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Abstract: A robot operating in a partially observable environment must per-
form sensing actions to achieve a goal, such as clearing the objects in front
of a shelf to better localize a target object at the back, and estimate its shape
for grasping. A POMDP is a principled framework for enabling robots to per-
form such information-gathering actions. Unfortunately, while robot manipula-
tion domains involve high-dimensional and continuous observation and action
spaces, most POMDP solvers are limited to discrete spaces. Recently, POM-
CPOW [1] has been proposed for continuous POMDPs, which handles continu-
ity using sampling and progressive widening [2]. However, for robot manipula-
tion problems involving camera observations and multiple objects, POMCPOW
is too slow to be practical. We take inspiration from the recent work in learn-
ing to guide task and motion planning [3] to propose a framework that learns
to guide POMCPOW from past planning experience. Our method uses prefer-
ence learning [4, 5, 6, 7] that utilizes both success and failure trajectories, where
the preference label is given by the results of the tree search. We demonstrate
the efficacy of our framework in several continuous partially observable robotics
domains, including real-world manipulation, where our framework explicitly rea-
sons about the uncertainty in off-the-shelf segmentation and pose estimation al-
gorithms. Details of the project are accessible in the following URL: https:
//sites.google.com/view/preference-guided-pomcpow?usp=sharing.
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1 Introduction

Figure 1: An object fetching task from a tight cabinet. The camera is at a location marked with
orange, and the initial observation is shown at the bottom left. The target can be any one of the
red objects from the right-most figure, and the occluder is the green box. The occluder prevents
accurately estimating the target object’s shape and pose. Only by performing information-gathering
actions can we safely fetch the target object.

Consider a robot manipulator tasked with retrieving a target object occluded by another object in
a tight cabinet. Due to significant occlusion, the exact shape and location of the target object are

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://sites.google.com/view/preference-guided-pomcpow?usp=sharing
https://sites.google.com/view/preference-guided-pomcpow?usp=sharing


unknown, and rashly fetching the object without gathering these pieces of information could make
the occluding object fall. Our goal is to enable robots to efficiently compute plans that consider
these uncertainties and perform information-gathering actions to robustly operate in unstructured
environments. This is a challenging problem that involves partial observability in high dimensional
continuous state, action, and observation spaces. Figure 1 demonstrates an example scenario.

Typically, such problems are modeled with POMDPs, but the primary difficulty in using POMDP
solvers is their computational complexity. To resolve this, several sampling-based online planning
algorithms, such as POMCP [8, 1], have been proposed, which effectively handle large-scale discrete
POMDPs by using Monte Carlo Tree Search (MCTS). Instead of computing the solutions for all
belief states [9, 10, 11, 12, 13, 14, 15], POMCP performs a tree search to compute the solution for
a single initial belief state. A recent extension, Partially Observable Monte Carlo Planning with
Observation Widening (POMCPOW) [1], extends POMCP to continuous observation and action
spaces using progressive widening [2] in both observation and action nodes. With this extension,
POMCPOW can readily be applied to robotics problems involving continuous spaces.

However, even with POMCPOW, the computational challenge stemming from continuous and high-
dimensional observations, actions, and states is still significant. In [3], the authors propose a method
for learning to guide planning for challenging long-horizon task and motion planning problems in
continuous spaces. The idea is to learn the value function and policy from past planning experience
in order to speed up the tree search in a similar fashion to AlphaGo [16]. However, these methods
are limited to fully observability environments and cannot handle state uncertainty.

In this work, we extend [3] to a partially observable setup. Like [3], we learn a value function
and policy for guiding a tree search. However, unlike in that work, where the value function and
policy operate on fully observable states, ours operate on action-observation histories and guides
POMCPOW. In this context, the simplest way to train a value function would be to gather all history
and future-sum-of-reward pairs from past search trees, and learn a mapping from history to its value.
However, this approach would require an unthinkably large amount of data to train an effective
value function due to the infinite possible histories containing high dimensional observations. As
generating a dataset involves performing a tree search in a POMDP, such large-scale data generation
would require a significant amount of time.

We propose an alternative data-efficient technique for learning a value function based on the follow-
ing two observations. First, a search tree for a POMDP typically consists of a few success histories
that led to a goal and a large number of other histories that did not. Second, all we need to efficiently
guide a tree search is ranking among the histories specifying which one is more likely to lead to the
goal, not their actual values, since the purpose of a value function in a tree search is to determine
Based on these two observations, we propose a value function learning algorithm that learns the
ranking among histories.

More concretely, We utilize the preference function instead of a regressor because it suffices to
determine the exploration priority among nodes. In preference-based reward learning [4, 7, 5, 6],
you are presented with two trajectories, and an oracle indicates the preferred one. Subsequently,
a reward function is trained to assign greater rewards to the preferred trajectory compared to the
other. We adapt this concept to value function learning, where preference labels are derived from
the outcomes of tree searches. Within a search tree, we select a history that reached a goal, termed as
a success history, and another that did not, termed as a failure history. We learn a value function that
favors the success history over the failure history. One potential limitation of this straightforward
success-and-failure preference labeling approach could be the absence of optimality consideration.
To address this, we generate additional data by pairing two successful histories and labeling the
one closer to the goal as the preferred one. We discovered that in scenarios with limited data,
preference learning proves more robust than regression because it is less susceptible to variations in
value differences, demonstrating greater resilience against noise in comparison to regression, which
exhibits higher variance. Figure 2 for an illustration of our labeling scheme.
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Figure 2: Preference-dataset generation. Given the tree search result, we first sample a pair of
trajectories, at least one of which is a success trajectory. We then slice a subset of them at a particular
time step, as shown on the left-most trajectory in step 2, and then label them with preferences as
follows: if the pair consists of success and failure trajectories, we prefer the success trajectory (left
in step 3). If the pair consists only of success trajectories, then we prefer the one that is closer to the
goal (right in step 3).

