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Abstract

We accelerate the iterative hard thresholding (IHT) method, which finds k important
elements from a parameter vector in a linear regression model. Although the plain
IHT repeatedly updates the parameter vector during the optimization, computing
gradients is the main bottleneck. Our method safely prunes unnecessary gradient
computations to reduce the processing time. The main idea is to efficiently construct
a candidate set, which contains k important elements in the parameter vector, for
each iteration. Specifically, before computing the gradients, we prune unnecessary
elements in the parameter vector for the candidate set by utilizing upper bounds on
absolute values of the parameters. Our method guarantees the same optimization
results as the plain IHT because our pruning is safe. Experiments show that our
method is up to 73 times faster than the plain IHT without degrading accuracy.

1 Introduction

The optimization problem of finding sparse parameter vectors in linear regression models is a
crucial problem that crosses a wide range of fields, including feature selection [20, 35], sparse
coding [32], dictionary learning [33], and compressed sensing [6]. To obtain the sparse parameter
vector, the parameter vector is often constrained to have k nonzero elements. Among a huge number
of algorithms that have been developed for this problem [25, 29, 14, 27, 10, 19, 11, 20], iterative hard
thresholding (IHT) methods [6] are practical methods based on gradient descent methods because
they have almost no overhead over the plain gradient descent method [2].

A procedure of IHT consists of two main parts in an iteration. First, it updates the parameter vector
in accordance with the gradient descent method. Then, the parameter vector is projected onto a
feasible set being a set of sparse parameter vectors. In the projection, IHT uses a hard thresholding
operator that selects the k-largest elements in terms of magnitude of the parameter vector, and the
other elements are set to zero. IHT repeats this procedure until the stopping criterion is satisfied.

When a design matrix of the linear regression model is an m-by-n matrix, the length of the parameter
vector is n, and gradient computations of IHT require O(mn) or O(n2) time for each iteration.
Specifically, IHT suffers from the increase in processing time for large m and n. Taking feature
selection as an example, IHT slows down for large datasets because m and n correspond to the
numbers of samples and features in the dataset, respectively. The gradient computations are much
more computationally expensive than the projection of the parameter vector because the projection
only requires O(n log k) time if it uses a heap. Therefore, the gradient computations are dominant in
the overall procedure of IHT, and we need to reduce the cost to raise the efficiency of IHT.
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This paper proposes fast IHT that safely prunes unnecessary gradient computations. Before computing
the gradients for each iteration, the proposed method efficiently constructs a candidate set whose
elements correspond to indices of the k-largest elements in terms of magnitude of the parameter
vector. When constructing the candidate set, our method prunes indices that are clearly not included
in the candidate set. To identify such indices, we compute upper bounds of absolute values for
the elements of the parameter vector. If the upper bound is smaller than a threshold, the index is
not included in the candidate set. The threshold is automatically determined by leveraging lower
bounds of absolute values for the elements of the parameter vector. Since the computation cost
of the upper and lower bounds is O(n) time, we can efficiently construct the candidate set. By
updating only the parameters corresponding to the candidate set, we can prune unnecessary gradient
computations. Our method guarantees the same optimization results as the plain IHT because it safely
prunes unnecessary computations. In addition, our method does not need additional hyperparameter
tuning. Experiments demonstrate that our method is up to 73 times faster than the plain IHT while
maintaining accuracy on feature selection tasks.

2 Related Work

In [4, 30], the authors utilized a double-overrelaxation approach to improve the convergence speed of
IHT. They use two relaxation steps for the parameter vector, which are similar to the momentum of
Nesterov’s method [28]. In [8, 24], the authors introduced the momentum to IHT inspired by the fast
iterative shrinkage thresholding algorithm (FISTA) [3]. While FISTA uses the momentum with a soft
thresholding operator, Cevher [8] uses it with the hard thresholding operator. This Accelerated IHT
(AccIHT) has substantial theoretical and empirical improvement over the plain IHT [23].

While the previous methods have reduced the number of iterations to accelerate IHT as described
above, to the best of our knowledge, there are no papers on reducing the computation cost per iteration
of IHT. This paper aims to fill this gap based on the pruning strategy. For convex and some nonconvex
regularization, working set algorithms are used to reduce the cost of solvers [7, 21, 26, 31]. They
solve a growing sequence of subproblems that are restricted to a small subset of parameters during
optimization. In [12, 13, 22, 15, 16, 18, 17], the authors reduced the cost by skipping unnecessary
parameter updates for coordinate descent with sparsity-inducing norms. However, since these methods
are tailored for coordinate descent or the soft thresholding operator, they cannot be used for IHT,
which selects k elements from the parameter vector by using the hard thresholding operator.

3 Preliminary

Notation. We denote scalars, vectors, and matrices with lower-case, bold lower-case, and bold
upper-case letters, e.g., x, x and X , respectively. Given a matrix X , we denote its i-th row by Xi.
Given a vector x ∈ Rm, we denote its i-th element by xi, and we call i index. || · ||2 is the ℓ2 norm.
||x||0 is |{i ∈ {1, ...,m}|xi ̸= 0}| and represents the number of nonzero elements in x. 0 ∈ Rm is
the m-dimensional vector whose elements are zeros. I represents the identity matrix. supp(x) is the
function that returns the indices of nonzero elements in x.

