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ABSTRACT

Process reward models (PRMs) have emerged as a promising approach to guide
LLMs by providing step-wise supervision, but traditional methods often rely on
heuristic search strategies like Monte Carlo Tree Search (MCTS), which introduce
bias and limit generalization. In this work, we propose a reinforcement learning
framework guided by a Preference-Based Process Reward Model (PPRM). We
first employ MCTS to estimate and select chosen and rejected rollouts, thereby
constructing a high-quality step-level dataset. Our PPRM is trained on Bradley-
Terry loss function, which mitigates the bias introduced by the heuristic search
strategies of MCTS by leveraging preference-based learning and offers a more
robust and theoretically grounded approach to reward modeling. To enable ef-
fective RL training with PPRM, we enhance Group Relative Policy Optimization
(GRPO) by introducing a robust advantage estimator that better captures the struc-
ture of preference-based process reward model. Experimental results on Process-
Bench and best-of-n strategy demonstrate that our approach achieves 2-3% im-
provement in intermediate step accuracy compared to existing methods for com-
plex reasoning processes, thereby improving the reasoning accuracy of the policy
model across several key reasoning benchmarks.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities in mathematical reason-
ing (Yang et al., 2024)(Guo et al., 2025)(Grattafiori et al., 2024), solving complex problems by
decomposing them into logical steps (Yao et al., 2023). However, they still face critical challenges,
including calculation errors, flawed logical reasoning, and even the generation of fabricated or hal-
lucinated intermediate steps. These issues undermine the reliability of LLMs in precise domains like
mathematics, where accuracy and consistency are essential. Reinforcement learning (RL) has gar-
nered significant attention (Ouyang et al., 2022)(Touvron et al., 2023). However, challenges remain
in scaling these methods efficiently due to substantial computational requirements and the need for
careful reward design to prevent shortcut learning (Cao et al., 2024)(Chan et al., 2024).

In the field of mathematical reasoning, reward models are typically categorized into two main types:
the outcome reward model (ORM) and the process reward model (PRM). Specifically, the ORM
cannot identify or rectify errors in intermediate steps, leading to potential suboptimal preformance
(Lightman et al., 2023) where correct answers are derived from incorrect reasoning. While the
Process Reward Model (PRM) offers a promising solution by providing step-wise reinforcement
learning feedback. Existing work has shown consistent results that PRMs outperform ORMs in
best-of-N sampling (Snell et al., 2024) and RL (Setlur et al., 2024).

Limitations of PRM. As highlighted in studies such as DeepSeek R1 (Guo et al., 2025), accu-
rately determining the correctness of intermediate steps remains a challenging task. PRMs often
struggle to provide reliable evaluations of intermediate results, ultimately affecting the accuracy and
generalization of the final outcome.

(i). Issues with Annotation. A major challenge in training PRMs lies in obtaining accurate step-
level annotations. Lightman et al. (Lightman et al., 2023) demonstrated the effectiveness of using
human expert annotators to label intermediate reasoning steps, ensuring high-quality supervision
for PRM training. To address this, researchers have turned to automated annotation methods, with
the Monte Carlo (MC) estimation approach being one of the most widely adopted. This method,
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popularized by Wang et al. (Wang et al., 2024b) and Lu et al. (Lu et al., 2024), involves sampling
multiple reasoning trajectories to empirically estimate the correctness probability of each step.

(ii). Inadequacy of MCTS in Automated Annotation. Although efficient and scalable, MC-based
methods often rely on Monte Carlo Tree Search (MCTS), a heuristic-driven algorithm that intro-
duces significant bias (Guan et al., 2025). MCTS prioritizes certain reasoning paths based on its
exploration-exploitation strategy, which can lead to the reinforcement of suboptimal or unjustified
steps (Zhang et al., 2025), compromising the generalization ability of the trained PRM. It signif-
icantly relies on the performance of the completion model, which may generate correct answers
based on incorrect steps, or incorrect answers based on correct steps, introducing substantial noise
and inaccuracy verification into step-wise correctness estimation.

Chosen Rejected

MCTS

PPRM

𝐨𝐨𝟏𝟏

Policy Model

𝐨𝐨𝟐𝟐 𝐨𝐨𝐆𝐆⋯

Reference Model

KL𝐀𝐀𝐢𝐢

PPRM Workflow RL Training Framework
Preference 
Advantage 
Estimator

𝒓𝒓𝐢𝐢

Figure 1: Illustration of PPRM framework. We ap-
ply MCTS to select chosen-rejected pairs accrording
to Q(s, r) to train PPRM and apply GRPO framework
to PPRM with a preference advantage estimator.

In this work, we leverage preference
learning to debias the Process Reward
Model, proposing the Process Reward
Preference-Based Model (PPRM). We the-
oretically demonstrate that PPRM en-
sures more stable and generalizable learn-
ing compared to MCTS-based rewards.
Additionally, applying RL to PPRM re-
quires modifications to Generalized Rein-
forcement Learning with Policy Optimiza-
tion (GRPO), as standard GRPO strug-
gles with the non-stationarity induced by
preference-based rewards, as illustrated in
Fig 1. Our enhanced algorithm enables ef-
ficient optimization, leading to more rob-ust reasoning in LLMs. The contribution of our work is
summarized as follows:

• We introduce the preference based annotation into process reward modeling for reasoning
tasks, providing a theoretical analysis on the capability of the Bradley-Terry (BT) model
(Bradley & Terry, 1952) to mitigate bias in MC-value estimation by leveraging pairwise
comparisons of reasoning trajectories. This approach significantly reduces the risk of over-
fitting to heuristic search strategies.

• We construct a high-quality, expert-annotated dataset for training process-oriented reward
models, focusing on step-level correctness in mathematical derivations. Using this data, we
develop PPRM , a preference-based reward model that outperforms existing approaches in
identifying and scoring logical errors while reducing reliance on heuristic search strategies
like MCTS.