For training a policy, we could, in principle, imitate the actions on success histories from past plan-
ning experiences using regression. However, to facilitate efficient exploration during tree search,
we need a multi-modal policy rather than a single-modal policy because, with a single-mode pol-
icy, you are likely to only explore similar actions in a given node [17]. Furthermore, if we imitate
success histories, then we are limited to a small number of histories per search tree, which is data
inefficient. We instead propose to use an energy-based model, where the energy is based on a Q-
function, which effectively defines a multi-modal policy whose probability of action is proportional
to its Q-value [17]. We train the Q-function simultaneously with the value function by implement-
ing these two functions as two heads that share the same backbone transformer but with different
inputs. Preference-V, the value function trained with preference labels, consumes the sequence of
action-observation history up to time step t, while Preference-Q does not see the last observation.
Figure 3 shows the architecture of the preference value functions.

The problem with an energy-based function in continuous space is that exact sampling is intractable.
One way to get around this is to uniform-randomly sample several actions, evaluate their values,
and then choose the one with the highest Q-value. However, while fast, this procedure generates
poor-quality actions, especially in high-dimensional spaces. Alternatively, we can use MCMC sam-
pling [18], which, given a sufficient amount of time, can generate actions with high Q-values. How-
ever, the inference time is typically too long to be practical. Instead, we propose to use VAE [19] to
approximate the Preference-Q-based energy function. At every gradient step, we uniform-randomly
sample N number of actions and minimize the Q-function-weighted loss for training the VAE, so
that the higher Q-value, the higher the chance of being sampled from the VAE. This approach gener-
ates higher-quality samples than uniform random sampling because the VAE sees N number of new
actions at every gradient step, and has a much faster inference time than MCMC sampling because
the inference is just a simple feed-forward prediction using a VAE.

We call our framework PGP (Preference-Guided POMCPOW). In our experiments, we demonstrate
that PGP achieves a superior data efficiency than imitation-guided POMCPOW, and that it is more
computationally efficient than unguided POMCPOW. In a real-world robot experiment, we demon-
strate a system that integrates the off-the-shelf perception algorithms, POMCPOW, and our learning
framework to solve the object fetching problem shown in Figure 1.

2 Related work

Algorithms for POMDPs To combat the curse of history, several online POMDP algorithms have
been proposed. Unlike the conventional methods that compute solutions off-line for all possible
belief states using full-width backup algorithms such as value iteration [9, 10, 11, 12, 13, 14, 15],
online planning algorithms use tree search to compute a solution for a single belief state [8, 20].
In particular, POMCP [8] combines MCTS and unweighted particle filtering to apply a sampling-
based online planning algorithm to solve large-scale discrete POMDP. However, for POMDPs with
continuous action and observation spaces, POMCP cannot build a search tree for more than one step
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Figure 3: The network architectures (a) The value networks receive inputs of different types: goal
state sg , action at, and observation ot. The encoders encode them into vectors of the same dimen-
sion. The causal transformer turns these encoded vectors into context vectors, {csg , ca1:t

, co0:t},
where cot depends on ht, while cat

depends on ht−1at, without ot. The preference-Q head receives
cat as input, and the preference-V head receives cot . (b) The policy network has a similar architec-
ture as the value networks, but uses a CVAE [19] that conditions on cot .

because, for each new simulation, a new action and observation branch is expanded every time, as
the probability of sampling the same action and observation from a continuous space is zero.

POMCPOW [1] extends POMCP to continuous spaces by using progressive widening (PW) [2]
which samples a new branch only if the number of branches in that node is below k ·Mα, where
k > 0 and α ∈ (0, 1) are user-defined hyper-parameter and M is the number of visits to that node.
Otherwise, it revisits existing branches in order to improve their value estimates. POMCPOW uses
PW both at action and observation nodes and integrates it with UCT [21] to handle the exploration-
exploitation trade-offs in continuous spaces. The use of PW in POMCPOW specifies when we
should sample a new action but does not specify which new action we should sample next. Further,
it uses a random roll-out to estimate the value of a leaf node, which only gives a very crude estimate.
PGP uses a policy for sampling a new action and value function to replace the roll-out in POMCPOW.

Learning to guide tree search The most prominent system for guiding a search is AlphaGo [22,
16, 23, 24]. AlphaGo guides the MCTS using a policy network that recommends actions and a value
network that predicts the probability of winning at a given state, both of which are learned offline
using self-play. Like AlphaGo, we learn a value function and policy to guide the search. One key
difference is that for us, we learn from planning experience, while AlphaGo learns from execution
experience, which is more expensive to obtain. Another key difference is that AlphaGo is limited to
discrete action and state spaces, with full state information, whereas we are considering continuous
state, observation, and action spaces with partial observability similar to [25].

The body of work most closely related to our framework includes algorithms for learning to guide
task and motion planning based on planning experience [3, 26, 27, 28, 29, 30]. In [29, 30, 27], the
authors propose a method for learning a visual heuristic function to guide the discrete task level
search. In [26, 28], the authors propose strategies for learning a policy using variants of Generative
Adversarial Networks to guide the continuous motion-level search. In [3], the authors integrate both
the policy and the value function learned from planning experience with a tree search to solve long-
horizon manipulation problems. Like us, they use planning experience to learn to guide the search
in continuous state and action spaces. PGP is an extension of these works to a partially observable
setup with state uncertainty.

