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Abstract

Recently, image-to-video (I2V) diffusion models have
demonstrated impressive scene understanding and genera-
tive quality, incorporating image conditions to guide gener-
ation. However, these models primarily animate static im-
ages without extending beyond their provided context. In-
troducing additional constraints, such as camera trajecto-
ries, can enhance diversity but often degrade visual quality,
limiting their applicability for tasks requiring faithful scene
representation. We propose CamC2V, a context-to-video
(C2V) model that integrates multiple image conditions as
context with 3D constraints alongside camera control to
enrich both global semantics and fine-grained visual de-
tails. This enables more coherent and context-aware video
generation. Moreover, we motivate the necessity of tempo-
ral awareness for an effective context representation. Our
comprehensive study on the RealEstate10K dataset demon-
strates a 24.09% (FVD) improvement in visual quality and
camera controllability. Our code is publicly available at:
https://github.com/LDenninger/CamC2V.

1. Introduction
Diffusion models have become a prominent approach for
video generation producing high-quality videos based on
user inputs. To make such approaches attractive for digital
content creation, controllability achieved through specific
conditioning of the generations, like human poses [21, 28],
style [12, 32], motion [22, 25] or camera trajectories [7, 27,
36] have been a widely studied topic.

While text-to-video (T2V) diffusion models like
VideoCrafter [3] or CogVideoX [31] have full freedom over
the visual design, more recent image-to-video (I2V) models
employ an image to convey style and scene context. Due to
the typically short duration (< 2 seconds) of the generated
videos, the image provides sufficient context to define the
scene to render. With the ultimate objective of matching the
generative quality and capabilities of traditional rendering
engines, these approaches still require further development
to achieve a fine-grained control over style, motion and
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Figure 1. CamC2V performs context-aware generation provided a
reference frame representing the initial frame cimg and [1-4] addi-
tional views cictx providing crucial context to the diffusion process
missing in the reference frame.

scene composition, to allow for fully customizable video
creation.

As illustrated in Fig. 1, the initial reference frame alone
provides only limited context for the diffusion process.
Once the camera pans, the visual quality degrades and ar-
bitrary interpretations of the scene by the diffusion model
become evident. To address this, we introduce CamC2V,
a novel conditioning mechanism that allows users to supply
multiple context views, ensuring a comprehensive definition
of the scene in which the video is generated.

Our proposed Context-aware Encoder integrates these
context views into two complementary streams: a high-
level semantic stream and a 3D-aware visual stream. This
dual-stream approach provides the diffusion model with
both a global semantic context and a detailed pixel-level
visual embedding. By inserting 3D geometric constraints
in the feature aggregation, we effectively retrieve important
features from the context while filtering out irrelevant ones.
This allows our method to considerably enhance the visual
coherence of existing approaches. In summary, our key con-
tributions are as follows.
• We propose CamC2V, a camera-controllable context-
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aware diffusion model, which conditions the diffusion
process on multiple context frames through a dual-stream
encoder retrieving high-level semantic features and low-
level visual cues from the context.

• We introduce a 3D-aware cross-attention mechanism
leveraging epipolar constraints to effectively retrieve con-
text from posed images.

• Our temporally-aware embedding strategy better aligns
the context at different frame timesteps.

• Our method achieves a 24.09% improvement in vi-
sual quality over the state-of-the-art methods on the
RealEstate10K dataset.

2. Related Works
Diffusion-based Video Generation. Originally devel-
oped for image generation [8, 17], diffusion models have
since demonstrated great success synthesizing high-quality
videos [2, 9]. Models such as SVD [2], LAVIE [23] or
VideoCrafter [3] have shown great success in distilling text-
to-video (T2V) diffusion models from text-to-image (T2I)
diffusion models by inserting temporal attention blocks
modeling the added time dimension. Building on top, mod-
els like DynamiCrafter [26], Seine [4] or I2vgen-XL [35]
further fine-tune these models for image-to-video (I2V)
generation showing impressive results.

Camera-controllable Video Generation. Concurrent
work also focuses on adding camera control to diffusion
models allowing the user to define the trajectory along a
video is generated. While initial work such as MotionC-
trl [25], AnimateDiff [6] or Direct-a-Video [30] model
camera movements through camera-motion primitives, re-
cent approaches such as CameraCtrl [7], CamCo [27] or
CamI2V [36] directly insert the camera poses showcasing
fine-grained camera control. A key is the dense supervi-
sory signal provided by pixel-wise camera rays represented
as Plücker coordinates, which are encoded and inserted into
the diffusion model in a ControlNet-like fashion [34].

