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ABSTRACT

3D anomaly detection is a crucial task in computer vision, aiming to identify
anomalous points or regions from point cloud data. However, existing methods
may encounter challenges when handling point clouds with high intra-class vari-
ance, especially for methods that rely on registration techniques. In this study, we
propose a novel 3D anomaly detection method, termed Information Gain Block-
based Anomaly Detection (IGB-AD), to address the challenges of insufficient
anomaly detection information and high intra-class variance. To extract ordered
features from 3D point clouds, the technique of Rotation-Invariant Farthest Point
Sampling (RIFPS) is first introduced. Then, an Information Perfusion (IP) module
composed of stacked Information Gain Blocks (IGB) is proposed to utilize prior
noise to provide more distinguishing information for the features, where IGB is
designed to utilize noise in a reverse-thinking manner to enhance anomaly detec-
tion. Finally, a Packet Downsampling (PD) technique is developed to preserve key
information between multiple clusters to solve the complex downsampling situa-
tion. The main purpose of the framework is to utilize the effective information
within prior noise to provide more detection criteria for anomaly detection. In
addition, an Intra-Class Diversity (ICD) 3D dataset is constructed, which contains
multiple categories with high class-variance. Experimental results show that the
proposed IGB-AD method achieves the State-Of-The-Arts (SOTA) performance
on the Anomaly ShapeNet dataset, with an P-AUROC of 81.5% and I-AUROC of
80.9%, and also gains the best performance on the ICD dataset, with an P-AUROC
of 57.4% and I-AUROC of 60.2%. Our dataset will be released after acceptance.

1 INTRODUCTION

3D anomaly detection has emerged as one of the most pivotal topics in computer vision and graph-
ics processing, and extracting distinctive features is crucial for distinguishing between normal and
anomalous point clouds. Existing 3D anomaly detection methods can be broadly classified into
traditional approaches and deep learning-based methods.

Traditional methods, such as Back to the Feature (BTF), primarily focus on individual 3D struc-
tures and use mathematical techniques to design specific point or local descriptive features Horwitz
& Hoshen (2022). Additionally, some researchers have attempted to enhance feature descriptors
through teacher-student networks Bergmann & Sattlegger (2022). Although these methods have
demonstrated promising results, they may face limitations when extracting features with similar
structures. Moreover, relying solely on handcrafted features may fail to fully leverage prior knowl-
edge across samples.

Deep learning methods, by incorporating prior knowledge from large datasets, have gradually be-
come a mainstream approach to addressing these limitations. Current deep learning methods can
be primarily categorized into embedding-based and reconstruction-based Zhou et al. (2024). The
embedding-based methods involve mapping features extracted using transfer learning onto a specific
interval for learning. Distributions that do not fall within this interval are classified as anomalies.
RegAD Liu et al. (2023) utilizes the PointMAE model trained on large-scale datasets to capture
prior information for anomaly detection. However, efficiently extracting useful information from
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individual points or feature matrices poses great challenges. When using a pre-trained model for
transfer learning, describing each point in a patch is challenging, increasing memory requirements
and complexity, while the model’s weights may also affect patch descriptions and overall feature
extraction accuracy Wang et al. (2023); Zhao et al. (2024). Reconstruction-based methods primar-
ily focus on the network’s performance gap between reconstructing normal and anomalous point
clouds. To leverage the prior knowledge of transfer learning for improved reconstruction, IMR-
Net Li et al. (2023) was proposed, aiming to utilize the capabilities of the pre-trained PointMAE for
more detailed reconstructions.

When employing prior transfer learning for feature embedding and point cloud reconstruction, noise
plays a crucial role in the data flow. Traditionally, researchers have viewed noise as an element to
be removed from the feature matrix, leading to the development of denoising encoders. Vincent
et al. (2008). Based on this concept, many anomaly detection networks have been proposed, such
as teacher-student distillation networks, which utilize pre-trained teacher models to further mitigate
the effects of noise and obtain more accurate 3D anomaly detection features Rudolph et al. (2022).
The R3D-AD method attempts to iteratively remove noise using a distillation model, ultimately
obtaining the original point cloud Zhou et al. (2024). However, complete noise elimination is often
difficult, and an excessive focus on noise reduction can even degrade performance. Building on this,
noise may require a more meaningful interpretation in the context of anomaly detection.

Anomaly detection often requires additional information to differentiate between normal and anoma-
lous features, with large language models serving as an effective source of supplementary informa-
tion Cheng et al. (2024). However, the training cost may present challenges. Noise, as a prior source
of information, consists of a combination of various types of data. By removing irrelevant informa-
tion, the remaining useful data can enhance anomaly detection. This introduces a new perspective
on the role of noise in 3D anomaly detection: To fully harness the valuable information in the
prior noise, the key lies in developing a method that separates useful information from the
complex noise. When useful information is extracted, it can be injected into the feature matrix as
supplementary data, thereby improving detection accuracy.

To address these challenges, we propose leveraging noise as prior information to improve the gen-
eralization of traditional feature descriptors by introducing diversity. Incorporating noise into self-
supervised learning expands the inherent feature expressions of normal samples, thereby enhancing
anomaly detection and rotational invariance. We introduce the Information Gain Block Anomaly
Detection (IGB-AD), which includes an Information Gain Block (IGB) that retains valuable in-
formation in the FPFH feature matrix while assigning error ranges to overcome its generalization
limitations. The IGB operates in a self-supervised manner, extracting features independent of reg-
istration. Additionally, we propose Packet Downsampling (PD), a memory-efficient method for
managing diverse point-level features. Our contributions are summarized as follows:

• We propose the IGB module, which uses noise as a prior dependency to extend the range
of available information for the feature matrix. Based on IGB, we propose IGB-AD frame-
work. We propose RIFPS to be responsible for the ordered initial feature matrix extraction.
Furthermore, we propose an IP module based on IGB to inject information into the initial
feature matrix. Finally, PD is used to perform better downsampling.