Learning from preference Several works utilize preference from humans to train agents, by ranking
the pairs of trajectory segments [7]. For instance, Large Language Models (LLMs) are fine-tuned
to use human preferences as a reward signal [4], and reward functions are learned from preferences
given by a human in games [5] and robotics [31, 32, 33]. Inverse reinforcement learning also learns
a reward function from a sequence of ranked demonstrations [6]. The key difference from our work
is that we are given a reward function, and the goal is to learn the value function that expresses the
preference over different trajectories using the result of tree search as a labeler.
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3 Learning the preference value and policy networks for PGP

Solving previous planning problems provides us with a set of search trees. There are largely three
steps for using PGP: (1) generating the preference dataset from the search trees, (2) training the value
and policy networks, and (3) deploying them to tree search. We provide the pseudocode for step (3)
in the appendix. We first describe the data-generation process.

In POMCPOW, we simulate histories to find the solution to the given planning problem. So, solving
a problem gives us a search tree containing a set of histories. For each problem, we assume that
we have a set of goal states. Each history is defined as ht = {o0, a1, o1, · · · , at, ot} where, at and
ot are action and observation at time step t respectively. We label a history as success if the belief
particle in POMCPOW that corresponds to that history got to the goal. We can identify that with
certainty because a particle is a state sample from a belief state. Suppose we are given a pair of
histories (hi

ti , h
j
tj ), at least one of which is a success. Let Gi indicate whether the history hi

ti is part
of a success history hi

T i , where T i is the length of the history to a termination and ti is the sampled
time step in the history such that T i > ti. We label the pair of history, (hi

ti , h
j
tj ), as

y(hi
ti , h

j
tj ) =


(1, 0) if Gi = 1 and Gj = 0

(0.5, 0.5) if Gi = Gj = 1 and T i − ti = T j − tj

(0, 1) if Gi = Gj = 1 and T i − ti > T j − tj
(1)

In simple terms, if the ith history is part of a success history and the jth history is not, then we favor
the ith history. If both are part of success histories and have an equal number of remaining time steps
to the goal, they are both equally preferred. However, if both are success histories but the jth history
is closer to the goal than the ith history, then we prefer the jth history. This preference labeling
scheme operates under the assumption that all actions carry a uniform cost but a non-uniform action
cost can also be applied preferring the histories with the lower sum of action costs.

Algorithm 1 Inputs: Q̃(ht, at+1), PU(a)

Initialize θ
while θ not converged do

Sample ht from a set of past search trees
for k = 1, ...,K do

Sample akt+1 ∼ PU(a)

Compute Q̃(ht, a
k
t+1)

π̂Q̃(a
k
t+1|ht)←

exp(Q̃(ht,a
k
t+1))∑K

j=1 exp(Q̃(ht,a
j
t+1))

gθ ← ∇θ

[∑K
k=1 π̂Q̃(a

k
t+1|ht) · LELBO(θ)

]
Update θ with gθ

We construct the preference dataset, Dpref ,
in which each data point is of the form
(hi, hj , y(hi, hj)). This is done by sampling
two histories from a search tree, one of which
must be a success history, and preference-
labeling them. We ensure that Dpref contains
an equal number of success-failure and success-
success pairs to prevent the significant out-
numbering of success-success pairs by success-
failure pairs. This happens because the number
of success trajectories gathered is greatly out-
numbered by failed trajectories (approximately
1/10 in our experiments) especially when us-
ing an unguided search. Therefore, if we form
Dpref with all potential pairs of histories, we
have empirically found that it impairs the learn-

ing of the preference between two successful histories.

We train Preference-V, denoted Ṽ , by setting it as a preference predictor, as in [7, 5, 6]. We
approximate the probability of preferring history hi over hj as P [hi ≻ hj ] = exp(Ṽ (hi))

exp(Ṽ (hi))+exp(Ṽ (hj))

and learn the function by minimizing the parameters of Ṽ with respect to

E
(hi,hj ,y)∼Dpref

[−y(hi, hj)[0] · logP [hi ≻ hj ]− y(hi, hj)[1] · logP [hj ≻ hi]]

where y(hi, hj)[i] denotes the ith entry in the preference label. We denote the preference-Q function
as Q̃, and train Ṽ and Q̃ concurrently by designing the neural network to share the same backbone,
with separate heads that accept different inputs as shown in Figure 3.
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Given Q̃, we would like to use the energy-based policy of the form πQ̃(at+1|ht) =
exp(β·Q̃(ht,at+1))∫
a′ exp(β·Q̃(ht,a′))

to guide the search, where β ∈ R+ is a hyper-parameter that controls the how peaked the distribution
is. To sample from this distribution, we must resort to either MCMC sampling or uniform-randomly
sampling a fixed number of actions, and then selecting the one with the highest Q̃ value. The former
approach is slow yet precise, while the latter is quick but less accurate.

