

000 SPATIALLY INFORMED AUTOENCODERS FOR INTER- 001 002 PRETABLE VISUAL REPRESENTATION LEARNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 We introduce spatially informed variational autoencoders (SI-VAE) as self-
011 supervised deep-learning models that use stochastic point processes to predict spa-
012 tial organization patterns from images. Existing approaches to learning visual rep-
013 resentations based on variational autoencoders (VAE) struggle to capture spatial
014 correlations between objects or events, focusing instead on pixel intensities. We
015 address this limitation by incorporating a point-process likelihood, derived from
016 the Papangelou conditional intensity, as a self-supervision target. This results
017 in a hybrid model that learns statistically interpretable representations of spatial
018 localization patterns and enables zero-shot conditional simulation directly from
019 images. Experiments with synthetic images show that SI-VAE improve the clas-
020 sification accuracy of attractive, repulsive, and uncorrelated point patterns from
021 48% (VAE) to over 80% in the worst case and 90% in the best case, while gen-
022 eralizing to unseen data. We apply SI-VAE to a real-world microscopy data set,
023 demonstrating its use for studying the spatial organization of proteins in human
024 cells and for using the representations in downstream statistical analysis.

025 026 1 INTRODUCTION

027 The spatial distribution of objects or events in images is an important readout in many applications.
028 Examples include distributions of forest fires (Kato et al., 2020) or species abundance (Gillespie
029 et al., 2024) in satellite imagery, or the distributions of viruses in biological cells observed by fluo-
030 rescence microscopy (Helmut et al., 2010). In these examples, semantic categories are not defined
031 by appearance or texture of the imaged objects or events. The goal then is to infer representations
032 of the observed spatial patterns that determine or explain them.

033 Deep learning has been particularly powerful to infer visual representations (Moen et al., 2019) and
034 identify major sources of variation (Bengio et al., 2013). Microscopy images, for example, encode
035 spatially structured patterns of discrete objects, such as cells in tissues or molecules in cells, that are
036 causal for biological function and its dysregulation in disease (Hung & Link, 2011).

037 Several un- and self-supervised approaches have been proposed to extract information about spatial
038 distributions in images. This includes contrastive learning by comparing augmented views of the
039 same image (Chen et al., 2020). Contrastive learning, however, relies on pixel similarity and might
040 therefore fail to capture spatial correlations. This was addressed by *Cytoself* in a domain-aware
041 approach that used a classification pretext task to predict ground-truth protein labels (Kobayashi
042 et al., 2022), constituting a semi-supervised approach (Kingma et al., 2014). Alternatively, protein
043 sequences have been used to predict cellular localization (Khwaja et al., 2023; Kilgore et al., 2025).
044 Such hybrid approaches model the joint density of the feature and label space, leading to useful
045 representations (Nalisnick et al., 2019) leveraging ideas from predictive coding (Oord et al., 2019).

046 In the absence of annotated ground truth, self-supervised autoencoders have shown promise for ex-
047 tracting biological features from microscopy images (Kraus et al., 2024). Usually, self-supervision
048 is based on pixel intensities using masked autoencoders (He et al., 2022) or image transformations
049 (Gatopoulos & Tomczak, 2021). Gaussian processes (GP) have been used to encode correlations
050 in the data through structured priors (Casale et al., 2018; Pearce, 2020; Jazbec et al., 2021). This
051 allows modeling correlations between images but not spatial correlations among objects within im-
052 ages. Recently, Vasan et al. (2025) proposed point clouds for representation learning of shapes and
053 spatial distributions. The prediction likelihoods of point-cloud models structure the latent space to

054 become discriminative about the spatial distribution. This is in contrast to class labels encouraging
 055 a categorical latent space and augmentations encouraging pixel-level similarity.
 056

057 Such learned representations can be used to study biological associations and perturbations (Celik
 058 et al., 2022). They do, however, not provide mechanistic insight into spatial organization, and they
 059 lack a statistical framework for rigorous downstream analysis, which is a prerequisite for scientific
 060 applications. It has been shown that VAE can learn accurate surrogate models of GP priors for fast
 061 sampling (Semenova et al., 2022). While this accelerates spatial Bayesian inference, it does not
 062 model interactions between objects within an image. Recent work also revealed fundamental limi-
 063 tations of un- and self-supervised settings, such as the *Clever Hans* effect preferring bogus cues to
 064 true features (Kauffmann et al., 2025). Transformer-based masked autoencoders have been argued
 065 to primarily learn a representation based on the unmasked patches, ignoring the spatial arrangement
 066 of masked tokens in the decoder (Fu et al., 2025). This limits their ability to reason about spatial
 067 correlations between objects within an image. In addition to inherent limitations of the architec-
 068 tures, Gunawan et al. (2025) and Abgaryan et al. (2025) have recently shown that image metrics
 069 commonly used in loss functions focus on image appearance rather than spatial content. Together,
 070 these observations suggest that learning interpretable spatial representations from images requires
 071 additional priors.

071 Here, we propose spatial point processes as a self-supervision prior for visual representation learn-
 072 ing. Spatial point processes are discrete stochastic processes from spatial statistics. As we show, they
 073 enable spatially informed variational autoencoders (SI-VAE) that learn statistically interpretable rep-
 074 resentations of spatial distributions of point-like objects in images. Spatial statistics has long been
 075 a powerful tool for analyzing localization patterns in images (Helmut et al., 2010; Lagache et al.,
 076 2015; Summers et al., 2022). It provides interpretable and generative models, aligning with the
 077 growing interest in explainable models for biology (Chen et al., 2024; Rotem & Zaritsky, 2024). SI-
 078 VAE combine the mathematical rigor and statistical interpretability of spatial point processes with
 079 the approximation power of deep learning, where the latent representation acts as a predictor for the
 080 probability density of spatial distributions.