CamCo and CamI2V further demonstrate that epipolar
geometry can serve as an effective constraint in the infor-
mation aggregation of vanilla attention mechanism. While
CamCo employs cross-attention to constraint the feature ag-
gregation from the condition frame, CamI2V constrain the
temporal self-attention itself to guide the diffusion process
and thus improving the 3D consistency and camera trajec-
tory.

Multi-Image Condition. Large camera movements or
longer generations result in multiple scenes being generated
in one video which is insufficiently represented through a
singular reference image typically employed in concurrent
image-to-video diffusion models [4, 26, 31, 35]. Models

like Gen-L-Video [20], MEVG [15] or VideoStudio [13]
explore the insertion of multiple text prompts to give a
broader context across the temporal domain for longer
video generation. This is achieved by generating distinct
short videos with different text conditions and optimizing
the the noise between them either in a divide-and-conquer
or auto-regressive setup to generate long consistent videos.

Recently approaches like ReCamMaster [1] or Trajecto-
ryCrafter [33] focus on conditioning the generative process
on complete videos to recreate the video from another cam-
era trajectory. While these methods effectively leverage the
context of multiple images, their approaches heavily rely on
the one-to-one mapping from condition and target frames.
In contrast, our method only relies on loosely placed im-
ages that do not explicitely correspond to a timestamp in
the target sequence.

3. Preliminaries
Before we describe in Section 4 our novel method, which
enhances the context-awareness of pre-trained diffusion
models by conditioning on multiple context views rather
than a single reference frame, we briefly describe compo-
nents of our baseline model, CamI2V, which extends Dy-
namiCrafter [26], a latent image-to-video diffusion model
with camera pose conditioning.

Latent Video Diffusion Models. Latent video diffusion
models learn a latent video data distribution by gradually re-
constructing noisy latents zt sampled from a Gaussian dis-
tribution:

q(zt|zt−1) = N (zt;
√

1− βt, βtI), (1)

where hyperparameters βt determine the level of noise
added at each timestep. The latent space is defined through
a pre-trained auto-encoder, e.g. a pre-trained VQGAN [5]
for DynamiCrafter, consisting of an encoder E and a de-
coder D. Conditioned on a text condition ctext and a refer-
ence image cimg, the diffusion model ϵΘ is then trained to
predict the noise ϵ at timestep t ∈ U(0, T ) using a simple
reconstruction loss:

min
θ

Et,x∼pdata,ϵ∼N (0,I)||ϵ− ϵθ(xt, c, t)||22. (2)

The diffusion model itself is typically implemented as a
UNet, e.g. a 3D-Unet [38] in DynamiCrafter, where θ de-
notes the neural network’s parameters.

Camera Conditioning. To incorporate camera control,
CamI2V employs a dense supervisory signal using pixel-
wise embeddings of camera rays, represented via Plücker
coordinates. Specifically, for each pixel (u, v) the Plücker
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Figure 2. CamC2V pipeline. Our pipeline generates videos conditioned on a reference image, an optional text description and a camera
trajectory encoded through a camera pose encoder conditioning. Additionally, the Context-aware Encoder processes frames in two parallel
streams, one providing pixel-level visual cues and the other a global context. The pixel-level stream employs epipolar attention to enforce
3D consistent feature aggregation. Finally, both stream are augmented with a timestep embedding to ensure timestep-wise conditioning of
the diffusion process.

coordinates P = (o × d′, d′) are computed using the nor-
malized ray direction d′ = d

||d|| and the ray origin o (the
camera focal point).

The ray direction relative to a reference coordinate
frame—such as the camera coordinate system of the ini-
tial frame—is derived from the intrinsics K and extrinsics
E = [R|t] as:

d = RK−1 + t. (3)

These embeddings are further encoded at multiple resolu-
tions and integrated into the epipolar attention blocks in-
serted into the U-Net.

