE RESULTS ON Evolve/Test DATASET

We provide the experimental results of MILP-Retrieval and two LLM-based baselines(GPT-4o,
Finetuned LLaMA 3-8b) on the full Evolve/Test dataset, which includes 50 MILP classes. The
LLM-based baselines are evaluated by directly inputting the textual description of the target in-
stance. The LLM-based baselines are tested under a 10-shot setting, where each experiment is
repeated 10 times, and the best result is reported. In the figure, missing entries for the LLM-based
baselines indicate that the method failed to generate a feasible formulation code for those instances.

This experiment serves as a supplement to the Evolve/Test results presented in Tables [I] and [2]
with the results shown in Figure [[7)and [I8] Additionally, we report the proportion of successful
formulation code generations by the LLM-based baselines across different numbers of trials, as
presented in Table[I2] These results demonstrate that MILP-Retrieval maintains strong performance
even on larger-scale datasets, highlighting its robustness.

D.4 DETAILS AND ADDITIONAL RESULTS ON ENHANCING LEARNING-BASED SOLVER

D.4.1 INTRODUCTION OF UNDERLYING LEARNING-BASED SOLVER

Neural Diving (Nair et al., [2020) is a machine learning approach for solving MILP problems that
focuses on generating high-quality joint variable assignments. It trains a GNN to produce multiple
partial assignments for the variables within a MILP instance. These partial assignments effectively
define smaller, more manageable sub-MILPs. These sub-MILPs, with their reduced complexity
due to many variables being fixed, are then solved using a standard MILP solver, such as SCIP, to
complete the assignments and construct high-quality solutions.

Learn-to-Branch (Gasse et al.,[2019) is an imitation-learning approach to improve variable selec-
tion in branch-and-bound for MILPs. It represents each MILP as a bipartite graph and encodes solver
states with rich node and edge features. A lightweight graph convolutional neural network performs
message passing between variables and constraints, producing scores used to choose branching vari-
ables. The model is trained via behavioral cloning to imitate strong branching decisions using a
cross-entropy loss. This GCNN architecture reduces feature engineering, is efficient at inference
time, and generalizes to larger problem instances while outperforming existing learning-based and
hand-crafted branching rules.

Predict-and-Search (Han et al.|[2023)) proposes a GNN-guided framework for solving MILPs more
efficiently. First, each MILP instance is encoded as a bipartite graph, and a graph neural network
is trained via supervised distribution learning to predict marginal probabilities for all binary vari-
ables, indicating how likely each variable is to take value 1 in high-quality solutions. Instead of
fixing variables directly, the method constructs a trust region neighborhood around a partial solution
derived from these predictions. A MILP solver then searches within this restricted region to find
a high-quality feasible solution. This approach improves solution quality over SCIP, Gurobi, and
fixing-based neural methods.

We used a third-party implementation of these frameworks provided by https://github.com/
thuiar/MILPBench, which network structure is exactly the same as described.

D.4.2 ADDITIONAL RESULTS ON ENHANCING LEARNING-BASED SOLVER

To simulate a data-scarce setting, we randomly generate 5 instances per problem class to serve as
the training set, and 15 instances as the test set. These 5 instances also act as the target instances for
MILP-Retrieval, as well as the training data for other learning-based baseline methods.

For Neural Diving, we firstly conduct an ablation study on the number of instances generated by
each method, with the results shown in Table[T3] [T4} [[5]and [T6] We mark ‘-’ for the cases where the
original method cannot generate a feasible instance, and we mark ‘infeasible’ for the cases where
Neural Diving cannot find a feasible solution (that is, the predicted partial solution has violated
the constraints). These results demonstrate that MILP-Retrieval can effectively enhance the perfor-
mance of Neural Diving and, and in most cases it outperforms the baseline methods.
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Table 13: Neural Diving Experimental results on FCNF problem with respect to the number of
problems generated by each method. We use each method to generate different numbers (10, 20, 40,
80) of instances and add them to the training set.

