
Published as a conference paper at ICLR 2024

AGENTBOARD: AN ANALYTICAL EVALUATION
BOARD OF MULTI-TURN LLM AGENTS

Chang Ma∗♠ Junlei Zhang∗♢∆ Zhihao Zhu∗♡ Cheng Yang∗♣

Yujiu Yang♣ Yaohui Jin♡ Zhenzhong Lan∆ Lingpeng Kong♠ Junxian He⋆
♠The University of Hong Kong ♢Zhejiang University ♡Shanghai Jiao Tong University
♣Tsinghua University ∆ School of Engineering, Westlake University
⋆The Hong Kong University of Science and Technology
llmagentboard@gmail.com

ABSTRACT

Evaluating Large Language Models (LLMs) as general-purpose agents is essential
for understanding their capabilities and facilitating their integration into practical
applications. However, the evaluation process presents substantial challenges. A
primary obstacle is the benchmarking of agent performance across diverse sce-
narios within a unified framework, especially in maintaining partially-observable
environments and ensuring multi-round interactions. Moreover, current evalua-
tion frameworks mostly focus on the final success rate, revealing few insights
during the process and failing to provide a deep understanding of the model abil-
ities. To address these challenges, we introduce AGENTBOARD, a pioneering
comprehensive benchmark and accompanied open-source evaluation framework
tailored to analytical evaluation of LLM agents. AGENTBOARD offers a fine-
grained progress rate metric that captures incremental advancements as well as
a comprehensive evaluation toolkit that features easy assessment of agents for
multi-faceted analysis. This not only sheds light on the capabilities and limita-
tions of LLM agents but also propels the interpretability of their performance to
the forefront. Ultimately, AGENTBOARD serves as a step towards demystifying
agent behaviors and accelerating the development of stronger LLM agents.1

1 INTRODUCTION

General-purpose agents that can autonomously perceive and act in various environments are consid-
ered significant milestones in Artificial Intelligence (Russell & Norvig, 2005). Recent advancements
in large language models (OpenAI, 2023; Touvron et al., 2023) have demonstrated emergent agent
abilities that enable them to understand diverse environments and perform step-by-step planning
through multi-round interactions. (Yao et al., 2023; Song et al., 2023). These advanced abilities
contribute to the potential of LLMs to act as generalist agents for real-world problem-solving.

A comprehensive evaluation of LLM agents is crucial for the progression of this emerging field. To
start, task diversity is necessary to cover various agent tasks such as embodied, web, and tool agents.
Additionally, multi-round interaction is critical to mimic realistic scenarios, in contrast to the single-
round tasks commonly adopted in existing benchmarks (Xu et al., 2023a; Lin & Chen, 2023; Qin
et al., 2023a). Furthermore, evaluating agents in partially-observable environments, where they
must actively explore to understand their surroundings, is essential for practical assessments. This
differs from the “synthetic” agent tasks (Wang et al., 2023b) derived from conventional benchmarks
in fully-observable environments, such as MMLU (Lanham et al., 2023) and MATH (Hendrycks
et al., 2021). However, existing agent benchmarks often fail to satisfy all of these criteria.

Moreover, the inherent complexity in agent tasks, characterized by multi-round interactions,
decision-making based on long context, and the achievement of various subgoals, distinguishes
them significantly from other language tasks. Due to this complexity, there is a pressing need to

∗Equal Contribution. Individual contributions are listed in Appendix A. Work done during visit to HKUST.
1Code and data are available at https://github.com/hkust-nlp/AgentBoard

1

https://github.com/hkust-nlp/AgentBoard

Published as a conference paper at ICLR 2024

、

Analysis

Goal: Find the exit of the maze
…
Agent
Move forward !
Environment
Oops! There is no road in front of you.
Please choose another action.
Progress Rate
0.25 Interaction

Task

AgentBoard

EnvironmentProgress
1

InteractionTask Analysis

1

Web
WebShop
WebArena

Tool
Query
Operation

Game
Jericho
PDDL

Embodied AI
AlfWorld
ScienceWorld
BabyAI

0
20
40
60
80

0 5 10 15 20

GPT-4 Current Run

0
10
20
30
40
50

All Easy Hard
Success Rate vs Progress Rate

GPT- 4
Claude 2
GPT- 3.5-Turb o
Curr ent Ru n

Memory

PlanningSpatial
Navigation

Grounding World
Modeling

Self-Reflection
Sub-skill Score Leaderboard

0 20 40 60 80

Current Run

Claude2

GPT-3.5-Turbo

GPT-4
Success Rate Progress Rate

10

20

30
40
50

Current Run
GPT-3.5-Turbo
Claude2
GPT-4

GPT-4

Claude2

GPT-3.5-Turbo

Current Run

Progress RateSuccess Rate
Current Run

222

Progress Rate w.r.t. Step

333

Figure 1: The illustrative overview of AGENTBOARD. AGENTBOARD consists of a 9 diverse tasks. Agents
interact in multi-rounds with partially-observable environments to achieve each subgoal. Furthermore, AGENT-
BOARD provides an open-source analytical evaluation framework, as shown in the figure.

delve into the details and gain a deeper understanding of how models function during the process.
Nonetheless, most current evaluations predominantly rely on the final success rate as their metric,
which provides limited insights into these intricate processes (Liu et al., 2023a; Wang et al., 2023b;
Yao et al., 2023; Liu et al., 2023b; Mialon et al., 2023). This simplified evaluation is particularly
inadequate in challenging environments where most models demonstrate nearly zero success rates,
consequently blurring finer distinctions and obscuring underlying mechanisms (Liu et al., 2023a).

To address these issues, we introduce AGENTBOARD, a benchmark designed for multi-turn LLM
agents, complemented by an analytical evaluation board for detailed model assessment beyond final
success rates. AGENTBOARD encompasses a diverse set of 9 unique tasks and 1013 exemplary
environments, covering a range from embodied AI and game agents to web and tool agents. Each
environment, whether newly created or adapted from pre-existing ones, is carefully crafted and
authenticated by humans to ensure multi-round and partially observable characteristics in a unified
manner. Notably, we have defined or manually annotated subgoals for each data sample, introducing
a unified progress rate metric to track the agents’ detailed advancements. As we will demonstrate in
§5.2, this metric uncovers significant progress made by models that would otherwise appear trivial
due to negligible differences in success rates.

Along with the benchmark, we develop the AGENTBOARD evaluation framework as an open-source
toolkit that features an analytical web panel to examine various dimensions of agent abilities through
interactive visualization. The toolkit offers a unified interface, providing users with easy access
and effortless customization options. As partially shown in Figure 1, the AGENTBOARD panel
currently supports analysis and visualization on fine-grained progress rates tracking, performance
breakdown for hard and easy examples, detailed performance across various sub-skills, long-range
interaction assessment, grounding accuracy, and trajectory. This detailed evaluation is crucial for
acknowledging the progress of LLM agents and for guiding the development of more robust LLM
agent models. The comparison between AGENTBOARD and previous works is shown in Table 1.

We assess a wide series of proprietary and open-weight LLM agents through AGENTBOARD and
derive a clear perspective on current LLM models as agents: (1) GPT-4 outperforms all other models
by exhibiting extensive proficiency across a range of tasks and distinct agentic abilities, while open-
weight code-LLMs are catching up with commercial models, with DeepSeek LLM (DeepSeek-AI
et al., 2024) and Lemur (Xu et al., 2023b) taking the lead; (2) Strong LLM agents are characterized
by their capability for multi-turn interaction with the environment, an ability that is notably lacking
in most open-weight models; (3) Current proprietary models typically demonstrate comprehensive
agentic abilities, while open-weight LLMs show varying deficiencies in grounding, world modeling,
and self-reflection. Through AGENTBOARD, we highlight the importance of analytic evaluation of
LLM agents. We expect that the detailed assessments from AGENTBOARD and the open-source
AGENTBOARD toolkit will help push further advancements of LLM agents.

2 RELATED WORK

LLM as Agent Traditional Reinforcement Learning provides general solutions for decision-making
but lacks sample efficiency and generalization (Pourchot & Sigaud, 2019). The emergent reasoning

2

Published as a conference paper at ICLR 2024

Benchmarks Task Diversity Multi-round
Interaction

Partially-Observable
Environments

Fine-grained
Progress Metrics

Analytical
Evaluation

AgentBench (Liu et al., 2023a) ✔ ✗‡ ✔ ✗ ✗

GAIA (Mialon et al., 2023) ✗§ ✔ ✔ ✗ ✗

MINT (Wang et al., 2023b) ✔ ✔ ✗† ✗ ✗
API-Bank (Li et al., 2023) ✗ ✔ ✔ ✗ ✗
ToolEval (Qin et al., 2023b) ✗ ✔ ✔ ✗ ✗
LLM-Eval (Lin & Chen, 2023) ✔ ✗ ✗ ✗ ✗
AGENTBOARD ✔ ✔ ✔ ✔ ✔

Table 1: AGENTBOARD differs from other LLM benchmarks by providing a comprehensive framework that
fully integrates all four guiding principles within its evaluation system. ‡Notably, AgentBench entails both sin-
gle and multi-round tasks, with only the former differentiating open-sourced models. §The GAIA benchmark
focuses solely on question answering tasks that involve interacting with the real world. †MINT benchmark pri-
marily includes fully-observable environments tasks derived from conventional evaluations such as HumanEval
and GSM8K.

and instruction-following abilities of LLMs (Wei et al., 2022) enable them to become proficient
agents, excelling in zero-shot generalization (Yao et al., 2023; Richards, 2023; Wang et al., 2023a).
The central method for employing LLMs as agents is to prompt them with task instructions and
environmental context, enabling them to produce actionable responses (Richards, 2023; Xie et al.,
2023). Other methods involve specialized training to repurpose LLMs into adept agents (Xu et al.,
2023b; Reed et al., 2022; Driess et al., 2023). We benchmark both general (OpenAI, 2023; Touvron
et al., 2023; Chiang et al., 2023) and agent LLMs (Xu et al., 2023b) to study LLMs as agents.
Meanwhile, several work addresses dimensional aspects of agentic abilities, with a focus on the
ability to ground goals to executable actions (Gu et al., 2022; Ahn et al., 2022), the ability to model
the world (LeCun, 2022), the ability to perform step-by-step planning (Song et al., 2023), and self-
reflection ability (Madaan et al., 2023; Wang et al., 2023b). Examining various agentic skills is
crucial to fully understand the advantages and limitations of LLMs as agents.

Evaluating LLM in Decision Making Problems Several benchmarks and toolkits for LLM agents
have been established, focusing on various tasks such as web-browsing, games, and tool use (Yao
et al., 2022; Zhou et al., 2023; Shridhar et al., 2021; Qin et al., 2023a; Wang et al., 2023a; Ye et al.,
2024; Kinniment et al., 2023). A few other benchmarks provide a proof-of-concept study on specific
LLM features, with Wang et al. (2023b) focusing on model interaction ability, and Liu et al. (2023b)
examining agent structures. Recent works by Liu et al. (2023a); Wu et al. (2023); Mialon et al.
(2023) present a generalist challenge for LLM agents, please refer to Table 1 for a comparison. Note
that recent progress in multimodal LLMs has spurred research into multimodal LLM agents (Zheng
et al., 2024; Yang et al., 2023). Our study focuses exclusively on text-based environments to assess
LLM agent abilities via textual reasoning and actions in-depth.

3 AGENTBOARD – OVERVIEW

AGENTBOARD is designed around the core principles of uniformity and user-friendliness. Beyond a
text-based agent evaluation benchmark, we develop AGENTBOARD aiming for a readily accessible,
open-source evaluation framework that facilitates diverse analysis and easy customization for differ-
ent models, agents, and environments, all within a unified format. This commitment to uniformity
manifests in three key areas:

• Interface Uniformity, where we present a consistent interface implementation across vari-
ous environments, model deployments, and prompt types;

• Observation and Action Space Uniformity, ensuring datasets are uniformly constructed for
text-based interactions with unified metrics;

• Analysis Uniformity, which expands metrics beyond mere success rate and scores to in-
clude detailed analyses. As illustrated in Figure 1, such a comprehensive evaluation in-
cludes assessment on (1) fine-grained progress rates tracking different agents, (2) ground-
ing accuracy, (3) performance breakdown for hard and easy examples, (4) long-range in-
teractions, (5) analyses of performance across various sub-skills, and (6) trajectory with
friendly visualization. We elaborate these analyses in our experiments at §5. Additionally,
AGENTBOARD provides an web interface through Wandb dashboard that offers interactive
visualizations of these analyses during evaluation2 and a case study in §6.

2An example of the panel is public here.

3

https://wandb.ai/agentboard/llm-agent-eval-gpt-4-all

Published as a conference paper at ICLR 2024

[Instruction]: You are an agent in a virtual science school environment, tasked to
interact with various elements. Here are commands that you can use: open, close,
look around ...
[Goal]: You should perform actions to accomplish the goal: boil some water.

[Memory]:
Observation: This room is called the workshop. In it, you see: the agent, a table, a door to
the hallway…
Action: go to kitchen
Observation: You move to the kitchen.
Action: open cupboard
Observation: The cupboard is open. There is a mug, a thermometer, and a cloth.

User

Action: pickup mug from the cupboard

Observation: You move the mug to the inventory.

State

EnvironmentLanguage
Model

Generation

Memory

What has my previous
actions done?

How does the world
evolve?