4. Method
Image-to-video diffusion models generate videos based on
a single reference frame cimg and an optional text condi-
tion ctxt. Additionally, camera-controlled diffusion models
are conditioned on a camera trajectory [P 0

cam, . . . , PT
cam] al-

lowing precise control of the camera view at each timestep.
The reference frame does not always provide the necessary
context corresponding to the camera trajectory. This can
lead to insufficient visual quality of the generated frames. In
contrast, we propose a new scheme coined context-to-video
which enhances the generation process with a rich context

conveyed through additional context frames c0ctx, . . . , c
N
ctx

and their poses P 0
ctx, . . . , P

N
ctx

Our Context-aware Encoder, shown in Fig. 2, extends
DynamiCrafter’s Dual-stream Image Injection to support
multiple image conditions. Natively, it conditions the model
at the pixel level by concatenating reference latents zimg

with noisy latents zt along the channel dimension, which
restricts the generations to the narrow context provided by
the reference image. Additionally, to better guide the dif-
fusion process, semantic features aggregated from CLIP-
embedded image and text conditions are integrated layer-
wise through spatial cross-attention. To utilize the pre-
trained generative capabilities of the diffusion model and
refrain from fine-tuning large parts of the U-Net, we chose
to inject our condition in those streams.

Semantic Stream. We adopt DynamiCrafter’s query
transformer Esem to integrate cross-modal information
from the CLIP-embedded reference image Fimg , the text
condition Ftxt, and additional context frames Fctx =
[F 0

ctx, . . . , F
N
ctx]. Specifically, Esem employs learnable la-

tent query tokens Tsem to gather context across multiple
layers of cross-attention and feed-forward networks, yield-
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Figure 3. Epipolar cross-attention. Learnable context tokens act
as queries to retrieve pixel-level features for each timestep from
context views, masked according to epipolar lines to incorporate
3D geometric constraints.

ing a global representation:

Fsem = Esem([Fimg,Ftxt,Fctx],Tsem). (4)

To preserve strong cross-modal context aggregation, we ini-
tialize Esem from DynamiCrafter’s Dual-stream Image In-
jection module and fine-tune it to handle multiple image
conditions.

Visual Stream. While the semantic stream provides a
well-suited global context representation, it lacks fine-
grained visual details due to CLIP’s inherent training on
visual-language alignment, which favors high-level repre-
sentations of single entities.

To enhance context-aware generation, we integrate our
visual condition directly into DynamiCrafter’s image con-
ditioning. Specifically, we embed the context frames
c0ctx, . . . , c

N
ctx into the latent space Zctx = [z0ctx, . . . , z

N
ctx]

and introduce pixel-wise learnable context tokens Tvis ∈
RT×h×w×D. The context tokens serve as queries in a query
transformer, similar to the semantic stream, to aggregate
timestep- and pixel-wise features from the latent context
frames.

3D Awareness. To introduce 3D awareness, we employ
an epipolar cross-attention mechanism which guides the
feature aggregation to only consider potentially relevant
features. Specifically, each token ti ∈ Tvis, illustrated in
Fig. 3, describes a pixel (u, v) at timestep t. Employing
the provided camera pose P t

cam at the given timestep, we
can compute the epipolar line lij = Ax + Bx + C in each
context view cjctx. Using the point-to-line distance:

d(u′, v′) =
[A,B,C]⊺ · [u′, v′, 1]√

A2 +B2
, (5)

we produce the epipolar mask m ∈ RThw×Nhw masking
out pixels (u′, v′) with a distance larger than a threshold δ,

set to half of the diagonal of the latent feature space, in the
cross-attention mechanism:

EpiCrossAttn(q,k,v,m) = softmax
(
qk⊺√
d
⊙m

)
v, (6)

where q ∈ RThw×D describes the learnable context queries
and k, v ∈ RNhw×D the latent embedded context frames.

Temporal Awareness. The native pixel-level embedding
of DynamiCrafter is agnostic to the timestep within the
video as each timestep is provided with the same condi-
tion. Thus, to further enforce the diffusion model to at-
tend to context provided at specific timesteps, we found it
advantageous to employ a sinusoidal timestep embedding.
In practice, we concatenate the timestep embedding to our
context embeddings before forwarding it through a feed-
forward network.

Finally, the visual stream of our Context-aware Encoder
maps a spatially distributed embedding represented through
the latent embedding of posed views to a timestep-wise em-
bedding:

Fvis = Evis(Zctx,Tvis,m). (7)

To retain the reference image as a strong anchor to the gen-
eration and smoothly insert the new condition, we employ
a 3D zero-convolution which weighs the usage of Dynami-
Crafter’s native condition zref and ours Fvis before adding
them together.

