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ABSTRACT

Process reward models (PRMs) have emerged as a promising approach to guide
LLMs by providing step-wise supervision, but traditional methods often rely on
heuristic search strategies like Monte Carlo Tree Search (MCTS), which introduce
bias and limit generalization. In this work, we propose a reinforcement learning
framework guided by a Preference-Based Process Reward Model (PPRM). We
first employ MCTS to estimate and select chosen and rejected rollouts, thereby
constructing a high-quality step-level dataset. Our PPRM is trained on Bradley-
Terry loss function, which mitigates the bias introduced by the heuristic search
strategies of MCTS by leveraging preference-based learning and offers a more
robust and theoretically grounded approach to reward modeling. To enable ef-
fective RL training with PPRM, we enhance Group Relative Policy Optimization
(GRPO) by introducing a robust advantage estimator that better captures the struc-
ture of preference-based process reward model. Experimental results on Process-
Bench and best-of-n strategy demonstrate that our approach achieves 2-3% im-
provement in intermediate step accuracy compared to existing methods for com-
plex reasoning processes, thereby improving the reasoning accuracy of the policy
model across several key reasoning benchmarks.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities in mathematical reason-
ing (Yang et al.l [2024)(Guo et al., 2025)(Grattafiori et al., |2024), solving complex problems by
decomposing them into logical steps (Yao et al,[2023). However, they still face critical challenges,
including calculation errors, flawed logical reasoning, and even the generation of fabricated or hal-
lucinated intermediate steps. These issues undermine the reliability of LLMs in precise domains like
mathematics, where accuracy and consistency are essential. Reinforcement learning (RL) has gar-
nered significant attention (Ouyang et al.,[2022)(Touvron et al.} 2023). However, challenges remain
in scaling these methods efficiently due to substantial computational requirements and the need for
careful reward design to prevent shortcut learning (Cao et al.,|2024)(Chan et al., 2024).

In the field of mathematical reasoning, reward models are typically categorized into two main types:
the outcome reward model (ORM) and the process reward model (PRM). Specifically, the ORM
cannot identify or rectify errors in intermediate steps, leading to potential suboptimal preformance
(Lightman et al., 2023) where correct answers are derived from incorrect reasoning. While the
Process Reward Model (PRM) offers a promising solution by providing step-wise reinforcement
learning feedback. Existing work has shown consistent results that PRMs outperform ORMs in
best-of-N sampling (Snell et al.,[2024) and RL (Setlur et al.,[2024)).

Limitations of PRM. As highlighted in studies such as DeepSeek R1 (Guo et al., 2025)), accu-
rately determining the correctness of intermediate steps remains a challenging task. PRMs often
struggle to provide reliable evaluations of intermediate results, ultimately affecting the accuracy and
generalization of the final outcome.

(i). Issues with Annotation. A major challenge in training PRMs lies in obtaining accurate step-
level annotations. Lightman et al. (Lightman et al., | 2023) demonstrated the effectiveness of using
human expert annotators to label intermediate reasoning steps, ensuring high-quality supervision
for PRM training. To address this, researchers have turned to automated annotation methods, with
the Monte Carlo (MC) estimation approach being one of the most widely adopted. This method,
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popularized by Wang et al. (Wang et al., 2024b) and Lu et al. (Lu et al.||2024), involves sampling
multiple reasoning trajectories to empirically estimate the correctness probability of each step.

(ii). Inadequacy of MCTS in Automated Annotation. Although efficient and scalable, MC-based
methods often rely on Monte Carlo Tree Search (MCTS), a heuristic-driven algorithm that intro-
duces significant bias (Guan et al., 2025). MCTS prioritizes certain reasoning paths based on its
exploration-exploitation strategy, which can lead to the reinforcement of suboptimal or unjustified
steps (Zhang et al., [2025), compromising the generalization ability of the trained PRM. It signif-
icantly relies on the performance of the completion model, which may generate correct answers
based on incorrect steps, or incorrect answers based on correct steps, introducing substantial noise
and inaccuracy verification into step-wise correctness estimation.

In this work, we leverage preference
learning to debias the Process Reward
Model, proposing the Process Reward
Preference-Based Model (PPRM). We the-
oretically demonstrate that PPRM en-
sures more stable and generalizable learn-
ing compared to MCTS-based rewards.
Additionally, applying RL to PPRM re-
quires modifications to Generalized Rein-
forcement Learning with Policy Optimiza-
tion (GRPO), as standard GRPO strug- Figure 1: Illustration of PPRM framework. We ap-
gles with the non-stationarity induced by ply MCTS to select chosen-rejected pairs accrording
preference-based rewards, as illustrated in 10 Q(8,7) to train PPRM and apply GRPO framework
Fig[T} Our enhanced algorithm enables ef- 10 PPRM with a preference advantage estimator.
ficient optimization, leading to more rob-ust reasoning in LLMs. The contribution of our work is
summarized as follows:

PPRM Workflow

[ RL Training Framework }
Preference .
Advantage || Policy Model
Estimator A !