Instead, our strategy is to use VAE to imitate πQ̃(at+1|ht). Denote LELBO as the evidence of
lower bound (ELBO) loss used to train a VAE whose parameters are denoted as θ. To train our
VAE-based policy, denoted π̂θ, it would be ideal to minimize Ea∼πQ̃(at+1|ht)[LELBO(π̂θ)] with
respect to θ. However, sampling from πQ̃ is expensive, and the training time for π̂θ would
be too long. So, we use importance sampling to train π̂θ by sampling actions from a uniform
distribution and evaluating the importance weight according to πQ̃. Our objective function is

argmin
θ

Ea∼PU(a)

[
πQ̃(a|ht)

PU(a)
· LELBO(θ)

]
, where PU denotes the uniform distribution over the ac-

tion space. Using the gradient of the objective function gθ, we update the parameters of the policy θ.
Intuitively, if an action sampled from the uniform distribution has a high Q̃ value, then it would have
a high probability in π̂θ as well because the ELBO loss for that value would be lower. Unlike raw
uniform sampling that does not use VAE, this procedure exposes π̂θ to a new set of action samples
at every gradient step. Algorithm 1 describes the pseudocode for training π̂θ.

4 Experiments

We conduct our experiments in three challenging continuous planning domains under partial ob-
servability: finding a path in a 2D light-dark room, object fetching with known object classes, and
real-world object fetching with unknown object classes. We now describe the POMDP model for
each domain.

2D light-dark room The objective of the robot is to navigate to a goal position with the minimum
number of steps in a 2D plane. A state is the (x, y) location of the robot, an action is (r, θ) ∈
(0, 2) × [0, 2π) that defines the movement (∆x,∆y) = (r cos θ, r sin θ), the transition model is
(x′, y′) = (x+∆x, y+∆y), an observation o ∈ O is (x̂, ŷ) ∈ R2, (x̂, ŷ) = (x, y)+ (η1, η2) where
ηi ∼ N (0, σ(x)), and σ(x) = 0.01 · (4 − x)2 + ϵ, with ϵ = 1e−5. The robot incurs a reward of -1
for every action and a reward of +100 for reaching the goal region. The discount factor γ is set to
1.0, and the maximum planning horizon H is 30. An example problem instance is shown in Figure 4
(a) with the initial robot state shown with a blue dot, the goal region shown with a red circle, and
its observations shown in green. A problem instance is defined by an initial state and goal region.
The initial state of the robot is sampled from a uniform distribution from the blue box, and the goal
region is defined by a circle with a radius of 0.25 whose center is uniform-randomly sampled from
the red box.

Figure 4: Example problem instances of (a) 2D light-dark room, adapted from [34], (b) Object fetch-
ing with known object classes. (c) Example of execution trajectories (orange lines) of PGP and IGP.
Note that PGP computes a shorter path.

Object fetching with known object classes Figure 4 (b) shows an example problem instance from
this domain. The robot’s objective is to fetch the target object (red) completely occluded by the non-
target object (green) from the cabinet and place it in the goal region (the brown stand to the robot’s
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right) in a minimum number of steps. The camera is located at the front of the shelf, marked with
an orange triangle. A problem instance is defined by the initial poses of the objects, where we first
uniform-randomly sample the green box’s position from the green transparent box, and then sample
the red object location from the region completely occluded by the green box. The orientations are
uniformly sampled from [0, 2π). The non-target object pose is observable, but not for the target
object.

A state is defined as (qrobot, qtarget, qnon-target), where qrobot is the robot’s joint positions and
qtarget, qnon-target ∈ SE(2) are the poses of the target and non-target objects, respectively. The action
space consists of two action primitives with discrete and continuous parameters, PICK(obj, Tpick)
and PLACE(obj, Tplace) where obj is the object to manipulate and Tpick, Tplace ∈ SE(2) are the poses
of the gripper. We ensure that each action is feasible using rejection sampling based on the existence
of inverse kinematics solution, collision-free motion, and the contact between the object and the
gripper, which we describe in detail in the appendix. The transition model is defined with Bullet
physics engine [35]. An observation consists of depth and RGB images, denoted Idepth and IRGB
respectively, the union of foreground segmentation mask for each object Segtarget ∪Segnon-target, and
the indicator whether the robot is holding an object, g ∈ {0, 1}. The observation model is defined
as the product of two functions Z(o|s) = N (CD(PCD(o),PCD(s))|0, σ2) ·1{g(o) = g(s)}, where
CD denotes the Chamfer distance, PCD(o) and PCD(s) denote the observed and ground-truth point
cloud respectively, g(o) and g(s) are the observation and ground-truth object-holding flag respec-
tively, and σ = 0.0085. The robot gets +100 if the target object is placed in the goal region, -100 if
an object is dropped on the ground, or if the non-target object is placed in the goal region, and -1 for
all the other actions. The discount factor γ is set to 1.0. The planning depth H is 6.

Real-world object fetching with unknown object classes In this domain, the robot operates in
the real world and must estimate both the object classes and poses from camera images. Example
problems and objects are shown in Figure 1. We implement off-the-shelf perception algorithms and
explicitly reason about the uncertainty in the object classifier and pose estimator. More concretely,
we model the initial belief as P (s|o) = P (q, c|o) = P (q|c, o) · P (c|o), where c is the class label
and q is SE(3) pose of the object. We use Mask R-CNN [36] with dropout sampling [37] to model
P (c|o), and a PointNet [38]-based architecture for the pose estimator which also gives a distribution
over the potential poses. The details of the perception system is in the appendix. A state is defined
as (qrobot, qtarget, qnon-target, ctarget, cnon-target), where ctarget, cnon-target are the class labels of the target and
non-target objects. Other quantities in the POMDP are equivalent to the previous domain.