Goal

Observation

StateAction

Figure 2: (Left) A structural overview of the reflex agent, which iteratively interacts with the environment and
makes next step predictions based on the goal and history. (Right) An example of a prompt that queries the
LLM to behave as our reflex agent.

3.1 PRELIMINARIES

An LLM agent receives textual world descriptions, chooses a text action, and gets feedback de-
tailing state changes and any action errors. Interaction with these environments can be modeled
as a special case of Partially Observable Markov Decision Processes (POMDPs) defined by tuple
⟨g,S,A,O, T ⟩, with goal g, state space S, valid actions space A, observation space (including envi-
ronment feedback) O, transition function T : S ×A → S . An agent with policy π makes prediction
at time step t based on goal g and memory mt = {oj , aj , oj+1, aj+1, . . . ot}, 0 ≤ j < t, which
is a sequence of actions and observations. This trajectory of the agent τ = [s0, a0, s1, a1, . . . st] is
formulated by policy and environmental state transitions, such as

pπ(τ) = p(s0)

T∏
t=0

π(at|g, st,mt)T (st+1|st, at) (1)

The agent’s structure is detailed in §3.2, and interactive environment designs in Section 4.

3.2 A UNIFIED REFLEX AGENT

AGENTBOARD unifies all tasks around a general framework where the agent receives observations
ot and performs actions at, causing deterministic state transitions T : (st, at) → st+1 based on real-
world dynamics. A feedback function f is also defined in the environment to derive feedback from
each interaction ot = f(st, at). This feedback includes: (1) list all valid actions when the agent uses
help actions such as check valid actions; (2) execute valid action at and return a description of the
changed stete st+1; (3) issue an error when the agent performs an action outside of the action space.

As shown in Figure 2, our agent makes decisions based on its memory of past perceptions, similar
to how humans learn from experience and adapt. The implementation of the reflex agent assessed
in this paper adopts an act-only prompting strategy in line with recent studies (Liu et al., 2023b;
Zhou et al., 2023; Xu et al., 2023a), detailed in the right part of Figure 2, while other prompt-
ing strategy can be easily incorporated into our open-source framework. The prompt template and
content are kept consistent across various LLMs, with occasional minor adjustments to fit specific
model requirements. Also, LLM agents tend to struggle with limited context lengths in long interac-
tions, failing to retain full history. Following the “sliding window” method from LangChain (Chase,
2022), we focus on recent, more impactful interactions (Puterman, 1990) within context constraints.
This differs from previous practices that stop the agent when context limits are surpassed (Liu et al.,
2023a; Wang et al., 2023b), allowing for extended, intricate interactions in our approach.

3.3 FINE-GRAINED PROGRESS RATE

Recent studies highlight the predominant use of success rate as the main metric for agent evaluation,
which fails to capture the nuances of partial task completion by language model agents (Liu et al.,
2023a; Li et al., 2023). This approach does not differentiate between near-complete tasks and min-
imal task execution, treating both as equivalent failures. Alternative metrics like reward scores
are available but lack standardization, complicating cross-environment comparisons (Chevalier-

4

Published as a conference paper at ICLR 2024

Task Goal & Trajectory

ALF

Goal: put a clean egg in microwave.
Step 02 Action: open fridge 1 Observation: You open the fridge 1. The fridge 1 is open. In it, you see a apple 2, a egg 1, a
lettuce 1, a pan 2, a plate 1, and a tomato 1. Progress Rate: 0.00 → 0.25

JC

Goal: Get out of the house. Then escape the city without getting caught via driving.
Step 29 Action: take a shower Observation: You step into the shower, turn on the water, and within a few moments you feel
like a new man. But no time to dawdle - you hop back out again and dry off in record time . . . Progress Rate: 0.43 → 0.57

WA

Goal: Display the list of issues in the kkroening/ffmpeg-python repository that have labels related to questions
Step 05 Action: click [5398] Observation: Tab 0 (current): Issues · Karl Kroening / ffmpeg-python · GitLab [6573]
RootWebArea ‘Issues · Karl Kroening / ffmpeg-python · GitLab’ focused: True [6620] link . . . Progress Rate: 0.25 → 0.50

TO

Goal: In “Sheet17”, calculate and complete the “Profit” of the products in the table based on the sales information of the
products. And then, sort the table in descending order by “Profit”.
Step 07 Action: update cell by formula with Action Input: {“operator”: “PRODUCT”, “ start position”: “C8”,
“end position”: “D8”, “result position”: “E8”} Observation: [[‘Product’, ‘Category’, ‘Price’, ‘Sold out’, . . .
Progress Rate: 0.47 → 0.49

Table 2: Examples of goals for the 4 task categories in AGENTBOARD, along with a sampled step of the
trajectory and progress rate. The trajectory is generated by GPT-4. Some lengthy observations are omitted with
“. . .” for brevity. The task name in the table uses an abbreviation, the full name can be found in §4.

Boisvert et al., 2019; Wang et al., 2022). We introduce a progress rate metric to accurately reflect
language model agents’ goal attainment at various stages in a unified manner.

In each round of interaction, a progress rate, denoted as rt, is assigned to evaluate the agent’s ad-
vancement towards the goal state g. As the agent moves through the states st = [s0, . . . , st], we
assess its progress using a matching score f(·, g) → [0, 1] that quantifies the similarity between
the current state and the goal state. The initial value of rt is set to 0, indicating no progress. The
progress rate rt reflects the highest matching score achieved, reaching 1 when the task is completed.
The progress rate is formulated as below:

rt =

rmatch
t = max

i,0≤i≤t
f(si, g), if f(·, g) is continuous

rsubgoal
t = max

i,0≤i≤t

(
1

K

K∑
k=1

f(si, gk)

)
, otherwise

(2)

The function f(·, g) measures state similarity in tasks, such as comparing table states in manipula-
tion activities. It works well for tasks with direct state comparisons but is less effective for tasks with
ambiguous intermediate states, where progress is hard to measure. We mitigate this by introducing
a discrete matching score to assess how closely intermediate states align with defined subgoals. We
begin by decomposing the overall goal g into a sequence of subgoals g = [g1, . . . , gK], where each
subgoal precedes the next. We manually edit 5% of problems for a simpler setup where each final
goal aligns with a unique subgoal sequence. Note that we only maintain a unique subgoal sequence,
yet this allows a diverse set of trajectories, e.g. take detours when accomplishing the task. As an
example, if the goal of the task is “clean an egg and put it in microwave”. The necessary subgoals
would be “open the fridge” → “taking an egg from the fridge” → “clean the egg with sinkbasin”
→ “put the egg in the microwave”. Each subgoal gi is associated with a labeled state that indicates
its completion. To evaluate the match between an agent state and a subgoal, we employ a regular-
expression-based matching function denoted as f(·, gi) → {0, 1} and the progress rate as rsubgoal

t in
Equation 2.

4 AGENTBOARD – TASK COMPOSITION

In this section, we introduce the tasks in AGENTBOARD, the adaptations we made to accommodate
our design principles, as well as the annotation process of subgoals. AGENTBOARD is composed of
four types of environments: embodied, game, web, and tool. The examples of goals and trajectories
are illustrated in Table 2 and the summary of task statistics is available in Table 10. We briefly
describe these tasks next, while we leave more details on these environments in Appendix G and H.

5

Published as a conference paper at ICLR 2024

4.1 EMBODIED ENVIRONMENTS

AlfWorld (ALF) (Shridhar et al., 2021) are Household tasks that require models to explore rooms
and use commonsense reasoning to perform tasks, such as “put a pencil on the desk”. To calculate
the progress rate, we defined subgoals based on necessary observations to finish a task and the
success flag provided by environments.

ScienceWorld (SW) (Wang et al., 2022) is a challenging interactive text environment testing sci-
entific commonsense with tasks like “measure the melting point of the orange juice”. The current
subgoals provided by SW do not accurately reflect a language model’s performance due to their spar-
sity and uneven weighting, as further explained in Appendix H.2. To rectify this, we re-annotate the
subgoals to create a more evenly distributed reward system (rsubgoalt). We also imposed restrictions
on tool usage and task completion rooms to ensure these subgoals are essential for accomplishing
the final goals.

BabyAI (BA) (Chevalier-Boisvert et al., 2019) is an interactive 20x20 grid environment where
agents navigate and interact with objects within a limited sight range. The original setup uses
image-based observations and tensor-based actions like “0: move left”. We adapted it to include
a textual action space and descriptive textual observations. Furthermore, we introduced a subgoal-
based progress rate to enhance reward frequency over the original scoring system.

4.2 GAME ENVIRONMENTS

Jericho (JC) (Hausknecht et al., 2020) is a collection of text-based game environments that eval-
uate agents to perform adventures in fictional worlds. This task is unique in that it requires strong
world modeling ability as agents could only gain information about the magic world through explo-
ration and interaction. The original games are quite long (need 50-300 steps to finish), which is not
suitable for LLM agents with fixed context length. To solve this issue, we rewrite the goal of each
adventure to restrict the games to be finished within 15 subgoals.

PDDL (PL) (Vallati et al., 2015) is a set of strategic games defined with Planning Domain Defini-
tion Language (PDDL). We selected 4 representative games, Gripper, Barman, Blocksworld, Tyre-
world to benchmark LLM agents in diverse scenarios. We adapted the environment implementation
(Silver & Chitnis, 2020) written in PDDL expressions to provide text-based observations for agents,
enabling Large Language Models (LLMs) to interact using natural language. We measure progress
using a matching score, rmatch

t , which assesses similarity between the current and goal states.

4.3 WEB-BASED ENVIRONMENTS

WebShop (WS) (Yao et al., 2022) is a network-based simulation environment for e-commerce
experiences. We measure the distance of the current state to the final goal as the progress rate and
expand the product scoring rules from Yao et al. (2022) to derive the score (H.6).

WebArena (WA) (Zhou et al., 2023) is a real web environment. To obtain the progress rate, we
revised the existing method for calculating the final score (Zhou et al., 2023) and continuously
computed the progress rate at each step, fusing the URL matching score with the content matching
score, as detailed in Appendix H.7.

4.4 TOOL ENVIRONMENTS

Tool-Query (TQ) consists of three sub-environments: Weather, Movie and Academia Environment.
Tools involved primarily serve the purpose of querying information about weather, movie and com-
puter science academia. To compute the progress rate rsubgoal

t , the authors manually identify golden
actions for each goal. Outputs returned by executing these actions are then processed as subgoals.

Tool-Operation (TO) includes two sub-environments: Todo and Sheet. They use tools to access and
modify information. The progress rate in the Todo Environment is measured using rsubgoal

t , similar
to Tool-Query Environments. In the Sheet Environment, progress is evaluated using rmatch

t , which is
based on the match between the current and the manually annotated golden spreadsheet.

6

Published as a conference paper at ICLR 2024

Model Embodied AI Game Web Tool Avg.ALF SW BA JC PL WS WA TQ TO
GPT-4 65.5/43.3 78.8/52.2 70.7/56.2 52.4/35.0 81.2/61.7 76.5/39.0 39.4/15.1 85.1/68.3 80.8/60.0 70.0/47.9
Claude2 34.1/24.6 32.0/11.1 48.1/37.5 20.4/ 0.0 61.4/40.0 74.6/37.8 36.4/ 8.6 73.5/48.3 59.6/27.5 48.9/26.2
GPT-3.5-Turbo 35.6/17.2 31.9/18.9 51.7/39.3 19.9/ 5.0 25.0/ 5.0 76.4/35.1 25.5/ 4.6 69.4/45.0 37.2/ 7.5 41.4/19.7
DeepSeek-67b 34.5/20.9 36.1/10.0 31.7/22.3 13.7/ 0.0 22.0/ 6.7 72.7/31.9 23.9/ 5.7 71.4/40.0 40.5/17.5 38.5/17.2
Text-Davinci-003 18.8/ 9.0 28.9/ 7.8 17.5/14.3 28.6/10.0 31.7/11.7 72.3/29.5 16.2/ 2.5 65.0/38.3 56.2/22.5 37.2/16.2
GPT-3.5-Turbo-16k 25.2/ 4.5 2.2/ 0.0 45.1/33.9 16.1/ 0.0 22.6/ 3.3 73.8/27.9 23.7/ 6.1 59.1/31.7 39.6/15.0 34.2/13.6
Lemur-70b 10.8/ 0.7 33.4/ 5.6 19.4/ 9.8 10.1/ 0.0 9.7/ 3.3 71.8/11.6 12.2/ 3.3 72.0/28.3 37.7/12.5 30.8/ 8.3
CodeLlama-34b 11.3/ 3.0 3.5/ 0.0 19.9/13.4 15.5/ 0.0 18.5/ 3.3 71.7/23.5 21.2/ 4.1 60.0/13.3 48.8/ 7.5 30.0/ 7.6
CodeLlama-13b 13.4/ 2.2 9.6/ 2.2 22.2/17.0 0.0/ 0.0 9.3/ 1.7 65.5/25.9 17.7/ 3.7 52.5/25.0 41.8/12.5 25.8/10.0
Llama2-70b 13.2/ 3.0 2.6/ 0.0 30.0/19.6 7.8/ 0.0 8.1/ 1.7 53.6/13.1 11.6/ 3.3 48.3/ 0.0 38.6/ 0.0 23.8/ 4.5
Mistral-7b 9.8/ 0.0 15.8/ 2.2 20.1/14.3 11.0/ 0.0 4.7/ 0.0 68.2/13.9 13.2/ 1.3 51.0/ 3.3 27.2/ 0.0 24.6/ 3.9
Vicuna-13b-16k 11.0/ 1.5 14.1/ 2.2 14.3/ 5.4 15.2/ 0.0 7.2/ 1.7 73.3/21.9 11.3/ 2.9 34.3/ 3.3 26.9/ 0.0 23.1/ 4.3
Llama2-13b 7.8/ 0.0 1.1/ 0.0 18.1/ 6.2 3.2/ 0.0 4.1/ 0.0 63.5/10.8 7.9/ 2.0 35.1/ 0.0 29.3/ 0.0 18.9/ 2.1

Table 3: Performance of different LLMs across various tasks. The models are sorted in descending order, in
terms of progress rates. “A/B” indicates “progress rate” and “success rate” metrics. We benchmark the chat
version of the open-weight models, please refer to Appendix E for specific version of the models.