081 2 METHODS

083 SI-VAE learn spatially referenced representations from images by augmenting VAE with spatial
 084 point processes. We describe the VAE framework and introduce spatial point processes before com-
 085 bining them to the SI-VAE architecture in a common probabilistic framework. There, the VAE
 086 approximates the density of a spatial point process for modeling spatial distributions. This pro-
 087 vides statistically interpretable models, as well as zero-shot generative models to sample from the
 088 estimated distribution.

090 2.1 VISUAL REPRESENTATION LEARNING USING VARIATIONAL AUTOENCODERS

092 We use VAE to learn representations from an unlabeled set of images $x = \{x_i\}_{i=1}^N$, $x_i \in \mathbb{R}^{W \times H \times C}$.
 093 A VAE is a generative model working under the assumption that the data x can be reconstructed from
 094 a latent vector $z \in \mathbb{R}^l$ (Kingma & Welling, 2014). The aim is to maximize the likelihood of the data
 095 x under the latent representation z , $p_\theta(x) = \int p_\theta(x|z)p(z) dz$. Since this likelihood is intractable,
 096 VAE approximate the posterior distribution by a variational form, $q_\theta(z|x) \approx p(z|x)$. The variational
 097 form is commonly chosen as $q_\theta(z|x) = \mathcal{N}(\mu(\theta), \sigma(\theta)^2 \mathbb{I}_l)$. Here, $\mathcal{N}(\cdot)$ is a Gaussian with mean
 098 $\mu(\theta)$ and standard deviation $\sigma(\theta)$, predicted by an encoding neural network, samples of which can
 099 be used to approximate the evidence lower bound (ELBO) (Kingma & Welling, 2014):

$$100 \log p_\theta(x) \geq \mathbb{E}_q[p_\theta(x|z)] - \beta \text{KL}(q_\theta(z|x) \parallel p(z)), \quad (1)$$

101 where $p(z)$ is a prior over the latent vector z , commonly chosen as $\mathcal{N}(0, \mathbb{I}_l)$, and β weighs between
 102 the reconstruction and the prior (Higgins et al., 2017). The standard ELBO is obtained for $\beta = 1$.
 103 Maximizing the ELBO approximately maximizes $p_\theta(x)$ and minimizes the Kullback–Leibler (KL)
 104 divergence between $q_\theta(z|x)$ and the true posterior $p(z|x)$ (Kingma & Welling, 2019). Therefore,
 105 samples from the variational distribution $z \sim q_\theta(z|x)$ (or quantities derived from them) can be
 106 used as representations for downstream analysis (Zhang et al., 2022). This, however, is limited
 107 to information contained in the posterior, possibly ignoring the second-order correlation structure
 108 between objects in the data.

108 2.2 SPATIAL POINT PROCESS MODELS
109

110 A spatial point process X is a discrete stochastic process on $W \subseteq \mathbb{R}^d$, $d \geq 1$, where $X \in W$
111 is a finite unordered set of points. Their distribution can be characterized by $N(B) = |X \cap B|$,
112 i.e., the number of points in some subregion $B \subseteq W$ (Møller & Waagepetersen, 2003). Such
113 distributions are difficult to characterize, except for the uncorrelated Poisson point process. It is
114 therefore common to define the density of a point process relative to the unit-rate Poisson process
115 (see Appendix A). This defines Gibbs point processes, which model second-order correlations as
116 interactions between points, specified in terms of an *energy-based density*

$$117 \quad p_\xi(X) \propto \exp \left\{ - \sum_{u \in X} \phi_\xi(u) - \sum_{\{u, v\} \subseteq X} \psi_\xi(u, v) \right\}. \quad (2)$$

120 Here, $\phi_\xi : \mathbb{R}^d \rightarrow \mathbb{R}$ and $\psi_\xi : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ are the first- and second-order potentials. In SI-VAE,
121 they are represented by two separate shallow neural networks with parameters $\xi = (\xi_\phi, \xi_\psi) \in \Xi$.
122 These potentials control the *a-priori* propensity of observing a point and the pair-wise interaction
123 between points, respectively. Depending on $\psi_\xi(u, v)$, points can be attractive, neutral, or repulsive.
124 This defines a general class of point processes, which we infer from data.

125 Maximum-likelihood estimation (MLE) of Gibbs processes from data is intractable due to the un-
126 known normalizing partition function of the density $p(X)$. This is common to many energy-based
127 models (Bengio et al., 2013; Gao et al., 2021; Tomczak, 2024). Therefore, we instead model the
128 Papangelou conditional intensity (Ba & Coeurjolly, 2023)

$$130 \quad 131 \quad \lambda_\xi(X, u) = \begin{cases} p_\xi(X \cup \{u\})/p_\xi(X) & u \notin X \\ p_\xi(X)/p_\xi(X \setminus \{u\}) & u \in X. \end{cases} \quad (3)$$