Reference Model

* We introduce the preference based annotation into process reward modeling for reasoning
tasks, providing a theoretical analysis on the capability of the Bradley-Terry (BT) model
(Bradley & Terry} [1952) to mitigate bias in MC-value estimation by leveraging pairwise
comparisons of reasoning trajectories. This approach significantly reduces the risk of over-
fitting to heuristic search strategies.

* We construct a high-quality, expert-annotated dataset for training process-oriented reward
models, focusing on step-level correctness in mathematical derivations. Using this data, we
develop PPRM , a preference-based reward model that outperforms existing approaches in
identifying and scoring logical errors while reducing reliance on heuristic search strategies
like MCTS.

* We introduce a modified advantage estimator for GRPO, aligning with the BT models
pairwise comparison framework enabling stable and efficient policy optimization. By in-
corporating step-wise preference signals from PPRM, our estimator improves reasoning
accuracy across diverse mathematical problems, from elementary to olympiad-level tasks.

2 RELATED WORKS

Synthetic Data Generation. Recent advances in training LLMs for mathematical reasoning have
focused on generating high-quality process supervision data, with several key approaches emerg-
ing to address the trade-offs between annotation quality, scalability, and bias mitigation. Lightman
(Lightman et al.,|2023) pioneered expert-annotated step-level correctness labels to train PRMs, en-
suring high fidelity but at significant cost, while Wang (Wang et al., |2024b)) proposed scalable MC
sampling to approximate step-wise correctness probabilities, trading off some precision for broader
coverage. Luo (Luo et al.,|2024) refined MC approaches with binary tree search, dynamically prun-
ing incorrect reasoning paths during sampling to reduce noise. More recently, Zhang (Zhang et al.,
2025)) introduced a hybrid approach combining LLM-based judger models with MC estimation, us-
ing the former to filter or reweight sampled trajectories. These methods collectively highlight the
challenges in generating reliable process supervision data, which addressed by our work through
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the introduction of the BT model and robust advantage estimation, offering a more theoretically
grounded and scalable solution for mathematical reasoning tasks.

Preference Learning. To address the challenge of reward bias, previous research has explored
preference models for human alignment, particularly in cases where direct scoring is difficult. Pref-
erence learning allows for more flexible and interpretable reward modeling by comparing alternative
outputs rather than assigning absolute scores (Ouyang et al., 2022)(Bai et al.,[2022). This approach
has proven effective in reducing bias in human feedback systems, making it a promising direction
for improving reasoning in LLMs (Sun et al., 2025).

RL Algorithm in Mathematical Reasoning. Researchers have begun employing reinforcement
learning (RL) for mathematical reasoning and introduced several sophisticated algorithms to en-
hance the reasoning capabilities of LLMs (Ouyang et al.,|2022)(Snell et al., [2024). Proximal Policy
Optimization (PPO) (Schulman et al.| 2017)leverages clipped objective functions to ensure gradual
policy updates while optimizing for both final answer correctness and intermediate reasoning qual-
ity. Building upon PPO, Reinforcement Learning from Online Oracle (RLOO) (Ahmadian et al.,
2024) and Remax (Li et al., |2023)) significantly reduces error propagation in multi-step derivations.
Direct Preference Optimization (DPO) (Rafailov et al., 2023) and many of its variants (Azar et al.,
2024)(Ethayarajh et al.l | 2024)(Chen et al.| 2024) offer another innovative approach by directly op-
timizing policy outputs to align with human preferences without explicit reward modeling, sim-
plifying the RL pipeline while maintaining strong performance. More recently, Group Relative
Policy Optimization (GRPO) (Shao et al., 2024)) has emerged as a promising alternative, employ-
ing group-wise comparisons of reasoning trajectories to prioritize logically consistent solutions over
superficially correct but flawed answers.

3 PPRM WORKFLOW

In this section, we introduces our methodology for enhancing multi-step reasoning in large language
models through preference-based process reward model. We begin by employing Monte Carlo Tree
Search (MCTS) to generate annotated reasoning trajectories. We then develop a PPRM that learns
from relative comparisons between reasoning paths rather than absolute scoring, significantly reduc-
ing bias and improving generalization. We provide a theoretical comparison of two distinct anno-
tation paradigms, Hard Estimation and Preference Estimation to evaluate their accuracy in reward
modeling. The detailed proof can be found in Appendix [A]

3.1 PREFERENCE PAIR GENERATING WITH MONTE CARLO METHOD

Although Monte Carlo Tree Search (MCTS) is commonly used in automated annotation tasks, its
reliance on heuristic strategies and stochastic sampling can lead to inconsistent or suboptimal results.
This is particularly evident when dealing with tasks involving complex semantics or long-range
dependencies, where MCTS often fails to deliver satisfactory performance, thereby limiting both
the efficiency and quality of automated annotation.

Motivated by these challenges, we propose the preference annotation to construct high-quality
problem-solving data pairs for training the process reward model in a preference-based format.
Specifically, a “completer” policy is established that can take a question ¢ and a set of prefix so-
lutions comprising the first ¢ steps x1.;, ensuring the resulting data pairs are suitable for preference
learning. We construct a Monte Carlo tree to represent the decision space, where each node corre-
sponds to a state in the problem-solving process, and edges represent possible actions or steps. For
each problem, multiple completions are sampled and organized into this tree structure, allowing us
to evaluate and compare different reasoning trajectories.