We have two hypotheses. First, for learning from search trees, preference-based learning is more
data efficient than imitation learning, and second, guided search is faster than an unguided search.
To validate these, we compare PGP and its variant, success-fail-preference-guided POMCPOW (SF-
PGP), where the value and policy networks are trained to prefer the success trajectory over a failure
trajectory but not necessarily to prefer shorter success trajectories, to following methods. The first
is unguided POMCPOW (UNGUIDED) which is a standard POMCPOW that samples actions with
a uniform random policy and evaluates a leaf node using a rollout. The second is imitation-guided
POMCPOW (IGP) which uses an imitation policy and MSE-V function for guiding POMCPOW.
The imitation policy is trained to imitate actions on success histories, and MSE-V is trained to
predict the future sum of rewards of the given trajectory using a mean squared error loss. For the
guided search, we replace the rollout with value function evaluation, and the uniform sampling over
actions using the trained policy. For fetching domains, we learn the policy for just the place action.

Figure 5 (a) shows the result for the light-dark room domain. In the first two columns, preference-
based approaches, PGP and SF-PGP, achieve significantly higher success rates than IGP when they
are trained with the same number of tree searches and computes, supporting our hypotheses. With
10 search trees and 100 simulations, PGP and SF-PGP achieve 80% success rate, while IGP and UN-
GUIDED require 200 simulations to achieve that. With 100 search trees, IGP gets better, but the
IGP and SF-PGP are more efficient and achieve higher success rates. The third and fourth columns
show that PGP and SF-PGP compute shorter successful trajectories more efficiently compared to UN-
GUIDED and IGP when using 10 and 100 tree searches, although UNGUIDED eventually gets similar
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optimality as PGP and SF-PGP. Figure 4 (c) shows the comparison of the trajectories computed by
PGP and IGP.

Figure 5: Success rates vs a number of simulations
for 10 and 100 tree searches (columns 1 and 2 respec-
tively), and an average number of steps to the goal for
successful plans for 10 and 100 tree searches (columns
3 and 4 respectively) for (a) light-dark room domain
and (b) object fetching with known object classes. (c)
Success rates (column 1) and number of steps to the
goal (column 2) in real-world object fetching using 50
simulations and 100 tree searches.

Figure 5 (b) shows the result for the fetch-
ing domain with known object classes. In
the first column, we again can see that
PGP and SF-PGP achieve higher success
rates than IGP and UNGUIDED when us-
ing the same number of simulations and
using 10 tree searches. When using 100
tree searches (second column), we see that
IGP improves, but PGP and SF-PGP still
outperforms it, demonstrating both com-
putational and data efficiency. Notably,
when using just 10 search trees, PGP out-
performs SF-PGP, unlike the previous do-
main. This is because, in the previous do-
main, the length of the trajectory does not
influence success or failure as the plan-
ning horizon is long and the robot has
ample opportunity to correct its behav-
ior. In contrast, in this domain, shorter
trajectories tend to have higher success
rates because the robot needs to fetch
the target object within 6 steps, other-
wise, it is a failure. This indicates that
the success-success comparison scheme in
PGP is helpful in this domain. In the third
and fourth columns, we see that PGP out-
performs all other algorithms in terms of
optimality. These results again support our
hypothesis.

Figure 5 (c) shows the results from the real robot experiments from the scenario shown in Figure
1 for target objects from different classes. From the first column, we see that PGP again outper-
forms UNGUIDED in all objects in terms of success rate, and outperforms IGP in the hammer case.
In two other cases, IGP gets the same success rate as PGP. The second column shows that for success
trajectories, PGP and SF-PGP find the most optimal solution among all the baselines. We include a
more exhaustive comparison in the simulated version of this domain for all baselines in the appendix.

5 Limitations and future directions

In this work, we propose a preference-based learning algorithm for guiding POMCPOW and show
that it is more computationally efficient than UNGUIDED and more data-efficient than IGP in sev-
eral robotics domains. One key limitation of our framework, as with any POMDP-based planner,
is the heavy reliance on the quality of the perception algorithm (more exhaustive limitations are
included in the appendix). To focus on planning, we deliberately simplified the perception prob-
lem in our real-robot domain by considering a limited set of objects. Even with this simplification,
however, we had many cases where we lacked particles that matched the real world, and often had
geometrically infeasible object poses and shapes where objects penetrated each other. We used par-
ticle re-invigoration and re-planning, which helped, but they incurred additional computation costs.
These findings suggest that the learning-to-guide-planning paradigm shows promise in reducing
planning time. However, they also highlight the need for significant advancements in representation
and uncertainty quantification for perception to improve the initial belief generator.
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planning algorithms for geometric task and motion planning. In The International Journal of
Robotics Research, 2022.

[4] OpenAI. Gpt-4 technical report, 2023.

[5] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei. Reward learning from human
preferences and demonstrations in atari. Advances in neural information processing systems,
31, 2018.

[6] D. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating beyond suboptimal demon-
strations via inverse reinforcement learning from observations. In International conference on
machine learning, pages 783–792. PMLR, 2019.

[7] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. Advances in neural information processing systems, 30,
2017.

[8] D. Silver and J. Veness. Monte-carlo planning in large pomdps. Advances in neural information
processing systems, 23, 2010.

[9] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

[10] J. Pineau, G. Gordon, S. Thrun, et al. Point-based value iteration: An anytime algorithm for
pomdps. In Ijcai, volume 3, pages 1025–1032, 2003.

[11] T. Smith and R. G. Simmons. Heuristic search value iteration for pomdps. In Conference on
Uncertainty in Artificial Intelligence, 2004.

[12] M. T. Spaan and N. Spaan. A point-based pomdp algorithm for robot planning. In IEEE
International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004,
volume 3, pages 2399–2404. IEEE, 2004.