FCNF Raw MILP-Retrieval ACM-MILP GPT-40 Finetuned LLaMA 3-8b
10 145677 24439 1888.65 £ 26646 - 1299.69 £ 205.35
20 126671 + 19074 1767.03 + 24533 - 1160.32 + 168.10
g0 | 160477£31L27 1115144 18768 152008 £200.00 - 1228.64 + 399.68
80 1612.60 £ 249.79 178144 +253.04 - 1096.72 + 182.26

Table 14: Neural Diving Experimental results on TSP problem with respect to the number of prob-
lems generated by each method. We use each method to generate different numbers (10, 20, 40, 80)
of instances and add them to the training set.

FCNF Raw MILP-Retrieval ACM-MILP GPT-40 Finetuned LLaMA 3-8b
10 89153 £ 83.79 - 890,79 £ 82.84 89540 £ 82.55
20 891.53 + 83.79 - infeasible infeasible
40 | 2BIEBAS 291747 48386 ; 891.53 + 83.79 924.40 + 86.83
80 935.13  94.76 ] infeasible 991.2 + 92.46

Table 15: Neural Diving Experimental results on GA problem with respect to the number of prob-
lems generated by each method. We use each method to generate different numbers (10, 20, 40, 80)
of instances and add them to the training set.

GA Raw MILP-Retrieval ACM-MILP GPT-40 Finetuned LLaMA 3-8b
10 49989.60 £ 4.98  infeasible - ~49999.03 £ 0.26

20 -49999.93 + 0.26 infeasible - infeasible

40 | 9768335377 49991251492  infeasible ] 4929300 + 15.23
80 4999753+ 141 infeasible ] 149129.60 + 13.40

Table 16: Neural Diving Experimental results on VRP problem with respect to the number of prob-
lems generated by each method. We use each method to generate different numbers (10, 20, 40, 80)
of instances and add them to the training set.

VRP Raw MILP-Retrieval ACM-MILP GPT-40 Finetuned LLaMA 3-8b
10 infeasible - infeasible -
20 infeasible - infeasible -
40 911.20 £ 91.02 77491 £ 52.64 - 827.65 +40.98 -
80 773.08 +44.13 - infeasible -

For Predict-and-Search, when collecting training data, we set a maximum solving time of 3600
seconds for each problem and gather 500 solution trajectories for training. The data is split into
training and validation sets with a 4:1 ratio, and Gurobi 12.0 is used as the solver. In Table we
report the average solving time on the test set as well as the optimality gap (in percentage) between
the obtained solutions and the ground-truth optimal solutions.

Table 17: The result of Predict-and-Search framework. We reported the average solution time on the
test set, and the values in parentheses are the gaps between the obtained solutions and the optimal
solution to the problem.

Raw MILP-Retrieval ACM-MILP GPT-40 Finetuned LLaMA 3-8b
FCNF | 150.40 (0.0689) 147.32 (0.0689)  150.45 (0.0689) - 148.21 (0.0689)
TSP 0.783 (0) 0.767 (0) - 0.755 (0) 0.769 (0)
GA 36.46 (0) 35.52 (0) 36.30 (0) - 36.51 (0)
VRP | 222.67 (0.00974) 215.35 (0.00974) - 221.60 (0.00974) -
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For Learn-to-Branch, we use the same training/testing data split and also limit data collection for
each problem to 3600 seconds. Evaluation is conducted with SCIP 8.0.3, which is compatible with
Ecole 0.8.1. Table[I8]reports the results for Learn-to-Branch.

Table 18: The result of Learn-to-Branch framework. We reported the average solution time on the
test set.

Raw MILP-Retrieval ACM-MILP GPT-40 Finetuned LLaMA 3-8b
FCNF | 240.33 235.38 236.24 - 244.13
TSP 15.87 15.22 - 15.05 15.54
GA 36.65 36.38 36.55 - 36.55
VRP | 353.49 355.57 - 351.20 -

Overall, across both tasks, we observe that in most cases the problems generated by MILP-Retrieval
strengthen solver performance under data-scarce settings and outperform existing baselines.

E DISCUSSIONS

In this section, we present a more in-depth discussion of our work in a Q&A format.

Q1: How can we ensure that MILP-Retrieval consistently retrieves sufficiently similar instances for
any given MILP problem?