132 In an infinitesimal volume du around u , $\lambda_\xi(X, u) du$ can be interpreted as the probability of ob-
133 serving a point at u given all other points in X . For densities following equation 2, the Papangalou
134 conditional intensity is $\lambda_\xi(X, u) = \exp \left\{ -\phi_\xi(u) - \sum_{v \in X} \psi_\xi(u, v) \right\}$. This has been used to derive
135 pseudo-likelihood estimators that provide unbiased estimating equations without the normalizing
136 constant (Møller & Waagepetersen, 2007). The pseudo-likelihood approximates the MLE under a
137 conditional independence assumption (Baddeley, 2007). While this can limit the statistical efficiency
138 of the estimator, we still use pseudo-likelihood estimation here, as it provides a computationally ef-
139 ficient and statistically consistent objective for learning spatial point-process models from data. For
140 a Gibbs process with conditional intensity $\lambda_\xi(X, u)$, the log-pseudo-likelihood is
141

$$142 \quad 143 \quad \log \text{PL}(\xi) = \sum_{u \in X \cap D} \log \lambda_\xi(X, u) - \int_D \lambda_\xi(X, u) du, \quad (4)$$

144 where $D = W \ominus R$ is an erosion of the domain W by an interaction distance R to avoid edge effects
145 (Ba & Coeurjolly, 2023). We directly use equation 4 as a loss function for learning the Papangelou
146 conditional intensity $\lambda_\xi(X, u)$ in a VAE.

147 2.3 SPATIALLY INFORMED VARIATIONAL AUTOENCODERS
148

149 We derive a VAE architecture that learns a latent image representation from which the Papangelou
150 conditional intensity of a Gibbs point process, defined in equation 2, can be predicted that explains
151 the observed point pattern in the image. While this self-supervision target is not limited to VAE
152 architectures, a VAE enables uncertainty quantification of the model by resampling $q_\theta(z|x)$.

153 The pretext task for the VAE exploits point-process statistics with realizations X obtained from
154 images x through, e.g., spot detection. Such weak labeling is commonly used for biomedical data
155 (Yakimovich et al., 2021). The loss enforces the joint parameters of the model $q_\theta(z|x)$ to approxi-
156 mate the marginal $p_\theta(x)$ and the conditional probabilities $p_\xi(X|z)$ of a point process by maximizing
157 the likelihood of the observed points X with the latent vector z as predictor:

$$158 \quad 159 \quad \mathcal{L}(\theta, \xi) := \mathbb{E}_q[\log p_\theta(x|z)] + \underbrace{\mathbb{E}_q[\log p_\xi(X|z)]}_{\approx \log \text{PL}(\xi|z)} - \beta \text{KL}(q_\theta(z|x) \parallel p(z)). \quad (5)$$

This is illustrated in Fig. 1. The *inference model* $q_\theta(z|x)$ only relies on x , such that X is only necessary during training, as usual in self-supervised VAE (Kobayashi et al., 2022). This estimation procedure generalizes the Bayesian variational formulation proposed by Zhou et al. (2022) for parametric models to non-parametrically estimating a model of the point process from images. Therefore, SI-VAE do not require (learning) an inference function from the complete point pattern to the model parameters, which is usually unavailable in practice. We approximate $\log p_\xi(X|z)$ by the log-pseudo-likelihood in equation 4 using $\lambda_\xi(X, u|z)$. The Gibbs potentials ϕ and ψ are represented by two-layer neural networks with input z . We choose $\psi(u, v) = \psi(\|u - v\|_2)$ to be a symmetric, isotropic function. This ensures that the interactions between points are invariant under translation and rotation of the whole point pattern. As shown in Appendix B, models with more degrees of freedom for ψ tend to converge to trivial solutions that do not account for the local interactions between points. We further constrain the model with distance-decaying weights w_{uv} (equation 14) to learn local interactions of range L with $\psi(u, v) = w_{uv}\psi(\|u - v\|_2)$. Since long-range interactions are indistinguishable from density inhomogeneity, this regularization is required for identifiability of inhomogeneous point processes. The interaction range L is a hyperparameter (see Appendix C.2). Conceptually, this framework extends to anisotropic interactions by considering the (signed) difference between point positions, i.e., $\psi(u, v) = \psi(u - v)$ if sufficiently diverse directional data are available. The input to the prediction network then becomes a vector.

The loss in equation 5 admits a probabilistic interpretation as a hybrid model of $p(X, x) = p(X|x)p(x)$. Hybrid models $p(X, x)$ have been shown to learn richer and more outlier-robust representations than purely discriminative models (Nalisnick et al., 2019; Tomczak, 2024). We assume that $x \perp X|z$, such that z captures all correlations, and that the variational posterior $q_\theta(z|x)$ provides a good approximation to $p(z|X, x)$. The first assumption is common in multimodal VAE (Wu & Goodman, 2018). It is not limiting in our setting, since the point pattern X is deterministically obtained from the image x . Therefore, z captures all relevant information about both modalities, trivially rendering them conditionally (on z) independent; their cross correlation given z is a Dirac delta. The second assumption implies that the model should only rely on images for inference, which is fulfilled by design when learning visual representations. Under these assumptions, the loss in equation 5 is the ELBO of a joint generative latent-variable model of the point process, see Appendix D for a proof¹. This model has joint density $p(X, x, z) = p(X|x, z)p(x|z)p(z)$, where $p(x) = \int p(x, z) dz$ is a standard VAE. The pseudo-likelihood in equation 4 can moreover be interpreted as the limit of Bernoulli random variables over partitions (or pixels) $u_i \subseteq W, i \in \{1, \dots, I\}$ (Møller & Waagepetersen, 2003) with each partition/pixel conditioned on X :

$$\text{PL}(\theta) = \lim_{\substack{|u_i| \rightarrow 0 \\ I \rightarrow \infty}} \prod_{1 \leq i \leq I} (\lambda_\xi(X, u_i|z)|u_i|)^{N_i} (1 - \lambda_\xi(X, u_i|z)|u_i|)^{1-N_i}. \quad (6)$$