To identify the most informative data pairs, we define a scoring mechanism based on the Q-value
of each rollout. The Q-value balances the quality of the solution, as estimated by the Monte Carlo
method, with its complexity, ensuring that the selected pairs are both high-quality and concise.
Specifically, the probability of selecting a chosen rollout 7cpesen and a reject rollout 7,¢ject is cal-
culated using the following formulas:

1-MC(s) | ﬂlen(r)

Qchosen(sa T) =« s Qreject (Sa ’/‘) = a]\lC(s) : ﬁlen(r). (D
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(a) Select data pairs. (b) Search the incorrect step.

Figure 2: Illustration of preference pair generating with Monte Carlo method. (a) The workflow con-
tains generating multiple completions for each problem, constructing an MC tree to evaluate these
completions and assessing the rollouts using MC estimation. (b) The selection formula Q(s, ) is
applied to identify the optimal choice-reject pairs, which are subsequently compiled into a structured
dataset.

Here, « is a hyperparameter that adjusts the weight of the Monte Carlo estimation, M C(s) repre-
sents the Monte Carlo estimation score for the state s, and 3 accounts for the weight of the length
of the rollout 7. The term o'~ () ensures that higher-quality rollouts (as indicated by a higher
MC(s)) are more likely to be chosen, while o ©(*) prioritizes lower-quality rollouts for rejection.
The term ('"(") penalizes overly complex solutions, favoring concise reasoning paths. Notably,
the trajectory sampling method for step-level data collection demands significantly higher computa-
tional resources (FLOPs) compared to training ORMs.

As shown in Figure(2)), the workflow begins by generating multiple completions for each problem,
followed by the construction of an MC tree to evaluate and organize these completions. The rollouts
are then assessed using the combined approach of MC estimation, LLM judger, and implicit Q
function. The selection formula Q(s, ) is applied to identify the optimal choice-reject pairs, which
are subsequently compiled into a structured dataset. This methodology ensures the creation of a
dataset that captures diverse and accurate problem-solving processes, maintaining a balance between
complexity and correctness for downstream tasks.

3.2 THE FORMULATION OF ANNOTATION

Hard MC Estimation. Most process-surpvised reward models (PRMs) are traditionally trained
under the next token prediction framework (Zhang et al.,|2024)), which aims to predict the likelihood
of the next token in a sequence. PRM (P x S — R™) assigns a score 7 to each reasoning step of s,
which is usually trained with cross enropy loss function:

K
Leg = Z Yp,s; 10875, + (1 — yp,s,) log(1 — 7s,). 2)

i=1

where K is the number of reasoning steps in s, 7', is the output of PRM with given s; and ys, is the
ground truth label of the i-th step of s. Unlike common data annotations, the hard MC-estimated
annotation y(p, s;, A) at the i-th step is actually a function of the ratio of correct rollouts to total
rollouts from the ¢-th step.

1, ¢ > A,
y(p, si) = 0, else.

Here ¢; = ¢(p, s;) denotes the ratio of correct rollouts to total rollouts from the i-th step and A
represents the threshold for distinguishing between positive and negative labels based on the MC
estimation.

However, the estimated ratio ¢; = ¢; + b(p, s;, A) introduces bias which is a random variable de-
pends on the annotator A. Therefore, the MC estimation needs to satisfy the following condition:
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(é(p, iy A) — N)(c(p, si) — A) > 0. In other words, the labels estimated via MCTS must preserve
the same ordering relationship as the threshold criterion.

We can map this ordering into a binary value through a increasing function hpaeq(c;) = I(c; > A).
The label for hy,,,q contains noise follows a Bernoulli distribution 1 ~ Bernoulli(ppara) where phard
is given by

Phara = p({b(p, 81, A) : (¢; = N> < (A —¢;) - b(p, 85, A)}) = 1 — &hara (Acy). 3)

where Ac; = ¢; — A represents the difference between ¢; and threshold, and the approximating true
scores Enard (Ac;) is a function of Ac;.

Thus the model actually trains on the noisy training dataset Dhara = {(pn, Sp,., An),n =1,--- ,N}
where the ordering label y,, has noise 7 defined by Eq.(3). The loss function in Eq.(2) often suffers
from high variance, particularly in generative models, where the quality of the generated outputs is
heavily dependent on the quality of the annotations used during training. This limitation can lead to
suboptimal performance, especially in tasks requiring precise and contextually accurate outputs.

Preference MC Estimation. We don’t require the reward model to predict probabilities of step-
level label accurately, but rather to provide a reliable signal for ranking a group of LLM outputs at
inference. An alternative approach is to employ the Bradley-Terry (BT) model, which is particularly
well-suited for learning process reward from pairwise comparisons. In this framework, we select
chosen-reject pairs (p, s1) and (p, s2) from the dataset D = {(py,, sp,.,¢n),n = 1,--- , N} gener-
ated from MATH dataset in Section[3.1] where both pairs share the same prompt p but differ in their
responses s.