4.5 ANNOTATION VALIDATION

We conducted manual validation of our labeled subgoals through a custom interactive UI and multi-
ple rounds of checks. Initially, annotators self-reviewed their work, followed by an external review
by two annotators. Discrepancies based on progress rates were flagged for re-annotation. The low
error rate reported in Table 9 attests to the high quality of the final annotations. Detailed procedures
are outlined in Appendix F.

5 EXPERIMENTS

We conduct a comprehensive evaluation of popular large language models, including proprietary
and open-weight models. Firstly, we report the success rate and progress rate of these agents. Then,
we perform detailed analysis of the performance of agents and measure the various abilities of LLM
agents, as part of the AGENTBOARD evaluation automatically supported by our open-source toolkit.

5.1 EVALUATION SETUP

We implement the agent as described in §3.2. We use a one-shot in-context example in our prompt,
in addition to task instructions. For the detailed prompt, please refer to Appendix J. We benchmark
a series of strong proprietary and open-weight models. For open-weight models, we assess the
corresponding chat version of them. Please refer to Appendix E for details.

5.2 MAIN RESULTS

Progress Rate is more informative and discriminative than success rate. The success rate and
progress rate across various tasks and categories are presented in Table 3. Regarding the overall
performance, the progress rate serves as a more effective differentiator between models. For exam-
ple, Llama2-13b and Mistral-7b exhibit similarly negligible success rates (2.1% and 3.9%,
respectively), but their progress rates differ significantly: 18.9% for Llama2-13b and 24.6% for
Mistral-7b. This disparity suggests that Mistral-7b generally outperforms Llama2-13b.
For models with substantial differences in success rates, such as Text-Davinci-003 outper-
forming Llama2-70b by 11.7% in success rate, Text-Davinci-003 leads the progress rate
by 13.4% as well, which indicates the consistency in performance disparity between significantly
different models. Investigating the agent performance on specific tasks, progress rate is often able
to differentiate models that have similar success rates – for instance, on the Embodied AI and Game
categories, the success rates of most of the open-weight models are similarly low, while they are
able to make meaningfully different progresses. Also, the success rate can be influenced by spe-
cific characteristics of agents, for example, an agent like CodeLlama-34b often fails to generate
the action “finish” when performing tool-using tasks, leading to a higher progress rate and lower
success rate compared to CodeLlama-13b. In contrast, progress rate is less susceptible to these
agent-specific features as it reflects the overall ability of the agent at each step.

Proprietary models outperform the open-weight ones. Unsurprisingly, the performance of pro-
prietary LLMs significantly surpasses that of open-weight models. Notably, GPT-4 outperforms

7

Published as a conference paper at ICLR 2024

Model Embodied AI Game Web Tool Avg.ALF SW BA JC PL WS WA TQ TO
GPT-4 82.6 22.8 80.3 100.0 93.0 98.3 97.6 97.5 98.5 85.6
Claude2 57.4 11.2 61.6 98.2 71.2 95.9 83.9 93.7 92.3 73.9
GPT-3.5-Turbo 59.2 18.7 62.4 99.8 66.0 90.2 91.3 97.7 91.8 75.2
Deepseek-67b 43.6 12.6 65.4 99.8 62.7 95.4 55.7 93.1 80.5 67.6
Text-Davinci-003 27.3 17.2 15.9 97.9 72.6 97.4 23.7 95.2 82.5 58.9
GPT-3.5-Turbo-16k 57.4 9.2 73.3 100.0 77.6 96.6 81.3 98.0 92.2 76.2
Lemur-70b 15.7 47.8 44.6 97.7 31.0 84.0 82.8 96.5 88.4 65.4
CodeLlama-34b 8.4 0.4 28.0 97.3 43.6 98.3 96.8 97.5 82.8 61.5
CodeLlama-13b 15.8 9.0 34.6 99.7 17.8 78.0 82.1 90.5 79.2 56.3
Llama2-70b 20.8 3.0 42.3 96.7 30.6 59.3 93.6 90.6 70.4 56.4
Mistral-7b 12.1 7.9 33.9 96.2 18.1 83.5 37.5 69.7 35.1 43.8
Vicuna-13b-16k 17.2 24.1 74.5 100.0 59.2 94.1 58.7 97.9 92.2 68.7
Llama2-13b 8.9 8.6 37.4 99.5 56.7 73.5 79.2 86.9 74.1 58.3

Table 4: Grounding accuracy (%) on different categories of tasks.

Model Metric Embodied AI Game Web Tool Avg.
Easy Hard Easy Hard Easy Hard Easy Hard Easy Hard

GPT-4 Progress 90.6 57.4 ↓33.2 70.3 62.6 ↓7.7 60.8 55.1 ↓5.7 89.3 78.5 ↓10.8 79.2 62.7 ↓16.5
Success 85.0 24.9 ↓60.1 54.2 43.3 ↓10.9 32.2 21.8 ↓10.4 81.1 52.1 ↓29.0 65.6 34.4 ↓31.2

GPT-3.5-Turbo Progress 48.8 31.0 ↓17.8 31.4 10.5 ↓20.9 49.7 50.4 ↑0.7 58.3 48.8 ↓9.5 47.2 34.7 ↓12.5
Success 39.9 11.2 ↓28.7 9.2 0.0 ↓9.2 25.0 14.4 ↓10.6 40.6 14.5 ↓26.1 29.9 10.1 ↓19.8

DeepSeek-67b Progress 35.8 29.1 ↓6.7 28.8 3.8 ↓25.0 50.3 45.5 ↓4.8 61.0 52.1 ↓8.9 43.1 32.2 ↓10.9
Success 26.5 7.9 ↓18.6 5.6 2.1 ↓3.5 22.0 16.6 ↓5.4 40.1 20.1 ↓20.0 23.9 11.3 ↓12.6

Lemur-70b Progress 26.0 15.0 ↓11.0 16.0 2.1 ↓13.9 46.1 39.1 ↓7.0 59.5 51.1 ↓8.4 35.7 25.5 ↓10.2
Success 9.2 0.3 ↓8.9 2.8 0.0 ↓2.8 10.7 7.1 ↓3.6 31.4 11.8 ↓19.6 13.0 4.3 ↓8.7

CodeLlama-34b Progress 13.8 6.6 ↓7.2 28.0 3.5 ↓24.5 48.3 44.5 ↓3.8 66.2 45.7 ↓20.5 36.3 23.0 ↓13.3
Success 7.2 0.9 ↓6.3 2.8 0.0 ↓2.8 19.6 8.7 ↓10.9 19.2 3.6 ↓15.6 11.6 3.0 ↓8.6

Llama2-70b Progress 13.6 11.0 ↓2.6 13.4 1.2 ↓12.2 38.4 27.4 ↓11.0 45.9 41.8 ↓4.1 26.2 19.3 ↓6.9
Success 8.5 1.2 ↓7.3 1.4 0.0 ↓1.4 12.4 3.9 ↓8.5 0.0 0.0→0.0 5.9 1.3 ↓4.6

Table 5: Progress Rate and Success Rate for easy and hard cases. All models show distinct drop for hard cases.

other LLMs by a substantial margin with an average progress rate of 70.0%, particularly in the cat-
egories of Games and Embodied AI, where the success rates of open-weight LLMs are nearly zero.
Surprisingly, GPT-3.5-Turbo-16k did not perform better than GPT-3.5-Turbo, suggesting
that longer context length does not necessarily provide additional benefits in our benchmark.

Strong code skills help agent tasks, with DeepSeek-67b leading the open-weight models.
In the realm of open-weight LLMs, DeepSeek-67b demonstrates relatively superior perfor-
mance, surpassing Text-Davinci-003 and is comparable with GPT-3.5-Turbo. Code LLMs
also show distinct advantage over other open-weight models: CodeLlama-34b outperforms
Llama2-70b by 6.2% in terms of progress rate, despite being significantly smaller. Lemur-70b,
which is continual pretrained on code, also significantly surpasses Llama2-70b. This suggests
that incorporating a greater volume of code in training data may enhance performance in agent
tasks. However, all open-weight models exhibit weak performance in the Games category, which
demands robust planning abilities, as evidenced by nearly zero success rates across the board. In the
Tool category, while the success rates are low, the progress rates are comparatively higher, which
implies that open-weight models are effective in utilizing tools but less proficient in summarizing
information returned by these tools and delivering the final results.

5.3 ANALYTICAL EVALUATION IN AGENTBOARD

AGENTBOARD provides various analytical evaluations for in-depth understanding of agents. In this
section, we’ll use this framework to analyze benchmarked models, with all analyses supported by
our toolkit via interactive visualizations on the wandb web panel.
Grounding accuracy. Errors in grounding valid actions demonstrate a key limitation in the
model’s capacity to follow instructions and produce actions in the correct format, as noted by
Zheng et al. (2024). We report the grounding accuracy, the percentage of valid actions, in Ta-
ble 4. While Text-Davinci-003 and DeepSeek-67b show lower grounding accuracy than
GPT-3.5-Turbo-16K, they are notably stronger in main results, indicating their advantage in
other abilities. Text-Davinci-003 is notably weak in grounding accuracy, with only 58.9%
on average, but its performance in main results is not far away from GPT-3.5-Turbo. This
suggests that the model has limited capability in utilizing tools but is proficient in planning and
other sub-skills. Open-weight models generally have lower grounding accuracy than proprietary

8

Published as a conference paper at ICLR 2024

0 6 12 18 24 30
Step

0

20

40

60

P
ro

gr
es

s
R

at
e

AlfWorld

0 6 12 18 24 30
Step

0

20

40

60

80

PDDL

0 6 12 18 24 30
Step

0

10

20

30

40

WebArena

0 6 12 18 24 30
Step

0

20

40

60

80

Tool-Query

GPT-4 Claude2 GPT-3.5-Turbo Llama2-70b CodeLlama-34b Vicuna-13b-16k DeepSeek-67b

Figure 3: Long-range interaction analysis. Specifi-
cally, we report the progress rate w.r.t. step of Alf-
World, PDDL, WebArena and Tool-Query.

0 4 8 12 16 20

Memory

Planning

Self-Reflection

Grounding

GPT-3.5-Turbo DeepSeek-67b CodeLlama-13b
Lemur-70b CodeLlama-34b Llama2-70b
Vicuna-13b-16k Mistral-7b Llama2-13b

Spatial
Navigation

World
Modeling

0 10 20 30 40 50

Memory

Planning

Self-Reflection

Grounding

GPT-4 Claude2 GPT-3.5-Turbo
Text-Davinci-003 GPT-3.5-Turbo-16k

Spatial
Navigation

World
Modeling

(a) Sub-skill Scores of Proprietary LLMs (b) Sub-skill Scores of Open-weight LLMs

Figure 4: The Sub-skill scores of different LLMs.

ones. Interestingly, Vicuna-13b-16k, despite lower main results, achieves a grounding score
of 68.7%, comparable to DeepSeek-67b and Claude2. This underlines why instruction tuning
alone couldn’t enhance agentic abilities, as found in previous work (Wang et al., 2023b). While tun-
ing improves models’ ability to follow instructions, it doesn’t necessarily boost overall performance.

Performance breakdown for hard and easy examples. For each task, we divide environments into
“hard” or “easy” based on the number of subgoals/conditions to meet, as shown in Table 10. The
outcomes are presented in Table 5. Unsurprisingly, all models show a significant performance drop
on hard examples, consistent with Dziri et al. (2023)’s findings that even robust LLMs like GPT-4
struggle with task compositionality. The performance on hard examples, which aligns to real-world
settings with multiple subgoals, could be more crucial than average metrics.

Long-Range Interaction. One important characteristic of LLM agents is their ability to engage in
multi-round interactions. We analyze how these models proceed across long-range interactions by
calculating the progress rate relative to interaction steps, as depicted in Figure 3. We observe that
proprietary models like GPT-4, Claude2, and GPT-3.5-Turbo consistently make progress
across 30 steps in Alfworld and PDDL tasks, unlike in WebArena and Tool where they quickly peak
and then stagnate. This could be because Embodied AI and Games tasks often require more steps,
and later stages of Webarena are challenging, causing performance saturation after a few turns.

Sub-skill analysis. We aim to assess LLMs across several facets: memory that measures incorpo-
rating long-range information in context, planning that assesses decomposing complex goals into
manageable sub-goals, world modeling which tests knowledge necessary for task completion, self-
reflection that captures the ability to use environmental feedback, grounding that focuses on com-
petency in generating valid actions, and spatial navigation that represents efficiency in moving to
a target location. We develop a sub-skill scoring system based on Table 7, which assigns weighted
values to tasks reflecting their sub-skill demands. As depicted in Figure 4, GPT-4 surpasses other
LLMs across all sub-skills, notably outshining proprietary LLMs with lower weights.