The indicator $N_i = \mathbf{1}(N(u_i) > 0)$ denotes the presence of a point in partition i . Therefore, the *prediction model* $\lambda_\xi(X, u|z)$ can be interpreted as the limit of a pixel-wise classifier for the presence of a point given the data X . From Jensen's inequality, the second term in equation 5 provides a lower bound on the approximate conditional log-likelihood $\log p_{\xi, \theta}(X|x) \approx \log \mathbb{E}_q [p_\xi(X|z)] \geq \mathbb{E}_q [\log p(X|z)]$. This connects SI-VAE with other hybrid models, such as DIGLM (Nalisnick et al., 2019). SI-VAE, however, estimate z using amortized variational inference instead of flow models. Therefore, SI-VAE learn a latent z that approximates $p(X|x)$ while providing a model for the features $p(x)$. The details of the SI-VAE architecture used here, and of its training, are given in Appendix C.

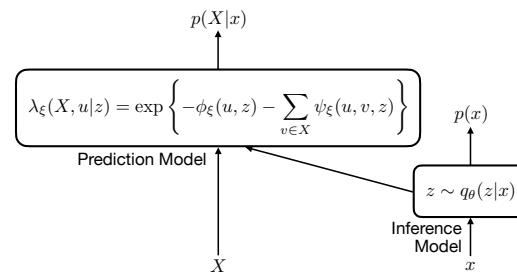


Figure 1: Schematic of the proposed SI-VAE architecture consisting of an *inference model* q_θ and a *prediction model* λ_ξ . The inference model uses an input image x to sample the latent code z . The latent sample is used by the prediction model to predict the Papangelou conditional intensity $\lambda_\xi(X, u)$ of the point process X .

that the model should only rely on images for inference, which is fulfilled by design when learning visual representations. Under these assumptions, the loss in equation 5 is the ELBO of a joint generative latent-variable model of the point process, see Appendix D for a proof¹. This model has joint density $p(X, x, z) = p(X|x, z)p(x|z)p(z)$, where $p(x) = \int p(x, z) dz$ is a standard VAE. The pseudo-likelihood in equation 4 can moreover be interpreted as the limit of Bernoulli random variables over partitions (or pixels) $u_i \subseteq W, i \in \{1, \dots, I\}$ (Møller & Waagepetersen, 2003) with each partition/pixel conditioned on X :

¹Note that the assumptions are only needed for the interpretation of the loss as an ELBO. They are not needed for SI-VAE to predict valid features of the Papangelou conditional intensity of a Gibbs process.

216 Table 1: Accuracy (Acc) and F_1 score for linear classification of point-pattern types in the latent
 217 space of the models (SI-VAE, VAE, mask VAE trained with perfect location knowledge) trained
 218 on images of different quality (SNR). We compare two different weak-labeling methods (*Spotiflow*,
 219 *Thresholding*) with a ground truth (GT) baseline using perfect knowledge of point locations. For the
 220 weak-labeling methods we also report the sensitivity $S_{F_1} = (F_{1,GT}^{\text{class}} - F_{1,\text{method}}^{\text{class}})/(1 - F_{1,\text{method}}^{\text{spot}})$ to
 221 quantify the robustness of the F_1 score to spot-detection errors.

Model	SNR	GT Knowledge		<i>Spotiflow</i>			Thresholding		
		Acc (\uparrow)	F_1 (\uparrow)	Acc (\uparrow)	F_1 (\uparrow)	S_{F_1} (\downarrow)	Acc (\uparrow)	F_1 (\uparrow)	S_{F_1} (\downarrow)
mask VAE	∞	0.63	0.62	\times	\times	\times	\times	\times	\times
VAE	12.8	0.48	0.47	\times	\times	\times	\times	\times	\times
VAE	9.6	0.48	0.47	\times	\times	\times	\times	\times	\times
SI-VAE	12.8	0.90	0.90	0.90	0.90	0.0	0.80	0.80	0.56
SI-VAE	9.6	0.88	0.88	0.83	0.83	0.42	0.81	0.81	0.22

3 EXPERIMENTS AND RESULTS

We benchmark SI-VAE on synthetic data, comparing them to VAE with the same architecture. The only difference between the VAE baseline and the SI-VAE is the presence of spatial supervision in the latter. This permits relative comparison. Then, we illustrate the workflow of applying SI-VAE to learning interpretable representations of protein localization patterns in human cells. We highlight introspection and interpretation of the latent space and show how the probabilistic framework of SI-VAE enables conditional simulation and downstream statistical analysis over learned representations.

3.1 LEARNING SPATIAL INTERACTIONS ON SYNTHETIC DATA

We first show that SI-VAE are able to learn representations that disentangle clustering due to attractive correlations from clustering due to inhomogeneous intensity functions. For this, we show that the latent space of an SI-VAE linearly separates homogeneous from inhomogeneous point processes and is able to classify their correlation structure.

