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ABSTRACT

Designing a deep neural network (DNN) for efficient operation in low-resource
environments necessitates strategic application of compression techniques. Filter
pruning and low-rank decomposition stand out as two prominent methods em-
ployed for DNN compression. While these techniques possess complementary
properties, their integration has been only partially explored, resulting in limited
reported gains thus far. In this study, we present a novel fully joint learning al-
gorithm named LeSS, aiming to concurrently determine filters for filter pruning
and ranks for low-rank decomposition. Unlike previous methods, LeSS simulta-
neously determines both filters and ranks, eliminating the need for iterative or
heuristic processes. Notably, LeSS adheres strictly to the specified resource bud-
get constraint, ensuring practical applicability in resource-constrained scenarios.
LeSS outperforms state-of-the-art methods on a number of benchmarks demon-
strating its effectiveness.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved state-of-the-art performance in various fields, such as
image classification, object detection, and video understanding. However, millions of parameters and
high computational costs make their deployment on low-resource settings such as edge and mobile
devices challenging. To overcome this problem, DNN compression has been extensively studied in
recent years. Among various compression techniques, filter pruning and low-rank decomposition
are two representative approaches, both of which do not require hardware modification. They aim to
reduce a heavy network to a lightweight form with two different structural viewpoints.

Consider a weight matrix with n filters W = {w1, · · · ,wn} ∈ Rm×n. Filter pruning removes
uninformative column vectors (i.e., filters) from W at low compression rates but discards valuable
information as rates increase. In contrast, low-rank compression reduces the column space dimen-
sion of W (i.e., rank), resulting in W with reduced rank. Given the distinct structural perspectives of
the two approaches, there is potential to combine them effectively, offering a promising compression
solution.

Recent studies (Ruan et al., 2020; Guo et al., 2019; Li et al., 2020) have rigorously examined the
simultaneous optimization of filter pruning and low-rank compression, employing common criteria
to unveil the most efficient lightweight structure for DNNs. These methodologies incorporate for-
malized regularized training with l1 regularization (Ruan et al., 2020), strategically applied to both
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the column and row vectors of the weight matrix W. Despite these formalizations, the pivotal chal-
lenge persists in precisely determining effective filters and optimal ranks for the ultimate compressed
model, predominantly due to the reliance on heuristic search algorithms.

To address these challenges, we propose a learning method called Learning to Select a Structured
architecture (LeSS) that jointly learns a mask and a threshold to select informative filters and an
optimal rank within a desired resource budget constraint. While we adopt binary mask learning to
select informative filters in the filter pruning field (He et al., 2018a; Huang & Wang, 2018; Kang
& Han, 2020; Luo & Wu, 2020; Wang et al., 2020), we devise threshold learning to select optimal
ranks. To the best of our knowledge, we are the first to develop a learning method for selecting
optimal ranks. Through learned binary masks and thresholds, we can select informative filters and
optimal ranks without additional heuristic search algorithms. Our work significantly contributes to
devising an end-to-end learning process without heuristic search algorithms, resulting in enhanced
model efficiency.

2 RELATED WORKS

Previous research (Dubey et al., 2018; Chen et al., 2020) has proposed separate compression stages
to integrate multiple compression techniques. These stages sequentially adopt one compression tech-
nique in each step and ignore the interrelations of the different compression methods. For instance,
in Dubey et al. (2018), filter pruning is conducted first to reduce the weights, and the weights are
then decomposed using a corset-based decomposition technique. In addition, several compression-
aware training approaches are proposed using regularization to make a network compression-
friendly (Chen et al., 2019; Ruan et al., 2020; Guo et al., 2019; Li et al., 2020). For example, in
Li et al. (2020), they first introduce a sparsity-inducing matrix at each weight and then impose group
sparsity constraints during training. However, determining a good balance between compression rate
and accuracy is challenging under the desired compression rate with these compression-aware meth-
ods. Recently, Li et al. (2022) proposes a collaborative compression method to employ the global
compression rate optimization method to obtain the compression rate of each layer and adopt a
multi-step heuristic removal strategy. Our hybrid compression method does not need heuristics on
selecting filters and ranks and does not require compression-aware regularized training.

3 BACKGROUND

3.1 TENSOR MATRICIZATION

In our work, matricization is used to transform the tensor of convolutional kernels into a matrix to
conduct singular value decomposition (SVD) operation. Matricization is the process of reshaping
the elements of an D-dimensional tensor X ∈ RI1×···×ID into a matrix (Kolda & Bader, 2009;
Kolda, 2006). Let the ordered sets R = {r1, ..., rL} and C = {c1, ..., cM} be a partitioning of the
modes D = {1, ..., D}. The matricization function ψ of an D-dimensional tensor X ∈ RI1×···×ID

is defined as:
ψ : X 7−−−→ X(R×C:ID) ∈ RJ×K ,

where J =
∏
n∈R

In and K =
∏
n∈C

In.
(1)

For example, the weight tensor of a convolutional layer is represented as a 4-D tensor (W ∈
RCout×Cin×k×k) where it is composed of kernels, and it can be unfolded into a matrix as six
different forms. The two most common forms used in low-rank decomposition are as follows: 1⃝
W ∈ RCout×(Cinkk), 2⃝W ∈ R(Coutk)×(Cink).