3.1 Problem Setting

Let X ∈ Rm×n be an input matrix (design matrix), y ∈ Rm be a set of continuous responses, and
θ ∈ Rn be a parameter vector of a linear regression model. To find a sparse parameter vector of the
model, we consider the following optimization problem [5]:

min
θ∈Rn

1
2 ||y −Xθ||22 subject to ||θ||0 ≤ k. (1)

In the above problem, the number of nonzero elements in the parameter vector, ||θ||0, is constrained
by k ∈ {1, ..., n}. Here, we will let f(θ) = 1

2 ||y −Xθ||22 for simplicity.

3.2 Iterative Hard Thresholding

IHT is the practical algorithm for Problem (1) [5, 2]. It repeatedly performs the following iteration:
zt = θt − η∇f(θt) = θt − ηX⊤(Xθt − y) = (I − ηX⊤X)θt + ηX⊤y, (2)

θt+1 = Hk(z
t), (3)
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Algorithm 1 Iterative Hard Thresholding
1: Input: sparsity level k, step size η
2: Initialization: θ1 ← 0, t← 1
3: repeat
4: zt ← θt − η∇f(θt); ▷ Performing gradient descent method
5: θt+1 ← Hk(z

t); t← t+ 1; ▷ Selecting the k-largest elements in magnitude of zt

6: until a stopping criterion is met

where η > 0 is the step size, θt is the parameter vector at the t-th iteration. Hk(z
t) is the hard

thresholding operator that selects the k-largest elements in the magnitude of zt and sets the other
elements to zero. The selection requires O(n log k) time if it uses a heap. The pseudocode is
described in Algorithm 1. See [5, 14, 6, 8, 4, 20, 23, 2] for theoretical discussions of IHT.

From Equation (2) and Algorithm 1, computing gradients ∇f(θt) clearly dominates the other cost.
In Equation (2), we use the second equation or the third one to compute zt. They require O(mn)
and O(n2) times in every iteration, respectively2. Therefore, IHT incurs high computation cost when
X ∈ Rm×n is large.

4 Proposed Algorithm

This section describes our algorithm that reduces the computation cost per iteration in IHT.

4.1 Main Idea

The bottleneck of IHT is the gradient computation to obtain zt of Equation (2): it requires O(mn)
or O(n2) time per iteration. Therefore, we reduce the cost by pruning unnecessary elements in zt

before computing the gradients. For the pruning, we introduce a candidate set Dt such that |Dt| = k
for the t-th iteration. This set maintains indices of nonzero elements of the parameter vector during
optimization. In other words, the candidate set contains indices of the k-largest elements in terms
of magnitude of the parameter vector. Before computing Equation (2), we quickly check whether
indices of elements in zt are included or not in Dt+1. If an index j is not included in Dt+1, we can
prune zt

j and skip the corresponding computation of Equation (2) including the gradient computation.

The point is that our method can efficiently perform the above checking procedure. Specifically, our
method utilizes zt

j , which is an upper bound of |zt
j |. Since the computation of the upper bound does

not include the gradient computation, it only requires O(n) time for all the elements in zt. For the
checking procedure, after initializing Dt appropriately, our method finds a threshold for the pruning
by utilizing zt

j , which is a lower bound of |zt
j |. Then, if zt

j is smaller than the threshold for j ̸∈ Dt,
the index j is not included in Dt+1. We describe the details in the next section.

4.2 Upper Bound and Candidate Set

This section introduces candidate set Dt and its updating method. Since we need upper bound zt
j to

efficiently update Dt as described in Section 4.1, we first define zt
j as follows:

Definition 1 Let t∗ be 1 ≤ t∗ < t in Algorithm 1. Then, zt
j at the t-th iteration in Algorithm 1 is

computed as follows:

zt
j = |Gjθ

t∗ + η(X⊤y)j |+ ||Gj ||2||θt − θt∗ ||2, (4)

where G = I − ηX⊤X .

We note that G and X⊤y are precomputed only once before entering the optimization, and t∗ is
automatically decided as described in Section 4.4. zt

j has the following property:

2If I − ηX⊤X and X⊤y are precomputed, the cost is O(n2) time. If the precomputation is not performed,
the cost is O(mn) time because we first compute h = Xθt−y at O(mn) time, then compute X⊤h at O(mn)
time. See the Appendix for a discussion of IHT with sparse matrices.
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Lemma 1 (Upper bound) When zt
j is computed by Equation (4), we have zt

j ≥ |zt
j |.

Lemma 1 is derived from the triangle inequality and the Cauchy–Schwarz inequality. It guarantees
that zt

j is the upper bound of |zt
j |. The computation cost of the upper bound is as follows:

Lemma 2 (Computation cost of upper bound) The computation cost of Equation (4) for all j ∈
{1, ..., n} at the t-th iteration is O(n) time given G, X⊤y and |Gjθ

t∗ + η(X⊤y)j |.