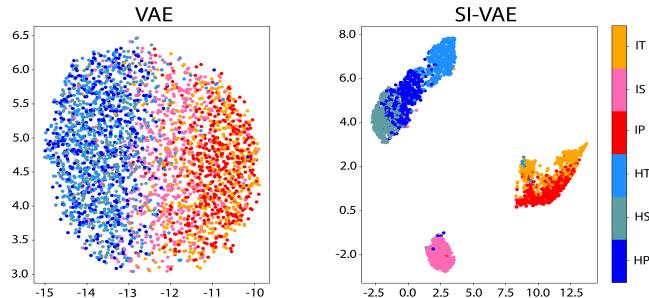


Figure 2: UMAP projections of the latent representations obtained by VAE (left) and SI-VAE (right) trained on images with an SNR of 12.8 and perfect GT knowledge of the point locations. Cold colors denote homogeneous processes (Poisson (HP), Strauss (HS), Thomas (HT)), warm colors inhomogeneous processes (Poisson (IP), Strauss (IS), Thomas (IT)).

Data Generation We generate noisy synthetic images with known ground-truth point locations. Point locations are sampled from attractive (Thomas), repulsive (Strauss) and uncorrelated (Poisson) point processes with either homogeneous or inhomogeneous intensity functions. Appendix A details the benchmark point processes, Appendix E the synthetic image generation. It is important to note that Cox processes, such as the Thomas process, are not Gibbs processes, since their distribution is not defined via an energy function. Nevertheless, Gibbs processes constitute a flexible modeling

270 framework, and our aim is to identify a Gibbs process that provides a suitable approximation to their
 271 distribution. We generate 5000 images for each of the six cases. All images have the same expected
 272 number of points $\mathbb{E}N(W) \approx 52$. This prevents the encoding network from simply discriminating
 273 between the processes by total pixel intensity.

274
 275 **Experiment Design** We compare the representation-learning performance of SI-VAE against a
 276 baseline VAE with the same architecture (see Appendix C.1) but without the point-process supervi-
 277 sion target. Both models use the same encoder and decoder networks. The Papangelou conditional
 278 intensity $\lambda_\xi(X, u|z)$ is modeled using two separate two-layer neural networks for ϕ_ξ and ψ_ξ (see
 279 Appendix C.2) to predict the spatial distribution of X from a given latent vector z . Both models
 280 are trained using the Adam optimizer (Kingma & Ba, 2015) over their respective ELBO until con-
 281 vergence on the validation set. We set $\beta = 0.1$, identified in a grid search over three orders of
 282 magnitude (0.001 to 1.0), and distance weight w_{uv} with $L = 0.25$ determined from prior knowledge
 283 (see Appendix C.2). During evaluation, a representation is obtained as the mean of the posterior
 284 $q_\theta(z|x)$. We evaluate the representations obtained by both models using a linear evaluation protocol
 285 following Chen et al. (2020). This tests if z contains enough information to distinguish the six dif-
 286 ferent point processes in the data, thus linearly disentangling correlation from inhomogeneity. Since
 287 the performance of the proposed self-supervision task depends on the accuracy of the point patterns
 288 X provided during training, we repeat the experiment for two different signal-to-noise ratios (SNR)
 289 using two different spot detectors (simple Otsu thresholding and the recent deep-learning method
 290 *Spotiflow* (Dominguez Mantes et al., 2025)). We compare them to a baseline with ground-truth (GT)
 291 knowledge of X .

292 **Results** The results in Table 1 show that the SI-VAE consistently outperforms the standard VAE
 293 across all experiments. They also show that simple spot-detection methods, here Otsu thresholding,
 294 suffice to provide weak labels for the self-supervision task, especially at low SNR. When using
 295 state-of-the-art spot detection (*Spotiflow* (Dominguez Mantes et al., 2025)), the SI-VAE performs
 296 close to the GT-knowledge baseline. The SI-VAE predicts meaningful representations even at high
 297 noise levels (low SNR). We also report the degradation of the F_1 classification score w.r.t. the F_1
 298 score of the spot detector, yielding the error sensitivity index S_{F_1} . In all cases, SI-VAE predictions
 299 degrade less quickly than spot-detection performance ($S_{F_1} \leq 1$), indicating that SI-VAE dampen
 300 spot-detection errors during training. As errors mainly occur by missing points in dense regions (see
 301 Table 3), however, they can bias the learned correlations (Kuronen et al., 2021).

302 Since SI-VAE incorporates structured knowledge in the form of (detected) point locations, we also
 303 compare it against a VAE trained on ground-truth binary object-location masks (mask VAE). This
 304 performs better than the VAE trained on whole images but does not reach the performance of SI-
 305 VAE. The UMAP projections of the latent spaces in Fig. 2 reveal that the standard VAE mainly
 306 learns global pixel-intensity patterns. This clearly manifests in the linear separation between homo-
 307 geneous and inhomogeneous point processes, while not separating different process types (Strauss,
 308 Thomas, Poisson). While Semenova et al. (2022) have shown that VAE can learn spatial correlations
 309 for GP priors, our results indicate that this is insufficient for explaining spatial point patterns. Only
 310 the SI-VAE distinguishes between process types, explaining the downstream classification accuracy.
 311 The latent space of the SI-VAE also maintains interpretability in the sense that mathematically more
 312 similar processes, like Poisson and Thomas, are mapped closer together than dissimilar processes
 313 (Strauss). This confirms that the proposed self-supervision task leads to more meaningful repres-
 314 entations of the underlying spatial organization.