3.2 CNN DECOMPOSITION SCHEME

To decompose a convolutional layer with Cin, Cout (input/output channels) and k (kernel size), one
of the following low-rank structures is used depending on the matricization form.
Scheme 1 When we use the first reshaping form 1⃝ introduced in Section 3.1, the convolutional
weights can be considered as a linear layer with the shape of Cout × Cink

2. Then, the rank-r ap-
proximation presents two linear mappings with weight shapes Cout× r and r×Cink

2. These linear
mappings can be deployed as a sequence of two convolutional layers: W1 ∈ Rr×Cin×k×k, and
W2 ∈ RCout×r×1×1 (Wen et al., 2017; Xu et al., 2020; Li & Shi, 2018).
Scheme 2 When we use the second reshaping form 2⃝ introduced in Section 3.1, the convolutional
weights can be considered as a linear layer of Coutk × Cink. For this scheme, an approximation
of rank r has two linear mappings with weight shapes Coutk × r and r × Cink. These can be
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implemented as a sequence of two convolutional layers as follows: W1 ∈ Rr×Cin×k×1, and W2 ∈
RCout×r×1×k (Tai et al., 2015; Jaderberg et al., 2014).
When r of a layer is large and its matrix decomposition results in an increase of FLOPs, matrix
decomposition is not applied to the layer. This has been a common convention in low-rank re-
search (Idelbayev & Carreira-Perpinán, 2020; Phan et al., 2020; Xu et al., 2020). We use Scheme 1
throughout all experiments in our study.

4 LEARNING TO SELECT A STRUCTURED ARCHITECTURE

In this section, we propose a new learning method called LeSS, which learns binary masks and
thresholds to select informative filters and an optimal rank within a desired resource budget con-
straint. The general idea of LeSS is to transform the problem of solving over discrete variables c
and r into minimizing a differentiable surrogate function hLeSS over continuous variables zc and zr.
The discrete solution can be approximated using differentiable functions gc and gr, and this allows
us to use gradient-based optimization that is not available in discrete problems. More specifically,
we re-define the problem as follows:

min
zc,zr

1

N

N∑
i=1

L(f(xi;hLeSS(W, zc, zr))), yi)

+λ ∥B(gc(zc), gr(zr))− Bd∥2
(2)

where gc(zc) is the number of filters for each channel, gr(zr) is the rank for each layer, and λ
is a hyper-parameter used to regularize the budget constraint. For each layer, LeSS consists of the
surrogate function hLeSS which is composed of two modules, sm and st.

Module sm (mask learning for filter selection): To construct a function hLeSS, we describe a
module sm used for filter selection. Let zc = {M1, · · · ,ML | Ml ∈ RCl

out×(Cl
inkk)} be a set of

diagonal matrices (i.e., mask matrix). To establish sm, we first define a scheduled sigmoid function
to generate the approximate binary masks as follows:

ϕs(x) =
1

1 + exp(−1 ∗ µi ∗ (x− 0.5))
(3)

where µi = min(α, µi−1+β).
Note that µi is the scheduling factor affecting the steepness of sigmoid in iteration i, and it is updated
every iteration and does not exceed α. During the beginning phases of training, µi is kept at a
very low value; it is then increased as the optimization process progresses. When µi grows large
enough, the values of approximate binary masks will become almost 0 or 1. That is, it is completely
determined which filter should be removed. For µi, its α is simply set as a large constant of 50
because LeSS’s performance is not sensitive to the choice, and its β is explored using a light grid
search. For each weight Wl of the l-th layer, we define a function sm by Eq. (1) and Eq. (3) as
follows:

sm(Wl,Ml) = ψ−1(ϕs(Ml) · ψ(Wl)) (4)
To approximate the number of filters corresponding to the continuous variable zc, we define the
set-valued function gc as follows:

gc(zc) = {1T · diag(ϕs(Ml))}Ll=1 (5)

Since all functions constituting Eq. (4) and Eq. (5) are differentiable, we can easily confirm that sm
and gc are differentiable.