Lemma 2 shows that the upper bound at the t-th iteration requires only O(n) time if G and X⊤y are
precomputed and |Gjθ

t∗ + η(X⊤y)j | is computed at the t∗-th iteration.

Next, we define candidate set Dt as follows:

Definition 2 (Candidate set) Let I = {1, ..., n} be a set of all the indices in the parameter vector
θ ∈Rn. Suppose that Dt⊂ I is a set such that |Dt| = k at the t-th iteration in IHT where t > 1, and
initialized as Dt = supp(θt) at the beginning of the iteration. Then, we call Dt the candidate set.

Dt has indices that are candidates for supp(θt+1) in IHT. Since Dt is initialized as Dt = supp(θt)
at the beginning of the iteration in Definition 2, we need to update Dt to Dt+1 so that it matches
supp(θt+1). Although we can update Dt such that Dt+1 = supp(Hk(z

t)) by computing Equa-
tions (2) and (3), they include the gradient computation that requires O(mn) or O(n2) time.

To efficiently update Dt to Dt+1, we utilize the upper bound zt
j of Equation (4) for j ̸∈ Dt. By using

zt
j , we can identify unnecessary elements in zt that are clearly not included in Dt+1 as follows:

Lemma 3 (Pruning unnecessary elements) Suppose that zt is computed by using Equation (4),
and the candidate set Dt is initialized as described in Definition 2 at the beginning of the iteration
for t > 1. Let zt

imin
be zt

i having the minimum |zt
i | in all i ∈ Dt, and imin be the index. Then, if

|zt
imin
| ≥ zt

j holds for j ̸∈ Dt, j is not included in Dt+1.

From Lemma 3, when we check whether j ̸∈ Dt is included or not in Dt+1, we do not need to
compute the gradient corresponding to zt

j if |zt
imin
| ≥ zt

j holds. Although we need to compute the
gradients to find zt

imin
in the initial Dt, the cost is relatively small because the cardinality of Dt is

usually small as |Dt| = k ≪ n.

Algorithm 2 is the pseudocode of updating the candidate set. It first copies Dt to Dt+1 (line 3).
Lines 4–13 check whether the computation of zt

j can be pruned or not by following Lemma 3. If the
computation is pruned (line 5), we skip the computation of zt

j including the gradient computation
(line 6). If the computation is not pruned (line 7), line 8 computes zt

j . If |zt
imin
| < |zt

j | holds (line 9),
the algorithm updates the candidate set Dt+1 to remove imin and include j (line 10). In this case,
zt
imin

must also be updated since Dt+1 has been updated (line 11). If |zt
imin
| < |zt

j | does not hold
(line 12), we set zt

j = 0 because j cannot be included in Dt+1 (line 13).

For the outputs zt and Dt+1 of Algorithm 2, we have the following property:

Lemma 4 (Consistency of outputs) For the outputs of Algorithm 2, zt = θt+1 and Dt+1 =
supp(θt+1) hold.

The above lemma shows that Algorithm 2 returns the same θt+1 and supp(θt+1) as those of the
plain IHT while it prunes unnecessary computations given zt

imin
, zt, and Dt. Specifically, we can use

Algorithm 2 instead of lines 4–5 in Algorithm 1.

The computation cost of Algorithm 2 is as follows:

Lemma 5 (Computation cost of updating candidate set) Let u be the number of un-pruned com-
putations at line 7 of Algorithm 2. If G and X⊤y are precomputed, Algorithm 2 requires O(un)
time and the worst time complexity is O(n2) time.

Lemma 5 shows that the cost of Algorithm 2 is small when the pruning rate is high because u becomes
small when the pruning rate is high. On the other hand, the worst time complexity of O(n2) time is
obtained with a low pruning rate. The asymptotic cost cannot be larger than that of the plain IHT
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Algorithm 2 Update of candidate set
1: Input: zt

imin
, zt, Dt

2: Output: zt, Dt+1

3: Dt+1 ← Dt;
4: for j ̸∈ Dt do
5: if |zt

imin
| ≥ zt

j then
6: zt

j ← 0;
7: else
8: compute zt

j ;
9: if |zt

imin
| < |zt

j | then
10: Dt+1 ← (Dt+1 \ imin) ∪ j;
11: zt

imin
← 0; find zt

imin
in Dt+1;

12: else
13: zt

j ← 0;

Algorithm 3 Update of threshold
1: Input: zt

imin
, zt, Dt

2: Output: zt′

imin
, zt′ , Dt′

3: Dt′ ← Dt

4: for j ̸∈ Dt do
5: if |zt

imin
| < zt

j then
6: Dt′ ← (Dt′ \ imin) ∪ j;
7: compute zt

j ;
8: zt

imin
← 0;

9: find zt
imin

in Dt′ ;
10: zt′

imin
← zt

imin
;

11: zt′ ← zt;

since the gradient computation of the plain IHT requires O(mn) or O(n2) time. Nonetheless, the
pruning rate needs to be increased to achieve higher speeds.