314 3.2 GENERALIZATION TO UNSEEN PROCESSES

315 In addition to testing the generalization of SI-VAE on a holdout data set, we quantify generalization
 316 to point processes of types not seen during training.

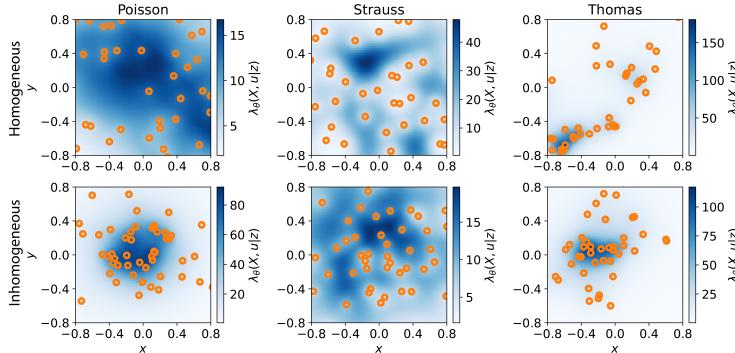
317
 318 **Experiment Design** We generate images from a homogeneous log-Gaussian Cox process (LGCP),
 319 which admits clustering through a Gaussian process (see Appendix A.4). Because of this clustering
 320 and definition based on a background process, it should behave similar to a homogeneous Thomas
 321 process, which is a special case of a Cox process. We generate 150 synthetic images of point patterns
 322 from a LGCP with the same expected number of points as the other processes. We then use the linear
 323 classifier trained in the previous subsection on the (SI-)VAE representations from Table 1 to predict

324 the class labels for the LGCP images. (SI-)VAE are provided with images only, without (extracted
325 or ground truth) point locations.
326

327 **Results** The results are shown in Fig. 3. The VAE
328 baseline fails to generalize to the LGCP, as it mainly
329 captures global pixel-intensity patterns. Even when
330 trained on weak labels (colors, inset legends), the
331 SI-VAE correctly classifies the LGCP to belong to
332 the same class of processes as the Thomas
333 process most similar to a homogeneous Thomas process
334 (HT). The SI-VAE trained in Section 3.1 with
335 complete knowledge of point locations classifies
336 perfectly. Since the SI-VAE was not trained on LGCP
337 data, this shows its capacity to generalize to unseen
338 point processes, even when trained on weak labels.
339
340

341 3.3 INTERPRETING 342 THE LEARNED REPRESENTATIONS

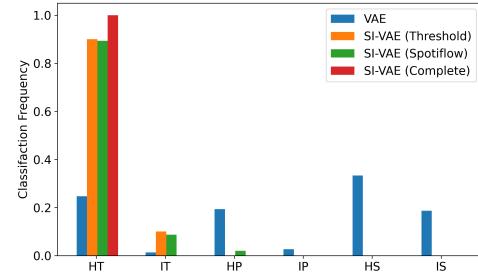
343 SI-VAE provide representations that are inter-
344 pretable in the framework of spatial statistics. The SI-VAE prediction $\lambda_\xi(X, u|z)$ approximates
345 the Papangelou conditional intensity of a point process from an image. According to equation 3,
346 the inferred point process is repulsive for $\lambda_\xi(X, u|z) \geq \lambda_\xi(Y, u|z)$, $X \subset Y$, and attractive other-
347 wise. The predicted conditional intensities can also be visualized over the domain D . Finally,
348 sampling multiple latent vectors z from the posterior $q_\theta(z|x)$ enables uncertainty quantification of
349 the estimates.



361
362 Figure 4: Visualization of the predicted conditional intensities $\lambda_\theta(X, u|z)$ for the latent codes z
363 obtained from different images x from all considered point processes with homogeneous (top row)
364 and inhomogeneous (bottom row) distributions over the eroded domain $D = W \ominus R$. Orange circles
365 show the ground-truth point set X for image x , which was not used during inference.
366

367 **Experiment Design** We consider the SI-VAE from Section 3.1, trained with GT knowledge of the
368 point locations at the higher image SNR. We randomly select images from the test set for each of
369 the six point-process types. For each image, without knowledge of the point locations, the SI-VAE
370 predicts the conditional intensity $\lambda_\xi(X, u|z)$.
371

372 **Results** Figure 4 shows the predicted conditional intensities $\lambda_\xi(X, u|z)$ for different latent codes
373 z (additional plots in Fig. 11). Differences between homogeneous and inhomogeneous distributions
374 are clearly visible. Moreover, the learned representations correctly capture local repulsion (Strauss)
375 or clustering (Thomas) between the points, providing insight into the spatial organization directly
376 from an image. Since SI-VAE model Gibbs processes, the learned potentials ϕ and ψ can directly
377 be interpreted as the first- and second-order interaction structure of the process. For a Poisson point
378 process, $\lambda(X, u) = \exp\{-\phi(u)\}$, such that $\psi(u, v) = 0$ for all u, v . This means that the SI-VAE



379 Figure 3: Class frequencies of the LGCP
380 images predicted by the linear classifier on
381 the representations trained in Table 1 for the
382 higher SNR.
383
384

378
 379 Table 2: Relative intensity errors (RIE) of intensity estimates and rejection rates (RR) of second-
 380 order models for zero-shot conditional simulation of $\lambda_\xi(X, u|z)$ from the SI-VAE trained in Section
 381 3.1. Average scores are computed over 100 random samples from the test set for each class.