• We introduce the ICD dataset, the first 3D anomaly detection dataset with multiple sub-
classes, offering new possibilities and challenges for 3D anomaly detection.

• Our IGB-AD framework leverages noise to overcome the limitations of traditional descrip-
tors, compensating for insufficient information in the feature matrix and alleviating the
challenges posed by high intra-class variance. It achieves State-Of-The-Arts (SOTA) per-
formance on the Anomaly-ShapeNet dataset with I-AUROC 80.9% and P-AUROC 81.5%,
and on our custom ICD dataset, it achieves I-AUROC 60.2% and P-AUROC 57.4%, sig-
nificantly improving anomaly detection.

2 RELATED WORK

3D anomaly detection for point clouds is crucial in applications like autonomous vehicle naviga-
tion and industrial inspection. Deep learning approaches have gained prominence, using neural
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networks to learn complex point cloud structures. Methods like embedding-based Approach and
reconstruction-based approach are key in anomaly detection.

2.1 EMBEDDING-BASED APPROACH

In order to obtain features that can distinguish anomalies, a embedding-based method extracts plaque
or point-level features from normal samples and stores them in the memory bank. In the inference
stage, extracted features of test samples and compared them with those in the memory bank to
obtain anomalies. Embedding-based methods are often based on traditional methods of local feature
extraction directly or feature extraction methods from transfer learning.

Traditional methods for point cloud feature extraction, such as Fast Point Feature Histograms
(FPFH) Szalai-Gindl & Varga (2024), have played a significant role in providing essential feature
descriptors for point clouds. While these approaches are effective in capturing local geometric prop-
erties, the limited ability to transfer learned features between different point clouds undermines their
effectiveness, especially in tasks requiring high generalization, such as anomaly detection.

In contrast, embedding-based methods, grounded in deep learning, aim to address these limitations
by focusing on learning distinctive representations of normal point clouds directly from raw data.
These methods prioritize efficient feature representation in memory banks for anomaly detection
and leverage pre-trained models, such as PointNet++, PointMLP, and Point Transformer Qi et al.
(2017); Ma et al. (2022); Zhao et al. (2021), which significantly enhance the feature extraction pro-
cess. PointMAE Pang et al. (2022) further improves point cloud understanding through masked
autoencoders, offering more refined representations. Furthermore, contrastive learning has been
proposed as a method to enhance the representation in memory banks Zhu et al. (2024). By in-
corporating this technique, the ability to distinguish between normal and anomalous point clouds
is substantially improved, providing a more robust solution for anomaly detection tasks. This shift
from traditional methods to deep learning-based approaches represents a significant advancement in
achieving both efficient and generalizable feature representations in point cloud analysis. However,
deep learning methods often have large memory consumption, inaccurate description at the point or
patch level, and weak differentiation, and still need to be further improved.

2.2 RECONSTRUCTION-BASED APPROACH

Reconstruction-based methods detect anomalies by focusing on the reconstruction error between
normal and anomalous point clouds. The surface of point clouds is characterized by indirect and
direct representation at different feature levels.

Initially, emphasis was placed on reconstructing point clouds in representational space, and accurate
original point cloud reconstruction was often not the goal. For instance, methods based on predicting
signed distance functions (SDF) were used to indirectly reconstruct surfaces, offering a way to
approximate point cloud geometry without requiring exact reconstructions Chu et al. (2023).

More recently, the focus has shifted toward achieving more accurate reconstructions. IMRNet, an
extension of PointMAE, reconstructs anomalous clouds into their normal counterparts and detects
anomalies by comparing the differences between the original and reconstructed models Li et al.
(2023). Due to the thermal diffusion process in the evolving thermodynamic and kinetic system, the
researchers proposed a more accurate R3D-AD reconstruction method, which can be more focused
on the more subtle reconstruction process of the 3D surface. Zhou et al. (2024). Despite these ad-
vances, achieving precise reconstruction remains challenging, as difficulties in accurately capturing
complex details often result in suboptimal detection performance. Researchers need a more accurate
characterization of normal and abnormal structures.

3 INFORMATION GAIN BLOCK-BASED ANOMALY DETECTION

The key challenge in 3D anomaly detection is to develop an effective method for self-supervised
identification of those points that deviate from the normal pattern when only normal samples
are available. Therefore, this paper proposes an Information Gain Block-Based Anomaly Detec-
tion (IGB-AD) framework, which consists of three parts: (1) Rotation-Invariance Farthest Point
Sampling (RIFPS), (2) Information Perfusion (IP) based on Information Gain Block (IGB), and (3)

3
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Figure 1: Visualization of our ICD datasets. We show a training set for some of the classes, along
with a sample for each exception. The training set for each class consists of four objects of the same
species with different morphologies and produces associated exceptions. The complete data set is
presented in the appendix A.

Packet Downsampling (PD). The overall framework of the proposed method is illustrated in Fig-
ure 2. The pseudo-code is shown in the Appendix D.

3.1 ROTATION-INVARIANT FARTHEST POINT SAMPLING

To diminish the reliance on registration and enhance the effective utilization of noise within the IGB
module, we propose Rotation-Invariant Farthest Point Sampling (RIFPS) to ensure rotation-invariant
feature extraction of point clouds. We first calculate the geometric center and find the farthest point:

C =
1

N

N∑
i=1

pi, Di = ∥pi −C∥2. (1)

where C is the geometric center, pi the i-th point, N the number of points, and Di the Euclidean
distance from pi to C. The point pf maximizing Di is selected as the farthest point.