In Algorithm 2, |zt
imin
| plays the role of the threshold for pruning at line 5. Therefore, we can raise

the pruning rate for a larger threshold of |zt
imin
| because |zt

imin
| ≥ zt

j at line 5 is easier to hold for
a larger threshold. The next section introduces an efficient way to update |zt

imin
| to a larger value

before entering Algorithm 2.

4.3 Lower Bound and Update of Threshold

To update threshold |zt
imin
| to a larger value, we utilize the lower bound zt

j such that |zt
j | > zt

j holds
for j ̸∈ Dt. zt

j is defined as follows:

Definition 3 Let t∗ be 1 ≤ t∗ < t in Algorithm 1. Then, zt
j at the t-th iteration in Algorithm 1 is

computed as follows:

zt
j = |Gjθ

t∗ + η(X⊤y)j | − ||Gj ||2||θt − θt∗ ||2, (5)

where G = I − ηX⊤X .

The following lemma shows that zt
j is the lower bound of |zt

j |:

Lemma 6 (Lower bound) We have zt
j ≤ |zt

j | when zt
j is computed by Equation (5).

Lemma 6 is derived from the reverse triangle inequality and the Cauchy–Schwarz inequality. Similarly
to the computation cost of the upper bound, Equation (5) requires the following cost:

Lemma 7 (Computation cost of lower bound) The computation cost of Equation (5) for all j ∈
{1, ..., n} at the t-th iteration is O(n) time given G, X⊤y and |Gjθ

t∗ + η(X⊤y)j |.

To update |zt
imin
|, we utilize the following lemma:

Lemma 8 (Indices required for candidate set) Suppose that zt is computed by using Equation (5),
and the candidate set Dt is initialized as described in Definition 2 at the beginning of the iteration
for t > 1. Let zt

imin
be zt

i having the minimum |zt
i | in all i ∈ Dt, and imin be the index. Then, if

|zt
imin
| < zt

j holds for j ̸∈ Dt, j is included in Dt+1.

The above lemma shows that we can identify indices included in Dt+1 without computing the
gradients by using the lower bound zt. The update procedure of Dt to Dt+1 is described in

5



Algorithm 3. Since this Dt+1 is used as the initial candidate set of Algorithm 2, we represent Dt′ as
Dt+1 in Algorithm 3 to avoid confusion. The algorithm copies Dt to Dt′ at line 3. Line 5 checks
whether |zt

imin
| < zt

j holds or not. If the equation holds, the algorithm updates Dt′ to remove imin

and include j (line 6). At this time, we also update zt
j and zt

imin
to reflect the update of Dt′ (lines

7–9). zt′

imin
and zt′ (lines 10–11) are used as zt

imin
and zt in Algorithm 2.

The important point of Algorithm 3 is that the absolute value of the output |zt′

imin
| is equal to or larger

than the initial |zt
imin
| as follows:

Lemma 9 (Threshold increase) In Algorithm 3, |zt′

imin
| ≥ |zt

imin
| holds.

From the above lemma, we can obtain large |zt′

imin
| as the threshold |zt

imin
| in Algorithm 2 by

performing Algorithm 3 before entering Algorithm 2. As a result, we can expect Algorithm 2 to
increase the pruning rate.

The computation cost of Algorithm 3 is as follows:

Lemma 10 (Computation cost of threshold increase) Let l be the number of indices that are de-
termined to be included in Dt′ at line 5 of Algorithm 3. If G and X⊤y are precomputed, Algorithm 3
requires O(ln) time and the worst time complexity of Algorithm 3 is O(n2) time.

Similarly to Lemma 5 of Algorithm 2, the worst time complexity is not much more than that of IHT.

4.4 Algorithm

Algorithm 4 is the pseudocode of our method based on Algorithms 2 and 3. We first precompute G
and X⊤y for the upper and lower bounds (line 3). The main loop consists of two types of procedures
(lines 4–22): the procedure for t = t∗ (lines 5–11) and the procedure for t ̸= t∗ (lines 12–21). For
the case of t = t∗, the algorithm updates the parameter vector the same as the plain IHT (lines 6–7)
and computes the candidate set (line 8). We note that the computation result of line 6 is also used
for computing the upper and lower bounds as shown in Definitions 1 and 3. Line 9 sets t∗ as t and
line 10 computes an interval r ≥ 1 that determines which t is the next t∗. Specifically, the next t∗ is
determined as t∗ + r. The computation way of r is described later. r′ is the variable that monitors
the interval. If t = t∗ does not hold (line 12), it computes zt

i for i ∈ Dt by using Equation (2) (line
13). Next, line 14 computes the lower bound by using Equation (5) on the basis of Lemma 6. Then,
we find the initial threshold at line 15 and update it by using Algorithm 3 on the basis of Lemmas 8
and 9 (line 16). Then, we compute the upper bound by using Equation (4) on the basis of Lemma 1
(line 17). Line 18 computes zt by using Algorithm 2 while pruning unnecessary computations on the
basis of Lemma 3. This zt can be handled as θt+1 by following Lemma 4 (line 19). We monitor
the interval of the next t∗ at line 20 through r′. The algorithm repeats the above procedure until a
stopping criterion is met (line 22). An example of a stopping criterion is relative tolerance [23].