• We introduce a modified advantage estimator for GRPO, aligning with the BT models
pairwise comparison framework enabling stable and efficient policy optimization. By in-
corporating step-wise preference signals from PPRM, our estimator improves reasoning
accuracy across diverse mathematical problems, from elementary to olympiad-level tasks.

2 RELATED WORKS

Synthetic Data Generation. Recent advances in training LLMs for mathematical reasoning have
focused on generating high-quality process supervision data, with several key approaches emerg-
ing to address the trade-offs between annotation quality, scalability, and bias mitigation. Lightman
(Lightman et al., 2023) pioneered expert-annotated step-level correctness labels to train PRMs, en-
suring high fidelity but at significant cost, while Wang (Wang et al., 2024b) proposed scalable MC
sampling to approximate step-wise correctness probabilities, trading off some precision for broader
coverage. Luo (Luo et al., 2024) refined MC approaches with binary tree search, dynamically prun-
ing incorrect reasoning paths during sampling to reduce noise. More recently, Zhang (Zhang et al.,
2025) introduced a hybrid approach combining LLM-based judger models with MC estimation, us-
ing the former to filter or reweight sampled trajectories. These methods collectively highlight the
challenges in generating reliable process supervision data, which addressed by our work through
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the introduction of the BT model and robust advantage estimation, offering a more theoretically
grounded and scalable solution for mathematical reasoning tasks.

Preference Learning. To address the challenge of reward bias, previous research has explored
preference models for human alignment, particularly in cases where direct scoring is difficult. Pref-
erence learning allows for more flexible and interpretable reward modeling by comparing alternative
outputs rather than assigning absolute scores (Ouyang et al., 2022)(Bai et al., 2022). This approach
has proven effective in reducing bias in human feedback systems, making it a promising direction
for improving reasoning in LLMs (Sun et al., 2025).

RL Algorithm in Mathematical Reasoning. Researchers have begun employing reinforcement
learning (RL) for mathematical reasoning and introduced several sophisticated algorithms to en-
hance the reasoning capabilities of LLMs (Ouyang et al., 2022)(Snell et al., 2024). Proximal Policy
Optimization (PPO) (Schulman et al., 2017)leverages clipped objective functions to ensure gradual
policy updates while optimizing for both final answer correctness and intermediate reasoning qual-
ity. Building upon PPO, Reinforcement Learning from Online Oracle (RLOO) (Ahmadian et al.,
2024) and Remax (Li et al., 2023) significantly reduces error propagation in multi-step derivations.
Direct Preference Optimization (DPO) (Rafailov et al., 2023) and many of its variants (Azar et al.,
2024)(Ethayarajh et al., 2024)(Chen et al., 2024) offer another innovative approach by directly op-
timizing policy outputs to align with human preferences without explicit reward modeling, sim-
plifying the RL pipeline while maintaining strong performance. More recently, Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) has emerged as a promising alternative, employ-
ing group-wise comparisons of reasoning trajectories to prioritize logically consistent solutions over
superficially correct but flawed answers.

3 PPRM WORKFLOW

In this section, we introduces our methodology for enhancing multi-step reasoning in large language
models through preference-based process reward model. We begin by employing Monte Carlo Tree
Search (MCTS) to generate annotated reasoning trajectories. We then develop a PPRM that learns
from relative comparisons between reasoning paths rather than absolute scoring, significantly reduc-
ing bias and improving generalization. We provide a theoretical comparison of two distinct anno-
tation paradigms, Hard Estimation and Preference Estimation to evaluate their accuracy in reward
modeling. The detailed proof can be found in Appendix A

3.1 PREFERENCE PAIR GENERATING WITH MONTE CARLO METHOD

Although Monte Carlo Tree Search (MCTS) is commonly used in automated annotation tasks, its
reliance on heuristic strategies and stochastic sampling can lead to inconsistent or suboptimal results.
This is particularly evident when dealing with tasks involving complex semantics or long-range
dependencies, where MCTS often fails to deliver satisfactory performance, thereby limiting both
the efficiency and quality of automated annotation.

Motivated by these challenges, we propose the preference annotation to construct high-quality
problem-solving data pairs for training the process reward model in a preference-based format.
Specifically, a “completer” policy is established that can take a question q and a set of prefix so-
lutions comprising the first t steps x1:t, ensuring the resulting data pairs are suitable for preference
learning. We construct a Monte Carlo tree to represent the decision space, where each node corre-
sponds to a state in the problem-solving process, and edges represent possible actions or steps. For
each problem, multiple completions are sampled and organized into this tree structure, allowing us
to evaluate and compare different reasoning trajectories.

To identify the most informative data pairs, we define a scoring mechanism based on the Q-value
of each rollout. The Q-value balances the quality of the solution, as estimated by the Monte Carlo
method, with its complexity, ensuring that the selected pairs are both high-quality and concise.
Specifically, the probability of selecting a chosen rollout rchosen and a reject rollout rreject is cal-
culated using the following formulas:

Qchosen(s, r) = α1−MC(s) · βlen(r), Qreject(s, r) = αMC(s) · βlen(r). (1)
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(a) Select data pairs.
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LLM Completer

(b) Search the incorrect step.

Figure 2: Illustration of preference pair generating with Monte Carlo method. (a) The workflow con-
tains generating multiple completions for each problem, constructing an MC tree to evaluate these
completions and assessing the rollouts using MC estimation. (b) The selection formula Q(s, r) is
applied to identify the optimal choice-reject pairs, which are subsequently compiled into a structured
dataset.