Module st (threshold learning for rank selection): To proceed, we explain the st module used
for rank selection. Let zr = {γ1, · · · , γL | γl ∈ R} be a threshold set. To construct st, we introduce
a Singular Value Thresholding (SVT) function (Cai et al., 2010). For a matrix M ∈ Rm×n and
threshold γ ∈ R, SVT is defined as follows:

SVT(M,γ) = U · ReLU(Σ− γ) · V T (6)

where U is an m × m real unitary matrix, Σ is an m × n rectangular diagonal matrix with non-
negative real numbers on the diagonal, V is an n× n real unitary matrix, and ReLU(·) is a rectified
linear unit activation function. For each weight Wl of the l-th layer, we define a function st by (1)
and (6) as follows:

st(Wl, γl) = ψ−1(SVT(ψ(Wl), γl)) (7)
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(a) ResNet56 on CIFAR10 (b) ResNet50 on ImageNet

Figure 1: Comparison of our method with SOTA pruning, low-rank decomposition, and hybrid com-
pression methods for (a) ResNet56 on CIFAR10 and (b) ResNet50 on ImageNet.

To approximate the rank corresponding to zr, we also define the set-valued function gr as:

gr(zr) = {1T · (tanh(ReLU(Σl − γl) · τ))}Ll=1 (8)

where Σl is a diagonal matrix whose diagonal entries are singular values of the l-th layer weight
matrix Wl and τ is a scaling hyper-parameter used to control the steepness of tanh. Similar to sm
and gc, we can easily confirm that st and gr are differentiable.

Budget B(gc(zc), gr(zr)): FLOP is used for the resource budget in this paper and the formula of
budget calculation is as follows:

L∑
l=1

Al · kl · kl · gr(l)(zr) · (gc(zc)(l − 1) + gc(zc)(l))

Al · kl · kl · Cl
in · Cl

out

(9)

Al denotes the area of the l-th layer’s feature maps, and kl is the kernel size of the l-th layer. Cl
in

andCl
out denote l-th layer’s input- and output-channels of the original model, respectively. gr(zr)(l)

and gc(zc)(l) are the l-th layer’s selected rank and number of selected filters, respectively. Because
all elements in Eq. (9) are differentiable, the budget function B(gc(zc), gr(zr)) is differentiable. We
use FLOPs resource budget, but other resource budgets (e.g., number of parameters) also can be
used.
Finally, we define the surrogate function, hLeSS:

hLeSS(Wl,Ml, γl) = st(sm(Wl,Ml), γl) (10)

The two parameters zc and zr of LeSS are learned simultaneously in the training process. Therefore,
LeSS can efficiently employ two distinct compression techniques by simultaneously considering the
impact of reducing the number of filters and ranks on the model’s performance.

Select the informative filters and rank: After training is completed, we require exact binary
masks and ranks for each layer to directly compress the model. To acquire the informative filters
and optimal ranks, we can select Binary Mask Set ⌈zc⌉ = {⌈M1⌉, · · · , ⌈ML⌉} and Rank Set gr(zr)
without additional heuristic algorithms (e.g., Binary search). In the l-th layer weight, we prune the
filter whose exact binary mask is zero. Subsequently, we perform low-rank decomposition with the
exact rank on the pruned weight. Finally, as in previous studies (Alwani et al., 2022; Cai et al., 2021;
Idelbayev & Carreira-Perpinán, 2020), we fine-tune the compressed model to improve performance
further.

5 EXPERIMENTS

We provide graphical summaries for the two cases (ResNet56 on CIFAR10 and ResNet50 on Ima-
geNet) where a sufficiently large number of comparisons exist and provide table summaries where
fewer comparison points are available.

ResNet56 on CIFAR10 Figure 1a shows the comparison results for ResNet56 on CIFAR10. LeSS
outperforms the previous methods by a large margin across all FLOP reduction rates. In particular,
the 50% FLOP reduction rate is investigated by a bunch of previous methods, and LeSS achieves
the best performance under this constraint. Note that the compressed model produced by LeSS
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Dataset Model Compression
method Algorithm Baseline (%) Test acc.(%) ∆ Test acc.(%) GFLOPs

(Reduction ratio)
Params

(Compression ratio)

ImageNet

ResNet18

Low-rank
Stable (Phan et al., 2020) 69.76 68.62 - 1.14 1.00 (45 %) N/A
TRP (Xu et al., 2020) 69.10 65.51 - 3.59 0.73 (60 %) N/A
ALDS (Liebenwein et al., 2021) 69.62 69.24 - 0.38 0.64 (65 %) N/A

Pruning

SFP (He et al., 2018a) 70.28 67.10 - 3.18 1.06 (42 %) N/A
FPGM (He et al., 2019) 70.28 68.41 - 1.87 1.06 (42 %) 7.10 M (39 %)
PFP (Liebenwein et al., 2019) 69.74 65.65 - 4.09 1.04 (43 %) N/A
DMCP (Guo et al., 2020) N/A 69.00 N/A 1.04 (43 %) N/A
CHEX (Hou et al., 2022) N/A 69.60 N/A 1.03 (43 %) N/A
SCOP (Tang et al., 2020) 69.76 68.62 - 1.14 1.00 (45 %) N/A
FBS (Gao et al., 2018) 69.76 68.17 - 1.59 0.91 (50 %) N/A
CGNET (Hua et al., 2019) 69.76 68.30 - 1.46 0.89 (51 %) N/A
GNN (Yu et al., 2022) 69.76 68.66 -1.10 0.89 (51 %) N/A
ManiDP (Tang et al., 2021) 69.76 68.88 - 0.88 0.89 (51 %) N/A
PGMPF (Cai et al., 2022) 70.23 66.67 - 3.56 0.84 (54 %) N/A