Specifically, the loss function for the BT model is defined as follows:
Lyt = E [lh=10(FeT(P; $1) — PBT(P: 82)) + Ine1(1 — 0(PBT (D, 81) — PBT(D, 52)))] . (D)

Here, E denotes the expectation over the sampled pairs, h; = I(c(p, si) > c(p, s4)) is the ground
truth ordering, 7 represents the output of reward model with input (p, s) and o is the sigmoid
function. The loss function encourages the model to assign higher rewards to preferred responses
and lower rewards to rejected ones, thereby learning the underlying preference structure.

We can explain by treating preference pairs as ordered data, where the ground truth preference is
defined as h; = I(é(p,st, A) > ¢é(p,sh, A)) € {0,1}. However, the estimated ratio & = ¢; +

b(p, s;, A) introduces bias, leading to noisy labels h; = h; + 1, where the noise 7 occurs with the
probability pp,.ef given by:

ppref = p({Ab(pa Sil7 sga A) : Aci < _Ab(Z% sliv 537 A)}) = ]- - gpref(ACi) (5)

where Ab(p, si,s4, A) = b(p,si, A) — b(p, sh, A) represents the difference between the bias in
é(p, st, A)and é(p, sb, A), Ac; = c(p,si) — c(p, s4) represents the difference between the cor-
rectness level of (p, st) and (p, s), and &yrer(Ac?) is a strictly increasing function of Ac?. This
formulation captures the likelihood that the bias difference outweighs the true reward difference,
which is critical for understanding the noise structure in the preference data.

3.3 RETHINKING PREFERENCE REWARD MODEL TRAINED ON MC ANNOTATIONS

Thus to ensure high-quality training data for the reward model, it is crucial to filter preference pairs
with the largest ratio differences Ac; . Formally, we have

Assumption 1. The data pair (p, s}), (p, s4) selected using the MCTS method satisfies ¢(p, s§, A) >
Aand é(p, sh, A) < A
Assumption 2. The distribution of é;ref estimated in preference annotation is consistent with the

4

. . . 3 . . . . A _ A _ A1
distribution of ¢, in hard MC-estimated annotation, i.e. ¢; = Cj,.o¢ = Cy -

With those noisy annotations, we can consider the order consistency with true reward function:

Proposition 1. Suppose that the expected agreement between the estimated preference h and the
order model H = 1(7pT(p, s1) > FBT(p, S2)) achieves up to 1 — € error for some € and 0, i.e.,

Eps, s [H [iz - HH >1— 6, (6)
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Then with probability at least 1 — 6, we can derive the following probabilistic guarantee for the
correctness of the estimated preference:

By |1 (- ep,50) = el 55)] > 0)

Acl} > (1—2¢)-&(Aci) +e. (7

This result shows that the probability of the estimated preference H aligning with the true reward
difference c(z, y1) — c(x, y2) is lower-bounded by a function of £(c1, ¢2), indicating high confidence
in the preference correctness. The theoretical analysis follows closely the work of Sun et al. (Sun
et al.| 2025)). Furthermore, we assume that the bias introduced by the MC estimation with the same
annotator A can be offset, i.e.,

Assumption 3. For the preference annotated data pair (p,si,ct), (p, sy, cb), the bias introduced
by the MC estimation with the same annotator A can be offset, meaning that the distribution of
Ab = by(p,s%, A) — ba(p, s, A) is concentrated around 0. We will assume the probability density
function value of the random variable Ab at Ab < ¢ — & is always greater than the PDF value at
Ab> ¢ —é, e,

pap(u) > pap(v), Yu <& —éh,v > ¢ — & 8)

We can then compare the accurate rate of the hard annotation and our preference annotation with the
noisy ordering:

Lemma 1. For noisy dataset Dpyer = {(pn, 511%, sf,n , izn), n=1,---, N} with selected data pairs

follow Assumption || and dataset Dhara = {(Pn, Sp.,, ﬁn), n=1,---,N}, the accuracy of model
trained on Dyt is higher than Dyacq across the whole dataset, i.e.

EDyn [1(H - [elp,51) = cp53)] 2 0) | > Epyy [1(H - oo, ) =N 2 0)] . )

We find that the model trained on the noisy preference annotated dataset Dyt achieves higher
overall accuracy compared to the model trained on the hard annotated dataset Dy,.q. Preference-
based training better captures the relative quality of solutions across the entire dataset. Under noisy
labels, pairwise comparisons provide more informative learning signals than hard annotated labels.