Using pf as a reference, we apply Farthest Point Sampling (FPS) and compute the FPFH feature
matrix:

FPFHinv = FPFH(pf ,p1, . . . ,pn). (2)

where FPFHinv is the FPFH matrix with constant order, and p1, . . . ,pn are FPS-sampled points.
This ensures that feature extraction is sequenced consistently across different point cloud directions,
making it robust for anomaly detection.

3.2 INFORMATION GAIN BLOCK

A critical aspect of anomaly detection lies in acquiring sufficient distinctive information to effec-
tively differentiate between normal and abnormal instances. Therefore, we use noise as prior infor-
mation to enhance the information and propose an Information Gain Block (IGB) for better anomaly
detection. Extracting useful information from the noise is the task of IGB, and the IGB module
gradually transforms noise into useful information by eliminating irrelevant parts. In order to better
understand the IGB process, we give a further explanation in Appendix C.

Inspired by the Central Limit Theorem (CLT), we extract information from Gaussian noise to en-
hance feature diversity. According to the CLT, Gaussian noise Z can be decomposed into useful
gain information X and irrelevant noise Y :

Z = X + Y. (3)
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Figure 2: An overview of our approach. In the figure, we represent schematics of (a) IGB, (b) IP,
and (c) PD. In the pre-training stage, we use normal sample ordered feature matrix to train IP. In
the training stage, we enhanced the features of the ordered samples through the frozen IP layer, and
then stored them in the memory bank for further processing by PD. In the test phase, after enhancing
the ordered samples by using the frozen IP layer, anomaly detection is carried out by comparing the
feature matrix with the features in the memory library.

where Y is modeled as irrelevant noise, X represents the target information. According to the CLT,
Y approximates a normal distribution, making Z Gaussian. The MLP extracts X from Z as follows:

Z → X : fMLP(Z,F ) = X. (4)

where Z is Gaussian noise, F is the reference feature, and X is the extracted information. The MLP
learns to extract X by minimizing irrelevant noise Y .

We further formalize this process as Maximum Likelihood Estimation (MLE). By maximizing the
likelihood function p(Z | X), we ensure that the extracted X contains the most relevant information:

X̂MLE = argmax
X

p(Z | X). (5)

This reinforces the extraction process, focusing on the most useful parts of Z. We use four MLPs
to reduce the dimensionality, removing excess noise, and then increase the dimension to obtain
effective information. The process is expressed as:

Z → X : IGB(Z,F ) = X. (6)

This transforms Gaussian noise Z into useful information X , guided by the feature F . To ensure X
maintains the semantic range of F , we propose the following loss function:

Ltotal = β · Lsmooth L1 + λ · (1− Lrichness),

Lsmooth L1 = SmoothL1Loss(F, F +X),

Lrichness = sigmoid(α ·mean(Var(F +X))).

(7)

The model emphasizes both preserving the original information and extending more information.
The Smooth L1 Loss preserves essential information, while the Richness Loss encourages feature
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variability. This design balances information preservation and representation enhancement, with
MLE maximizing the likelihood of extracting relevant information.

3.3 INFORMATION PERFUSION

In order to get more refined and rich features, we try to use more stacks for continuous perfusion.
We used IGB to construct an Information Perfusion (IP) process, composed of multiple IGB stacks.
IP infuses the FPFH feature matrix with prior information from noise via multi-layer IGB. The IP
process is formulated as:

F(i) = F(i−1) + IGBi(Z,F
(i−1)), i = 1, 2, . . . , k. (8)

where F(0) is the initial FPFH feature matrix, Z is the noise input, and IGBi is the i-th IGB module.
The output F(i) is obtained by adding the output of the previous layer to the current IGB module,
iterating from i = 1 to layer k, yielding the final enhanced feature matrix F(k). Each IGB layer
enhances F by adding gain information from noise Z, iteratively enriching its representation for
anomaly detection.

3.4 PACKET DOWNSAMPLING

In scenarios involving multiple subclasses, mutual interference among the subclasses often plays
a critical role. To select features that are equally robust in both multi-subclass and conventional
contexts, and to optimize memory repositories with large-scale point-level features, we propose a
Mahalanobis distance-based greedy core-set clustering selection method. This approach aims to
select representative samples while maximizing both intra-class and inter-class feature diversity.

K-Means clustering divides the feature bank into K clusters, followed by Mahalanobis distance to
select representative samples. The clustering and distance are defined as:

min
C

N∑
i=1

(
(xi − µc)

⊤Σ−1(xi − µc)
)
,

Σ =
1

N − 1

N∑
i=1

(xi − µ)(xi − µ)⊤, Σ−1 = Inverse(Σ).

(9)

where xi is the i-th data point, µc the centroid of cluster c, and Σ the covariance matrix. Mahalanobis
distance accounts for the covariance structure by incorporating Σ and its inverse Σ−1, normalizing
variance along each feature dimension.

A greedy algorithm selects samples maximizing Mahalanobis distance from previous selections.
To handle density variations, k-nearest neighbors (k-NN) adjusts clustering parameters ε and
min samples:

εi =
1

k

k∑
j=1

d(xi, xj),

where d(xi, xj) is the distance between xi and its j-th nearest neighbor. This computes the average
distance to the k-nearest neighbors, yielding an adaptive ε for density variations. The min samples
is set to k × 2 for robust density estimation.

3.5 ANOMALY SCORE CALCULATION

We adopt a PatchCore-like scoring approach Roth et al. (2022), constructing a memory bank M
during training with features F . In inference, new features ftest are compared to the memory bank
to compute point-wise scores, as expressed mathematically:

6
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s(ftest) = min
m∈M

|ftest −m|2, (10)

where s(ftest) denotes the anomaly score of the feature ftest, and |ftest−m|2 represents the Euclidean
distance between the feature ftest and a feature m from the memory bank. After obtaining the scores
for each feature, we perform normalization, which can be expressed as:

snorm(ftest) =
s(ftest)−min(s)

max(s)−min(s)
, (11)

Where snorm(ftest) is the normalized score, and min(s) and max(s) are the minimum and maximum
scores. This method efficiently normalizes anomaly scores.