[13] G. Shani, R. I. Brafman, and S. E. Shimony. Forward search value iteration for pomdps. In
IJCAI, pages 2619–2624, 2007.

[14] D. Hsu, W. S. Lee, and N. Rong. A point-based pomdp planner for target tracking. In 2008
IEEE International Conference on Robotics and Automation, pages 2644–2650. IEEE, 2008.

9



[15] H. Kurniawati, D. Hsu, and W. S. Lee. Sarsop: Efficient point-based pomdp planning by
approximating optimally reachable belief spaces. In Robotics: Science and systems, volume
2008. Citeseer, 2008.

[16] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.
nature, 550(7676):354–359, 2017.

[17] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-
based policies. In International conference on machine learning, pages 1352–1361. PMLR,
2017.

[18] D. Van Ravenzwaaij, P. Cassey, and S. D. Brown. A simple introduction to markov chain
monte–carlo sampling. Psychonomic bulletin & review, 25(1):143–154, 2018.

[19] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. Advances in neural information processing systems, 28, 2015.

[20] A. Somani, N. Ye, D. Hsu, and W. S. Lee. Despot: Online pomdp planning with regularization.
Advances in neural information processing systems, 26, 2013.
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Appendix
A. Limitations

Observation model Our algorithm can show differences in performance depending on how we set
up the observation model. Our algorithm approximates the belief through a particle filter, and the
weight of the particles is proportional to the observation likelihood. If an inappropriate observation
model is set, the updated belief will not properly reflect this information even if the information
gathering action is taken. Most failures in the fetching domain occurred because there was no
particle similar to the true state. For example, We set the Gaussian model using Chamfer distance as
the observation model in fetching domains, as described in Section 4. This model can sometimes be
calculated to have a small distance between the actual and other class objects when parts of objects
in different classes are similar to each other. This was the main reason for the task to fail when we set
the number of particles to small. You could try to deal with this problem by increasing the number
of particles, but this is not practical because it increases planning time. Therefore, in order for the
algorithm to work effectively with a small particle, it is necessary to carefully set the observation
space and observation model so that the observation obtained through the information gathering
action can effectively reflect information on the true state.

Belief generator Our algorithm is difficult to deal with unseen objects in fetching domain due to
the limitations of the belief generator. As far as we know, there is no perception algorithm yet that
can predict the shape and pose of all objects present in the scene through one image obtained from
a fixed view and propose particles with reflecting uncertainty by occlusion. Therefore, we limited
the classes of possible objects in the domain and assumed that if we could know the class of each
object, we could know the shape of the object, in order to construct a generating pipeline that can
operate by combining existing algorithms, such as Mask R-CNN [1] with dropout sampling [2] and
PointNet [3]-based pose estimator.

Planning time As you can see in the supplementary video, our algorithm can make a plan with
less time than unguided search. However, it is not enough to apply it as a real-time yet. We have
tested our algorithm with CPU of AMD Ryzen 5600x and GPU of NVIDIA RTX 3070, and the
average planning time for 50 simulations are shown in Table 1. It performed fairly well with a small
number of particles through guided search, but more particles are needed for a higher success rate.
Our algorithm based on serial tree search has a trade-off between planning time and performance
improvement due to an increase in the number of particles. In [4], they proposed an algorithm that
parallelly performs MCTS. In [5], they proposed an algorithm that operates at a real-time level in
combination with this algorithm and a physical simulator that is advantageous for parallel process-
ing. If we can also adapt these methods to tree search in parallel, we expect to effectively reduce the
planning time of our algorithm.

Box & hammer Box & drill Box & driver

Unguided 142.46 136.60 149.69

IGP 75.07 74.96 70.57

SF-PGP 65.67 72.64 75.60

PGP 55.07 64.49 62.43

Table 1: Planning time of the algorithms with 50 simulations measured in seconds. The test was
done with CPU of AMD Ryzen 5600x and GPU of NVIDIA RTX 3070. Each row represents
different algorithms whil each column shows different scenarios. Overall, the guided searches are
faster than unguided searches, yet they are not enough for real-time performance.
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B. Implementation details for training

B.1. Architecture of networks

Backbone transformer

• Light-dark room domain

– Number of layers: 3
– Number of attention heads: 1
– Embedding dimension: 128
– Input encoding

* Observation input dimension: 2

* Action input dimension: 2
– Nonlinearity function: GeLU
– Sequence length: 61

• Fetching domains

– Number of layers: 3
– Number of attention heads: 2
– Embedding dimension: 256
– Input encoding

* Observation input dimension:
· RGB-D: 64×4
· Grasp detection identifier: 1

* Image encoder:
· Number of convolutional layers: 4
· Number of max pool layers: 4
· Kernel size: 3
· Stride: 1
· Dimension of feature maps: (3, 16, 32, 64, 128)

* Action input dimension: 8
– Nonlinearity function: GeLU
– Sequence length: 13

Header of value networks

• Light-dark domain

– Input dimension: 128
– Output dimension: 1
– Number of layers: 1

• Fetching domains

– Input dimension: 256
– Output dimension: 1
– Number of layers: 2
– Hidden dimension: 256

Header of policy network

• Light-dark domain

– Input dimension: 2
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– Output dimension: 2
– Condition dimension: 128
– Latent dimension: 64
– Number of encoder layers: 3
– Number of decoder layers: 3
– Beta

* Light-dark
· Imitation: 0.25
· Preference: 0.5

* Fetching domains
· Imitation: 0.25
· Preference: 0.5

• Fetching domain

– Input dimension: 3
– Output dimension: 3
– Condition dimension: 256
– Latent dimension: 64
– Number of encoder layers: 4
– Number of decoder layers: 4
– Beta

* Light-dark
· Imitation: 0.25
· Preference: 0.5

* Fetching domains
· Imitation: 0.25
· Preference: 0.5

B.2. Hyperparameters

• Light-dark domain

– Batch size

* Value
· 128 for the dataset with 10 search trees
· 512 for the dataset with 50 search trees
· 2048 for the dataset with 100 or larger number of search trees.