Here, α is a hyperparameter that adjusts the weight of the Monte Carlo estimation, MC(s) repre-
sents the Monte Carlo estimation score for the state s, and β accounts for the weight of the length
of the rollout r. The term α1−MC(s) ensures that higher-quality rollouts (as indicated by a higher
MC(s)) are more likely to be chosen, while αMC(s) prioritizes lower-quality rollouts for rejection.
The term βlen(r) penalizes overly complex solutions, favoring concise reasoning paths. Notably,
the trajectory sampling method for step-level data collection demands significantly higher computa-
tional resources (FLOPs) compared to training ORMs.

As shown in Figure(2), the workflow begins by generating multiple completions for each problem,
followed by the construction of an MC tree to evaluate and organize these completions. The rollouts
are then assessed using the combined approach of MC estimation, LLM judger, and implicit Q
function. The selection formula Q(s, r) is applied to identify the optimal choice-reject pairs, which
are subsequently compiled into a structured dataset. This methodology ensures the creation of a
dataset that captures diverse and accurate problem-solving processes, maintaining a balance between
complexity and correctness for downstream tasks.

3.2 THE FORMULATION OF ANNOTATION

Hard MC Estimation. Most process-surpvised reward models (PRMs) are traditionally trained
under the next token prediction framework (Zhang et al., 2024), which aims to predict the likelihood
of the next token in a sequence. PRM (P × S → R+) assigns a score r̂ to each reasoning step of s,
which is usually trained with cross enropy loss function:

LCE =

K∑
i=1

yp,si log r̂si + (1− yp,si) log(1− r̂si). (2)

where K is the number of reasoning steps in s, r̂si is the output of PRM with given si and ysi is the
ground truth label of the i-th step of s. Unlike common data annotations, the hard MC-estimated
annotation y(p, si, A) at the i-th step is actually a function of the ratio of correct rollouts to total
rollouts from the i-th step.

y(p, si) =

{
1, ci > λ,
0, else.

Here ci = c(p, si) denotes the ratio of correct rollouts to total rollouts from the i-th step and λ
represents the threshold for distinguishing between positive and negative labels based on the MC
estimation.

However, the estimated ratio ĉi = ci + b(p, si, A) introduces bias which is a random variable de-
pends on the annotator A. Therefore, the MC estimation needs to satisfy the following condition:
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(ĉ(p, si, A) − λ)(c(p, si) − λ) > 0. In other words, the labels estimated via MCTS must preserve
the same ordering relationship as the threshold criterion.

We can map this ordering into a binary value through a increasing function hhard(ci) = I(ci > λ).
The label for hhard contains noise follows a Bernoulli distribution η ∼ Bernoulli(phard) where phard
is given by

phard = p({b(p, si, A) : (ci − λ)2 < (λ− ci) · b(p, si, A)}) = 1− ξhard(∆ci). (3)

where ∆ci = ci − λ represents the difference between ci and threshold, and the approximating true
scores ξhard(∆ci) is a function of ∆ci.

Thus the model actually trains on the noisy training dataset Dhard = {(pn, spn
, ĥn), n = 1, · · · , N}

where the ordering label yn has noise η defined by Eq.(3). The loss function in Eq.(2) often suffers
from high variance, particularly in generative models, where the quality of the generated outputs is
heavily dependent on the quality of the annotations used during training. This limitation can lead to
suboptimal performance, especially in tasks requiring precise and contextually accurate outputs.

Preference MC Estimation. We don’t require the reward model to predict probabilities of step-
level label accurately, but rather to provide a reliable signal for ranking a group of LLM outputs at
inference. An alternative approach is to employ the Bradley-Terry (BT) model, which is particularly
well-suited for learning process reward from pairwise comparisons. In this framework, we select
chosen-reject pairs (p, s1) and (p, s2) from the dataset D = {(pn, spn , ĉn), n = 1, · · · , N} gener-
ated from MATH dataset in Section 3.1, where both pairs share the same prompt p but differ in their
responses s.

Specifically, the loss function for the BT model is defined as follows:

LBT = E [Ih=1σ(r̂BT(p, s1)− r̂BT(p, s2)) + Ih=−1(1− σ(r̂BT(p, s1)− r̂BT(p, s2)))] . (4)

Here, E denotes the expectation over the sampled pairs, hi = I(c(p, si1) > c(p, si2)) is the ground
truth ordering, r̂BT represents the output of reward model with input (p, s) and σ is the sigmoid
function. The loss function encourages the model to assign higher rewards to preferred responses
and lower rewards to rejected ones, thereby learning the underlying preference structure.

We can explain by treating preference pairs as ordered data, where the ground truth preference is
defined as ĥi = I(ĉ(p, si1, A) > ĉ(p, si2, A)) ∈ {0, 1}. However, the estimated ratio ĉi = ci +

b(p, si, A) introduces bias, leading to noisy labels ĥi = hi + η, where the noise η occurs with the
probability ppref given by:

ppref = p({∆b(p, si1, s
i
2, A) : ∆ci < −∆b(p, si1, s

i
2, A)}) = 1− ξpref(∆ci). (5)

where ∆b(p, si1, s
i
2, A) = b(p, si1, A) − b(p, si2, A) represents the difference between the bias in

ĉ(p, si1, A)and ĉ(p, si2, A), ∆ci = c(p, si1) − c(p, si2) represents the difference between the cor-
rectness level of (p, si1) and (p, si2), and ξpref(∆ci) is a strictly increasing function of ∆ci. This
formulation captures the likelihood that the bias difference outweighs the true reward difference,
which is critical for understanding the noise structure in the preference data.

3.3 RETHINKING PREFERENCE REWARD MODEL TRAINED ON MC ANNOTATIONS

Thus to ensure high-quality training data for the reward model, it is crucial to filter preference pairs
with the largest ratio differences ∆ci . Formally, we have
Assumption 1. The data pair (p, si1), (p, s

i
2) selected using the MCTS method satisfies ĉ(p, si1, A) >

λ and ĉ(p, si2, A) ≤ λ.
Assumption 2. The distribution of ĉipref estimated in preference annotation is consistent with the
distribution of ĉihard in hard MC-estimated annotation, i.e. ĉi = ĉipref = ĉihard.