	Poisson		Strauss		Thomas	
	RIE (↓)	RR (↓)	RIE (↓)	RR (↓)	RIE (↓)	RR (↓)
Homogeneous	0.34	0.08	0.23	0.13	0.62	0.20
Inhomogeneous	0.27	0.03	0.14	0.14	0.49	0.15

382
 383 should not predict any interactions between points. In Fig. 4, the SI-VAE predicts both attractive
 384 and repulsive interactions for the Poisson processes, depending on the latent code z . This suggests
 385 that the representations z are sensitive toward the observed point configurations and unable to disen-
 386 tangle first- and second-order characteristics of the observed point pattern, which is a difficult task
 387 in general. Nevertheless, SI-VAE provide interpretable, mechanistic insight into learned representa-
 388 tions. The interpretations, however, may be biased by specific point configurations observed in the
 389 image.

397 3.4 ZERO-SHOT CONDITIONAL SIMULATION FROM IMAGES

398 As shown in the previous experiment, SI-VAE learn Papangelou conditional intensities of point
 399 processes. Since $\lambda_\xi(X, u|z)$ parameterizes the distribution of X , it can be incorporated into an
 400 MCMC sampler (Møller & Waagepetersen, 2003), enabling conditional simulation. This provides
 401 a conditional (on a query image) generative model of the point process in addition to the generative
 402 model $p_\theta(x)$ for the images. Once trained, SI-VAE can thus explore the distribution of X directly
 403 from an image x in a *zero-shot* fashion. To our knowledge, this is the first instance of image-based
 404 conditional simulation for point processes.

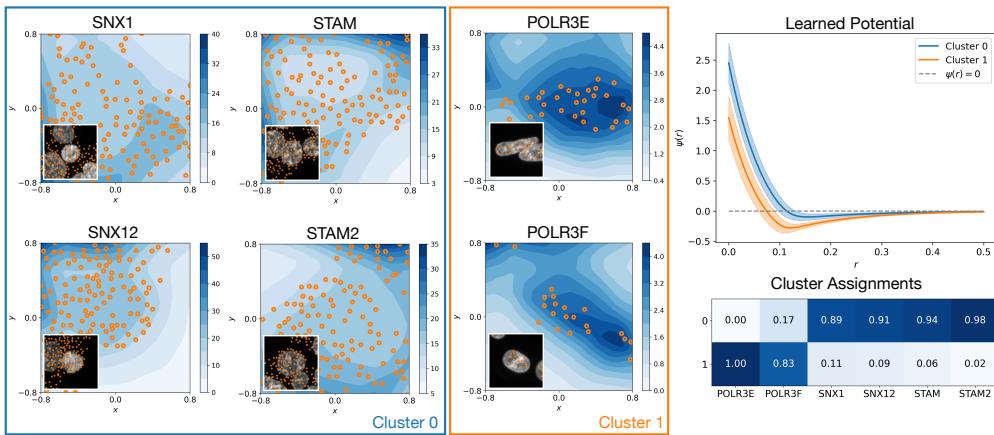
405
406 Experiment Design We perform conditional simulation (see Appendix A.6) using the SI-VAE
 407 from Section 3.1, trained with GT point locations at high image SNR. For each point-process class,
 408 we select 100 random test images. We evaluate the simulations by comparing the predicted process
 409 X_ξ to the observed X under λ_ξ . Accuracy is assessed by nonparametric estimates of first- and
 410 second-order quantities: kernel density estimation (KDE) for intensity, and the K -function (Diggle,
 411 2013) for interactions (see Appendix F). We compute the relative intensity error (RIE) between
 412 the KDE of observed and simulated point patterns, measuring over-/underprediction relative to the
 413 observed pattern. For interactions, we use a Monte Carlo test for point processes (Baddeley et al.,
 414 2014) and measure its rejection rate (RR), i.e., the frequency with which the K -function of the
 415 observed pattern significantly (5% significance level) deviates from the mean K -function.

416
417 Results Table 2 shows the RIE and RR obtained from the simulations. They confirm that the SI-
 418 VAE is able to generate point patterns close to the observed ones. The lowest RIE are obtained for the
 419 Strauss process, which is correctly predicted to be repulsive. In this case approximating $\lambda_\xi(X, u|z)$
 420 works best and does not require model saturation (see Appendix A.6). As the envelopes in Fig. 12
 421 show, the majority of hom. Poisson samples are also predicted to be repulsive. The higher RIE
 422 in this case is due to samples that appear clustering, producing excess points in the simulation. For
 423 estimates with non-clustering potentials we obtain good simulation results (Fig. 14). The RIE further
 424 increases for the Thomas process, which is always clustering. Here, model saturation (Appendix
 425 A.6) is crucial to obtain stable simulations. The error indicates that the model predicts too many
 426 points, which can also be seen in Figs. 14 and 15. This suggests that the saturation parameter
 427 s is too large for these cases, motivating further investigation. The RR computed from the K -
 428 functions (Figs. 12 and 13) are overall low, indicating that the interaction structure is well captured.
 429 The lowest RR are obtained for the Poisson process, where the true interaction is always close to
 430 the conditioning sample when corrected by the normalization of the KDE (Fig. 13). The Strauss
 431 and Thomas processes have higher RR, which is expected due to the more complex interactions
 (repulsive, attractive). For these, Figs. 12 and 13 show that simulated point patterns exhibit weaker
 interactions than the conditioning sample. Overall, however, the results show that the SI-VAE can