Log-weighted Loss. Our Context-aware Encoder injects
crucial information, especially to later frames, that have
limited context in the baseline methods leading to degrading
visual quality. To force the training process to focus on such
frames that rely most heavily on our context-aware condi-
tioning, we apply a logarithmic re-weighting to the stan-
dard reconstruction loss along the time axis. Specifically,
for each frame k in the sequence, we define:

L =

∑15
k=0 log10(k + 1) · ||εk − εθ,k(xt, c, t)||22∑15

k=0 log10(k + 1)
. (8)

This not only improves generative quality but also stabi-
lizes the training, mitigating divergence in later stages of
training.

5. Experiments
5.1. Setup

Dataset The RealEstate10K [37] comprises approxi-
mately 70K video clips at 720p of static scenes depicting
indoor and outdoor house tours. The clips are annotated
with camera extrinsic and intrinsic values obtained through
the ORB-SLAM2 [14] pipeline. Additionally, we use the



Method
FVD ↓

MSE ↓ TransErr ↓ RotErr ↓ CamMC ↓
VideoGPT StyleGAN

MotionCtrl 78.30 64.47 3654.54 2.89 2.04 4.34
CameraCtrl 71.22 58.05 3130.63 2.54 1.84 3.85
CamI2V 71.01 57.90 2692.84 1.79 1.16 2.58
Ours 53.90 45.36 2579.96 1.53 1.09 2.29

Table 1. Quantitative comparison. Compared against state-of-the-art camera-controlled diffusion models, our method achieves an im-
proved video fidelity of 24.09% in terms of FVD The results were obtain using 25 DDIM steps with CFG set to 7.5, except for our method
performing best with CFG set to 3.5
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Figure 4. Frame-wise quantitative comparison. We compare
the per-timestep MSE and SSIM against state-of-the-art methods.
Due to the insufficient context provided by the reference frame,
the visual quality degrades logarithmically as time progresses.

captions provided by the authors of CameraCtrl [7]. The
video clips are then center-cropped to a size of 256 × 256
and clipped to short frames of length 16 with a stride sam-
pled between 1 and 10.

Metrics We evaluate our method with respect to gener-
ative quality, the faithfullness to the provided context and
the camera trajectory. Firstly, to ensure improved video
fidelity we report the Frechet Video Distance (FVD) [19]
using the evaluation protocols from VideoGPT [29] and
StyleGAN [10]. To ensure the faithfulness with respect
to the additional context, we evaluate the pixel-wise mean
squared error (MSE) and the Structural Similarity Index
(SSIM) [24] independently for each timestep.

Finally, to examine the generated camera trajectory we
follow the evaluation paradigm proposed by CameraCtrl
and CamI2V. Using GLOMAP [16], we estimate the cam-
era rotation R̃i and translation T̃i for each camera i over
5 trials and compute the independent rotation and transla-
tion errors, RotErr and TransErr respectively, as well as the

combined element-wise error CamMC:

RotErr =
n∑

i=1

cos−1 tr(R̃iR
T
i )− 1

2
, (9)

TransErr =
n∑

i=1

||T̃i − Ti||2, (10)

CamMC =

n∑
i=1

||[R̃i|T̃i]−Ri|Ti]||2. (11)

All metrics are computed on a subset consisting of videos
extending over a duration of over 30 seconds to ensure suffi-
cient additional context to be sampled from and avoid sam-
pling to close to the 16 frame clip.

Implementation Details Initialized from CamI2V check-
points, freezing all parameters except for our Context-aware
Encoder, we train for 50K iterations at a resolution of
256 × 256, using the Adam optimizer with a fixed learn-
ing rate of 1 × 10−4 and a batch size of 64. Using LIGHT-
NING as our training framework with mixed-precision us-
ing DeepSpeed ZeRo-1 on 4 NVIDIA A100 GPUs, training
takes approximately 7 days. For comparison, we use the
re-implementations of MotionCtrl [25] and CameraCtrl [7]
provided by the authors of CamI2V. We sample 1-4 context
frames uniformly from the complete videos during training.

5.2. Quantitative Comparison

To show the effectiveness of the additional context pro-
vided by our method, we compare against several camera-
controlled methods, namely MotionCtrl [25], CameraC-
trl [7] and CamI2V [36]. Tab. 1 presents the comparison
of our method against the baseline methods. Our model
achieves an improvement of 24.09% in terms of the FVD
score highlighting the effectiveness of added context for
video generation.

To further evaluate the context-awareness of our method,
we report the MSE in Fig. 4 between the generated videos
and the ground-truth videos on a per-frame basis to assess
the improvement especially for later frames that typically
lack sufficient context from the reference frame. Addition-
ally, to assess the visual quality of each frame, we compute
the SSIM metric on each frame.
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Figure 5. Qualitative comparison. Our method, provided with an additional context frame, overcomes the limited context of a single
reference frame, improving visual quality beyond the reference frame. Zoom in for more details.