Exploration Behavior. Analysis on the exploration behavior are available in Appendix B.

6 VISUALIZATION PANEL FOR LLM AGENT ANALYSIS: A CASE STUDY

We use Weights&Bias for our visualization panel with task boards for individual task analysis (§3
and §5). As shown in Appendix Figure 6, GPT-4 is the “Current Run” compared with six other
models. The summary board reveals that GPT-4 outperforms all baselines in overall metrics and all
six sub-skills. Its weakest performances are in the Jericho and WebArena tasks, with details on their
task boards. GPT-4 scores lower metrics in Jericho, as it struggles with more complex challenges.

7 CONCLUSION

In this work, we introduce AGENTBOARD as a benchmark for evaluating generalist LLM agents. In
addition to being a benchmark, AGENTBOARD offers an open-source, analytical evaluation frame-
work that facilitates easy customization, unified metrics, and comprehensive analysis from diverse
aspects, in addition to an interactive visualization web panel. Such analytical evaluation is equipped
with an interactive visualization web panel, allowing users to efficiently explore the evaluation and
gain a deeper understanding of the agents of interest. Overall, AGENTBOARD aims to facilitate
detailed evaluation and understanding of LLM agents, driving further advancements in the field.

9

Published as a conference paper at ICLR 2024

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. ArXiv preprint, abs/2204.01691, 2022. URL https:
//arxiv.org/abs/2204.01691.

Anthropic. Introducing claude, 2023. URL https://www.anthropic.com/index/
introducing-claude.

Harrison Chase. Langchain, 2022. URL https://github.com/langchain-ai/
langchain.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency
of grounded language learning. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=rJeXCo0cYX.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2023.

DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge,
Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan
Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X.
Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo,
Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren,
Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng
Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong
Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu,
Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang,
Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. DeepSeek LLM:
Scaling open-source language models with longtermism, 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. ArXiv preprint, abs/2306.06070,
2023. URL https://arxiv.org/abs/2306.06070.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. ArXiv preprint, abs/2303.03378, 2023. URL https://arxiv.org/
abs/2303.03378.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D Hwang, et al. Faith and fate: Limits of transformers
on compositionality. ArXiv preprint, abs/2305.18654, 2023. URL https://arxiv.org/
abs/2305.18654.

Yu Gu, Xiang Deng, and Yu Su. Don’t generate, discriminate: A proposal for grounding language
models to real-world environments. ArXiv preprint, abs/2212.09736, 2022. URL https://
arxiv.org/abs/2212.09736.

Matthew J. Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Inter-
active fiction games: A colossal adventure. In The Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 7903–7910. AAAI Press, 2020.
URL https://aaai.org/ojs/index.php/AAAI/article/view/6297.

10

https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.01691
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2212.09736
https://arxiv.org/abs/2212.09736
https://aaai.org/ojs/index.php/AAAI/article/view/6297

Published as a conference paper at ICLR 2024

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. ArXiv
preprint, abs/2103.03874, 2021. URL https://arxiv.org/abs/2103.03874.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. ArXiv preprint, abs/2310.06825, 2023. URL https://arxiv.org/abs/2310.
06825.

Megan Kinniment, Lucas Jun Koba Sato, Haoxing Du, Brian Goodrich, Max Hasin, Lawrence Chan,
Luke Harold Miles, Tao R Lin, Hjalmar Wijk, Joel Burget, et al. Evaluating language-model
agents on realistic autonomous tasks. ArXiv preprint, abs/2312.11671, 2023. URL https:
//arxiv.org/abs/2312.11671.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Her-
nandez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faith-
fulness in chain-of-thought reasoning. ArXiv preprint, abs/2307.13702, 2023. URL https:
//arxiv.org/abs/2307.13702.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62, 2022.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu, Zhoujun Li, Fei Huang, and Yongbin Li. Api-
bank: A benchmark for tool-augmented llms. ArXiv preprint, abs/2304.08244, 2023. URL
https://arxiv.org/abs/2304.08244.

Yen-Ting Lin and Yun-Nung Chen. Llm-eval: Unified multi-dimensional automatic evaluation for
open-domain conversations with large language models. ArXiv preprint, abs/2305.13711, 2023.
URL https://arxiv.org/abs/2305.13711.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. ArXiv preprint,
abs/2308.03688, 2023a. URL https://arxiv.org/abs/2308.03688.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. Bolaa: Benchmarking and orchestrating
llm-augmented autonomous agents. ArXiv preprint, abs/2308.05960, 2023b. URL https://
arxiv.org/abs/2308.05960.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. ArXiv preprint, abs/2303.17651, 2023. URL https://arxiv.org/abs/
2303.17651.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants. ArXiv preprint, abs/2311.12983, 2023.
URL https://arxiv.org/abs/2311.12983.

OpenAI. Introducing chatgpt, 2022. URL https://openai.com/blog/chatgpt.

OpenAI. Gpt-4 technical report. arXiv, pp. 2303–08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

11

https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2312.11671
https://arxiv.org/abs/2312.11671
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2305.13711
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.05960
https://arxiv.org/abs/2308.05960
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2311.12983
https://openai.com/blog/chatgpt

Published as a conference paper at ICLR 2024

Aloı̈s Pourchot and Olivier Sigaud. CEM-RL: combining evolutionary and gradient-based methods
for policy search. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=BkeU5j0ctQ.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, et al. Tool learning with foundation models. ArXiv preprint,
abs/2304.08354, 2023a. URL https://arxiv.org/abs/2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xi-
angru Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+
real-world apis. ArXiv preprint, abs/2307.16789, 2023b. URL https://arxiv.org/abs/
2307.16789.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A
generalist agent. ArXiv preprint, abs/2205.06175, 2022. URL https://arxiv.org/abs/
2205.06175.

Toran Bruce Richards. Significant-gravitas/autogpt: An experimental open-source attempt to make
gpt-4 fully autonomous., 2023. URL https://github.com/Significant-Gravitas/
AutoGPT.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
ArXiv preprint, abs/2308.12950, 2023. URL https://arxiv.org/abs/2308.12950.

Stuart Russell and Peter Norvig. Ai a modern approach. Learning, 2(3):4, 2005.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pp. 3135–3144. PMLR, 2017a. URL http://proceedings.mlr.press/v70/shi17a.
html.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pp. 3135–3144. PMLR, 2017b. URL http://proceedings.mlr.press/v70/shi17a.
html.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
flexion: Language agents with verbal reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
0IOX0YcCdTn.

Tom Silver and Rohan Chitnis. Pddlgym: Gym environments from pddl problems. ArXiv preprint,
abs/2002.06432, 2020. URL https://arxiv.org/abs/2002.06432.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009,
2023.

12

https://openreview.net/forum?id=BkeU5j0ctQ
https://openreview.net/forum?id=BkeU5j0ctQ
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2205.06175
https://arxiv.org/abs/2205.06175
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://arxiv.org/abs/2308.12950
http://proceedings.mlr.press/v70/shi17a.html
http://proceedings.mlr.press/v70/shi17a.html
http://proceedings.mlr.press/v70/shi17a.html
http://proceedings.mlr.press/v70/shi17a.html
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://arxiv.org/abs/2002.06432

Published as a conference paper at ICLR 2024

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. ArXiv preprint, abs/2302.13971, 2023. URL https:
//arxiv.org/abs/2302.13971.

Mauro Vallati, Lukas Chrpa, Marek Grześ, Thomas Leo McCluskey, Mark Roberts, Scott Sanner,
et al. The 2014 international planning competition: Progress and trends. Ai Magazine, 36(3):
90–98, 2015.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
ArXiv preprint, abs/2305.16291, 2023a. URL https://arxiv.org/abs/2305.16291.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. ScienceWorld: Is
your agent smarter than a 5th grader? In Proceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 11279–11298, Abu Dhabi, United Arab Emirates, 2022.
Association for Computational Linguistics. URL https://aclanthology.org/2022.
emnlp-main.775.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
Evaluating llms in multi-turn interaction with tools and language feedback. ArXiv preprint,
abs/2309.10691, 2023b. URL https://arxiv.org/abs/2309.10691.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large lan-
guage models. ArXiv preprint, abs/2206.07682, 2022. URL https://arxiv.org/abs/
2206.07682.

Yue Wu, Xuan Tang, Tom M Mitchell, and Yuanzhi Li. Smartplay: A benchmark for llms as
intelligent agents. ArXiv preprint, abs/2310.01557, 2023. URL https://arxiv.org/abs/
2310.01557.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Jun-
ning Zhao, Qian Liu, Che Liu, et al. Openagents: An open platform for language agents in
the wild. ArXiv preprint, abs/2310.10634, 2023. URL https://arxiv.org/abs/2310.
10634.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. ArXiv preprint, abs/2305.16504,
2023a. URL https://arxiv.org/abs/2305.16504.

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao
Liu, Tianbao Xie, et al. Lemur: Harmonizing natural language and code for language agents.
ArXiv preprint, abs/2310.06830, 2023b. URL https://arxiv.org/abs/2310.06830.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. ArXiv preprint, abs/2312.13771, 2023. URL https:
//arxiv.org/abs/2312.13771.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang, Yilong Wu, Sixian Li, Xiaoran Fan, Shihan
Dou, Qi Zhang, Tao Gui, et al. Tooleyes: Fine-grained evaluation for tool learning capabilities
of large language models in real-world scenarios. ArXiv preprint, abs/2401.00741, 2024. URL
https://arxiv.org/abs/2401.00741.

13

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2305.16291
https://aclanthology.org/2022.emnlp-main.775
https://aclanthology.org/2022.emnlp-main.775
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2310.01557
https://arxiv.org/abs/2310.01557
https://arxiv.org/abs/2310.10634
https://arxiv.org/abs/2310.10634
https://arxiv.org/abs/2305.16504
https://arxiv.org/abs/2310.06830
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2312.13771
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2401.00741

Published as a conference paper at ICLR 2024

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. ArXiv preprint, abs/2401.01614, 2024. URL https://arxiv.org/abs/
2401.01614.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. ArXiv preprint, abs/2307.13854, 2023. URL https://arxiv.org/
abs/2307.13854.

14

https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

Published as a conference paper at ICLR 2024

APPENDIX

A AUTHOR CONTRIBUTIONS

Code Implementation Chang Ma implemented the code base for AgentBoard framework. The
code for different tasks is implemented by respective person in charge: Junlei Zhang (Alfworld,
Scienceworld), Chang Ma (BabyAI, Jericho and PDDL), Zhihao Zhu (WebShop and WebArena),
Cheng Yang (Tool-Query and Tool-Operation). The website was implemented by Zhihao Zhu and
the visualization panel was implemented by Chang Ma. The code of Alfworld, ScienceWorld,
PDDLGym, WebShop, WebArena and Mint sped up the implementation.

Task Unification Junlei Zhang, Chang Ma, Cheng Yang, Zhihao Zhu implemented the tasks into
environmental interaction format, provided labels for respective tasks, adapted the metrics, and ver-
ified the performances. Chang Ma, Junlei Zhang, Junxian He additionally verified the tasks to be
unified.

Paper writing Chang Ma and Junxian He finished introduction and methodology sections of the
paper. Junlei Zhang and Chang Ma wrote the experiments section. Cheng Yang provided all the
visualizations shown in the paper. Cheng Yang, Zhihao Zhu added results and analysis for their
corresponding parts. Junxian He carefully reviewed and revised the paper and gave feedback for
multiple rounds. Other authors help proofread and provide feedbacks.

Experiments Chang Ma and Junlei Zhang co-lead the evaluation of the models. Zhihao Zhu
conducted all the evaluations on web tasks. Cheng Yang conducted evaluation on tool tasks for
several models and conducted experiments on analysis and visualization.

Data Collection and Human Annotation Data for task examples and progress rate annotation
for each task is collected and annotated with one person in charge, and verfied by at least two
others: Junlei Zhang led data collection and annotation for ScienceWorld, Alfworld; Chang Ma
led data collection and annotation for BabyAI, Jericho and PDDL; Zhihao Zhu led data collection
and annotation for WebShop, WebArena and Sheet task in Tool-Operation; Cheng Yang led data
collection and annotation for Tool-Query and Tool-Operation. Junlei Zhang led data validation for
BabyAI and Tool-Query; Chang Ma led data validation for ScienceWorld and WebShop; Zhihao
Zhu led data validation for Jericho, PDDL and Tool-Operation; Cheng Yang led data validation for
ScienceWorld and WebArena.

Junxian He is the main advisor of this project.

B EXPLORATION BEHAVIOR ANALYSIS

We examine the exploration behavior of models in various environments, as illustrated in Table 6.
The ability of agents to explore plays a significant role in their performance in partially-observable
environments, as diverse exploration trajectories enable agents to acquire all the necessary infor-
mation. We compare the number of locations explored by models, including rooms in BabyAI,
containers in AlfWorld, and places in Jericho. This metric reflects the models’ exploration capabili-
ties. Most models are unable to explore the minimum number of locations necessary to complete the
goal. GPT-3.5-Turbo demonstrates performance comparable to GPT-4 in this score. Among
the open-weight models, Llama2-70b and CodeLlama-34b show similar performance and both
outperform Vicuna-13b-16k, consistent with progress rate and success rate. Detailed analysis
on exploration behavior is not currently implemented in our AGENTBOARD framework since it is
feasible only for some environments.