Hybrid
LeSS 69.76 71.24 + 1.48 0.91 (50 %) 4.68 M (60 %)
LeSS 69.76 70.82 + 1.06 0.70 (62 %) 3.51 M (70 %)
LeSS 69.76 70.15 + 0.39 0.55 (70 %) 2.81 M (76 %)

MobileNetV2

Low-rank LC (Idelbayev & Carreira-Perpinán, 2020) 71.80 69.80 - 2.00 0.21 (30 %) N/A

Pruning

PFS (Wang et al., 2020) 71.80 70.90 - 0.90 0.21 (30 %) 2.60 M (26 %)
AMC (He et al., 2018b) 71.80 70.80 - 1.00 0.22 (27 %) 2.30 M (34 %)
MetaPruning (Liu et al., 2019) 72.00 71.20 - 0.80 0.22 (27 %) N/A
LeGR (Chin et al., 2020) 71.80 71.40 - 0.20 0.21 (30 %) N/A
NPPM (Gao et al., 2021) 72.02 72.04 + 0.02 0.21 (30 %) N/A
GNN (Yu et al., 2022) 71.87 70.04 - 1.83 0.17 (42 %) N/A

Hybrid
EDP (Ruan et al., 2020) N/A 71.00 N/A 0.22 (27 %) N/A
LeSS 71.80 72.16 + 0.20 0.19 (35 %) 2.24 M (36 %)
LeSS 71.80 71.63 - 0.17 0.14 (55 %) 1.54 M (56 %)

Table 1: Performance comparison for ResNet18 and MobileNetV2 on ImageNet.

consistently exhibits higher performance than that of the original (baseline) model across all FLOP
reduction rates. LeSS reduces the FLOPs by 40% compared with the baseline model yet improves
accuracy by 1.6%. This demonstrates that our compression method correctly eliminates redundant
dimensions and filters, resulting in a generalizable compressed model.

ResNet50 and ResNet18 on ImageNet The result of ResNet50 on ImageNet can be founded in
Figure 1b. The graphical summary confirms that LeSS shows superior performance than that of the
other SOTA methods in all FLOP reduction rates. For instance, when we compare the difference in
the FLOP rate between our method and the CC algorithm (Li et al., 2021) at the same performance
(75.59%), our method can accelerate the inference time by 14% more than the CC method (Li et al.,
2021) (0.53 vs. 0.68). In addition, even when ResNet50 is compressed by 50% FLOP reduction, our
method exhibits higher performance than the baseline performance. The result of ResNet18 on Ima-
geNet is summarized in Table 1. Because no experimental results of hybrid algorithms for ResNet18
on ImageNet are available, the performances of algorithms employing only a single compression
method are compared. When compared with recent SOTA methods, LeSS outperforms them in all
FLOP reduction rates, and even when a model is compressed up to 70%, the performance is higher
than the baseline performance. That is, LeSS removes redundant dimensions and filters effectively.

MobileNetV2 on ImageNet Performance comparison result for ImageNet on light-weight Mo-
bileNetV2 is summarized in Table 1. MobileNetV2 is a well-known computationally efficient model,
which makes it harder to compress. Nevertheless, our method surprisingly increases the model’s top-
1 accuracy up to 72% when the FLOP reduction rate is 35%. Furthermore, despite the fact that the
inference time is accelerated more than twice that of the original model, the performance reduction
is only 0.17 percentage points. From these results, it is concluded that our method can efficiently
reduce the size of a network while keeping performance as high as possible, even if the model size
is already small.

6 CONCLUSION

We introduce a novel fully joint learning algorithm, LeSS, designed to concurrently determine filters
for pruning and ranks for low-rank decomposition. Integrating differentiable mask learning for filter
pruning and differentiable threshold learning for low-rank decomposition, LeSS achieves joint op-
timization while adhering to specified resource constraints. Unlike previous methods, LeSS seam-
lessly determines both filters and ranks, eliminating the need for iterative or heuristic processes.
Notably, LeSS strictly adheres to the specified resource budget constraint, ensuring practical appli-
cability in resource-constrained scenarios. The superior performance of LeSS across various bench-
marks underscores its effectiveness, positioning it as a promising advancement in the realm of DNN
compression for low-resource environments.
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