With those noisy annotations, we can consider the order consistency with true reward function:

Proposition 1. Suppose that the expected agreement between the estimated preference ĥ and the
order model Ĥ = I(r̂BT(p, s1) > r̂BT(p, s2)) achieves up to 1− ϵ error for some ϵ and δ, i.e.,

Ep,s1,s2

[
I
[
ĥ = Ĥ

]]
≥ 1− δϵ, (6)
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Then with probability at least 1 − δ, we can derive the following probabilistic guarantee for the
correctness of the estimated preference:

Ep,s1,s2

[
I
(
Ĥ · [c(p, si1)− c(p, si2)] ≥ 0

) ∣∣∣∣∆ci

]
≥ (1− 2ϵ) · ξ(∆ci) + ϵ. (7)

This result shows that the probability of the estimated preference Ĥ aligning with the true reward
difference c(x, y1)−c(x, y2) is lower-bounded by a function of ξ(c1, c2), indicating high confidence
in the preference correctness. The theoretical analysis follows closely the work of Sun et al. (Sun
et al., 2025). Furthermore, we assume that the bias introduced by the MC estimation with the same
annotator A can be offset, i.e.,
Assumption 3. For the preference annotated data pair (p, si1, c

i
1), (p, s

i
2, c

i
2), the bias introduced

by the MC estimation with the same annotator A can be offset, meaning that the distribution of
∆b = b1(p, s

i
1, A) − b2(p, s

i
2, A) is concentrated around 0. We will assume the probability density

function value of the random variable ∆b at ∆b < ĉi1 − ĉi2 is always greater than the PDF value at
∆b > ĉi1 − ĉi2, i.e.,

p∆b(u) > p∆b(v), ∀u < ĉi1 − ĉi2, v > ĉi1 − ĉi2. (8)

We can then compare the accurate rate of the hard annotation and our preference annotation with the
noisy ordering:

Lemma 1. For noisy dataset Dpref = {(pn, s1pn
, s2pn

, ĥn), n = 1, · · · , N} with selected data pairs
follow Assumption 1 and dataset Dhard = {(pn, spn , ĥn), n = 1, · · · , N}, the accuracy of model
trained on Dpref is higher than Dhard across the whole dataset, i.e.

EDpref

[
I
(
Ĥ · [c(p, si1)− c(p, si2)] ≥ 0

)]
> EDhard

[
I
(
Ĥ · [c(p, si)− λ] ≥ 0

)]
. (9)

We find that the model trained on the noisy preference annotated dataset Dpref achieves higher
overall accuracy compared to the model trained on the hard annotated dataset Dhard. Preference-
based training better captures the relative quality of solutions across the entire dataset. Under noisy
labels, pairwise comparisons provide more informative learning signals than hard annotated labels.

4 THE FRAMEWORK OF RL TRAINING

We integrate Preference Process Models into the Generalized Reinforcement Learning with GRPO
framework to enhance the training of mathematical reasoning models. We consider a reinforcement
learning framework where we model the process a math agent solves problem q as a Markov De-
cision Process (MDP), defined by the tuple (S,A, p, r, γ). Here, S denotes the state space, A the
action space, p : S × S × A → [0, 1] the transition dynamics, r : S × A → R the reward function,
and γ ∈ [0, 1) the discount factor. The agent’s behavior is governed by a policy πθ(a|s), parame-
terized by θ, which defines a distribution over actions given a state. For each problem q, trajectories
{oi}Gi=1 are generated under the old policy πθold(O|q). We optimize a policy πθ(a|s) by maximizing
the expected discounted cumulative reward, formalized as:

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold (O|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
Âi,t−βDKL [πθ||πref}

]
.

Here G is the number of trajectories, and oi denotes the i-th trajectory. Each trajectory oi has a length
|oi|, and oi,t refers to the action taken at step t in the i-th trajectory. The terms πθ(oi,t|q, oi,<t) and
πθold(oi,t|q, oi,<t) denote the probabilities of selecting action oi,t under the new policy πθ and the
old policy πθold , respectively. A commonly used estimation method for the advantage function Âi,t

is normalized rewards.

Âi,t = r̃t =
ri,t −mean(rt)

std(rt)
. (10)

Note that the advantage function is typically defined by A(x, y) = Q(x, y)−V (x), which is not align
with the normalized reward Âi,t. Assuming the output of reward model ri,t contains bias b(q, oi,<t),
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Table 1: Performance comparison of different 7B reward models in PROCESSBENCH across
GSM8K, MATH, OlympiadBench and Omni-MATH.

Model GSM8K MATH OlympiadBench Omni-MATH

acc F1 acc F1 acc F1 acc F1

Math-Shepherd-PRM-7B 0.786 0.582 0.721 0.594 0.693 0.372 0.662 0.554
Qwen2.5-Math-7B-Math-Shepherd 0.785 0.585 0.715 0.588 0.691 0.413 0.674 0.546

Math-PSA 0.763 0.576 0.711 0.582 0.681 0.422 0.672 0.543
Skywork-PRM-7B 0.795 0.533 0.722 0.583 0.697 0.486 0.684 0.576
EurusPRM-Stage2 0.784 0.521 0.708 0.502 0.701 0.417 0.664 0.556

PPRM-7B 0.776 0.512 0.733 0.612 0.734 0.577 0.712 0.645

Table 2: The performance of policy model initialized by Qwen2.5-Math-7B trained with PRMs on
GRPO.