4 EXPERIMENTS

In this section, we first introduce the previous data sets and our proposed Intra-Class Diversity (ICD)
datasets. We then tested IGB-AD on the described data set and performed ablation experiments.
Both experimental results and ablation experiments validate the rationality and overall effectiveness
of each part of our IGB-AD framework.

4.1 DATASETS

Comparative experiments were performed on two mainstream datasets: Intra-Class Diversity and
Anomaly-ShapeNet datasets.
Anomaly-ShapeNet comprises 40 categories, with 1,600+ positive and negative samples. Each cat-
egory’s training set contains 4 normal samples, while test sets include both normal and anomalous
samples exhibiting various defects.
Ours: Intra-Class Diversity (ICD) datasets introduce new challenges for anomaly detection, the
training set consists of four morphologically distinct subspecies per class, and the test set is derived
from each of these subspecies. This poses a unique challenge for models, requiring them to effec-
tively extract features from individual samples while simultaneously capturing the variations across
different subspecies. The dataset consists of four subspecies, with the test set containing between
41 and 64 samples per class, covering both normal and anomalous variations of each subspecies. A
partial visualization is shown in Figure 1, and a full description is presented in the appendix A.

4.2 IMPLEMENTATION

Baselines. We selected BTF Horwitz & Hoshen (2022), M3DM Wang et al. (2023), PatchCore Roth
et al. (2022), CPMF Cao et al. (2023), RegAD Liu et al. (2023), R3D-AD Zhou et al. (2024) and
IMRNet Li et al. (2023) for comparison. Note that BTF(FPFH) denotes that we incorporate fast
point feature histogram. The results of these methods are obtained through publicly available code
or referenced papers.

Evaluation Metrics. For the anomaly detection task, we use P-AUROC (↑) to evaluate pixel-level
anomaly localization capability and I-AUROC (↑) to evaluate object-level anomaly detection capa-
bility. Higher values for both metrics indicate a more robust anomaly detection capability.

Experimental Details. The experiments were conducted on a server equipped with an RTX 3090
(24GB) GPU and a 14 vCPU Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz. We employed the
AdamW optimizer, with the pre-training phase set to 50 epochs, an initial learning rate of 0.001, and
cosine annealing reducing the learning rate to 0.000001. Throughout the experiments, the number
of IGB layers was fixed at 5, which represents a moderate configuration. The Settings for the other
comparison models use the Settings in their paper or in the published method.

4.3 RESULTS

Comparisons on ICD. We quantitatively analyze the Image-level anomaly detection results in Ta-
ble1. Our method shows superiority in that we assign a precise score to each point, which yields

7
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I-AUROC

Method bottle cup desk door keyboard night stand radio vase xbox cone Mean

BTF (Raw) 0.017 0.073 0.006 0.006 0.006 0.011 0.023 0.125 0.006 0.030 0.030
BTF (FPFH) 0.291 0.412 0.597 0.504 0.418 0.415 0.340 0.430 0.436 0.587 0.443

M3DM 0.118 0.203 0.206 0.098 0.157 0.161 0.428 0.237 0.039 0.012 0.166
Patchcore (FPFH) 0.667 0.548 0.550 0.647 0.539 0.479 0.591 0.594 0.608 0.591 0.581

Patchcore (PointMAE) 0.427 0.643 0.517 0.010 0.101 0.452 0.435 0.486 0.314 0.578 0.396
RegAD 0.362 0.496 0.321 0.005 0.065 0.477 0.314 0.532 0.253 0.503 0.333

Ours 0.684 0.526 0.599 0.640 0.598 0.515 0.612 0.648 0.601 0.585 0.602

Table 1: The experimental results I-AUROC (↑) for anomaly detection across 10 categories of ICD.
The best and the second-best results are highlighted in red and blue, respectively. Our model
achieved the best average performance across the 10 categories for I-AUROC. The results of P-
AUROC are presented in the appendix B

I-AUROC

Method cap0 cap3 helmet3 cup0 bowl4 vase3 headset1 eraser0 vase8 cap4 vase2 vase4 helmet0 bucket1

BTF (Raw) 0.668 0.527 0.526 0.403 0.664 0.717 0.515 0.525 0.424 0.648 0.410 0.425 0.553 0.321
BTF (FPFH) 0.618 0.522 0.444 0.586 0.609 0.699 0.490 0.719 0.668 0.520 0.546 0.510 0.571 0.633
M3DM 0.557 0.423 0.374 0.539 0.464 0.439 0.617 0.627 0.663 0.777 0.737 0.476 0.526 0.501
Patchcore (FPFH) 0.580 0.453 0.404 0.600 0.494 0.449 0.637 0.657 0.662 0.757 0.721 0.506 0.546 0.551
Patchcore (PointMAE) 0.589 0.476 0.424 0.610 0.501 0.460 0.627 0.677 0.663 0.727 0.741 0.516 0.556 0.561
CPMF 0.601 0.551 0.420 0.497 0.683 0.582 0.458 0.689 0.529 0.553 0.582 0.514 0.555 0.601
RegAD 0.693 0.725 0.367 0.510 0.663 0.650 0.610 0.343 0.620 0.643 0.605 0.500 0.600 0.752
IMRNet 0.737 0.775 0.573 0.643 0.676 0.700 0.676 0.548 0.630 0.652 0.614 0.524 0.597 0.771
R3D-AD 0.822 0.730 0.707 0.822 0.744 0.742 0.795 0.890 0.721 0.681 0.752 0.630 0.757 0.756
Ours 0.933 0.835 0.491 1.000 0.982 0.827 0.729 0.948 0.939 0.777 0.824 0.603 0.725 0.651