Automatic determination of t∗ via r. In Algorithm 4, we need to compute interval r at line 10 to
determine t∗ because θt∗ appears in Equations (4) and (5) for computing the upper and lower bounds,
respectively. Since the upper bound zt

j and lower bound zt
j are the approximation of zt

j , we obtain
the following error bound:

Lemma 11 Suppose that ϵj is computed as follows:

ϵj = 2||Gj ||2||θt − θt∗ ||2. (6)

Then, |zt
j − zt

j | ≤ ϵj and |zt
j − zt

j | ≤ ϵj hold.

From the above lemma, the magnitude of error bound ϵj depends on t∗ because of ||θt − θt∗ ||2 in
Equation (6). If we set r to a large value, the error bound can be large since ||θt − θt∗ ||2 tends to be
large. In this case, the bounds are loose and it is difficult to hold |zt

imin
| ≥ zt

j in Lemma 3. As a result,
the pruning rate will be low. On the other hand, if we set r a small value, the algorithm frequently
computes lines 5–11 although we can obtain tight bounds. Since line 6 requires O(n2) time, the
reduction of the computation cost will be small. To solve the above problem, we automatically
determine r on the basis of the current pruning rate that is defined as follows:
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Algorithm 4 Fast Iterative Hard Thresholding
1: Input: sparsity level k, step size η
2: Initialization: θ1 ← 0, t← 1, t∗ ← 1, r ← 0, r′ ← 0
3: computing G and X⊤y; ▷ The precomputation for the upper and lower bounds
4: repeat ▷ The main loop
5: if r′ = 0 then ▷ The precomputation for the upper and lower bounds
6: zt ← Gθt + ηX⊤y; ▷ Computing Gθt + ηX⊤y used for zt and zt

7: θt+1 ← Hk(z
t); ▷ Updating the parameter

8: Dt ← supp(θt+1); ▷ Updating the candidate set
9: t∗ ← t;

10: compute r on the basis of automatic determination and r′ ← r;
11: t← t+ 1;
12: else
13: compute zt

i for i ∈ Dt by Eqn. (2);
14: compute zt by Eqn. (5); ▷ Computing the lower bound on the basis of Lemma 6
15: find zt

imin
in Dt;

16: update zt
imin

, zt and Dt by Algorithm 3; ▷ Based on Lemmas 8 and 9
17: compute zt by Eqn. (4); ▷ Computing the upper bound on the basis of Lemma 1
18: compute zt and Dt+1 by Algorithm 2; ▷ Based on Lemma 3
19: θt+1 ← zt; ▷ Updating the parameter on the basis of Lemma 4
20: r′ ← r′ − 1;
21: t← t+ 1;
22: until a stopping criterion is met

Definition 4 (Pruning rate) Let ut be the number of un-pruned computations at line 7 in Algorithm 2
for the t-th iteration as defined in Lemma 5. Then, we define pruning rate pt at line 10 in Algorithm 4
for the t-th iteration as follows:

pt =
n−k−ut−1

n−k × 100.0. (7)

The unit of pt is percent. We compute r at line 10 in Algorithm 4 on the basis of pt as follows:

r =

{
r + 1 if pt ≥ 50.0
⌈r/2⌉ if pt < 50.0.

(8)

⌈·⌉ is the ceiling function. If the algorithm could prune half of the computations at the previous
iteration, it increases interval r. If not, we update r to ⌈r/2⌉ to reduce error bound ϵj . Therefore,
if the pruning rate is high, we can reduce the number of computations at line 6 by increasing the
interval. If not, the interval becomes small and the upper and lower bounds are expected to be tight.
This rule performs well in our experiments.

4.5 Analysis

The computation cost of Algorithm 4 is as follows:

Theorem 1 (Computation cost) Let u′ and l′ be the total numbers of u and l in Lemmas 5 and 10
in Algorithm 4, respectively. Suppose that r is a constant for simplicity, τ is the total number of
main loops in Algorithm 4, and τ ′ is the number for which line 12 holds. Then, the computation
cost of Algorithm 4 is O(n2(m+ τ

r+1 ) + n(l′ + u′ + τ ′k)) time, and the worst time complexity is
O(n2(m+ τ)) time.

The plain IHT of Algorithm 1 requires O(n2(m + τ)) time if G and X⊤y are precomputed.
Therefore, the worst time complexity of our method is the same as the cost of the plain IHT.

For the optimization result, we obtain the following theorem:
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Theorem 2 (Optimization result) Suppose that Algorithm 4 has the same hyperparameters as those
of the plain IHT of Algorithm 1. Then, Algorithm 4 yields the same parameter vector and objective
value as Algorithm 1.

Theorem 2 guarantees accuracy of our method. Our method prunes unnecessary computations without
degrading accuracy.

For the upper and lower bounds, the following property holds:

Theorem 3 (Convergence of upper and lower bounds) Suppose that Algorithm 4 converges as
θt = θt∗ . Then, we obtain ϵj = 0 for j ∈ {1, ..., n} where ϵj is the error bound of the upper and
lower bounds defined in Lemma 11.