GSM8K AMC MATH Olympiad Bench AIME
ORM 93.24 ± 0.25 38.84 ± 0.55 70.78 ± 0.44 49.87 ± 0.83 10.31 ± 0.12

Math-Shepherd-PRM-7B 95.22 ± 0.11 44.47 ± 0.42 74.03 ± 0.27 52.46 ± 0.54 16.71 ± 0.26
Math-PSA 94.02 ± 0.07 21.49 ± 0.45 73.88 ± 0.29 52.55 ± 0.47 13.33 ± 0.21

Skywork-PRM-7B 94.36 ± 0.05 45.73 ± 0.47 74.47 ± 0.31 53.04 ± 0.19 15.82 ± 0.14
EurusPRM-Stage2 94.52 ± 0.08 44.49 ± 0.64 73.80 ± 0.21 51.15 ± 0.15 16.24 ± 0.21

PPRM 95.83 ± 0.11 47.97 ± 0.42 76.44 ± 0.25 56.01 ± 0.34 18.87 ± 0.23

the estimation of the advantage function becomes dependent on the accuracy of the reward signal
and suffers from high variance when the group size G is limited. Therefore, it is needed to propose
a more robust advantage estimation formula.

As suggested by the objective function of BT model, we employ the sigmoid function σ, which
introduces a smoothing effect, further stabilizing the advantage estimates by mitigating the impact of
outliers or extreme rewards. The output reward values of PPRM for a pair of actions (x, y1), (x, y2)
can estimate the probability of obtaining a higher return, i.e. p(y1 > y2) = σ(r(x, y1)− r(x, y2)).
We denote the correctness of the final output of the policy model in state (x, y) by ox,y ∈ {0, 1}.
Therefore, Q(x, y) = E(ox,y) = p̄ox,y

and the baseline V (x) = 1
G

∑
i Q(x, yi). Our advantage

estimator leverages the strengths of preference learning to reduce bias and improve the robustness of
the reward signal. Specifically, the preference-based advantage estimator is formulated as follows:

Âi,t =
1

G− 1

∑
j ̸=i

σ(ri,t − rj,t)−
1

G(G− 1)

∑
i

∑
j ̸=i

σ(ri,t − rj,t). (11)

Here, Ai,t represents the advantage of action i at time step t, ri,t and rj,t denote the rewards for
actions i and j respectively, and σ is a sigmoid function that maps the reward difference to a pref-
erence probability. This formulation aggregates pairwise comparisons across all actions, ensuring
that the advantage estimate reflects the relative quality of actions rather than their absolute rewards.
By focusing on relative comparisons rather than absolute rewards, the estimator mitigates the high
variance often associated with traditional advantage estimation methods, which leads to more stable
and efficient policy updates during training.

5 EXPERIMENTS

This section presents our comprehensive experimental framework for enhancing mathematical rea-
soning in LLMs through PPRM training and RL training. First, we detail the PPRM training
pipeline, where models learn to evaluate intermediate reasoning steps using filtered MATH dataset
problems and Monte Carlo-based value estimation. We then examine RL training methodologies,
which leverage PRM-generated signals to refine the LLM’s reasoning trajectory.

5.1 PPRM TRAINING

Data Generation. We conduct the data generation process for training the PPRM utilizing
Qwen2.5-Math-7B-Instruct as the completer model on the MATH dataset (Hendrycks et al.) , a
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(a) Best-of-N evaluation on GSM8K.
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(b) Best-of-N evaluation on MATH.

Figure 3: Best-of-N evaluation results on GSM8K and MATH datasets with Qwen2.5-Math-7B-
Instruct as the generator.

well-established benchmark for mathematical reasoning tasks. For each state s in the reasoning pro-
cess, 16 rollouts are generated to explore a wide range of reasoning trajectories, ensuring that the
PRM could learn from diverse reasoning strategies and a search limit of 50 was set for each problem.
To reduce noise and focus on challenging and informative examples, we filter problems that were
either too simple or too difficult for the completer. To estimate the value Q of each reasoning step,
we use α = 0.5 and β = 0.9 in Eq.(1) for each Monte Carlo estimation.

Merics and Baseline. We evaluate our PPRM on the ProcessBench performance and Best-of-N
(BoN) strategy effectiveness, which evaluate the utilities of reward models in straightforwardly im-
proving downstream task performance and the abilities of reward models to identify specific er-
roneous steps in reasoning processes. ProcessBench (Zheng et al., 2024) serves as our primary
evaluation framework, comprehensively assessing models’ ability to predict step-by-step reason-
ing correctness across challenging mathematical reasoning datasets: GSM8K (Cobbe et al., 2021)
(elementary math problems), MATH (Hendrycks et al.) (advanced competition-level problems),
OlympiadBench (He et al., 2024) (olympiad-style problems), and Omni-MATH (diverse mathemat-
ical reasoning tasks). This multi-dataset evaluation provides a robust measure of model perfor-
mance across different difficulty levels and problem types. We also apply the Best-of-N strategy,
which samples N reasoning paths and selects the one with the highest final-answer confidence. We
compare our PPRM with Math-Shepherd-PRM-7B (Wang et al., 2024b), Qwen2.5-Math-7B-Math-
Shepherd (Zhang et al., 2025), MATH-PSA (Wang et al., 2024a) which employs Omega PRM (Luo
et al., 2024), Skywork-PRM-7B (Liu et al., 2024) and EurusPRM-Stage2 (Cui et al., 2025) trained
using Implicit PRM (Yuan et al., 2024) which are trained on automated annotation data.

Evaluation Results. We trained 7B-parameter PPRM, initialized with Qwen2.5-Math-7B-Instruct
with the BT loss function on the preference annotated dataset. We report the performance of pref-
erence process model on ProcessBench and the Best-of-N (BoN) strategy. Our PPRM demonstrates
superior overall performance on ProcessBench with the highest average accuracy and F1 scores
across the four datasets, indicating its balanced precision-recall capabilities. Notably, PPRM ex-
cels in OlympiadBench and Omni-MATH, suggesting specialized strengths in olympiad-style chal-
lenges. These results underscore the importance of applying preference annotations in step-wise
evaluation in refining LLM reasoning, with PPRM achieve better error identification balance and
accuracy across datasets.