Method bottle3 vase0 bottle0 tap1 bowl0 bucket0 vase5 vase1 vase9 ashtray0 bottle1 tap0 phone cup1

BTF (Raw) 0.568 0.531 0.597 0.573 0.564 0.617 0.585 0.549 0.564 0.578 0.510 0.525 0.563 0.521
BTF (FPFH) 0.322 0.342 0.344 0.546 0.509 0.401 0.409 0.219 0.268 0.420 0.546 0.560 0.571 0.610
M3DM 0.510 0.423 0.574 0.739 0.634 0.309 0.317 0.427 0.663 0.577 0.637 0.754 0.357 0.556
Patchcore (FPFH) 0.572 0.455 0.604 0.766 0.504 0.469 0.417 0.423 0.660 0.587 0.667 0.753 0.388 0.586
Patchcore (PointMAE) 0.650 0.447 0.513 0.538 0.523 0.593 0.579 0.552 0.629 0.591 0.601 0.458 0.488 0.556
CPMF 0.405 0.451 0.520 0.697 0.783 0.482 0.618 0.345 0.609 0.353 0.482 0.359 0.509 0.499
RegAD 0.525 0.533 0.486 0.641 0.671 0.610 0.520 0.702 0.594 0.597 0.695 0.676 0.414 0.538
IMRNet 0.640 0.533 0.552 0.696 0.681 0.580 0.676 0.757 0.594 0.671 0.700 0.676 0.755 0.757
R3D-AD 0.781 0.788 0.733 0.900 0.819 0.683 0.757 0.729 0.718 0.833 0.737 0.736 0.762 0.757
Ours 0.991 0.800 0.895 0.696 0.978 0.924 0.552 0.795 0.618 0.891 0.916 0.709 0.995 0.721

Method vase7 helmet2 cap5 shelf0 bowl5 bowl3 helmet1 bowl1 headset0 bag0 bowl2 jar Mean

BTF (Raw) 0.448 0.602 0.373 0.164 0.417 0.385 0.349 0.264 0.378 0.410 0.525 0.420 0.493
BTF (FPFH) 0.518 0.542 0.586 0.609 0.699 0.490 0.719 0.668 0.520 0.546 0.510 0.424 0.528
M3DM 0.657 0.623 0.639 0.564 0.409 0.617 0.427 0.663 0.577 0.537 0.684 0.441 0.552
Patchcore (FPFH) 0.693 0.425 0.790 0.494 0.558 0.537 0.484 0.639 0.583 0.571 0.615 0.472 0.568
Patchcore (PointMAE) 0.650 0.447 0.538 0.523 0.593 0.579 0.552 0.629 0.591 0.601 0.458 0.483 0.562
CPMF 0.397 0.462 0.697 0.685 0.685 0.658 0.589 0.639 0.643 0.643 0.625 0.610 0.559
RegAD 0.462 0.614 0.467 0.688 0.593 0.348 0.381 0.525 0.537 0.706 0.490 0.592 0.572
IMRNet 0.635 0.641 0.652 0.603 0.710 0.599 0.600 0.702 0.720 0.660 0.685 0.780 0.661
R3D-AD 0.771 0.633 0.670 0.696 0.656 0.767 0.720 0.778 0.738 0.720 0.741 0.838 0.749
Ours 0.767 0.887 0.730 0.852 0.526 0.870 0.600 0.878 0.840 0.710 1.000 0.952 0.809

Table 2: The experimental results I-AUROC (↑) for anomaly detection across 40 categories of
Anomaly-ShapeNet. The best and the second-best results are highlighted in red and blue, respec-
tively. Our model achieved the best average performance across the 40 categories for both metrics.
Our approach also achieves the best performance in the I-AUROC, due to the length shown in the
appendix B.

60.2% I-AUROC, outperforming previous methods. The diversity of subspecies in this dataset chal-
lenges the accurate classification of samples. Previous methods, especially those based on registra-
tion, have encountered great challenges on this data set

Comparisons on Anomaly-ShapeNet. We quantitatively analyze the pixel-level anomaly detection
results in Table 5, and Image-level anomaly detection results in Table 2. Our method shows great
superiority in that we assign a precise score to each point, which exhibits 81.5% P-AUROC and
yields 80.9% I-AUROC, outperforming previous methods.

4.4 ABLATION STUDY

We conducted ablation experiments on the components of the IGB-AD framework using the ICD
dataset, with the results shown in Table 3. We evaluated the impact of the number of IGB layers and
block downsampling (PD) on the model’s performance. For the challenging ICD dataset, increas-
ing the number of IGB layers significantly enhanced the anomaly detection capability. Increasing
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Module ICD

PD IP IGB I-AUROC P-AUROC I-AUPRO P-AURPO Time Cost

✓ ✓ 5 0.6024 0.5741 0.6265 0.0190 0.2492
✓ ✓ 4 0.5963 0.5822 0.6143 0.0193 0.2285
✓ ✓ 3 0.5902 0.5836 0.6075 0.0190 0.2256
✓ ✓ 2 0.5815 0.5782 0.6006 0.0189 0.1991
✓ ✓ 1 0.5794 0.5898 0.6042 0.0196 0.1849

✓ 5 0.5986 0.5753 0.6108 0.0187 0.2229
✓ \ 0.5842 0.5816 0.6002 0.0192 0.1726

Table 3: Ablation results on ICD datasets. IGB Indicates the number of layers in use. If the IP layer
is not used, IGB is not supported.

from one layer to five layers, the I-AUROC improved from 0.5794 to 0.6024, but the inference time
also increased accordingly. This is because more IGB layers can more fully learn prior information,
thereby more effectively enhancing the useful information within the noise. However, too many
IGB layers may lead to excessive computational cost, reducing the model’s efficiency. Block down-
sampling (PD) further improved the model’s performance by selecting more representative samples.
For example, when using 5 IGB layers, adding PD increased the accuracy from 0.5986 to 0.6024.
This indicates that PD plays a critical role in optimizing sample selection and enhancing the model’s
generalization ability. Notably, when using only the complete IP layer without PD, the model’s
performance remains strong, outperforming the cases of using only PD and 4 IGB layers, as well
as using only PD. This suggests that while PD makes an important contribution to performance im-
provement, IGB plays a more critical role in the model, primarily enhancing the model’s anomaly
detection capability by optimizing sample selection.