C SUB-SKILL TABLE

Table 7 shows the criteria for sub-skill scoring and sub-skill scores for each task in AGENTBOARD.

15

Published as a conference paper at ICLR 2024

Tasks Minimum GPT-4 GPT-3.5-Turbo Llama2-70b CodeLlama-34b Vicuna-13b-16k
Babyai - UnlocktoUnlock 3 1 1.25 1 1.25 1
Babyai - FindObjs5 3 2 3.5 2 2 1
Babyai - Keycorridor 3 3 2.5 1.5 1.75 1.25
Alfworld 3 5.625 5.125 1.75 0.125 1
Jericho - Zork1 5 5 5 1 5 1
Jericho - Zork2 6 6 2 1 3 3
Jericho - Zork3 11 6 4 3 2 1

Table 6: Comparison of the number of locations(room in babyai, containers in alfworld, and places in Jericho)
explored by models. The minimum column states the least number of locations need to explore on average in
order to finish the tasks.

AlfWorld ScienceWorld BabyAI Jericho PDDL WebShop WebArena Tool-Query Tool-Operation
Memory
1. Could finish tasks within 2k tokens
2. Could finish task within 4k tokens
3. Otherwise

1 2 1 1 2 1 3 2 3

Planning
1. ≤ 3 subgoals on average
2. ≤ 5 subgoals on average
3. Otherwise

1 2 2 3 3 2 3 2 2

World Modeling
1. Requires no additional knowledge
other than instruction
2. Requires knowledge of the environ-
ment from exploration
3. Requires commonsense knowledge
in addition to knowledge from environ-
ment

3 3 2 3 1 1 3 1 1

Self-Reflection
1. Detailed feedback and error message
with instruction for the next step.
2. Not very detailed feedback and error
message
3. No error message, e.g. “no change in
state”

3 2 2 1 3 2 2 1 1

Grounding
1. No specific action format is required,
could recognize similar actions
2. Action format is required
3. Action format hard to follow

2 3 2 1 3 3 3 3 3

Spatial Navigation
0. No spatial navigation
1. 2D navigation

1 1 1 1 0 0 1 0 0

Table 7: The sub-skill scores associated with each task in AGENTBOARD.

D VISUALIZATION PANEL

The visualization panel supported by AGENTBOARD is shown in Figure 5. We provide a detailed
explanation of panel features and usage tutorial in WandB blog3.

We provide a case study in Figure 6 to show example usage of AGENTBOARD.

E DETAILS OF EVALUATED LLMS

E.1 EVALUATION SETUP

We use greedy decoding strategy and set temperature to zero for better replicacy, and all LLMs
are implemented with vLLM (Kwon et al., 2023) architecture, which has 10× acceleration over
huggingface inference. During prompting, we keep the most recent interaction histories within the
maximum context length of the model. For models with different versions of checkpoints, we choose
the version with best instruction following ability, with chat SFT and alignment. The following are
the specific models we assess in the experiments.

E.2 DETAILS OF MODELS

We list our evaluated models in Table 8.

3This blog will be released after the review period

16

Published as a conference paper at ICLR 2024

Task Board

Summary Board

Figure 5: Visualization Panel based on WandB, composed of a summary board with all metrics and a task board
for each task.

Model Name Model Code/API
GPT-4 (OpenAI, 2023) Azure api: gpt-4 (version: 2023-05-15)
GPT-3.5-Turbo (OpenAI, 2022) Azure api: gpt-35-turbo
GPT-3.5-Turbo-16k (OpenAI, 2022) Azure api:gpt-35-turbo-16k
Claude2 (Anthropic, 2023) Anthropic api: claude-2 (version: 2023-06-01)
Text-Davinci-003 (Ouyang et al., 2022) Azure api: text-davinci-003
Mistral-7b (Jiang et al., 2023) mistralai/Mistral-7B-v0.1
CodeLlama-13b (Roziere et al., 2023) codellama/CodeLlama-13b-Instruct-hf
CodeLlama-34b (Roziere et al., 2023) codellama/CodeLlama-34b-Instruct-hf
Llama2-13b (Touvron et al., 2023) meta-llama/CodeLlama13b-chat-hf
Llama2-70b (Touvron et al., 2023) meta-llama/Llama-2-70b-chat-hf
Vicuna-13b-16k (Chiang et al., 2023) lmsys/vicuna-13b-v1.5-16k
Lemur-70b (Xu et al., 2023b) OpenLemur/lemur-70b-chat-v1
DeepSeek-67b (DeepSeek-AI et al., 2024) deepseek-ai/deepseek-llm-67b-chat

Table 8: Model code/API of our evaluated models.

F DATA QUALITY CONTROL

To ensure the quality of labeled sub-goals, we conducted three rounds of data verification for each
labeled sub-goal. We developed an interactive interface through which inspectors complete tasks and

17

Published as a conference paper at ICLR 2024

(a) panel summary/avg_metrics_comparison:
GPT-4 outperforms all baselines by a large margin

(b) panel summary/agent_abilities:
GPT-4 demonstrates high capability score on all 6

dimensions.

(e) panel jericho/progress_score_w.r.t_difficulty:
GPT-4 performance notably declines for challenging

examples in Jericho.

(c) panel summary/all_results:
GPT-4 performs the worst on Jericho and

WebArena.

(d) panel jericho/metrics_comparison:
Although the performance metrics

of GPT-4 are relatively low for task Jericho, it
still outperforms other baselines. Sort Progress Rate in

Descending Order

(f) panel jericho/predictions:
After sorting progress rate in descending order, we can see that the best performing problems are all easy ones. We can take a

closed look at “trajectory” to understand why hard problems could not be solved by GPT-4.

Click to see details
of trajectory

Figure 6: A case study for GPT-4 based on Panels from AGENTBOARD.

Task Proportion of environments with annotation errors
AlfWorld 10.0%

ScienceWorld 0%
Babyai 4.2%
Jericho 25%
PDDL 5%

WebShop 0%
WebArena 0%
Tool-Query 0%

Tool-Operation 0%

Table 9: The proportion of environments with annotation errors in the second round of data checking. Environ-
ments identified with errors are subsequently analyzed to determine the underlying causes, and any environ-
ments exhibiting similar errors are amended collectively.

observe the reward scores obtained at each step. If the inspector deems the reward score assigned
during interaction with an environment to be unreasonable, additional annotators will engage in a
discussion to determine if modifications to the labeled sub-goals are necessary.

The first round of verification is a self-check. Each annotator is required to carefully review the
labeled tasks in every environment they are responsible for. The second round involves a sampled
inspection by two annotators for each task. They examine a sample of 5-10 items from different
sub-tasks within the task and document the proportion of issues identified, as presented in Table 9.

18

Published as a conference paper at ICLR 2024

Task Description: Go to the red ball

Initial Observation: In front of you in this room, you can see several objects. The room has walls around you. You are facing a wall 1 step away. You are not carrying anyting.

Figure 7: An illustration of our sub-goal checking interface. We develop an interactive interface for annotators
to checking sub-goals. Firstly, annotators play and pass the game with the interface. The reward score for each
step will be given based on the labeled score. If the annotators are dissatisfied with the reward, annotators will
record them and the corresponded environment will be discussed by more annotators and annotated again.”

Table 10: Statistics of 9 environments in AGENTBOARD. “subgoal” and “match” means 2 different implemen-
tations of progress rate rsubgoal and rmatch respectively. †Note that Sheet Environments in Tool-Operation are
evaluated with rmatch, while other sub-tasks are evaluated with rsubgoal. ‡For tasks without subgoal label, we
state the average number of constraints to satisfy in the goal state, which is essentially the complexity of the
problems. For context length, we report the number of tokens generated with Llama2 tokenizer. † We divide
problems into hard/easy based on the number of subgoals – problems with a larger number of subgoals than
cutoff are viewed as hard.

Embodied AI Game Web Tool
ALF SW BA JC PL WS WA TQ TO

Environment 134 90 112 20 60 251 245 60 40
Turns 6 15 10 20 20 3 25 5 6
Action Space 13 21 8 150 8 2 12 15 16
Avg. Subgoals‡ 3 5 4 6 6 4 6 5 5
Hard/Easy Cutoff† 3 3 3 4 6 1 4 4 4
Context Length 900 2800 1800 1500 2700 1200 15000 2100 4300
Progress Rate subgoal subgoal subgoal subgoal match match match subgoal subgoal/match †

The third round is conducted by an annotator who is well-acquainted with the various tasks, who
then performs a sampled review of all tasks.

G DETAILS OF ENVIRONMENTS

G.1 DETAILS OF EMBODIED ENVIRONMENTS

AlfWorld (ALF) (Shridhar et al., 2021) are Household tasks that require models to explore
rooms and use commonsense reasoning to perform tasks, Within AGENTBOARD, we evaluate a

19

Published as a conference paper at ICLR 2024

model’s ability to perform tasks in physical household settings, such as “put a pencil on the desk”.
AlfWorld is categorized into six types, comprising a total of 134 environments.

ScienceWorld (SW) (Wang et al., 2022) is a complex interactive text environment that poses a
significant challenge to agents’ scientific commonsense. This environment requires agents to navi-
gate through 8 distinct functional rooms (e.g., workshop, kitchen) and utilize the tools to complete
tasks such as “measure the melting point of the orange juice”. To address these issues, we re-annotate
subgoals to calculate rsubgoalt , where Specifically, we incorporate necessary observations as part of
the subgoals. the rewards for these subgoals are uniform and distributed evenly throughout the task.
To ensure that our annotated subgoals are necessary for achieving final goals, we restrict the use of
tools and designated task completion rooms in the task descriptions. We show more details of we
annotated subgoals in the Appendix H.2

BabyAI (BA) (Chevalier-Boisvert et al., 2019) is an interactive environment where agents navi-
gate and manipulate objects in a 20x20 grid space. The agent can only see objects within a limited
sight and cannot perceive objects in remote rooms. The original implementation represents observa-
tions as images and only allows for tensor-based low-level actions such as “0: move left”. “1: move
right”, and “2: move forward”. To enable text-based input and output for LLM agents, We modified
it by mapping the original actions to a textual action space and providing textual descriptions of
visual observations, as shown in Table 2. For each step, the environment returns a text description
of the current observation, such as “There is a red ball 1 step to your right and 1 step ahead of you.
There is a wall 2 steps ahead.” We also introduced high-level actions, such as ”go to red ball 1” and
“toggle and go through green locked door 1”, to expand the action space and enrich the semantic
complexity of the environment. Additionally, we implemented a new subgoal-based progress rate
for the environments to increase the density of rewards compared to the original reward scores. Un-
like the previous reward score in BabyAI which awards a point only after a new object is found or
pickup, requiring many steps to see progress in reward score, our new approach increases density of
the rewards, requiring fewer steps to achieve them. We re-annotated subgoals and calculate with the
equation of rsubgoal

t . Subgoals are re-annotated to update the progress rate whenever the agent makes
progress, such as navigating to another room, finding a red ball, and picking it up in the problem
“pickup a red ball”.

G.2 DETAILS OF GAME ENVIRONMENTS

Evaluating LLM agents as strategic game playing agents demands strong planning ability of agents.
We choose three tasks that are all demanding in planning and making strategies.

Jericho (JC) (Hausknecht et al., 2020) is a collection of text-based game environments that eval-
uate agents to perform adventures in fictional worlds. This task is unique in that it requires strong
world modeling ability as agents could only gain information about the magic world through ex-
ploration and interaction. For example, for the task that requires the agent to perform actions with
magic, it cannot reason with pre-trained commonsense knowledge and must perform exploration to
understand the rules of the magic world. The original games are quite long (need 50-300 steps to fin-
ish), which is not suitable for LLM agents with fixed context length. To solve this issue, we rewrite
the goal of each adventure to restrict the games to be finished within 15 subgoals. For example,
zork1 game requires the player to enter a dungeon and explore the dungeon to find a bar. We rewrite
the goal as “You need to find your way into a secret passage where the entrance is in the living room
of the house.” and the agent only needs to find the entrance to the dungeon, which can be finished in
8 steps. We use the rsubgoal

t as progress rate metrics, and we meticulously annotate the subgoals for
each problem. Each subgoal characterize that the agent has solved a small problem, e.g. “find the
entrance to the house” → “enter the house” → “find the living room” → “discover a trap door” →
“find the entrance to dungeon”.

PDDL (PL) (Vallati et al., 2015), short for Planning Domain Definition Language, is a set of
strategic games defined with PDDL symbolic language. We selected 4 representative game do-
mains, Gripper, Barman, Blocksworld, Tyreworld to benchmark LLM agents in diverse scenarios,
where the agent needs to move balls across rooms, make cocktails, rearrange blocks and pump up
and install new tyres to cars. This task is difficult as it requires multiple rounds of planned actions to

20

Published as a conference paper at ICLR 2024

finish a single subgoal and agents need to plan strategically to avoid repetitive steps. For example,
in Barman, the player is given a menu, and is required to make a few cocktails with a few containers
and ingredients. The agent could use a strategy of trying to use different containers each time to
avoid repetitive cleaning and save steps. While the commonly-used environment implementation
(Silver & Chitnis, 2020) requires the agent to interact with an environment with PDDL expressions,
e.g. clean-shaker(hand1, hand2, shaker) and provides observations as set of predi-
cates ontable(shaker1) ∧ empty(shaker1). we write parser rules to offer a text-based
observation to agents that allows LLMs to interact with natural language to be consistent with other
tasks. e.g.“Shaker1 is on the table. Shaker1 is empty” and enable the agents to interact with the
environment with simple text commands, e.g. “clean-shaker shaker1 with hand1 while hand2 is
empty.” We curate 10-20 problems for each of the four domains by ourselves, ensuring the problems
are multi-round and diverse. We use the rmatch

t as progress rate metric, where the matching score
compares the similarity between the properties of current state and the goal state. e.g. for the goal
state “Block a is on block b. Block b is on the table”, if at current state “Block a is on the table.
Block b is on the table”, then the matching score is 0.5. The agent will receive a 100% progress rate
only if all conditions of the goal state are satisfied.