The results best of N strategy on GSM8K and MATH with Qwen2.5-Math-Instruct-7B as the policy
model in Figure 3 exhibit consistent performance improvements of PPRM with increasing sample
sizes from 4 to 64. suggesting PPRM’s architectural advantages in leveraging larger candidate pools
through its robust preference learning framework. Especially on MATH, there is a significant gap of
the accuracy between the two training methods. One hypothesis is that for challenging datasets like
MATH, PPRM can deliver more robust reward signals with lower variance. The findings particularly

8
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Table 3: The performance of policy model initialized by Qwen2.5-Math-7B trained with PRMs on
GRPO.

GSM8K AMC MATH Olympiad Bench
Math-Shepherd-PRM-7B 95.1 45.2 74.4 52.6

EurusPRM-Stage2 94.7 44.7 73.6 51.4
Skywork-PRM-7B 94.4 46.1 74.2 53.1

Math-PSA 94.1 21.7 73.5 52.3
PPRM 95.8 47.9 76.3 55.8

Table 4: The performance of policy model initialized by Qwen2.5-Math-7B trained with PRMs on
RLOO and GRPO with various advantage estimators.

GSM8K AMC MATH Olympiad Bench
RLOO 95.4 48.3 76.8 54.5
ReMax 94.5 45.4 75.6 54.9
GRPO 95.8 47.9 76.3 55.2

GRPO-P 96.0 49.7 78.2 56.8

emphasize PPRM’s robust generalization, making it a promising approach for reliable mathematical
reasoning.

5.2 RL TRAINING

We conduct RL training based on Qwen2.5-Math-1.5B and Qwen2.5-Math-7B. The training data
consists of chain-of-thought format questions from the MATH dataset. For reward modeling, we
compare our PPRM with Math-Shepherd, EurusPRM-Stage2, and MATH-PSA. For GRPO and
RLOO implementation, we set the policy model learning rate to 1e-6 with a KL coefficient of 0.001.
During exploration, we generate 8 outputs per question with a maximum sequence length of 1024
tokens. The training batch size is configured as 128 to balance memory constraints and training ef-
ficiency. For advantage estimator in GRPO, we employ the normalized estimator and our advantage
estimator in Eq (11).

We repeat the experiment for 10 times and report the average score of the policy model initialized
by Qwen2.5-Math-7B in Table (3) and Table (4). The performance of the policy model initialized
by Qwen2.5-Math-1.5B can be found in Table (5) and Table (6) in Appendix B. The results of
PPRM are demonstrated in the performance of various models on challenging datasets including
GSM8K (Cobbe et al., 2021), AMC (Li et al., 2024), MATH (Hendrycks et al.), and Olympiad
Bench. Our PPRM achieves the highest scores in AMC and MATH , while PPM+standard performs
strongly in Olympiad Bench. Table (6) demonstrates GRPO with our improved preference-based
advantage estimator shows the strongest performance, particularly excelling in MATH and AMC
outperforming both standard GRPO and RLOO. The results highlight that while the baseline remains
competitive in simpler tasks like GSM8K, PPRM combined with enhanced GRPO delivers more
robust performance in complex reasoning scenarios.

6 DISCUSSION

We propose a reinforcement learning framework based on a Preference Process Reward Model
(PPRM) to address the challenge in Reinforcement learning of obtaining precise step-level anno-
tations for process reward models in multi-step reasoning tasks. Our enhanced algorithm enables
efficient optimization, leading to more robust reasoning in LLMs. A primary area for improvement
involves the computational demands of the MCTS process. Although MCTS is less expensive than
extensive human annotation, its computational overhead remains substantial, potentially limiting
the scalability of the approach to more complex or longer-horizon reasoning tasks. Our future work
would prioritize exploring more efficient MCTS variants or alternative simulation-based methods.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

Our paper complies with the ICLR Code of Ethics.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences. International Conference on Artificial Intelligence and Statistics, abs/2310.12036,
2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Ka-
plan. Training a helpful and harmless assistant with reinforcement learning from human feedback.
arXiv preprint arXiv:2204.05862, 2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4), 1952.

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers, Yinxiao Liu, and Lei Meng. Enhancing
reinforcement learning with dense rewards from language model critic. In EMNLP, 2024.

Alex J. Chan, Hao Sun, Samuel Holt, and Mihaela van der Schaar. Dense reward for free in rein-
forcement learning from human feedback. ICML, 2024.

Huayu Chen, Guande He, Lifan Yuan, Ganqu Cui, Hang Su, and Jun Zhu. Noise contrastive align-
ment of language models with explicit rewards. ArXiv, abs/2402.05369, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2).

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
arXiv preprint arXiv:2310.10505, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR, 2023.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024.

Jianqiao Lu, Zhiyang Dou, Hongru Wang, Zeyu Cao, Jianbo Dai, Yingjia Wan, Yinya Huang, and
Zhijiang Guo. Autopsv: Automated process-supervised verifier. ArXiv, abs/2405.16802, 2024.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
automated process supervision. arXiv preprint arXiv:2406.06592, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.
ArXiv, abs/2203.02155, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Amrith Rajagopal Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh
Agarwal, Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling
automated process verifiers for llm reasoning. ArXiv, abs/2410.08146, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. ArXiv, abs/2408.03314, 2024.