The selection of Gaussian distribution as the noise model is based on its independent randomness.
Under the independent identically distributed (IID) noise hypothesis, each sample is independent
of the others and follows the same probability distribution. This independence ensures that the
noise does not exhibit spatio-temporal dependence, allowing each noise sample to be modeled in-
dividually. This not only simplifies the calculation, but also meets our expectation that the added
information for each eigenvalue ensures that the sum of multiple independent noise sources will
approximate a normal distribution by CLT. Thus, Gaussian noise effectively captures uncertainties
in independent random processes, making it a robust and computationally tractable choice for noise
modeling. In contrast, other types of noise, such as autoregressive or Poisson noise, introduce de-
pendencies or discreteness and lack the simplicity and universality of Gaussian noise.

5 CONCLUSION

To address the challenges of insufficient information for anomaly detection and high intra-class
variance, we propose the Information Gain Block Anomaly Detection (IGB-AD) framework. The
framework first proposes Rotation-Invariant Farthest Point Sam- pling (RIFPS) to ensure the order
of the feature matrix, and then proposes an Information Perfusion (IP) composed of multiple In-
formation Gain Block (IGB). The IGB layer is a module that can learn noise as prior information.
Finally, Packet Downsampling (PD) is proposed to further reduce the influence of intra-class vari-
ance. In order to further verify the ability of the model to face large cases of intra-class variance, we
also propose an Intra-Class Diversity dataset (ICD). Experimental results demonstrate that the pro-
posed IGB-AD method achieves State-Of-The-Arts (SOTA) performance on the Anomaly ShapeNet
dataset, with P-AUROC of 81.5% and I-AUROC of 80.9%, and outperforms on the ICD dataset, with
P-AUROC of 57.4% and I-AUROC of 60.2%. We incorporate noise as prior information into the
features through a self-supervised approach to obtain more informative and discriminative repre-
sentations. This presents a novel avenue for addressing the challenges of insufficient information
and high intra-class variance in anomaly detection. Limitations: Given the inherent randomness
and complexity of noise, quantitatively assessing the precise amount of information injected into the
feature matrix remains challenging. Establishing a mechanism for controlled information injection
will thus be a key objective in our future research endeavors.
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A 3D DATASET: INTRA-CLASS DIVERSITY

Datasets Year Format Class Subspecies Point Range Anomaly Types

MVTec3D-AD 2021 RGB/D 10 \ 10K-30K 3˜5
Eyecandies 2022 RGB/D/N 10 \ \ 3
Real3D-AD 2023 PointCloud 12 \ 35K-780K 2

Anomaly-ShapeNet 2023 PointCloud 40 \ 8K-30K 6
ModelNet-AD (Ours) 2024 PointCloud 10 4 45K-55K 4

Table 4: Comparison between the proposed ICD and existing mainstream 3D anomaly detection
datasets.

Our dataset introduces new challenges for anomaly detection: the training set consists of four mor-
phologically distinct subspecies per class, and the test set is derived from each of these subspecies.
This poses a unique challenge for models, requiring them to effectively extract features from indi-
vidual samples while simultaneously capturing the variations across different subspecies. A visual-
ization of our dataset is provided in Figure 3.

A.1 PREVIOUS WORK

The emergence of some data sets provides an experimental basis for 3D anomaly detection as shown
in Table 4. For example, the earliest MVtec and Eyecandies3D-AD datasets were used for 3D
anomaly detection using 2.5D point clouds Bergmann et al. (2022); Bonfiglioli et al. (2022). On this
basis, by scanning the real point cloud, the researchers propose the Real3D-AD dataset, which is a
high-precision scanning dataset and provides the possibility for entity anomaly detection Liu et al.
(2023). Then came the Anomala-Shapenet dataset, a dataset synthesized on ShapeNet that provides
40 cases for Anomaly detection Li et al. (2023).
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Figure 3: Visualization of ICD datasets. We show a training set for some of the classes, along
with a sample for each exception. The training set for each class consists of four objects of the same
species with different morphologies and produces associated exceptions.

A.2 DATA PRODUCTION

We utilized several classes from the ModelNet40 dataset as our data source. Since the point clouds
in ModelNet40 contain 10,000 points, we upsampled them to 45K–55K points to meet the require-
ments for anomaly detection Sun et al. (2022). To generate normal samples, we selected four sam-
ples from the chosen classes to represent the normal category, applying random rotations and upsam-
pling. Additionally, size variations were introduced through random scaling. Using same-species
samples from each subspecies, we generated anomalies based on rotations and scale stretching. We
first generated four types of anomalies: local twisting, dents, protrusions, and missing parts. Next,
we applied Moving Least Squares (MLS) for initial processing on the generated anomalous point
clouds Khabibulin (2023). Finally, we used CloudCompare to refine the anomalous point clouds,
obtaining the final samples.