G.3 DETAILS OF WEB-BASED ENVIRONMENTS

Evaluating LLM’s capability as a generalist agent in web-based scenarios has become pivotal (Shi
et al., 2017a; Deng et al., 2023). Web agent is expected to navigate the network efficiently and
perform diverse tasks amidst highly dynamic, intricate, and multi-turn interactions. Based on the
task categorization, we’ve pinpointed two tasks of high recognition and quality: the specific network
task, WebShop (Yao et al., 2022), and the general network task, WebArena (Zhou et al., 2023). The
latter permits unrestricted access to any supported webpage.

WebShop (WS) (Yao et al., 2022) is a network-based simulation environment for e-commerce
experiences, featuring a website with 1.18 million actual products, each with distinct labels
and attributes. In this environment, the agent is allowed to interact with the system through
‘search[QUERY]’ or ‘click[ELEMENT]’ actions to purchase products matching the instructions.
This process necessitates that the model possesses reasoning and grounding abilities. Based on the
original implementation method (Yao et al., 2022; Shinn et al., 2023), we have improved the error
feedback, including refining the observation for exceeding page limits and interacting with wrong
objects. These enhancements contribute to the effective operation of the entire environment and the
rationality of multi-step reasoning processes. As there are no sub-goals in the environment, to obtain
a continuous progress rate, we expanded the calculation rules from (Yao et al., 2022), calculating
the score at different web pages (stages). To measure the distance of the current state to the final
goal as the progress rate, we expanded the product scoring rules from Yao et al. (2022) to derive the
score at different web pages. Please refer to Appendix H.6 for details.

WebArena (WA) (Zhou et al., 2023) is a real web environment containing four applications:
online shopping, discussion forums, collaborative development, and business content management.
It supports 11 different web browsing actions. such as click (element), new tab, goto (URL), etc.,
and offers additional tools like maps and wikis. The observation space consists of structured web
content (the accessibility tree 4). Completing tasks in this highly realistic environment requires
the agent to possess strong memory, high-level planning, common sense, and reasoning abilities.
Compared to other datasets (Deng et al., 2023; Shi et al., 2017b), WebArena offers multi-round and
continuous web browsing interaction simulation. We filtered 245 instances from the original dataset
for two main sub-tasks: Site Navigation and Contact & Config, each annotated with the target URLs
or required content. To obtain the progress rate, we revised the existing method for calculating the
final score (Zhou et al., 2023) and continuously computed the progress rate at each step, fusing
the URL matching score with the content matching score, derived from the current URL and target
URL, with the content matching score calculated based on the detected required content, as detailed
in Appendix H.7.

4https://developer.mozilla.org/en-US/docs/Glossary/Accessibility tree

21

Published as a conference paper at ICLR 2024

G.4 DETAILS OF TOOL ENVIRONMENTS

In AGENTBOARD, a tool contains a variety of functions, accessed by agents via function calling.
These functions are the actions that LLM agents can take in tool environments. Drawing upon open
datasets and APIs, we have developed a suite of five distinct tools, each encapsulated in its own
environment. Tool Environments are categorized into two groups: Tool-Query Environments and
Tool-Operation Environments, representing two general usage scenarios. Tool-Query Environments
include Weather Environment, Movie Environment and Academia Environment. Tool-Operation
Environments include Todo Environment and Sheet Environment.

G.4.1 TOOL-QUERY ENVIRONMENTS

Weather Environment Weather Environment enables LLM agents to use the weather tool to re-
trieve past, present and future weather data, encompassing temperature, precipitation and air quality
across various locales. We use Python codes to integrate Open-Meteo API5, implement the requisite
functions and subsequently develop a weather tool.

Movie Environments Movie Environment grants LLM agents to use the movie tool to access
cinematic data, encompassing film details, personnel and production companies. We incorporate the
API and data from The Movie Database6, implement the necessary functions, and thus establish the
movie tool.

Academia Environment Academia Environment equips LLM agents the academia tool to query
information related to computer science research, including academic papers and author informa-
tion. In its development, we harness data from the Citation Network Dataset7, craft the relevant
functions, and subsequently construct the academia tool.

G.4.2 TOOL-OPERATION ENVIRONMENTS

Todo Environment Todo Environment facilitates LLM agents in querying and amending personal
agenda data through the todo tool. We implement the todo tool based on the Todoist API8.

Sheet Environment Sheet Environment allows LLM agents to use the sheet tool to access and
modify spreadsheet data. We build our sheet tool upon the Google Sheets API9.

H DETAILS OF PROGRESS RATE METRICS

H.1 ALFWORLD

We identify and annotate the necessary subgoals using regular expressions. For instance, for the
task “put a pencil on the desk”, we annotate one necessary observation as “You pick up the pencil
+. ”. This expression would match observations like ”You pick up the pencil 1”. When the goal
of an environment is achieved, the environment emits a task success flag. Specifically, for each
environment, we labeled N-1 necessary subgoals as N-1 subgoals. The final success flag combined
with the N-1 annotated subgoals constitutes the set of N subgoals.

H.2 SCIENCEWORLD

We compare our modified task descriptions and subgoals with the original ones in Table 11. In
the original scheme, subgoals are categorized as “sequential subgoals” and “unordered and optional
subgoals”. For the former, achieving sequential subgoals alone is sufficient to receive full rewards
(100 points). However, under the “unordered and optional subgoals”, each completed task is only

5https://open-meteo.com/
6https://www.themoviedb.org/
7https://www.aminer.org/citation
8https://todoist.com/
9https://www.google.com/sheets/about/

22

https://open-meteo.com/
https://www.themoviedb.org/
https://www.aminer.org/citation
https://todoist.com/
https://www.google.com/sheets/about/

Published as a conference paper at ICLR 2024

Original Labels Ours
Task Description Your task is to freeze orange juice. First, focus on the

substance. Then, take actions that will cause it to change
its state of matter.

Your task is to freeze orange juice in the kitchen. The
objects you can use are a metal pot, a freezer, a ther-
mometer, and a fridge. Take actions that will cause it to
change its state of matter to a solid state. Finally, exam-
ine its altered state. You should wait and monitor the
temperature of the water until it changes its state.

Subgoals Sequential Subgoals:
1. focus on substance
2. substance is in a liquid state
3. substance is in a solid state
Unordered and Optional Subgoals:
1. be in same location as orange juice
2. have substance alone in a single container
3. have object in cooler (fridge)
4. have object in cooler (freezer)
5. cool object by at least 5C

Necessary Observations:
1. You move to the kitchen.
2. The freezer is now open.
3. The fridge is now open.
4. the thermometer measures a temperature of (-?[0-

9]|- ?[1-9][0-9]|- ?[1-9][0-9]2) degrees celsius
5. solid orange juice

Table 11: Comparison between the original task description and subgoals of ScienceWorld and our labeled
subgoals(Best viewed in color).

awarded low point (e.g. 1 point). These tasks are also important and necessary for accomplishing
the given task. For instance, the “optional subgoals” outlined in Table 11, such as “be in the same
location as the orange juice” and “have the substance alone in a single container” are necessary for
the task and can help to evaluate a model’s navigation and common sense abilities. It is inappropri-
ate to assign such tasks a low score. Furthermore, the uneven distribution of “Sequential Subgoals”
throughout the entire task process can lead to a disproportionately low score, which does not accu-
rately reflect the model’s progress. For example, if the model fails to complete the initial subgoals
within the “Sequential Subgoals” category, which could be considerably distant from the start state,
it can only achieve a very low score. This scoring method does not align with our motivation, which
is to ensure that the progress rate adequately reflects the model’s performance. Therefore, we have
re-annotated the subgoals. Specifically, we label necessary observations as part of the subgoals.

In the original task descriptions, the possibility of multiple necessary tools being present in multiple
rooms (e.g., a thermometer) creates multiple viable gold paths for task completion. Consequently, a
single state may exhibit different progress levels across various gold paths. This disparity makes it
challenging to assign a definitive progress rate to any given state. Therefore, in our task descriptions,
we have restricted the locations and tools used for tasks to ensure the uniqueness of our goal paths
and the necessity of observations. For the necessary observations, our initial observation is more
close to the initial state and but still challenging.

we design an interactive UI framework (Figure 7). We ask one graduate student to interact with the
environment and record the necessary observations to achieve the given goal. As a result, we revise
the task descriptions to include sufficient information for achieving the subgoals and to ensure the
gold path is unique. .

H.3 BABYAI

The origin implementation of babyai provides a reward score. Different from the original reward,
our progress rate is more dense and the agent does not need to accomplish many steps before getting
a increase in score. Here we compare the difference between our progress rate and the original
reward score, as shown in Table 12. We can see from this case that our progress rate better measures
intermediate progress for agents.

The progress rate is labelled via an interactive UI framework (Figure 7). A graduate student interact
with the environments and record the observations corresponding to subgoals needed to finish the
problem.

23

Published as a conference paper at ICLR 2024

Problem: Unlock to Unlock Steps with Score Increase
(Original) Steps with Score Increase (Ours)

Room 1 Room 2 Room 3

1. Pickup purple ball

1. Pickup blue key; 2.Enter room
3; 3. Pickup grey key; 4. Enter

room 2; 5. Enter room 1; 6.
Pickup purple ball

Table 12: Comparison between our progress rate for BabyAI and original reward score.

H.4 JERICHO

The original Jericho games are free-exploration text-based games, where the player is not given a
tangent goal but allowed to explore around the environment as adventureres. For uniformity with
other tasks, we first write a new goal for each problem, and we carefully select the goal so that the
game could be accomplished within 15 subgoals. In contrast, the original environments requires
around 50-300 interactions to get the maximum rewards. The annotation of goal and subgoals are
also performed by a graduate student in the interactive UI framework.

H.5 PDDL

In the PDDL environment, each state is discribed by a conjunction of properties p1 ∧ p2, . . . ,∧pm,
each property is a simple predicate describing the property of an object, e.g. “Block a is on the
table”. Given the goal state g1 ∧ g2, . . . ,∧gn and any state p1 ∧ p2, . . . ,∧pm, the matching score
formula is defined as:

f =
|G ∩ P|
|G|

,G = {g1, g2, . . . , gn},P = {p1, p2, . . . , pm} (3)

The matching score is 1 if and only if the properties of goal state is satisfied in current state.

H.6 WEBSHOP

In the webshop environment, we expanded the product scoring rules from (Yao et al., 2022) to derive
the score at different web pages. We can calculate the score of any product (the distance from the
target product) using the original scoring formula as follows:

f = ftype ·
|Uatt ∩ Yatt|+ |Uopt ∩ Yopt|+ 1[yprice ≤ uprice]

|Uatt|+ |Uopt|+ 1
, (4)

Each natural language instruction, denoted as u ∈ U , encompasses a non-empty set of attributes,
Uatt, a set of options, Uopt, and a specified price, uprice. Meanwhile, Y represents the product chosen
by the agent. The function ftype = TextMatch (ȳ, ȳ∗) is based on text matching heuristics to assign
low reward when y and y∗ have similar attributes and options but are obviously different types of
products.

Typically, completing a web shopping task involves three continuous stages: search, product selec-
tion, and finalizing the product style before placing an order. Therefore, to measure the distance
between the current state and the target state, we primarily calculate scores for three pages (states):
search result page, product description page, and order confirmation page. On the search result page,
we calculate the score of each product on the page and take the highest score as the score for this
page. On the product description page, we compute the highest score for the product under various
options as the page score. On the order confirmation page, the score of the finally selected product
is considered as the score for that page. In our method, the progress rate is the average of the scores
from these three pages

H.7 WEBARENA

In our method, we effectively utilize the annotation data, treating URLs as indicators of the web
browsing trajectory and required contents as integral scoring points.The progress rate is formulated

24

Published as a conference paper at ICLR 2024

Environment: Academia Environment
Goal: When was the paper Learning the Principle of Least Action with Reinforcement Learning. published?

Step 1: Golden Actions Annotation & Execution

Action: loadPaperNet()
Observation: PaperNet is loaded.

Action: paperNodeCheck(node=“Learning the
Principle of Least Action with Reinforcement
Learning.”)
Observation: {‘year’: 2021, ‘venue’: ‘AAAI Spring
Symposium - MLPS’, ‘n citation’: 0, ‘keywords’: [],
‘doc type’: ‘Conference’}

Action: finish(answer=2021)
Observation: 2021

Step 2: Subgoal Collection

Subgoal 1:
PaperNet is loaded.