It is visible that the visual quality degrades logarithmi-
cally with the video length as the diffusion model lacks suf-
ficient context. Our method outperforms the baseline meth-
ods in both MSE and SSIM, especially for later frames.
This shows that providing the diffusion process with addi-
tional context can stabilize the generative quality over time.

Additionally, we investigate the accuracy of the gener-
ated camera trajectory with respect to the RotErr, TransErr
and CamMC. We observe a slightly improved rotational
error compared to CamI2V’s, indicating an improved
camera trajectory of our method. As the evaluation
pipeline, GLOMAP, used for estimating the camera trajec-
tory matches keypoint features to simultaneously estimate
the camera trajectory and reconstruct a 3D scene using bun-
dle adjustment and we do not train the camera encoder, nor
the diffusion model itself, this improved camera trajectory
is mainly linked to an improved 3D consistency and vi-
sual quality of the generated scene. This demonstrates that
the additionally provided context enforces are more faithful
representation of the 3D scene.

5.3. Qualitative Comparison

Fig. 5 shows different samples from our method compared
against CamI2V. It is evident that the reference frame does
not provide sufficient context for the generation past the first
few frames. This results in visually degrading image quality
and unrealistic generations of the baseline method.

In contrast, our method is provided with an additional
context frame sampled from a later timestep past the 16
window frame that shows entities outside of the field of
view of the reference frame or obstructed by obstacles. Our
method is able to comprehend the position of these enti-
ties in space and effectively embed it into the timestep-wise
embedding resulting in these objects being placed at correct
locations in later frames. Moreover, it is visible, while the
baseline method produces artifacts not visible in its condi-
tion, the extended context provides an additional constraint
preventing unwanted artifacts.

5.4. Ablation Studies

To thoroughly evaluate the impact of our design choices, we
conducted several ablation studies. The results are summa-
rized in Tab. 2.
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Figure 6. Qualitative results of different sampling strategies. We generate samples conditioned on the furthest frame providing minimal
context and the frame immediately following the video providing maximal context. Our method is able to reject unrelated features from
the furthest frame and only aggregate features from the end + 1 frame providing additional information to the diffusion process.

Multi-Cond.
Epipolar Time

FVD ↓ MSE ↓
Pixel Sem. VideoGPT StyleGAN Total t=2 t=16

71.01 57.90 2792.84 758.38 4101.71
✓ ✓ ✓ 76.00 63.40 2622.32 632.94 4141.67

✓ ✓ ✓ 70.44 59.56 2810.75 862.84 4225.31
✓ ✓ 63.817 54.13 2701.28 791.49 4127.12
✓ ✓ ✓ 61.61 52.04 2678.45 782.86 4102.77
✓ ✓ ✓ 58.15 47.73 2642.69 753.36 4014.67

✓ ✓ ✓ ✓ 53.90 45.36 2579.96 668.60 4076.78

Table 2. Ablation studies. We compare our design choices in different studies showing that our two-stream design complementarily
embeds the context and guides the diffusion process. Adding epipolar attention and temporal embeddings to the Context-aware Encoder
equips it with explicit 3D and temporal awareness, improving context retrieval and further boosting performance.

Semantic and visual stream. First, we examined the in-
dividual contributions of the semantic and visual streams
to the diffusion process. We trained two model variants,
each utilizing only one stream to inject additional context.
Despite both variants being provided with an extended con-
text, neither improved upon the baseline results. This lim-
ited improvement likely stems from DynamiCrafter being
originally trained under matching conditions. In contrast,
combining both semantic and visual streams significantly
enhanced performance, highlighting their complementary
interaction.

3D awareness. Next, we evaluated the effectiveness of
our method’s 3D awareness, achieved through the epipo-
lar cross-attention mechanism. Replacing epipolar cross-
attention with standard (vanilla) cross-attention, allow-
ing unrestricted feature aggregation from all tokens, still
yielded a considerable improvement of 9.5 FVD points over
the baseline. This model variant, still, demonstrates a sig-
nificant improvement on the baseline by 9.5 points in the

FVD score but fails to match the performance of the 3D-
aware model variant. This can be attributed to the model
still leveraging the additional context for the generation but
failing to reject features from invalid positions, as seen in
Fig. 6, especially when context frames provide minimal ad-
ditional information due to them being sampled from distant
regions.