Hao Sun, Yunyi Shen, and Jean-Francois Ton. Rethinking reward modeling in preference-based
large language model alignment. In International Conference on Learning Representations, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Cantón Ferrer, et al. Llama 2: Open foundation and fine-tuned chat models.
ArXiv, abs/2307.09288, 2023.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen Zhu, Anjie Liu, Ziqin Gong, Yan Song,
Lei Chen, Lionel M Ni, et al. Openr: An open source framework for advanced reasoning with
large language models. arXiv preprint arXiv:2410.09671, 2024a.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024b.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in Neural Information Processing Systems, 2023.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou,
Zhiyuan Liu, and Hao Peng. Free process rewards without process labels. arXiv preprint
arXiv:2412.01981, 2024.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical rea-
soning. arXiv preprint arXiv:2412.06559, 2024.

A COMPARISON OF ORDER CONSISTENCY PROPERTIES BETWEEN HARD
ANNOTATION AND PREFERENCE ANNOTATION.

A.1 PROOF OF PROPOSITION 1

Proof. The idea of the proof is to first use Markov’s inequality to bound probability that for a given
distance c1−c2 the preference model not well approximate the annotator and under the event that the
preference model approximate the annotator well, we bound the total error combined by preference
model and annotator.

By assumption we have the (marginal) error probability averaging over the dataset is

Px,y1,y2,h

[
1
(
Ĥ ̸= h

)]
= Ec1,c2

[
P
(
Ĥ ̸= h

∣∣c1, c2)] < δϵ. (12)

by Markov’s inequality,

Pc

(
P
(
Ĥ ̸= h

∣∣c1, c2) ≥ ϵ
)
≤ δϵ

ϵ
= δ. (13)

In the event {(c1, c2) : P
(
Ĥ ̸= h

∣∣c1, c2) < ϵ}, with probability 1 − δ we bound the error rate as
function of c1, c2. Condition on c1, c2, we can discuss the order consistency of the learned model
Ĥθ∗ with the oracle utility
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• Correct Case: When the annotator is correct, the learned model agrees with the annotator
with probability at least 1− ϵ. Thus:

pcorrect = p(Ĥ = ĥ|ĥ = h) ≥ (1− ϵ). (14)

• Incorrect Case: When the annotator is incorrect, the learned model agrees with the annota-
tor with probability at most ϵ. Thus:

pincorrect = p(Ĥ ̸= ĥ|ĥ ̸= h) ≤ ϵ. (15)

The order consistency of the learned model Ĥθ∗ with the oracle utility can be expressed as:

Ex,y1,y2∼ℓ(x)

[
I
(
Ĥ(r(y1, x)− r(y2, x)) ≥ 0

)∣∣∣c1, c2] = pcorrect · p(ĥ = h) + pincorrect · p(ĥ ̸= h)).

(16)

Substituting the bounds and simplifying, we have

Ex,y1,y2∼ℓ(x)

[
I
(
Ĥ(r(y1, x)− r(y2, x)) ≥ 0

)∣∣∣c1, c2] ≥ (1− 2ϵ) · ξ(c1, c2) + ϵ. (17)

A.2 PROOF OF LEMMA 1

Proof. We employ two different annotations, the hard annotation and the preference annotation
to the same dataset D = {(pn, sn, ĉn), n = 1, · · · , N} and obtain annotated dataset Dhard =

{(pn, sn, ĉn, ĥhard), n = 1, · · · , N} and Dpref = {(pn, s1n, s2n, ĉ1n, ĉ2n, ĥpref), n = 1, · · · , N
2 }. We

will compare the accurate rate of the hard annotation and our preference annotation with the noisy
ordering.

For hard estimation, the probability of noise is given by Eq.(3). Substituting into the Eq.(7), we have

Ep,s

[
I
(
Ĥ · [ci − λ] ≥ 0

) ∣∣∣∣∆ci

]
≥ (1−2ϵ) ·p({b(p, si, A) : (ci−λ)2 < (λ−ci) ·b(p, si, A)})+ϵ.

(18)
The accuracy of model Ĥhard trained on Dhard across the dataset can be expressed by the sum of
conditions when ci − λ > 0 and when ci − λ < 0:

EDhard

[
I
(
Ĥ · [c(p, si)− λ] ≥ 0

)]
=

∑
ĉ

[
I
(
Ĥ · [ĉ− λ] ≥ 0

) ∣∣∣∣∆ci

]
(19)

≥
∑
ĉ<λ

[(1− 2ϵ) · p(ĉ− λ > b) + ϵ] (20)

+
∑
ĉ>λ

[(1− 2ϵ) · p(ĉ− λ < b) + ϵ] . (21)

For preference estimation, the probability of noise is given by Eq.(5). Substituting into the Eq.(7),
we have

Ep,s

[
I
(
Ĥ · [ci − λ] ≥ 0

) ∣∣∣∣∆ci

]
≥ (1−2ϵ) ·p(ĉ(p, si1)− ĉ(p, si2) < b(p, si1, A)− b(p, si2, A))+ ϵ.

(22)
The accuracy of model Ĥpref trained on Dpref across the dataset can be expressed by:

EDpref

[
I
(
Ĥ · [c1 − c2] ≥ 0

)]
=

∑
ĉ1,ĉ2

Ep,s1,s2

[
I
(
Ĥ · [c1 − c2] ≥ 0

) ∣∣∣∣ĉ1 − ĉ2

]
(23)

≥
∑
ĉ1,ĉ2

[(1− 2ϵ) · p(ĉ1 − ĉ2 > b1 − b2) + ϵ] . (24)
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Note that the expectation in Eq.(19) and Eq.(23) are summed over the same dataset D =
{(pn, sn, ĉn), n = 1, · · · , N}. Therefore,

EDpref

[
I
(
Ĥ · [c1 − c2] ≥ 0

)]
− EDhard

[
I
(
Ĥ · [c(p, si)− λ] ≥ 0

)]
(25)