Theorem 3 shows that the upper bound zt
j and lower bound zt

j become the exact value of zt
j when

θt = θt∗ holds. Therefore, our method accurately prunes unnecessary computations when the
condition is satisfied.

5 Experiment

We evaluated the processing time and accuracy of our method on feature selection tasks. We
performed experiments on five datasets from the LIBSVM [9] and OpenML [34]: gisette, robert,
ledgar, real-sim, and epsilon. The sizes of the input matrices are 6000 × 5000, 10000 × 7200,
60000× 19996, 72309× 20958, and 400000× 2000, respectively. We evaluated the processing time
and accuracy on k = {1, 5, 10, 20, 40, 80, 160, 320, 640, 1280}. We compared our method with the
plain IHT (IHT), Regularized IHT (RegIHT) [2], and Accelerated IHT (AccIHT) [23]. RegIHT is the
fastest method among the methods using an adaptive regularization technique [1]. Since RegIHT
has the hyperparameter of weight step size c, we tried the setting of c = {k, k/10, k/100} on the
basis of the original paper. AccIHT improves the convergence of IHT by utilizing the momentum.
We tried µ = {0.025, 0.25, 2.5} for the momentum step size µ where the value of 0.25 is the one
recommended in the original paper. We set step sizes of all the methods η = 1/λ where λ is the
largest eigen value of X⊤X by following [23]. We stopped these methods when the relative tolerance
of the parameter vector dropped below 10−5 [23, 15]. All the experiments were conducted on a 3.20
GHz Intel CPU with six cores and 64 GB of main memory.

5.1 Processing Time

Figure 1 (a)–(e) compare the processing times on logarithmic scale. Our method was up to 73 times
faster than IHT and outperformed all the baselines in all the settings. Because our method is based on
the pruning, it achieved a large speedup factor for smaller k. Even when k increased, the processing
time was significantly shorter than the baselines.

We note that our method does not need hyperparameter tuning due to using the automatic determina-
tion technique described in Section 4.4. Specifically, practitioners only need to specify k to use our
method the same as the plain IHT. On the other hand, the baselines of RegIHT and AccIHT require
additional hyperparameter tuning for the weight step size and the momentum step size, respectively.

Number of Gradient Computations. Figure 1 (f) compares the number of gradient computations
between our method and the plain IHT on the gisette dataset. Our method reduced the number
of computations by up to 98.87%. The result shows the effectiveness of our pruning strategy and
supports the reduction in processing times of Figure 1 (a)–(e).

Processing Time with Large Step Size. Since the error bound of upper and lower bounds depends
on ||θt − θt∗ ||2 in Equation (6), a large step size may incur a potential decrease in the pruning rate
and our method may be slow down. To address this concern, we conducted an experiment to evaluate
the processing times with an increased step size. We increased the step size to 10 times larger than
that used in Figure 1 (a) on the gisette dataset. Figure 1 (g) shows the results, exhibit a similar trend
to Figure 1 (a). Our method was able to speed up IHT even with the larger step size. This success
is due to our automatic determination of t∗, which adjusts the pruning rate during optimization, as
described in Definition 4 and Equation (8). In contrast, AccIHT failed to converge in some cases due
to the momentum, preventing us from evaluating the processing times for those instances. While
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Figure 1: (a)–(e): Comparisons of log processing times for each dataset and k. (f): Comparison of
number of gradient computations on gisette. (g): Comparisons of log processing times for gisette
with a large step size. Some results of AccIHT are omitted since they could not converge.

AccIHT reduces the number of iterations by using the momentum, our method reduces the cost per
iteration on the basis of the pruning strategy. This result shows an advantage of the pruning approach.

5.2 Accuracy

Theorem 2 guarantees that our method achieves the same results as the plain IHT. To verify the
theorem, we compared the objective values between our method and the plain IHT. Table 1 shows the
results for k = {1, 20, 160, 1280}, and our method achieved the same objective values as the plain
IHT. We obtained the same trend results as above in the other settings of k. We note that our method
also yielded the same support of nonzero elements in the parameter vector and their coefficients as the
plain IHT though the results are omitted. These results support our theoretical result for Theorem 2.
In addition, our method also ensures that the parameter vector of each iteration matches perfectly
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Table 1: Objective values of the plain IHT and our method for k = {1, 20, 160, 1280}.

dataset method k = 1 k = 20 k = 160 k = 1280

gisette IHT 56.01× 10−2 31.99× 10−2 14.01× 10−2 80.73× 10−3

ours 56.01× 10−2 31.99× 10−2 14.01× 10−2 80.73× 10−3

robert IHT 99.03× 10−1 91.23× 10−1 73.56× 10−1 66.24× 10−1

ours 99.03× 10−1 91.23× 10−1 73.56× 10−1 66.24× 10−1

ledgar IHT 12.76× 102 82.48× 101 50.70× 101 35.35× 101

ours 12.76× 102 82.48× 101 50.70× 101 35.35× 101

real-sim IHT 86.47× 10−2 63.84× 10−2 40.32× 10−2 23.16× 10−2

ours 86.47× 10−2 63.84× 10−2 40.32× 10−2 23.16× 10−2

epsilon IHT 93.50× 10−2 67.24× 10−2 44.93× 10−2 43.03× 10−2

ours 93.50× 10−2 67.24× 10−2 44.93× 10−2 43.03× 10−2

with that of the plain IHT from Lemma 4. This property is not obtained in previous acceleration
methods based on the momentum such as AccIHT.