Temporal awareness. Further, we assess the effect of
temporal embeddings integrated into semantic and visual
streams. Removing temporal embeddings results in a per-
formance decline, although still outperforming CamI2V
considerably. The temporal embeddings, particularly
within the visual stream, explicitly guide the temporal at-
tention of the U-Net to properly interpret timestep-specific
context. Without this guidance, the epipolar cross-attention
timestep-wise embedded context may be interpreted freely,
resulting in impaired performance.



Sample Range FVD (VideoGPT) MSE

(end,−1] 45.63 2579.96

end + 1 44.21 2474.28

Furthest 48.52 2668.91

Table 3. Condition sampling study. To investigate the impact
of different context views, we condition our method using differ-
ent context sampling strategies. (end,-1] represents the sampling
strategy used through our evaluations, while end+1 provides con-
text with the maximal amount of information and furthest with the
minimal amount of information.

Context sampling. Lastly, Tab. 3 compares different
sampling strategies for additional context views. Our de-
fault method samples context frames from the interval
(end,−1] following the generated video. Furthermore, we
investigate two extremes: first, sampling a completely un-
related frame, the furthest frame, as shown in Fig. 6. Our
results show that this only slightly degrades the visual qual-
ity, indicating that our method effectively rejects unrelated
features through the induced 3D awareness of the epipo-
lar cross-attention. Second, sampling a frame directly fol-
lowing the video, providing a maximal amount of informa-
tion to the diffusion process. This only slightly improves
our method, showing that it can effectively gather context
from loosely placed context views. The qualitative results
in Fig. 6 show that our context-aware encoder effectively
sorts out unrelated information and provides the diffusion
process only with the necessary context.

5.5. Comparison to Novel View Synthesis Approach

We finally compare our method against FrugalNeRF [11],
a state-of-the-art novel view synthesis approach for sparse
views. Such NeRF-based methods typically rely on an ini-
tial sparse 3D reconstruction step, limiting their applicabil-
ity to diverse scenes. In a two-view setup, the COLMAP
pipeline [18], typically employed in this step, only achieves
a reliable registration in over 80% of the cases if the frames
distance is between ∼ 1s and ∼ 8.5s, heavily limiting such
approaches if the context frames are too close or too distant.

We train FrugalNeRF on ∼ 100 test scenes from the
RealEstate10K dataset using the first and 17th frame as
training frames and the intermediate ones as test frames,
similar to the End+1 evaluation setup of the context sam-
pling study in Sec. 5.4. Accordingly, we define the refer-
ence and context frame for our approach.

Tab. 4 shows that our method slightly outperforms Fru-
galNeRF while being more broadly applicable, as it does
not require a prior reconstruction step. Moreover, because
NeRF-based methods typically employ a test-time opti-
mization training scheme, the time needed to learn and
render the 3D representation (1265.87s) is substantially

larger than the pure rendering time for our approach (8.01s),
which can be directly applied to novel scenes after training.
See the supplementary material for additional details.

Method SSIM ↑ LPIPS ↓ PSNR ↑ Time (s)

FrugalNeRF 0.737 0.156 23.76 1265.87
Ours 0.741 0.128 24.32 8.01

Table 4. Novel view synthesis comparison. We evaluate our
model against a state-of-the-art sparse-view 3D reconstruction
method that is geometrically grounded to faithfully represent the
scene. All methods are tested at a resolution of 512 × 512 using
the first and 17th frames as conditioning signals. Our approach
achieves slightly better image quality while requiring only a frac-
tion of the compute time.

6. Conclusion and Limitations
This paper introduces CamC2V, a novel conditioning mech-
anism that provides the diffusion process with exten-
sive contextual information derived from multiple context
views. Unlike conventional image-to-video diffusion mod-
els, which typically rely on a single reference image, our
proposed method employs a Context-aware Encoder that
encodes additional context through a high-level semantic
stream and a 3D-aware visual stream, generating a global
semantic representation and a dense, pixel-wise visual em-
bedding from context views. This results in significantly
improved video fidelity and adherence to scene context,
bringing video diffusion models closer to traditional ren-
dering engines.

Still, our method treats the context views as an instanta-
neous scene snapshot which limits its applicability in highly
dynamic scenes. Moreover, its generative capability is lim-
ited by the baseline diffusion model. Applying our method
on more dynamic scenes and on novel DiT-based diffusion
models may be basis to future work.
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