≥ (1− 2ϵ)
∑
ĉ1,ĉ2

[
p(ĉ1 − ĉ2 > b1 − b2)−

1

2
(p(ĉ1 − λ > b1) + p(ĉ2 − λ < b2))

]
. (26)

The ranges of correct ratio c and ĉ are both (0, 1). Thus the range of bias b = ĉ−c ∈ (ĉ−1, ĉ). Since
b1 and b2 are independent, the probability p(ĉ1 − ĉ2 > b1 − b2) , p(ĉ1 − λ < b) and p(ĉ2 − λ < b)
can be expressed in integral of b1 and b2 as:

P (ĉ1 − ĉ2 > b1 − b2) =

∫ ĉ2

ĉ2−1

∫ ĉ1−ĉ2+b2

ĉ1−1

p(b1)p(b2) db1 db2. (27)

P (ĉ1 − λ > b1) =

∫ ĉ1−λ

ĉ1−1

p(b1) db1 =

∫ ĉ2

ĉ2−1

∫ ĉ1−λ

ĉ1−1

p(b1)p(b2) db1 db2. (28)

P (ĉ2 − λ < b2) =

∫ ĉ1

ĉ2−λ

p(b2) db2 =

∫ ĉ1

ĉ1−1

∫ ĉ2

ĉ2−λ

p(b2)p(b1) db2, db1. (29)

Substituting the integrals and simplifying, we have

p(ĉ1 − ĉ2 > b1 − b2)−
1

2
(p(ĉ1 − λ > b1) + p(ĉ2 − λ < b2))

=
1

2

[∫ ĉ2−λ

ĉ2−1

∫ ĉ1−ĉ2+b2

ĉ1−1

p(b1)p(b2) db1 db2 −
∫ ĉ2−λ

ĉ2−1

∫ ĉ1−λ

ĉ1−ĉ2+b2

p(b1)p(b2) db1 db2

]

+
1

2

[∫ ĉ2

ĉ2−λ

∫ ĉ1−ĉ2+b2

ĉ1−λ

p(b1)p(b2) db1 db2 −
∫ ĉ2

ĉ2−λ

∫ ĉ1−1

ĉ1−ĉ2+b2

p(b1)p(b2) db1 db2

]
.

Performing the variable substitution u = b1+b2
2 , v = b1−b2

2 . Note that the integration regions
Ω1 = {(b1, b2) : b1 − b2 < ĉ1 − ĉ2, ĉ2 − 1 < b2 < ĉ2 − λ} and Ω2 = {(b1, b2) : b1 − b2 >
ĉ1 − ĉ2, ĉ2 − 1 < b2 < ĉ2 − λ} are symmetric with respect to v = ĉ1−ĉ2

2 . Therefore, the first term
of integral can be expressed by∫∫

Ω1

pu(u)pv(v)− pu(u)pv(ĉ1 − ĉ2 − v)du dv. (30)

Here pu, pv represents the PDF of u and v. The same is true for the integration regions Ω3 =
{(b1, b2) : b1 − b2 < ĉ1 − ĉ2, ĉ2 − λ < b2 < ĉ2} and Ω4 = {(b1, b2) : b1 − b2 > ĉ1 − ĉ2, ĉ2 − λ <
b2 < ĉ2}, and the second term of integral can be expressed by∫∫

Ω3

pu(u)pv(v)− pu(u)pv(ĉ1 − ĉ2 − v)du dv. (31)

By Assumption (3) we have pu(u)pv(v) > pu(u)pv(ĉ1 − ĉ2 − v), thus p(ĉ1 − ĉ2 > b1 − b2) >
1
2 (p(ĉ1 − λ > b1) + p(ĉ2 − λ < b2)). With Eq.(25), we finally get:

EDpref

[
I
(
Ĥ · [c(p, si1)− c(p, si2)] ≥ 0

)]
> EDhard

[
I
(
Ĥ · [c(p, si)− λ] ≥ 0

)]
. (32)

B EXPERIMENT DETAILS

We employ the verl framework in (Sheng et al., 2024), where we use PyTorch FSDP to execute
diverse RLHF dataflows and attain high throughput. The entire process of RL training includes
generating multiple candidate solutions to the instruction using the generation model, and scoring

14
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Table 5: The performance of policy model initialized by Qwen2.5-Math-1.5B trained with PRMs on
GRPO.

GSM8K AMC MATH Olympiad Bench
Math-Shepherd-PRM-7B 88.4 23.6 50.2 25.1

EurusPRM-Stage2 87.7 22.2 49.6 23.8
Skywork-PRM-7B 88.2 23.8 50.2 25.3

Math-PSA 88.0 21.7 50.6 24.3
PPRM 88.6 24.7 51.0 25.7

Table 6: The performance of policy model initialized by Qwen2.5-Math-1.5B trained with PRMs on
RLOO and GRPO with various advantage estimators.

GSM8K AMC MATH Olympiad Bench
RLOO 87.8 25.8 49.6 24.5
ReMax 87.5 25.2 50.4 24.9
GRPO 88.6 24.7 51.0 25.7

GRPO-P 88.8 26.0 53.2 26.2

each candidate using a PRM. We use vLLM (Kwon et al., 2023) to implement the process. Our
PPRM is trained on 4 A6000 GPUs and we performan RL training on 8 A6000 GPUs. We conduct
RL training based on Qwen2.5-Math-1.5B and we report the result in Table 5 and 6. The training
data consists of chain-of-thought format questions from the MATH dataset. For reward modeling,
we compare our PPRM with Math-Shepherd, EurusPRM-Stage2, and MATH-PSA. For GRPO and
RLOO implementation, we set the policy model learning rate to 1e-6 with a KL coefficient of 0.001.
We generate 8 outputs per question with a maximum sequence length of 1024 tokens. The training
batch size is configured as 128 to balance memory constraints and training efficiency.
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