A.3 DATASET STATISTICS

The dataset consists of four subspecies, with the test set containing between 41 and 64 samples
per class, covering both normal and anomalous variations of each subspecies. Each point cloud
comprises 45K–55K points, offering a detailed and high-resolution representation of the 3D objects.
In comparison to existing 3D anomaly detection datasets, as highlighted in Table 4, our dataset is
the first to introduce multi-subspecies anomaly detection. This novel addition not only broadens the
scope of anomaly detection tasks by incorporating more granular variations within classes, but also
significantly increases the complexity of the detection challenge. As a result, it provides a more
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P-AUROC

Method cap0 cap3 helmet3 cup0 bowl4 vase3 headset1 eraser0 vase8 cap4 vase2 vase4 helmet0 bucket1

BTF (Raw) 0.668 0.527 0.526 0.403 0.664 0.717 0.515 0.525 0.424 0.648 0.410 0.425 0.553 0.321
BTF (FPFH) 0.618 0.522 0.444 0.586 0.609 0.699 0.490 0.719 0.668 0.520 0.546 0.510 0.571 0.633
M3DM 0.557 0.423 0.374 0.539 0.464 0.439 0.617 0.627 0.663 0.777 0.737 0.476 0.526 0.501
Patchcore (FPFH) 0.580 0.453 0.404 0.600 0.494 0.449 0.637 0.657 0.662 0.757 0.721 0.506 0.546 0.551
Patchcore (PointMAE) 0.589 0.476 0.424 0.610 0.501 0.460 0.627 0.677 0.663 0.727 0.741 0.516 0.556 0.561
CPMF 0.601 0.551 0.420 0.497 0.683 0.582 0.458 0.689 0.529 0.553 0.582 0.514 0.555 0.601
RegAD 0.693 0.725 0.367 0.510 0.663 0.650 0.610 0.343 0.620 0.643 0.605 0.500 0.600 0.752
IMRNet 0.737 0.775 0.573 0.643 0.676 0.700 0.676 0.548 0.630 0.652 0.614 0.524 0.597 0.771
R3D-AD 0.822 0.730 0.707 0.822 0.744 0.742 0.795 0.890 0.721 0.681 0.752 0.630 0.757 0.756
Ours 0.933 0.846 0.558 1.000 0.974 0.833 0.733 0.948 0.939 0.749 0.824 0.615 0.716 0.660

Method bottle3 vase0 bottle0 tap1 bowl0 bucket0 vase5 vase1 vase9 ashtray0 bottle1 tap0 phone cup1

BTF (Raw) 0.568 0.531 0.597 0.573 0.564 0.617 0.585 0.549 0.564 0.578 0.510 0.525 0.563 0.521
BTF (FPFH) 0.322 0.342 0.344 0.546 0.509 0.401 0.409 0.219 0.268 0.420 0.546 0.560 0.571 0.610
M3DM 0.510 0.423 0.574 0.739 0.634 0.309 0.317 0.427 0.663 0.577 0.637 0.754 0.357 0.556
Patchcore (FPFH) 0.572 0.455 0.604 0.766 0.504 0.469 0.417 0.423 0.660 0.587 0.667 0.753 0.388 0.586
Patchcore (PointMAE) 0.650 0.447 0.513 0.538 0.523 0.593 0.579 0.552 0.629 0.591 0.601 0.458 0.488 0.556
CPMF 0.405 0.451 0.520 0.697 0.783 0.482 0.618 0.345 0.609 0.353 0.482 0.359 0.509 0.499
RegAD 0.525 0.533 0.486 0.641 0.671 0.610 0.520 0.702 0.594 0.597 0.695 0.676 0.414 0.538
IMRNet 0.640 0.533 0.552 0.696 0.681 0.580 0.676 0.757 0.594 0.671 0.700 0.676 0.755 0.757
R3D-AD 0.781 0.788 0.733 0.900 0.819 0.683 0.757 0.729 0.718 0.833 0.737 0.736 0.762 0.757
Ours 0.991 0.829 0.900 0.633 0.978 0.921 0.615 0.791 0.647 0.891 0.933 0.735 0.995 0.702

Method vase7 helmet2 cap5 shelf0 bowl5 bowl3 helmet1 bowl1 headset0 bag0 bowl2 jar Mean

BTF (Raw) 0.448 0.602 0.373 0.164 0.417 0.385 0.349 0.264 0.378 0.410 0.525 0.420 0.493
BTF (FPFH) 0.518 0.542 0.586 0.609 0.699 0.490 0.719 0.668 0.520 0.546 0.510 0.424 0.528
M3DM 0.657 0.623 0.639 0.564 0.409 0.617 0.427 0.663 0.577 0.537 0.684 0.441 0.552
Patchcore (FPFH) 0.693 0.425 0.790 0.494 0.558 0.537 0.484 0.639 0.583 0.571 0.615 0.472 0.568
Patchcore (PointMAE) 0.650 0.447 0.538 0.523 0.593 0.579 0.552 0.629 0.591 0.601 0.458 0.483 0.562
CPMF 0.397 0.462 0.697 0.685 0.685 0.658 0.589 0.639 0.643 0.643 0.625 0.610 0.559
RegAD 0.462 0.614 0.467 0.688 0.593 0.348 0.381 0.525 0.537 0.706 0.490 0.592 0.572
IMRNet 0.635 0.641 0.652 0.603 0.710 0.599 0.600 0.702 0.720 0.660 0.685 0.780 0.661
R3D-AD 0.771 0.633 0.670 0.696 0.656 0.767 0.720 0.778 0.738 0.720 0.741 0.838 0.749
Ours 0.762 0.887 0.733 0.852 0.519 0.863 0.648 0.904 0.891 0.705 1.000 0.957 0.815

Table 5: The experimental results P-AUROC (↑) for anomaly detection across 40 categories of
Anomaly-ShapeNet. The best and the second-best results are highlighted in red and blue, respec-
tively.