4 THE FRAMEWORK OF RL TRAINING

We integrate Preference Process Models into the Generalized Reinforcement Learning with GRPO
framework to enhance the training of mathematical reasoning models. We consider a reinforcement
learning framework where we model the process a math agent solves problem ¢ as a Markov De-
cision Process (MDP), defined by the tuple (S, A, p,r,~). Here, S denotes the state space, A the
action space, p : S X S x A — [0, 1] the transition dynamics, 7 : S x A — R the reward function,
and v € [0,1) the discount factor. The agent’s behavior is governed by a policy 7y (als), parame-
terized by 6, which defines a distribution over actions given a state. For each problem g, trajectories
{0;}5., are generated under the old policy 7, (O]q). We optimize a policy 7y (a|s) by maximizing
the expected discounted cumulative reward, formalized as:

G [oi]

1 1
Jareo(0) = ]Eq~P(Q)1{0i}?:1N’T%ld(o‘q) G Z los]
i=1 t

1 T4 (Oi,t q, 0i,<t>

A —BD k1, [mo| et} |-

Here G is the number of trajectories, and o; denotes the i-th trajectory. Each trajectory o; has a length
|o;|, and o; ¢ refers to the action taken at step ¢ in the i-th trajectory. The terms 7y (0; ¢|q, 0;,<¢) and
Ty (0i,|¢, 0i,<¢) denote the probabilities of selecting action o; ; under the new policy 7y and the

old policy my,,, respectively. A commonly used estimation method for the advantage function A, ;
is normalized rewards.

A, =7 = i+ — mean(r;)

’ std(ry) (19)

Note that the advantage function is typically defined by A(x, y) = Q(z,y)—V (), whichis not align
with the normalized reward A; ;. Assuming the output of reward model r; ; contains bias b(g, 0; <),
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Table 1: Performance comparison of different 7B reward models in PROCESSBENCH across
GSMB8K, MATH, OlympiadBench and Omni-MATH.

Model GSMSK MATH OlympiadBench Omni-MATH

acc F1 acc F1 acc F1 acc F1
Math-Shepherd-PRM-7B 0.786 0.582 0.721 0.594 0.693 0.372 0.662 0.554
Qwen2.5-Math-7B-Math-Shepherd 0.785 0.585 0.715 0.588 0.691 0.413 0.674 0.546
Math-PSA 0.763 0.576 0.711 0.582 0.681 0.422 0.672 0.543
Skywork-PRM-7B 0.795 0.533 0.722 0.583 0.697 0.486 0.684 0.576
EurusPRM-Stage2 0.784 0.521 0.708 0.502 0.701 0.417 0.664 0.556
PPRM-7B 0.776  0.512 0.733 0.612 0.734 0.577 0.712 0.645

Table 2: The performance of policy model initialized by Qwen2.5-Math-7B trained with PRMs on
GRPO.

GSMB8K AMC MATH Olympiad Bench AIME
ORM 93.24 + 0.25 38.84 + 0.55 70.78 + 0.44 49.87 + 0.83 10.31 £0.12
Math-Shepherd-PRM-7B 95.22 +0.11 44.47 +0.42 74.03 £ 0.27 52.46 + 0.54 16.71 £0.26
Math-PSA 94.02 + 0.07 21.49 +0.45 73.88 £0.29 52.55 + 0.47 13.33 £0.21
Skywork-PRM-7B 94.36 £+ 0.05 45.73 £0.47 74.47 £ 0.31 53.04 £ 0.19 15.82 £0.14
EurusPRM-Stage?2 94.52 + 0.08 44.49 + 0.64 73.80 £0.21 51.15+0.15 16.24 £0.21
PPRM 95.83 +£0.11 47.97+0.42 76.44+0.25 56.01 +0.34 18.87 £0.23

the estimation of the advantage function becomes dependent on the accuracy of the reward signal
and suffers from high variance when the group size G is limited. Therefore, it is needed to propose
a more robust advantage estimation formula.

As suggested by the objective function of BT model, we employ the sigmoid function o, which
introduces a smoothing effect, further stabilizing the advantage estimates by mitigating the impact of
outliers or extreme rewards. The output reward values of PPRM for a pair of actions (x, y1), (z, y2)
can estimate the probability of obtaining a higher return, i.e. p(y1 > y2) = o(r(z,y1) — r(z, y2)).
We denote the correctness of the final output of the policy model in state (x,y) by 0., € {0,1}.
Therefore, Q(x,y) = E(0s,) = Do, , and the baseline V(z) = & >, Q(z, ;). Our advantage
estimator leverages the strengths of preference learning to reduce bias and improve the robustness of
the reward signal. Specifically, the preference-based advantage estimator is formulated as follows:

. 1 1
Ai,t = m ZO—(Tiat — Tj,t) — m ZZJ(T};J — Tj,t)~ (11)

J#i NV E

Here, A; ; represents the advantage of action ¢ at time step ¢, 7; ; and 7 ; denote the rewards for
actions ¢ and j respectively, and o is a sigmoid function that maps the reward difference to a pref-
erence probability. This formulation aggregates pairwise comparisons across all actions, ensuring
that the advantage estimate reflects the relative quality of actions rather than their absolute rewards.
By focusing on relative comparisons rather than absolute rewards, the estimator mitigates the high
variance often associated with traditional advantage estimation methods, which leads to more stable
and efficient policy updates during training.

5 EXPERIMENTS

This section presents our comprehensive experimental framework for enhancing mathematical rea-
soning in LLMs through PPRM training and RL training. First, we detail the PPRM training
pipeline, where models learn to evaluate intermediate reasoning steps using filtered MATH dataset
problems and Monte Carlo-based value estimation. We then examine RL training methodologies,
which leverage PRM-generated signals to refine the LLM’s reasoning trajectory.