* Policy
· 64

– Learning rate: 1e-4 (1e-5 for dataset with 10 search trees)
– Learning rate scheduler: None
– Optimizer: AdamW
– Weight decay: 1e-5
– Dropout: 0.1

• Fetching domains

– Batch size

* Value
· 128 for the dataset with 10 search trees
· 512 for the dataset with 50 search trees
· 2048 for the dataset with 100 or larger number of search trees.
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* Policy
· 64

– Learning rate: 0.0001 (0.00001 for dataset with 10 search trees)

– Learning rate scheduler: Multi-step scheduler with gamma = 0.1 and milestone=4000

– Optimizer: Adam

– Dropout: 0.1

C. Guiding POMCPOW with the learned functions

Using Ṽ , Q̃, and π̂θ, we guide POMCPOW in order to speed up planning. Algorithm 1 shows the
pseudocode for the guided POMCPOW. The guided search takes in the trained value function and
policy, initial belief, the total number of simulations n, and the maximum planning horizon T . The
variables used throughout the algorithms are: an execution history ht = (o0, a1, o1, ..., at, ot), a list
of child nodes C, a number of visits to a node N , a number of times that a given observation node
has been generated M , and B and W are the list of the list of belief states and the weight associated
with it respectively. C,N,M,B,W are implicitly initialized to ∅ or 0.

Procedure GUIDEDSEARCH in Algorithm 1 describes the overall process of guided POMCPOW.
The procedure takes initial belief b0(s), Ṽ , π̂θ, n, T . For each iteration, we sample a particle s
from b0(s), then run SIMULATE procedure. iterate through the particles by simulating with each
of them, and outputs action a with the highest Q value backed up by the simulation.

The new action is sampled with a procedure ACTIONPROGWIDEN similar to the one proposed in
POMCPOW[6]. However, to efficiently sample an action rather than resorting to a random policy,
we use π̂θ to produce a new action sample (9). Then, an action is selected according to UCB1 (11).

The SIMULATE is a recursive function that terminates when it reaches the maximum search depth
of 0. Otherwise, it samples an action with ACTIONPROGWIDEN, expands observation node (line 6
to 11) and action node (line 12 to 18). However, guided POMCPOW differs in that it leverages Ṽ
instead of rollout by random policy (line 14) to reduce planning time.

There are several hyperparameters for POMCPOW: progressive widening constants (kaαa, ko, αo)
and exploration constant c for UCB. We set the progressive widening parameter as (kaαa, ko, αo) =
(0.5, 0.5, 0.5, 0.5) for 2D light-dark room domain and (kaαa, ko, αo) = (3.0, 0.15, 3.0, 0.15) for
two object fetching domains. Since the value outputs of each method in each domain have different
scales, we set the exploration constant c differently for each method. In 2D light-dark room domain,
we set it as 20 for PGP and SF-PGP, and 50 for IGP and unguided search. In object fetching domain
with known object class, we set it as 0.5 for PGP and SF-PGP, and 100 for IGP and unguided search.
In object fetching domain with unknown object class, we set it as 20 for PGP and SF-PGP, and 200
for IGP and unguided search.

D. Experiment setup for fetching domains

To ensure that each pick or place actions are in contact with the object, we use rejection sampling.
To sample PICK, we first choose a particle from a belief state, and for the given object, we choose
a point on the upper surface of the object as a contact point. Then, we check two things: the cosine
similarity between the normal vector at the contact point and the z-axis must be within 0.95, and
the entire suction cup must be enclosed inside the object when we project it down along the z-axis.
If these are not met, we sample another PICK and repeat the procedure. For PICK that passed the
tests, we check the existence of an IK solution and collision-free motion plan using biRRT [7], and if
they do not exist, we sample another PICK and restart from the beginning. PLACE simply samples
a pose that is either inside the cabinet or the goal region.
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Algorithm 1 Guided POMCPOW

1: procedure GUIDEDSEARCH(b0(s), Ṽ , π̂θ, n,
T )

2: Q← −∞, h← ∅
3: for i← 0 to n do
4: s ∼ b0(s)

5: SIMULATE(s, h, T, π̂θ, Ṽ )

6: return argmax
a

Q(ba)

7: procedure ACTIONPROGWIDEN(h)
8: if |C(h)| ≤ kaN(h)αa then
9: a ∼ π̂θ(h)

10: C(h)← C(h) ∪ {a}
11: return argmax

a∈C(h)

Q(ha) + c
√

logN(h)
N(ha)

1: procedure SIMULATE(s, h, d, π̂θ, Ṽ )
2: if d = 0 then
3: return 0
4: a← ACTIONPROGWIDEN(h, π̂θ)
5: s′, o, r ← G(s, a)
6: if |C(h)| ≤ kaN(h)αa then
7: M(hao)←M(hao) + 1
8: else
9: o← select o ∈ C(ha) w.p. M(hao)∑

o M(hao)