P-AUROC

Method bottle cup desk door keyboard night stand radio vase xbox cone Mean

BTF (Raw) 0.377 0.375 0.305 0.234 0.314 0.363 0.448 0.413 0.285 0.347 0.346
BTF (FPFH) 0.579 0.557 0.452 0.515 0.424 0.424 0.528 0.588 0.515 0.556 0.514

M3DM 0.437 0.422 0.361 0.308 0.346 0.336 0.421 0.478 0.361 0.444 0.391
Patchcore (FPFH) 0.684 0.581 0.504 0.521 0.474 0.549 0.653 0.569 0.695 0.583 0.581

Patchcore (PointMAE) 0.568 0.618 0.482 0.263 0.395 0.517 0.520 0.577 0.537 0.574 0.505
RegAD 0.362 0.589 0.321 0.261 0.387 0.477 0.314 0.573 0.487 0.554 0.333

Ours 0.686 0.573 0.490 0.542 0.467 0.547 0.638 0.541 0.682 0.578 0.574

Table 6: The experimental results I-AUROC (↑) for anomaly detection across 10 categories of ICD.
The best and the second-best results are highlighted in red and blue, respectively.

rigorous and comprehensive evaluation platform for testing the effectiveness and generalizability of
anomaly detection models across diverse 3D geometries and subspecies configurations.

B MORE EXPERIMENT RESULT

We present additional IGB-AD results for the ANOMALA-SHAPENet and ICD datasets in Table 2
and Table 6, respectively. Experiments show that our IGB-AD method has a wide range of advan-
tages in terms of generalization and robustness.

C FURTHER UNDERSTANDING OF IGB

To help better understand IGB, we use noise characterization to visualize the IGB process in Figure
4. It starts with complex noise, containing useful and useless information. With each process-
ing, useless information in the noise is continuously removed and useful information is eventually
recorded. The useful information is the extended information based on the original feature ma-
trix in anomaly detection, which helps to distinguish the normal and abnormal features in anomaly
detection.
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Origin Noise

Information

MLP (Step down information) Drop Useless Information

Figure 4: Qualitative diagram of the process of IGB layer operation. We simulated the workflow
of IGB module with a Gaussian noise, and the useless was removed continuously, and finally the
useful information was left.

Primitive feature Features processed by IGB

Figure 5: The features before and after IGB processing were compared. We use a curve to
describe the mean of features, similar structures have similar features, distributed around the mean
curve.

We visualized before and after features were processed by IGB in Figure 5. On the left, we show
that under similar structures, the extracted similar features are closely clustered around the mean
curve, making them difficult to differentiate in anomaly detection. After processing with IGB, we
obtain the feature distribution displayed on the right, where the differentiated feature representations
are more conducive to anomaly detection.

D PSEUDOCODE

We then provide pseudo-code for PD, RIFPS, IGB, and IP in turn

Algorithm 1 Packet Downsampling (PD)
Input: Feature matrix F , number of clusters C, downsampling ratio r
Output: Downsampled feature matrix Fdown

1: Step 1: Group features into C clusters
2: Apply clustering (e.g., k-means) on F to form C clusters: {C1, C2, . . . , CC}
3: Step 2: Select representative feature from each cluster
4: for each cluster Cj do
5: Compute importance score S(fi) for each feature fi ∈ Cj

6: Select the feature frep with the highest score in cluster Cj

7: Add frep to the downsampled set Fdown
8: end for
9: Step 3: Return the downsampled feature matrix Fdown

10: return Fdown

14
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Algorithm 2 Rotation-Invariant Farthest Point Sampling (RIFPS)
Input: Point cloud P = {p1, p2, . . . , pN}, number of points N , desired sample size M
Output: Sampled point set F

1: Step 1: Compute the geometric center C of the point cloud
2: C ← 1

N

∑N
i=1 pi

3: Step 2: Calculate the Euclidean distance from each point pi to the center C
4: for i = 1 to N do
5: Di ← ∥pi − C∥2
6: end for
7: Step 3: Select the farthest point pf from the center
8: pf ← argmaxi Di

9: Step 4: Perform iterative Farthest Point Sampling (FPS)
10: Initialize the sampled set F with the farthest point pf
11: F ← {pf}
12: for j = 2 to M do
13: Find the point pnext that maximizes the minimum distance to any point in F
14: pnext ← argmaxp∈P minf∈F ∥p− f∥2
15: Add pnext to the sampled set F
16: F ← F ∪ {pnext}
17: end for
18: Return the sampled point set F

Algorithm 3 Information Gain Block (IGB)

Input: Noise matrix Z, feature matrix F (i−1)

Output: Extracted useful information X

1: Step 1: Decompose noise matrix Z
2: Decompose Z into useful information X and irrelevant noise Y :
3: Z ← X + Y
4: Model Y as Gaussian noise: Y ∼ N (0, σ2)
5: Step 2: Extract useful information X using MLP
6: X ← fMLP(Z,F

(i−1))
7: Step 3: Apply loss functions to ensure relevance of extracted information
8: Compute smoothness loss:
9: Lsmooth ← SmoothL1Loss(F (i−1), F (i−1) +X)

10: Compute richness loss:
11: Lrichness ← sigmoid(α ·mean(Var(F (i−1) +X)))
12: Total loss:
13: Ltotal ← β · Lsmooth + λ · (1− Lrichness)
14: Step 4: Return the extracted useful information
15: return X

Algorithm 4 Information Perfusion (IP) with Stacked IGBs

Input: Initial feature matrix F (0), noise matrix Z, number of layers k
Output: Enhanced feature matrix F (k)

1: Step 1: Initialize feature matrix F (0) ← F initial

2: Step 2: Perform stacked IGBs for k layers
3: for i = 1 to k do
4: Apply Information Gain Block (IGB) on F (i−1)

5: X(i) ← IGB(Z,F (i−1))
6: F (i) ← F (i−1) +X(i)

7: end for
8: Step 3: Return the enhanced feature matrix F (k)

9: return F (k)
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