5.1 PPRM TRAINING

Data Generation. We conduct the data generation process for training the PPRM utilizing
Qwen2.5-Math-7B-Instruct as the completer model on the MATH dataset (Hendrycks et al) , a
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(a) Best-of-N evaluation on GSM8K. (b) Best-of-N evaluation on MATH.

Figure 3: Best-of-N evaluation results on GSM8K and MATH datasets with Qwen2.5-Math-7B-
Instruct as the generator.

well-established benchmark for mathematical reasoning tasks. For each state s in the reasoning pro-
cess, 16 rollouts are generated to explore a wide range of reasoning trajectories, ensuring that the
PRM could learn from diverse reasoning strategies and a search limit of 50 was set for each problem.
To reduce noise and focus on challenging and informative examples, we filter problems that were
either too simple or too difficult for the completer. To estimate the value () of each reasoning step,
we use a = 0.5 and 8 = 0.9 in Eq.(T)) for each Monte Carlo estimation.

Merics and Baseline. We evaluate our PPRM on the ProcessBench performance and Best-of-N
(BoN) strategy effectiveness, which evaluate the utilities of reward models in straightforwardly im-
proving downstream task performance and the abilities of reward models to identify specific er-
roneous steps in reasoning processes. ProcessBench (Zheng et al., |2024) serves as our primary
evaluation framework, comprehensively assessing models’ ability to predict step-by-step reason-
ing correctness across challenging mathematical reasoning datasets: GSM8K (Cobbe et al.| [2021])
(elementary math problems), MATH (Hendrycks et al.) (advanced competition-level problems),
OlympiadBench (He et al.;[2024) (olympiad-style problems), and Omni-MATH (diverse mathemat-
ical reasoning tasks). This multi-dataset evaluation provides a robust measure of model perfor-
mance across different difficulty levels and problem types. We also apply the Best-of-N strategy,
which samples N reasoning paths and selects the one with the highest final-answer confidence. We
compare our PPRM with Math-Shepherd-PRM-7B (Wang et al., [2024b), Qwen2.5-Math-7B-Math-
Shepherd (Zhang et al., 2025), MATH-PSA (Wang et al.,[2024a) which employs Omega PRM (Luo
et al} [2024), Skywork-PRM-7B (Liu et al.| 2024)) and EurusPRM-Stage?2 (Cui et al., [2025) trained
using Implicit PRM (Yuan et al., [2024)) which are trained on automated annotation data.

Evaluation Results. We trained 7B-parameter PPRM, initialized with Qwen2.5-Math-7B-Instruct
with the BT loss function on the preference annotated dataset. We report the performance of pref-
erence process model on ProcessBench and the Best-of-N (BoN) strategy. Our PPRM demonstrates
superior overall performance on ProcessBench with the highest average accuracy and F1 scores
across the four datasets, indicating its balanced precision-recall capabilities. Notably, PPRM ex-
cels in OlympiadBench and Omni-MATH, suggesting specialized strengths in olympiad-style chal-
lenges. These results underscore the importance of applying preference annotations in step-wise
evaluation in refining LLM reasoning, with PPRM achieve better error identification balance and
accuracy across datasets.

The results best of N strategy on GSM8K and MATH with Qwen2.5-Math-Instruct-7B as the policy
model in Figure [3] exhibit consistent performance improvements of PPRM with increasing sample
sizes from 4 to 64. suggesting PPRM’s architectural advantages in leveraging larger candidate pools
through its robust preference learning framework. Especially on MATH, there is a significant gap of
the accuracy between the two training methods. One hypothesis is that for challenging datasets like
MATH, PPRM can deliver more robust reward signals with lower variance. The findings particularly
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Table 3: The performance of policy model initialized by Qwen2.5-Math-7B trained with PRMs on
GRPO.

\GSMSK AMC MATH Olympiad Bench

Math-Shepherd-PRM-7B 95.1 45.2 74.4 52.6
EurusPRM-Stage?2 94.7 44.7 73.6 514
Skywork-PRM-7B 94.4 46.1 74.2 53.1

Math-PSA 94.1 21.7 73.5 52.3
PPRM 95.8 479 76.3 55.8

Table 4: The performance of policy model initialized by Qwen2.5-Math-7B trained with PRMs on
RLOO and GRPO with various advantage estimators.

| GSM8K AMC MATH Olympiad Bench

RLOO 95.4 48.3 76.8 54.5
ReMax 94.5 45.4 75.6 54.9
GRPO 95.8 479 76.3 55.2
GRPO-P 96.0 49.7 78.2 56.8

emphasize PPRM’s robust generalization, making it a promising approach for reliable mathematical
reasoning.

5.2 RL TRAINING

We conduct RL training based on Qwen2.5-Math-1.5B and Qwen2.5-Math-7B. The training data
consists of chain-of-thought format questions from the MATH dataset. For reward modeling, we
compare our PPRM with Math-Shepherd, EurusPRM-Stage2, and MATH-PSA. For GRPO and
RLOO implementation, we set the policy model learning rate to 1e-6 with a KL coefficient of 0.001.
During exploration, we generate 8 outputs per question with a maximum sequence length of 1024
tokens. The training batch size is configured as 128 to balance memory constraints and training ef-
ficiency. For advantage estimator in GRPO, we employ the normalized estimator and our advantage
estimator in Eq (TT).