Subgoal 2:
{‘year’: 2021, ‘venue’: ‘AAAI Spring
Symposium - MLPS’, ‘n citation’: 0,
‘keywords’: [], ‘doc type’: ‘Conference’}

Subgoal 3:
2021

Figure 8: An illustration of the process of subgoal annotation for Academia Environment.

as follows:

rmatch =
n

m+ n
(rd(rq + rp)) +

m

n+m
rc (n = 3;m = 0, 1, 2, . . .) (5)

Initially, we dissect the URL into its constituent elements: domain, query, and parameters by using
util.parse. For domain verification, a binary value, rd, is assigned, with a score of 1 indicating
a correct domain match, and 0 otherwise. Subsequently, the matching score for the query, rq , is
determined through the application of the Longest Common Subsequence (LCS) algorithm, which
assesses the similarity between the current and target queries based on their sequential nature. In
contrast, the alignment between the current and target parameters is evaluated using the F1 score,
denoted as rp, which is particularly suited for unordered sets.

In parallel, the content matching score, rc, emerges from the analysis of required content presence
at each stage, calculated as the ratio of detected essential contents to the total required contents.

The overall progress rate integrates these two aspects, calculated as a weighted sum of the URL
matching scores (incorporating domain, query, and parameter scores) and the content matching
score. Here, n represents the number of target URL components, and m denotes the count of target
required contents.

H.8 TOOL-QUERY

In Tool-Query Environments, we employ rsubgoal
t as a metric to measure progress rate. Therefore,

it is necessary to annotate subgoals for these envrionments. In Figure 8, we present an illustration
of the process of subgoal annotation for Academia Environment. Specifically, when designing ac-
tions for these environments, we ensure that each action’s functionality is indecomposable (i.e., the
functionality and outcome of one action can not be achieved through other actions). This design
choice results in a deterministic set of required golden actions to achieve our annotated goal. Fur-
thermore, we ask human annotators to identify golden actions for each goal. Every output returned
by executing golden actions is then processed as a subgoal.

H.9 TOOL-OPERATION

For Todo Environment, we adopt rsubgoal
t as progress rate metric. Subgoals are annotated following

the same process as Tool-Query Environments. In Sheet Environment, progress rate is assessed with
rmatch
t . Specifically, we first ask human annotators to annotate the golden spreadsheet for each goal.

During the evaluation process, we calculate the matching score after each interaction round. The
matching score is determined by the proportion of cells in current spreadsheet that align 10 with the
golden spreadsheet.

10A cell is aligned if and only if its value is the same as the cell in the same position on the golden spreadsheet.

25

Published as a conference paper at ICLR 2024

Model Device/API Inference Architecture Inference Speed Total-time
GPT-4 azure API - 1.5s/round 5.5h

GPT-3.5-Turbo azure API - 1s/round 3h
DeepSpeed-67b 8*V100 vLLm 5s/round 18.5h

Llama2-70b 8*V100 vLLm 8s/round 28h
Llama2-70b 4*A100 vLLm 4s/round 13.5h

Table 13: Inference Time Estimation

I RUNTIME ESTIMATION

The evaluation runtime for a language model depends on the device/API, model, and inference
architecture used. In the case of open-source LLMs, the vllm inference speed is approximately 10
times faster than the huggingface pipeline. We show some time cost in Table 13.

J PROMPT DETAILS

As shown in Figure 9, we use a unified prompt template for different tasks in AGENTBOARD.
Basically, a prompt consists of 5 parts. {System Prompt} represents the system prompt for the
LLM, such as “You are a helpful AI agent”. {Instruction} mainly consists of task descriptions and
action definitions. {Examples} represents in-context learning examples. {Goal} is the current goal
that needs to be accomplished, and {Trajectory} is the interaction history between the LLM agent
and the environment.

For different tasks, the contents of these five parts are different. Prompt details for Embodied AI
tasks are shown in Figure 10, 11 and 12. Prompt details for Game tasks are shown in Figure 13 and
14. Prompt details for Web tasks are shown in Figure 15 and 16. Prompt details for Tool tasks are
shown in Figure 17 and 18, respectively.

Unified Prompt Template

{System Prompt}
{Instruction}
Here are examples:
{Examples}
{Goal}
{Trajectory}

Figure 9: The unified prompt template in AGENTBOARD. {text} in blue font represents placeholders, which
varies according to different tasks.

Prompt Details for AlfWorld

System Prompt
You are a helpful assistant. Generate your next step of action after Action. Action must not
be empty. e.g. Action: put down cup.

Instruction
Your task is to interact with a virtual household simulator to accomplish a specific task.
With each interaction, you will receive an observation. Your role is to decide on an action
based on the observation. Please ensure that any objects (’obj’) and receptacles (’recep’)
you mention in your response are present in the observation provided.
Here are the available actions you can take:
- take obj from recep
- put obj in/on recep

26

Published as a conference paper at ICLR 2024

- open recep
- close recep
- toggle obj/recep
- clean obj using recep
- cool obj using recep
- heat obj using recep
- inventory
- examine recep/obj
- go to recep

Examples
Your task is to: look at statue under the desklamp.
You are in the middle of a room. Looking quickly around you, you see a coffeetable 1, a
diningtable 1, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a dresser 1, a garbagecan 1, a
sidetable 2, a sidetable 1, and a sofa 1.
Action: go to dresser 1
Observation: On the dresser 1, you see a cellphone 3, a newspaper 2, a statue 1, and a
television 1.
Action: take statue 1 from dresser 1
Observation: You pick up the statue 1 from the dresser 1.
Action: go to sidetable 1
Observation: On the sidetable 1, you see nothing.
Action: go to sidetable 2
Observation: On the sidetable 2, you see a desklamp 3, a newspaper 1, and a statue 2.
Action: use desklamp 3
Observation: You turn on the desklamp 3.

Figure 10: Prompt details for AlfWorld. The provided example is changed based on the type of the specific
environment instance.

Prompt Details for ScienceWorld

System Prompt
You are a helpful agent that interacts with the virtual science school environment to solve
the given task. Generate your next step of action after Action. Action must not be empty.
e.g. Action: put down cup.

Instruction
You are an agent in a virtual science school environment, tasked to interact with various
elements. Here are the commands you can use:

- Manipulation:
- open OBJ / close OBJ: Interact with a container.
- pick up OBJ: Add an object to your inventory.
- put down OBJ: Remove an object from your inventory.
- move OBJ to OBJ: Transfer an object.
- pour OBJ into OBJ: Pour a substance.
- dunk OBJ into OBJ: Immerse a container in a liquid.
- mix OBJ: Chemically combine contents.

- Inspection:
- look around: Survey your surroundings.
- look at OBJ: Examine an object closely.
- look in OBJ: Peek inside a container.
- read OBJ: Review written content.

27

Published as a conference paper at ICLR 2024

- Device Operations:
- activate OBJ / deactivate OBJ: Toggle a device.
- use OBJ [on OBJ]: Utilize a device or item.

- Movement:
- go to LOC: Relocate.

- Miscellaneous:
- eat OBJ: Consume an edible item.
- flush OBJ: Activate a flushing mechanism.
- focus on OBJ: Direct attention to a particular object.
- wait [DURATION]: Pause for a specified period.

- Information:
- task: Recap your current objective.
- inventory: Display items you’re carrying.

Where:
- OBJ: Object
- LOC: Location
- [DURATION]: Specified time

Examples
Task Description: Your task is to boil water. For compounds without a boiling point,
combusting the substance is also acceptable. First, focus on the substance. Then, take
actions that will cause it to change its state of matter.

ACTION: look around
OBSERVATION: This room is called the hallway. In it, you see:
a picture
a substance called air
the agent
You also see:
A door to the green house (that is open)
A door to the living room (that is open)
A door to the art studio (that is open)
A door to the kitchen (that is open)
A door to the bedroom (that is open)
A door to the workshop (that is open)

ACTION: open door to kitchen
OBSERVATION: The door is already open.

ACTION: go to kitchen
OBSERVATION: You move to the kitchen.
...

Figure 11: Prompt Details for ScienceWorld.

Prompt Details for BabyAI

System Prompt
You are an exploration master that wants to finish every goal you are given. Generate your
next step of action after Action. Action must not be empty. e.g. Action: put down cup.

28

Published as a conference paper at ICLR 2024

Instruction
You are placed in a room and you need to accomplish the given goal with actions.
You can use the following actions:
- turn right
- turn left
- move forward
- go to <obj> <id>
- pick up <obj> <id>
- go through <door> <id>: <door> must be an open door.
- toggle and go through <door> <id>: <door> can be a closed door or a locked door.
If you want to open a locked door, you need to carry a key that is of the same color as the
locked door.
- toggle: there is a closed or locked door right in front of you and you can toggle it.

Examples
Observation: In front of you in this room, you can see several objects: The room has walls
around you. You are facing a wall 1 steps away. You are not carrying anything.
Action: move forward
Observation: There is a barrier in front of you, you can’t move forward.
Action: turn right
Observation: In front of you in this room, you can see several objects: The room has walls
around you. You are facing a wall 2 steps away. You are not carrying anything. Action:
move forward
Observation: In front of you in this room, you can see several objects: The room has walls
around you. You are facing a wall 1 steps away. You are not carrying anything.
Action: turn left
Observation: In front of you in this room, you can see several objects: The room has walls
around you. You are facing a wall 1 steps away. You are not carrying anything.
Action: move forward
Observation: There is a barrier in front of you, you can’t move forward.
Action: turn left
Observation: In front of you in this room, you can see several objects: There is a grey box 1
3 steps in front of you and 1 steps to your left. There is a grey ball 1 2 steps in front of you
and 2 steps to your left. There is a red ball 1 right in front of you 5 steps away. There is a
grey key 1 4 steps in front of you and 1 steps to your left. The room has walls around you.
You are facing a wall 6 steps away. You are not carrying anything.
Action: move forward
Observation: In front of you in this room, you can see several objects: There is a grey box 1
2 steps in front of you and 1 steps to your left. There is a grey ball 1 1 steps in front of you
and 2 steps to your left. There is a red ball 1 right in front of you 4 steps away. There is a
grey key 1 3 steps in front of you and 1 steps to your left. The room has walls around you.
You are facing a wall 5 steps away. You are not carrying anything.
...

Figure 12: Prompt details for BabyAI.

Prompt Details for Jericho

System Prompt
You are a game master in fictional text games. Generate your next step of action after
Action. Action must not be empty. e.g. Action: put down cup.

Instruction
You are in a fictional game environment and you need to accomplish goals by performing
actions. Each action is a simple phrase. Here are the actions you can do:
- Inventory: check things you are carrying

29

Published as a conference paper at ICLR 2024

- Look: check your surroundings
- Examine place/object: check the details of something
- Take object: pickup object
- Put down object: leave a object at your current place.
- Drop object
- Check valid actions: Check actions you can use
- South: go south
- North: go north
- East: go east
- West: go west
- Up: go up
- Down: go down
Other available actions could be determined through check valid actions.

Examples
Goal: You are the warrior Link that needs to save the princess from the castle.
Observation: You are at the path leading to the castle. The castle is to your north. There is a
barrel in front of you.
Action: Examine barrel
Observation: There is a gleaming elvish sword.
Action: take the sword
Observation: The sword is taken
Action: north
Observation: Main hall. The castle is dimly lit, with lava flowing in many places. There is
a staircase leading up to princess bedroom, a door to your north leading to the kitchen hall,
and the door you just entered on your south
Action: check valid actions
Observation: south, north, up, look, examine staircase
Action: up
Observation: Princess’s bedroom. Princess is sleeping in bed.
Action: check valid actions
Observation: wake up the princess, take out sword, down
Action: wake up the princess
Observation: The princess wake up from the coma. Thank you my knight, she says. The
task is finished.

Figure 13: Prompt details for Jericho.

Prompt Details for PDDL

System Prompt
You are a master in planning. Generate your next step of action after Action. Action must
not be empty. e.g. Action: put down cup.

Instruction
The robot has four actions: pickup, putdown, stack, and unstack. The domain assumes a
world where there are a set of blocks that can be stacked on top of each other, an arm that
can hold one block at a time, and a table where blocks can be placed.
The actions defined in this domain include:
pickup <block>: allows the arm to pick up a block from the table if it is clear and the arm
is empty. After the pickup action, the arm will be holding the block, and the block will no
longer be on the table or clear.
putdown <block>: allows the arm to put down a block on the table if it is holding a block.
After the putdown action, the arm will be empty, and the block will be on the table and clear.
stack <block> <block>: allows the arm to stack a block on top of another block if the
arm is holding the top block and the bottom block is clear. After the stack action, the arm

30

Published as a conference paper at ICLR 2024

will be empty, the top block will be on top of the bottom block, and the bottom block will
no longer be clear.
unstack <block> <block>: allows the arm to unstack a block from on top of another
block if the arm is empty and the top block is clear. After the unstack action, the arm will
be holding the top block, the top block will no longer be on top of the bottom block, and the
bottom block will be clear.

Examples
Goal: The goal is to satisfy the following conditions: b1 is on b2., b2 is on b3. Observation:
b1 is on the table. b2 is on the table. B3 is on the table. Robot arm is empty. The b1 is clear.
The b2 is clear. The b3 is clear.
Action: pickup b2
Observation: b1 is on the table. B2 is on the table. The b1 is clear. The b3 is clear. You are
holding b2.
Action: stack b2 b3
Observation: b1 is on the table. b1 is on b2. B3 is on the table. Robot arm is empty. The b1
is clear. The b2 is clear.
Action: pickup b2.
Observation: The action is not valid and therefore takes no effect. Please remember to satisfy
the restriction of actions. You can also check valid actions.
Action: check valid actions.
Observation: valid actions are: pickup b2, unstack b1 b2.
Action: pickup b1
Observation: b2 is on b3. B3 is on the table. Robot arm is empty. The b2 is clear. You are
holding b1.
Action: stack b1 b2
Observation: b1 is on b2. b2 is on b3. B3 is on the table. Robot arm is empty. The b1 is
clear. The goal is satisfied.