6 Conclusion

We accelerated iterative hard thresholding (IHT) by safely pruning unnecessary gradient computations.
The main idea is to efficiently maintain the candidate set, which contains indices of nonzero elements
in the parameter vector, during optimization. Before computing the gradients for each iteration, we
prune unnecessary elements for the candidate set by utilizing the upper bound. To raise the pruning
rate, we update the threshold to determine whether an element is included or not in the candidate
set by using the lower bound. Our method guarantees the same optimization results as the plain
IHT because our pruning is safe. In addition, it does not need additional hyperparameter tuning.
Experiments show that our method is up to 73 times faster than IHT without degrading accuracy. As
future work, we plan to extend our method to general convex loss functions with sparsity-inducing
norms to enhance more applications.
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Appendix

A Proofs

A.1 Lemma 1

Proof From Equation (2), we obtain the following equation:

zt = zt + zt∗ − zt∗

= (I − ηX⊤X)θt + ηX⊤y + (I − ηX⊤X)θt∗ + ηX⊤y − (I − ηX⊤X)θt∗ − ηX⊤y

= Gθt∗ + ηX⊤y +G(θt − θt∗).

By using the triangle inequality and the Cauchy–Schwarz inequality, we have the following inequality
from the above equation:

|zt
j | ≤ |Gjθ

t∗ + η(X⊤y)j |+ |Gj(θ
t − θt∗)|

≤ |Gjθ
t∗ + η(X⊤y)j |+ ||Gj ||2||θt − θt∗ ||2,

which completes the proof. □

A.2 Lemma 2

Proof Computing ||θt−θt∗ ||2 in Equation (4) requiresO(n) time. Therefore, the cost of Equation (4)
at the t-th iteration is O(n) time if G, X⊤y and |Gjθ

t∗ + η(X⊤y)j | are precomputed. □

A.3 Lemma 3

Proof If |zt
imin
| ≥ zt

j holds for j ̸∈ Dt, we obtain |zt
imin
| ≥ |zt

j | from zt
j ≥ |zt

j |. In this case, since
|zt

imin
| is the minimum |zt

i | for all i ∈ Dt, |zt
j | cannot be larger than |zt

i | for all i ∈ Dt. Therefore, j
cannot be included in Dt+1. □

A.4 Lemma 4

Proof In Algorithm 2, if |zt
imin
| ≥ zt

j holds for j ̸∈ Dt, j cannot be included in Dt+1 by Lemma 3
(line 5). In addition, |zt

imin
| does not decrease compared to the previous |zt

imin
| when it is updated

at line 11. Therefore, |zt
imin
| ≥ zt

j always holds even after |zt
imin
| is updated. As a result, since

|zt
j | cannot be included in the k-largest elements in the magnitude of zt, j cannot be included in

supp(θt+1). If |zt
imin
| < zt

j holds (line 7), Algorithm 2 exactly computes zt
j (line 8) and checks

whether |zt
j | is included or not in the k-largest elements in the magnitude of zt (lines 9–13). Therefore,

this part exactly computes θt+1 = Hk(z
t) for j. Since j cannot be included in supp(θt+1) for the

case of |zt
imin
| ≥ zt

j and the other case exactly computes θt+1 = Hk(z
t), zt matches θt+1. In

addition, since Dt+1 = supp(zt) holds from line 10, Dt+1 matches supp(θt+1). □

A.5 Lemma 5

Proof For un-pruned j at line 7 in Algorithm 2, computing zt
j (line 8) requires O(n) time if G

and X⊤y are precomputed. When |zt
imin
| < |zt

j | holds (line 9), we need to find zt
imin

in Dt+1 in
addition to the above computation. The cost is O(k) time because of |Dt| = k. Because the number
of un-pruned computations is u, the total cost of Algorithm 2 is O(u(n+ k)) time. At this time, since
k ≪ n, the final cost is O(un) time.

If Algorithm 2 cannot prune any computation for j ̸∈ Dt, the number of un-pruned computations u
equals n− k. Since k ≪ n, the worst time complexity is O(n2) time. □
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A.6 Lemma 6