We repeat the experiment for 10 times and report the average score of the policy model initialized
by Qwen2.5-Math-7B in Table (3) and Table @). The performance of the policy model initialized
by Qwen2.5-Math-1.5B can be found in Table (5) and Table (6) in Appendix [B] The results of
PPRM are demonstrated in the performance of various models on challenging datasets including
GSMB8K (Cobbe et al.| 2021), AMC (Li et al 2024), MATH (Hendrycks et al.), and Olympiad
Bench. Our PPRM achieves the highest scores in AMC and MATH , while PPM+standard performs
strongly in Olympiad Bench. Table (6) demonstrates GRPO with our improved preference-based
advantage estimator shows the strongest performance, particularly excelling in MATH and AMC
outperforming both standard GRPO and RLOO. The results highlight that while the baseline remains
competitive in simpler tasks like GSM8K, PPRM combined with enhanced GRPO delivers more
robust performance in complex reasoning scenarios.

6 DISCUSSION

We propose a reinforcement learning framework based on a Preference Process Reward Model
(PPRM) to address the challenge in Reinforcement learning of obtaining precise step-level anno-
tations for process reward models in multi-step reasoning tasks. Our enhanced algorithm enables
efficient optimization, leading to more robust reasoning in LLMs. A primary area for improvement
involves the computational demands of the MCTS process. Although MCTS is less expensive than
extensive human annotation, its computational overhead remains substantial, potentially limiting
the scalability of the approach to more complex or longer-horizon reasoning tasks. Our future work
would prioritize exploring more efficient MCTS variants or alternative simulation-based methods.
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A COMPARISON OF ORDER CONSISTENCY PROPERTIES BETWEEN HARD
ANNOTATION AND PREFERENCE ANNOTATION.

A.1 PROOF OF PROPOSITION[]]

Proof. The idea of the proof is to first use Markov’s inequality to bound probability that for a given
distance c; — ¢ the preference model not well approximate the annotator and under the event that the
preference model approximate the annotator well, we bound the total error combined by preference
model and annotator.

By assumption we have the (marginal) error probability averaging over the dataset is

Pogno [L(H #1)| =By [P (H # hler ) | < de. (12)

by Markov’s inequality,

P, (IP’ (H;«éh|cl,02) ze) <% _s (13)

€

In the event {(c1,c2) : P (ﬁ + h’cl, 02) < €}, with probability 1 — é we bound the error rate as

function of c;, co. Condition on ¢y, co, we can discuss the order consistency of the learned model
Hy~ with the oracle utility

12
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* Correct Case: When the annotator is correct, the learned model agrees with the annotator
with probability at least 1 — €. Thus:

Pcorrect = p(f{ = il|]A’L = h) > (1 — 6). (14)

* Incorrect Case: When the annotator is incorrect, the learned model agrees with the annota-
tor with probability at most e. Thus:

Pincorrect = p(ﬁ ?é iLVAl 7é h) <e. (15)
The order consistency of the learned model Hy. with the oracle utility can be expressed as:

Eo y1 ya~t(a) [H (ﬁ(r(yhm) —r(y2,x)) > O)

C1, C2i| = Pcorrect * p(il = h) + Dincorrect p(il 7é h))

Substituting the bounds and simplifying, we have

By, ysmi(z) [H (ﬁ(r(yl,x) —7r(y2,x)) > 0) ‘cl, 02} > (1—2¢€)-&(c1,02) + e (17

A.2 PROOF OF LEMMA [

Proof. We employ two different annotations, the hard annotation and the preference annotation

to the same dataset D = {(pn,Sn,é,),n = 1,---, N} and obtain annotated dataset Dyparq =
{(pn7snaéna hhard)an = 1a e ;N} and Dprcf = {(pn7sqlmsivégwéiahprcf)an = 1; Y %} We

will compare the accurate rate of the hard annotation and our preference annotation with the noisy
ordering.

For hard estimation, the probability of noise is given by Eq.(3). Substituting into the Eq.(7)), we have

E,. {H (H e — A > 0)

A} > (1-20)-p({blp, 51, A) : (e =N < (A=c)-blp, 51, A)}) +e.

(13)
The accuracy of model Hy,.q trained on Dy,.q across the dataset can be expressed by the sum of
conditions when ¢; — A > 0 and when ¢; — A < 0:

Epy o [11 (H e(p, s°) — A] > o)} - Z {11 (H e—A] > o) Aq} (19)
> [(1—-2€)-p(é—A>b) + (20)

<A
+3 [(1—2€¢) - pe—A<b)+q. Q1)

e>A

For preference estimation, the probability of noise is given by Eq.(5). Substituting into the Eq.(7)),
we have

E,. [11 (1 [es =212 0)

A} > (1-26) - p(e(p, s1) — é(p. s) < blp, s}, A) — b(p, sb, 4)) +c.