Figure 14: Prompt details for PDDL. The provided instruction/example are changed based on the type of the
specific environment instance.

Prompt Details for WebShop

System Prompt
You are a helpful virtual webshop assistant that interacts with the simulated website to solve
a task.

Instruction
You are now the virtual webshop assistant, navigating a website to locate and purchase
items based on given commands. Our interaction will follow this structure:

Your Actions: You will preface each of your actions with ”Action: ”.
Website’s Response: The website will provide feedback starting with ”Observation: ”.

[click]something: Engage with specific buttons or links.
[search]something: Seek specific data on the website. Use this only if a [Search] button
appears in the observation.
Note: If you wish to search and there’s no [Search] button, click the [Back to Search] button
instead.

Observation Format: The website will showcase its content. Elements within square
brackets (like [Buy Now]) indicate clickable buttons or links.

31

Published as a conference paper at ICLR 2024

Examples
You should perform actions to accomplish the goal: I would like a 3 ounce bottle of bright
citrus deodorant for sensitive skin, and price lower than 50.00 dollars
Action: reset[]
Observation: WEB PAGE: {Let us begin shopping
[Search]}

Action: search[3 ounce bright citrus deodorant sensitive skin]
Observation: WEB PAGE: {
[Back to Search]
Page 1 (Total results: 15)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama — Natural and Safe for Sensitive Skin, Pregnancy
and Breastfeeding, Contains Organic Calendula 3-Ounce
$10.99}

Action: click[B078GWRC1J]
Observation: WEB PAGE: {
[Back to Search]
[<Prev]
scent [assorted scents][bright citrus][calming lavender][ginger fresh][simply non-scents]
size [3 ounce (pack of 1)]}

Action: click[bright citrus]
Observation: You have clicked bright citrus.

Action: click[3 ounce (pack of 1)]
Observation: You have clicked 3 ounce (pack of 1).

Action: click[Buy Now]
Observation: You have bought 3 ounce (pack of 1).

Figure 15: Prompt details for WebShop.

Prompt Details for WebArena

System Prompt
You are an autonomous intelligent agent tasked with navigating a web browser. You will be
given web-based tasks. These tasks will be accomplished through the use of specific actions
you can issue.

Instruction
Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the
windowed webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.

The useful websites and corresponding URL you can navigate:
‘reddit’: “http://reddit.com”
‘online shop’: “http://onestopmarket.com”
‘e-commerce platform’: “http://luma.com/admin”
‘gitlab’: “http://gitlab.com”

32

Published as a conference paper at ICLR 2024

‘wikipedia’: “http://wikipedia.org”
‘map’: “http://openstreetmap.org”

The actions you can perform fall into several categories:

Page Operation Actions:
‘click [id]’: This action clicks on an element with a specific id on the webpage.
‘type [id] [content] [press enter after = 0 |1]’: Use this to type the content into the field with
id. By default, the “Enter” key is pressed after typing unless press enter after is set to 0.
‘hover [id]’: Hover over an element with id.
‘press [key comb]’: Simulates the pressing of a key combination on the keyboard (e.g.,
Ctrl+v).
‘scroll [directio n= down |up]’: Scroll the page up or down.

Tab Management Actions:
‘new tab’: Open a new, empty browser tab.
‘tab focus [tab index]’: Switch the browser’s focus to a specific tab using its index.
‘close tab’: Close the currently active tab.

URL Navigation Actions:
‘goto [url]’: Navigate to a specific URL.
‘go back’: Navigate to the previously viewed page.
‘go forward’: Navigate to the next page (if a previous ‘go back’ action was performed).

Completion Action:
‘stop [answer]’: Apply this action when you believe the task is complete. If it is a
operation-type task, use ‘stop [Done]’ when finished. If the objective is to give a text-based
answer, provide the answer in the bracket.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. Generate the action in the correct format and always put the action inside a pair of @.
Such as, @click [1234]@.
4. Complete the task by interacting with the starting page, and avoid using ‘goto’ actions
casually.
5. Reasonable inputs will return accurate observations, so do not repeat the same action
when unnecessary.

Examples
You should perform actions to accomplish the goal: Add a white desk to my wish list
Observation:
WINDOWED PAGE:{
Tab 0 (current): One Stop Market
[1] RootWebArea ‘One Stop Market’ focused: True

[1254] link ‘My Wish List’
[2427] StaticText ‘Search’
[1585] combobox ‘Search’ autocomplete: both hasPopup: listbox required: False

expanded: False
[2430] link ‘Advanced Search’
[1588] button ‘Search’ disabled: True

}
URL: http://onestopmarket.com

Action: @type [1585] [white desk] [press enter after=1]@
Observation:
WINDOWED PAGE:{

33

Published as a conference paper at ICLR 2024

Tab 0 (current): Search results for: ‘white desk’
[2635] RootWebArea “Search results for: ‘white desk’” focused: True

[3869] link ‘My Wish List’
[4827] StaticText ‘Search’
[4072] combobox ‘Search’ autocomplete: both hasPopup: listbox required: False

expanded: False
[5027] StaticText ‘white desk’

[4830] link ‘Advanced Search’
[4075] button ‘Search’ disabled: True
[3729] main ‘’

[3842] heading “Search results for: ‘white desk’”
[3907] StaticText ‘Items 1-12 of 38823’
[4781] link ‘Image’

[4833] img ‘Image’
[4783] link ‘Image’

[4849] img ‘Image’
}
URL: http://onestopmarket.com/catalogsearch/result/?q=white+desk
...

Figure 16: Prompt details for WebArena. The provided example is changed based on the type of the specific
environment instance.

Prompt Details for Academia

System Prompt
You can use actions to help people solve problems.

Instruction
We detail name, description, input(parameters) and output(returns) of each action as
follows:
Name: loadPaperNet()
Description: Load PaperNet. In this net, nodes are papers and edges are citation relation-
ships between papers.

Name: loadAuthorNet()
Description: Load AuthorNet. In this net, nodes are authors and edges are collaboration
relationships between authors.

Name: neighbourCheck(graph, node)
Description: List the first-order neighbors connect to the node. In paperNet, neigbours are
cited papers of the paper. In authorNet, neigbours are collaborators of the author.
Parameters:
- graph (Type: string, Enum: [PaperNet, AuthorNet]): The name of the graph to check
- node (Type: string): The node for which neighbors will be listed
Returns:
- neighbors (Type: array)

Name: paperNodeCheck(node)
Description: Return detailed attribute information of a specified paper in PaperNet
Parameters:
- node (Type: string): Name of the paper.
Returns:
- authors : The authors of the paper
- year : The puslished year of the paper
- venue : The published venue of the paper

34

Published as a conference paper at ICLR 2024

- n citation : The number of citations of the paper
- keywords : The keywords of the paper
- doc type : The document type of the paper

Name: authorNodeCheck(node)
Description: Return detailed attribute information of a specified author in AuthorNet
Parameters:
- node (Type: string): name of the author.
Returns:
- name : The name of the author
- org : The organization of the author

Name: authorEdgeCheck(node1, node2)
Description: Return detailed attribute information of the edge between two specified nodes
in a AuthorNet.
Parameters:
- node1 (Type: string): The first node of the edge
- node2 (Type: string): The second node of the edge
Returns:
- papers : All papers that the two authors have co-authored

Name: paperEdgeCheck(node1, node2)
Description: Return detailed attribute information of the edge between two specified nodes
in a PaperNet.
Parameters:
- node1 (Type: string): The first node of the edge
- node2 (Type: string): The second node of the edge
Returns:
None

Name: check valid actions()
Description: Get supported actions for current tool.
Returns:
- actions (Type: array): Supported actions for current tool.

Name: finish(answer)
Description: Return an answer and finish the task
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): The answer to be returned

If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response
must be in the format of “Action: [your action] with Action Input: [your action input]”

Examples
Goal: When was the paper Learning the Principle of Least Action with Reinforcement
Learning. published?

Action: loadPaperNet with Action Input: {}
Observation: PaperNet is loaded.
Action: paperNodeCheck with Action Input: {“node”:“Learning the Principle of Least
Action with Reinforcement Learning.”}
Observation: {‘year’: 2021, ‘venue’: ‘AAAI Spring Symposium - MLPS’, ‘n citation’: 0,
‘keywords’: [], ‘doc type’: ‘Conference’}
Action: finish with Action Input: {“answer”: “2021”}
Observation: 2021

35

Published as a conference paper at ICLR 2024

Figure 17: Prompt Details for Academia in Tool-Query Environments.

Prompt Details for Todo

System Prompt
You can use actions to help people solve problems.

Instruction
We detail name, description, input(parameters) and output(returns) of each action as
follows:
Name: get user current date()
Description: Get the user’s current date.
Returns:
The current date in ‘YYYY-MM-DD’ format.

Name: get user current location()
Description: Get the user’s current city.
Returns:
The user’s current city.

Name: get projects()
Description: Get all projects in the Todoist account
Returns:
- Array of objects with properties:
- id (Type: string)
- name (Type: string)
- order (Type: integer)
- color (Type: string)
- is favorite (Type: boolean)

Name: update project(project id, is favorite)
Description: Update a project
Parameters:
- project id (Type: string)
- is favorite (Type: string, Enum: [True, False])
Returns:
Information of the updated project

Name: get tasks(project id)
Description: Get all tasks for a given project
Parameters:
- project id (Type: string)
Returns:
- Array of objects with properties:
- id (Type: string)
- project id (Type: string)
- order (Type: integer)
- content (Type: string): Name of the task.
- is completed (Type: boolean)
- priority (Type: integer): Task priority from 1 (normal) to 4 (urgent).
- due date (Type: string): The due date of the task.

Name: get task description(task id)
Description: Get the description of a specific task in the Todoist account.
Parameters:
- task id (Type: string)

36

Published as a conference paper at ICLR 2024

Returns:
- id (Type: string): Unique identifier of the task.
- content (Type: string): Name of the task.
- description (Type: string): Description of the task. Incluing the Place, Tips, etc.

Name: get task duration(task id)
Description: Get the duration of a specific task in the Todoist account.
Parameters:
- task id (Type: string)
Returns:
- id (Type: string)
- content (Type: string): Name of the task.
- duration (Type: string): Duration of the task in the format of ‘amount(unit)’.

Name: complete task(task id)
Description: Mark a task as completed
Parameters:
- task id (Type: string)
Returns:
information of the completed task

Name: update task(task id, due date)
Description: Update a task
Parameters:
- task id (Type: string)
- due date (Type: string)
Returns:
Information of the updated task

Name: delete task(task id)
Description: Delete a specific task from the Todoist account.
Parameters:
- task id (Type: string): Unique identifier of the task to delete.
Returns:
Information of the deleted task.

Name: check valid actions()
Description: Get supported actions for current tool.
Returns:
Supported actions for current tool.

Name: finish(answer)
Description: Call this action, when find the answer for the current task or complete essential
operations.
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): If the task is a question answering task, this
is the answer to be returned. If the task is an operation task, the answer in ‘done’

If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response
must be in the format of “Action: [your action] with Action Input: [your action input]”

Examples
Goal: Is Prepare for history quiz a task of School project? Please answer yes or no.

Action: get projects with Action Input: {}

37

Published as a conference paper at ICLR 2024

Observation: [{‘id’: ‘12345’, ‘order’: 0, ‘color’: ‘charcoal’, ‘name’: ‘School’, ‘is favorite’:
false}]
Action: get tasks with Action Input: {“project id”: “12345”}
Observation: [{‘id’: ‘123451’, ‘order’: 0, ‘content’: ‘Prepare for history quiz’,
‘is completed’: false, ‘priority’: 1, ‘due date’: ‘2030-10-10’}, {‘id’: ‘123452’, ‘or-
der’: 1, ‘content’: ‘Prepare for math quiz’, ‘is completed’: false, ‘priority’: 1, ‘due date’:
‘2030-11-10’}]
Action: finish with Action Input: {“answer”: “yes”}
Observation: yes

Figure 18: Prompt Details for Todo in Tool-Operation Environments.

38

	Introduction
	Related Work
	AgentBoard – Overview
	Preliminaries
	A Unified Reflex Agent
	Fine-grained Progress Rate

	AgentBoard – Task Composition
	Embodied Environments
	Game Environments
	Web-based Environments
	Tool Environments
	Annotation Validation

	Experiments
	Evaluation Setup
	Main Results
	Analytical Evaluation in AgentBoard

	Visualization Panel for LLM Agent Analysis: A Case Study
	Conclusion
	Author Contributions
	Exploration Behavior Analysis
	Sub-Skill Table
	Visualization Panel
	Details of Evaluated LLMs
	Evaluation Setup
	Details of Models

	Data Quality Control
	Details of Environments
	Details of Embodied Environments
	Details of Game Environments
	Details of Web-based Environments
	Details of Tool Environments
	Tool-Query Environments
	Tool-Operation Environments

	Details of Progress Rate Metrics
	Alfworld
	ScienceWorld
	BabyAI
	Jericho
	PDDL
	WebShop
	WebArena
	Tool-Query
	Tool-Operation

	Runtime Estimation
	Prompt Details