10: append s′ to B(hao)
11: append Z(o| s, a, s′) to W (hao)
12: if o /∈ C(ha) then
13: C(ha)← C(ha) ∪ {o}
14: total← r + γṼ (hao)
15: else
16: s′ ← select B(hao)[i] w.p. W (hao)[i]∑m

j=1 W (hao)[j]

17: r ← R(s, a, s′)
18: total← r+ γSIMULATE(s′, hao, d−

1)

19: N(h)← N(h) + 1
20: N(ha)← N(ha) + 1

21: Q(ha)← Q(ha) + total−Q(ha)
N(ha)

22: return total

Perception System

In real-world object fetching with unknown object classes domain, we use Mask R-CNN [1] with
dropout sampling [2] to model the class distribution of an object, p(c|o). For efficient data pro-
curement, We utilize the Bullet physics simulator [8] to collect RGB images and mask annotation.
Nonetheless, the data from the simulation, especially the RGB image, does not generalize to the
real-world scene due to the sim2real gap. To overcome this, we render the image with NVISII [9] to
create photo-realistic texture while using the mask annotation from Bullet simulator and train Mask
R-CNN with these images.

To estimate p(q|c, o), we train a pose estimator per each class. It is a PointNet [3]-based architecture
with 2 heads of MLP layers for orientation and position. We bin the orientation into 2048 classes and
train the orientation head to predict the unit quaternion closest to the ground truth orientation while
the position head is trained with regression. During an inference, we decide which pose estimator
to use according to the class label predicted by Mask R-CNN. Then, we feed the partial point cloud
obtained from the depth image and the segmentation result and get p(q|c, o). To generate the data,
we randomly sample about 130k positions on the cabinet and yaw angle (roll and pitch angles of the
objects are fixed to 0). Then, we load random objects to the Bullet simulator with the sampled pose,
capture the partial point cloud using the depth camera, and label them with corresponding object
poses given by the simulator.

Initial belief generator

In real-world object fetching with unknown object classes domain, the initial belief generator uses
the result from the perception system to sample initial belief over the state p(s|o). For class uncer-
tainty, we sample Nshape number of class labels from the class distribution output by Mask R-CNN.
Then, for each class, we run our pose estimator to sample Npose number of poses. There are total
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Nshape × Npose candidates for beliefs, and we randomly choose Nparticle particles for the initial
belief with rejection sampling. The criteria for rejection is the existence of collision between objects
or cabinet, grasp affordance of the vacuum gripper, and the misclassification of target(red) objects
(i.e. hammer, drill, driver) to the non-target object class label (i.e. box) or vice-versa.

E. Evaluation

Qualitative results for object fetching with known object classes

Figure 1 (a) shows the visualization of the outputs of value networks, which are normalized between
0 and 1, for PLACE action on the same scene. After the robot picks the non-target object, to
achieve information-gathering actions, the robot should prefer the region where the target object can
be visible, such as the side of the area, except the area where the target object can be invisible. Our
approach can tell the clear difference between such areas, whereas other approaches do not show
clear differences, or even show the same value across all areas. (b) and (c) from Figure 1 shows the
action samples when PICK on both target and non-target object. When a target object is picked,
the robot should prefer the action samples around the goal region. Here, our model shows a high
preference in that area. When the non-target object is picked, the robot should prefer the action
samples where the target object can be visible, and also not the goal area. Our approach avoids
around the target object, whereas others take action samples around the target object and goal area.

Quantitative results of fetching domains with different sizes of data

We compared the results of a guided search using networks trained in various data sizes to evaluate
data efficiency. Figure 2 (a) shows the result of object fetching with known object classes domain,
using data from 50 and 300 search trees in addition to the results shown in the main document.

The first row shows that the results are consistent with our hypotheses. With 50 and 300 tree
searches, SF-PGP and PGP show higher success rates than IGP. The second row shows that
PGP achieves a more optimal solution than other approaches. With 300 tree searches, PGP finds
near-optimal plans, while other approaches struggle to do so. IGP comes close, but note that it has
a lower success rate than PGP. Figure 2 (b) shows the result of real-world object fetching with
unknown object classes domain evaluated in PyBullet [8] simulation, using data from 10 and 100
search trees. The two plots on the left show that the results are consistent with our hypotheses. With
10 and 100 tree searches, SF-PGP and PGP show higher success rates than IGP. The two plots on the
right show that PGP finds the most optimal plans.
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Figure 1: Qualitative comparisons on object fetching with known object classes. (a) shows
normalized V-values of PLACE actions obtained from 3 different value networks (b) purple dots
show 100 PLACE action samples from the trained policy after PICK non-target object. (c) purple
dots show 100 PLACE action samples from the trained policy after PICK target object when the
target object is visible. The networks used in these figures were trained using data from 50 search
trees.
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(a) Quantitative results of object fetching with known object classes. Data from 50 search trees
and 300 search trees are compared. The first row shows the success rates of guided search using
networks learned from data obtained from the different number of search trees. The second row
shows the average time-step of success trajectories obtained from these searches.

(b) Quantitative results of real-world object fetching with unknown object classes in PyBul-
let [8] simulation. Data from 10 search trees and 100 search trees are compared. The two plots on
the left show the success rates of guided search using networks learned from data obtained from the
different number of search trees. The two plots on the right show the average time-step of success
trajectories obtained from these searches.

Figure 2: Quantitative comparisons on object fetching domains All plots depict the mean and
95% confidence intervals (CIs) based on 400 experiments conducted with trained networks using
three different random seeds.
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