(22)
The accuracy of model H,,f trained on Dy,..¢ across the dataset can be expressed by:
B [L(H o1 = 2] 20)| = D By []1 (F-er = e2] 2 0) fe ég} (23)
é1,E2
> > [(1—2€¢)-p(ér — &> by —ba) + . (24)
1 ,éz
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Note that the expectation in Eq.(I9) and Eq.(23) are summed over the same dataset D =
{(pmsmén),n =1, 7N}. Therefore,

By [1(H -1 = 2] 2 0)] = Eoy [ (- o 5) = N 2 0)] ©5)
> (1—2¢) Z p(é1 — ég > by —by) — %(p(él —A> b)) +p(é— A< bg))] . (26)

The ranges of correct ratio ¢ and ¢ are both (0, 1). Thus the range of biasb = ¢—c € (¢—1, é) Since
by and b, are independent, the probability p(é; — é > by — ba) , p(é1 — A < b) and p(é2 — A < b)
can be expressed in integral of b, and b, as:

é1— 62+b2
(Cl —éy > by — b2 / / (bg) dby dbs. 27
Co—1J¢y
é1—A
P(er— A > by) = / p(by) dby = / / p(br)p(b2) dby dbs. (28)
61—1 Co— 1

P(ég —A< b2) = / p(bg) dby = / / p(bz)p(bl) dbg,dbl. (29)
Coa—A é1—1Jéa—A

Substituting the integrals and simplifying, we have

p(cl—cz>b1—b2)—1( (61— A > by) + p(és — A < b))

1 Ea—A  pC1—Co+bo Ga—A
= / / p(b1)p(bs) dby dbs — / / p(b1)p(bs) dby dbo
Co ¢ Co ¢1—Co+bo

¢1—C2+ba
/ / p(b1)p(ba) dby dbs — / / p(b0)p(bs) dby dbg].
Co—AJE1—A Co—M\ JE1—Co+bo

Performing the variable substitution ©v = %, v o= % Note that the integration regions

0 = {(bl,bg) 1 b — by < 61—62,62—1 < by < éQ_A} and Qy = {(bl,bg) by — by >
¢ — éa,C9 — 1 < by < é — A} are symmetric with respect to v = % Therefore, the first term
of integral can be expressed by

//Q Pu(U)Py (V) — Pu(w)py(é1 — é2 — v)du dv. (30)

l\')\»—l

Here p,, p, represents the PDF of w and v. The same is true for the integration regions 25 =
{(bhbg) thy — by <1 —Co, 0 — A< by < ég}al‘ldQ4 = {(b1,b2) tby —by > —Co, 00— A<
by < é3}, and the second term of integral can be expressed by

//Q Do (W) Py (V) = pu(w)py(é1 — é2 — v)dudv. 31

By Assumption we have p,, (u)p,(v) > pu(u)p,(é1 — éa — v), thus p(é — é > by — by) >
L(p(er — A > b1) + p(é2 — A < ba)). With Eq.(25), we finally get:

By [1(H - [elp,5) — b, 53)] 2 0) | > B,y [1(H - [elo,s) ~ A 2 0)] . 32)
O
B EXPERIMENT DETAILS

We employ the verl framework in (Sheng et al.l 2024)), where we use PyTorch FSDP to execute
diverse RLHF dataflows and attain high throughput. The entire process of RL training includes
generating multiple candidate solutions to the instruction using the generation model, and scoring
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Table 5: The performance of policy model initialized by Qwen2.5-Math-1.5B trained with PRMs on
GRPO.

\GSMSK AMC MATH Olympiad Bench

Math-Shepherd-PRM-7B 88.4 23.6 50.2 25.1
EurusPRM-Stage?2 81.7 222 49.6 23.8
Skywork-PRM-7B 88.2 23.8 50.2 25.3

Math-PSA 88.0 21.7 50.6 243
PPRM 88.6 24.7 51.0 25.7

Table 6: The performance of policy model initialized by Qwen2.5-Math-1.5B trained with PRMs on
RLOO and GRPO with various advantage estimators.

| GSM8K AMC MATH Olympiad Bench

RLOO 87.8 25.8 49.6 245
ReMax 87.5 25.2 50.4 249
GRPO 88.6 24.7 51.0 25.7
GRPO-P 88.8 26.0 53.2 26.2

each candidate using a PRM. We use VLLM (Kwon et al., |2023)) to implement the process. Our
PPRM is trained on 4 A6000 GPUs and we performan RL training on 8 A6000 GPUs. We conduct
RL training based on Qwen2.5-Math-1.5B and we report the result in Table [5|and [6] The training
data consists of chain-of-thought format questions from the MATH dataset. For reward modeling,
we compare our PPRM with Math-Shepherd, EurusPRM-Stage2, and MATH-PSA. For GRPO and
RLOO implementation, we set the policy model learning rate to 1e-6 with a KL coefficient of 0.001.
We generate 8 outputs per question with a maximum sequence length of 1024 tokens. The training
batch size is configured as 128 to balance memory constraints and training efficiency.
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