Proof Similarly to the proof of Lemma 1, we obtain the following inequality by using Equation (2),
the reverse triangle inequality, and the Cauchy–Schwarz inequality:

|zt
j | ≥ |Gjθ

t∗ + η(X⊤y)j | − |Gj(θ
t − θt∗)|

≥ |Gjθ
t∗ + η(X⊤y)j | − ||Gj ||2||θt − θt∗ ||2,

which completes the proof. □

A.7 Lemma 7

Proof Similarly to the proof of Lemma 2, computing ||θt − θt∗ ||2 in Equation (5) requires O(n)
time. Therefore, the cost of Equation (5) at the t-th iteration is O(n) time if G, X⊤y and |Gjθ

t∗ +
η(X⊤y)j | are precomputed. □

A.8 Lemma 8

Proof When |zt
imin
| < zt

j holds, |zt
imin
| < |zt

j | holds because we have zt
j < |zt

j |. Since |zt
j | is

larger than |zt
imin
|, which is the minimum |zt

i | for i ∈ Dt, j is included in Dt+1. □

A.9 Lemma 9

Proof When |zt
imin
| < zt

j holds at line 5 in Algorithm 3, the corresponding |zt
j | is larger than |zt

imin
|

since we have zt
j < |zt

j |. In addition, zt
imin

is set to zero at line 8. Thus, the absolute value of the new
zt
imin

found at line 9 is equal to or larger than the old one. If |zt
imin
| is not updated in Algorithm 3,

|zt′

imin
| is equal to the initial |zt

imin
|. Therefore, |zt′

imin
| ≥ |zt

imin
| holds. □

A.10 Lemma 10

Proof Similarly to the proof of Lemma 5, computing zt
j (line 7) requires O(n) time in Algorithm 3

if G and X⊤y are precomputed. In addition, we need to find zt
imin

in Dt′ at O(k) time (line 9).
Therefore, the total cost of Algorithm 3 is O(l(n+ k)) time. At this time, since k ≪ n, the final cost
is O(ln) time.

If all j ̸∈ Dt are determined to be included in Dt′ at line 5, its number is l = n− k. Since k ≪ n,
the worst time complexity is O(n2) time. □

A.11 Lemma 11

Proof From Equations (4) and (5), |zt
j−zt

j | = 2||Gj ||2||θt−θt∗ ||2 = ϵj . Then, for the upper bound,
|zt

j − zt
j | ≤ |zt

j − zt
j | = ϵj holds. Similarly to the upper bound, we also obtain the inequality in the

lemma for the lower bound. □

A.12 Theorem 1

Proof For line 3 in Algorithm 4, computing G and X⊤y require O(n2m) and O(nm) times,
respectively. Next, lines 6 and 7 require O(n2) and O(n log k) times, respectively. Since lines 6–11
are performed τ/(r+1) times, the cost of this part isO(n2τ/(r+1)) time. For lines 13–21, the costs
of O(nk) (line 13), O(n) (line 14), O(k) (line 15), O(ln) (line 16), O(n) (line 17), and O(un) (line
18) are required. Since this part is performed τ ′ times, the cost represented as O(n(l′ + u′ + τ ′k))
time by using l′ and u′. Therefore, the total cost of Algorithm 4 isO(n2(m+ τ

r+1 )+n(l′+u′+τ ′k))
time.

The case of l = u = n and k = n yields the worst time complexity. In this case, the cost of lines
13–21 is O(τ ′n2) time. In addition, the cost of lines 6–11 can be represented as O((τ − τ ′)n2) time.
As a result, the cost is O(n2(m+ τ)) time. □
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A.13 Theorem 2

Proof For lines 6–7 in Algorithm 4, line 7 returns the same θt+1 as line 5 in Algorithm 1 since both
procedures are the same. Line 19 in Algorithm 4 also returns the same θt+1 as line 5 in Algorithm 1
because of Lemma 4. Thus, the sequence of θt+1 in Algorithm 4 is the same as that of Algorithm 1 if
both algorithms have the same hyperparameters. Therefore, Algorithm 4 returns the same parameter
vector and objective value as Algorithm 1. □

A.14 Theorem 3

Proof If θt = θt∗ holds, ||θt − θt∗ ||2 = 0 holds in Equation (6). As a result, we obtain ϵj = 0 in
Lemma 11. □

B Computation Cost of IHT with Sparse Matrices

If G and X⊤y are precomputed, the cost of the gradient computations in IHT is O(n2) time due
to the third equation of Equation (2). If we use a sparse matrix for the parameter vector, the cost is
O(nk) time. However, since the parameter vector changes for each iteration and the sparse matrix
must be re-constructed for each iteration, it is rarely used for the parameter vector in practice due to
the overhead of the sparse matrix construction3. We note that the sparse matrices may be used for the
design matrices whose elements do not change for each iteration.

C Broader Impacts

This paper presents work whose goal is to advance the field of machine learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

3https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.
html
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction include the following contributions: (i) we accel-
erate iterative hard thresholding (IHT) method by pruning unnecessary computations, (ii)
our method guarantees the same optimization results as the plain IHT, and (iii) Experiments
show that our method is up to 73 times faster than the plain IHT without degrading accuracy.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The processing time of our method increases when k becomes large (Sec-
tion 5.1). Nevertheless, our method outperformed all the baselines.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have stated assumptions in all the lemmas and theorems, e.g., precomputa-
tion. All the proofs are described in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described datasets, hyperparameters, and hardware used in the
experiment (Section 5).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described datasets, hyperparameters, and hardware used in the
experiment (Section 5).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because the baselines are too computationally
expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have described datasets, hyperparameters, and hardware used in the
experiment (Section 5).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The section of broader impacts is provided in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release models or datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [No]
Justification: The datasets used in this paper are cited in Section 5. However, we were
unable to find the license for the dataset we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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