Our method does not guarantee this for all MILP instances. However, it is important to note that
the three components of our approach—the retrieve-and-generate paradigm, the formulation code
library, and the MILP embedding model—are decoupled. This design allows future advancements
in either the construction of more diverse MILP libraries or the development of improved MILP
embedding models to be directly integrated into our framework. In this work, we employ the existing
MILP-Evolve method to generate a diverse MILP library and provide extensive empirical evidence
demonstrating the viability of our retrieve-and-generate paradigm.

Q2: What are the broader connections between this work and the field of machine learning?

Reverse image search has been a significant research topic in computer vision and machine learning
in recent years, with applications such as finding similar images, identifying image sources, and re-
trieving relevant information about images. Analogously, our proposed framework, MILP-Retrieval,
can be seen as enabling reverse MILP search—a powerful retrieval tool tailored to the domain of
MILP problems, which encompass the majority of combinatorial optimization problems. We also
demonstrate the effectiveness of this tool in downstream tasks that aim to enhance learning-based
MILP solvers.

Q3: Is there a risk of bias in the MILP embedding model?

Yes, since all embedding models are trained on finite datasets, they inevitably carry some bias and
cannot perfectly capture the distribution of real-world data. To mitigate this issue, we utilize the
state-of-the-art method for generating MILP libraries to construct a sufficiently large and diverse
dataset, helping to reduce the impact of bias on the embedding model.

Q4: Why does MILP-Retrieval perform poorly under the stat metric, and why does ACM-MILP
perform poorly under the embedding metric?

The MILP embedding model implemented in our work is aligned with the semantic structure of the
problem, rather than its size. As shown in Figure[d} the statistical metric is sensitive to size differ-
ences among instances within the same problem category, whereas the embedding metric empha-
sizes structural and semantic similarities. MILP-Retrieval aims to retrieve instances that are seman-
tically similar to the target instance, which does not necessarily ensure similarity in size—resulting
in lower scores on the stat metric. In contrast, ACM-MILP reconstructs parts of the original problem
while preserving its size, but this can alter the semantic content, leading to poorer performance on
the embedding metric.
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QS: Why does MILP-Retrieval underperform compared to LLM-based baselines in some experi-
ments of enhancing learning-based solver?

In our experiments, the LLM-based baselines (GPT-40, Finetuned LLaMA 3-8b) generate formula-
tion code based on textual descriptions of the problem. They are not capable of directly generating
formulation code from target instances, and therefore can only be evaluated on synthetic datasets like
Evolve/Test, which include textual descriptions, but not on real-world benchmarks such as MIPLIB.
As such, these experimental results are not fully comparable. We opted to implement the LLM-
based baselines using textual descriptions because, to the best of our knowledge, there are currently
no available Graph-Language Models (GLMs) capable of jointly processing graph-structured data
and natural language inputs.

Q6: Why does MILP-Retrieval underperform compared to LLM-based baselines in some experi-
ments of enhancing learning-based solver?

In our experiments, the LLM-based baselines (GPT-40, Finetuned LLaMA 3-8b) generate formula-
tion code based on textual descriptions of the problem. They are not capable of directly generating
formulation code from target instances, and therefore can only be evaluated on synthetic datasets like
Evolve/Test, which include textual descriptions, but not on real-world benchmarks such as MIPLIB.
As such, these experimental results are not fully comparable. We opted to implement the LLM-
based baselines using textual descriptions because, to the best of our knowledge, there are currently
no available Graph-Language Models (GLMs) capable of jointly processing graph-structured data
and natural language inputs.

35



	Related Works
	Implementation Details of MILP-Retrieval
	Details of Bipartite Graph Features
	Details of MILP Libraries Evolve/Train and Evolve/Test
	Samples of Different Forms of MILP Data
	Details of MILP Embedding Model
	Derivation of Loss Function
	Prompt details of NV-Embed-V2
	Training Details

	Details of Formulation Code Tuning

	More Details on Experimental Setup
	Details of Baselines
	`GPT-4o' Baseline
	`Finetuned LLaMA 3-8b' Baseline
	`Bowly' Baseline
	`ACM-MILP' Baseline

	Details of stat metric
	Details of Dataset

	Extensive Experiment Results
	More Results on embedding metric
	More Results on MIPLIB
	More Results on Evolve/Test Dataset
	Details and Additional Results on Enhancing Learning-based Solver
	Introduction of Underlying Learning-based Solver
	Additional Results on Enhancing Learning-based Solver


	Discussions