432 be used for zero-shot conditional simulation of point processes, qualitatively capturing the correct
 433 correlation structure of the process from a single query image.
 434

435 3.5 APPLICATION TO PROTEIN LOCALIZATION IN HUMAN CELLS

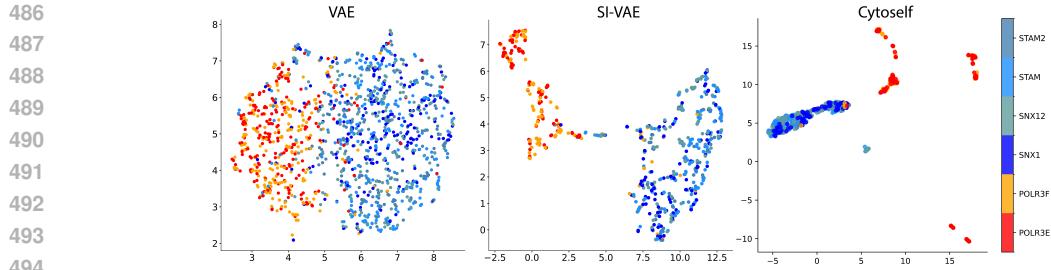
437 Having benchmarked SI-VAE on synthetic data, we next illustrate a workflow applying them to
 438 protein localization patterns in human cells. Specifically, we show that SI-VAE representations of
 439 cellular microscopy images distinguish between different localization patterns and that, thanks to
 440 their statistical interpretability, they allow for a meaningful biological interpretation.
 441



456 Figure 5: First-order (contour plots with detected point locations in orange) and second-order (top-
 457 right plot) Gibbs potentials of the SI-VAE representations on the test set. Insets show the nucleus
 458 channel for each sample as a reference. The two clusters (blue, orange) emerging in the latent space
 459 separate vesicle-localizing proteins from nuclear proteins with cluster-assignment frequencies for
 460 the six proteins given at the bottom right.
 461

462 **Experiment Design** We train an SI-VAE on the *OpenCell* data set (Cho et al., 2022), comprising
 463 fluorescence microscopy images of the subcellular localization of over 1000 human proteins. We
 464 focus on six proteins from three families: four that localize to vesicles (SNX1, SNX12, STAM,
 465 STAM2) and two that form nuclear punctae (POLR3E, POLR3F). For SI-VAE training, we generate
 466 weak labels using *Spotiflow* (Dominguez Mantes et al., 2025). The SI-VAE is trained on 5499
 467 images of the fluorescence signal of the tagged proteins, the nucleus channel, and a channel for the
 468 signed distance to the nucleus as previously described (Kobayashi et al., 2022). The full details are
 469 provided in Appendix G. We set the interaction length scale to $L = 0.25$, corresponding to the mean
 470 half-radius of the nuclei. We assess the learned representations on a disjoint test set containing
 471 687 images of the same six proteins by clustering them with a Gaussian mixture model (GMM),
 472 selecting $K = 2$ clusters based on the Akaike information criterion (AIC) (see Appendix G). We
 473 compare the SI-VAE results with two baselines — a VAE with the same architecture but without
 474 spatial supervision and the specialized state-of-the-art *Cytoself* model (Kobayashi et al., 2022) with
 475 a substantially deeper architecture of two VQ-VAE (Oord et al., 2017) and a classification head.
 476

477 **Results** Figure 5 shows the first-order $\rho_\xi(u) = \exp\{-\phi_\xi(u)\}$ and second-order $\psi_\xi(r)$ Gibbs
 478 potentials learned by the SI-VAE for the two GMM-identified clusters (cluster-assignment frequencies
 479 at the bottom right). The first cluster (blue) contains the four vesicle-associated proteins, while the
 480 second (orange) contains the two nucleus-localizing proteins. The GMM clusters obtained by the
 481 VAE and by *Cytoself* show the same result (Fig. 10). For the VAE, however, the clusters are diffuse
 482 with a Silhouette score of 0.04 (Table 4). SI-VAE and *Cytoself* obtain tighter clusters with Silhou-
 483 ette scores of 0.29 and 0.33, respectively, indicating that the learned representations more effectively
 484 capture differences in the images. This is confirmed by the UMAPs in Fig. 6, where SI-VAE obtains
 485 a good visual representation of the two protein families. The UMAP for VAE is similar to that in
 Fig. 2, suggesting that the VAE again mainly separates global intensity patterns. The tighter cluster-
 486 ing of *Cytoself* is likely due to its deeper architecture and discrete latent space (vector quantization



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 6: UMAP projections of the latent representations obtained by VAE (left), SI-VAE (middle), and *Cytoself* (right) trained on the *OpenCell* (Cho et al., 2022) human-protein data set. Cold colors denote vesicle-localizing proteins (SNX1, SNX12, STAM, STAM2), warm colors nuclear proteins (POLR3E, POLR3F).

and classification labels as supervision target). SI-VAE achieves comparable clustering quality at much lower model complexity, while ensuring interpretability as spatial point processes. It also does not require ground-truth classification labels during training, enabling unbiased discovery.

The first-order potentials correctly reflect known localization patterns: proteins in vesicles are more homogeneously distributed, leading the SI-VAE to group them together, while nuclear proteins show inhomogeneous distributions localized to the nuclei. The two baseline models identify the same classes but do not explain them by an underlying probability distribution. The second-order SI-VAE potentials further distinguish the clusters according to the spatial interactions. They reveal short-range repulsion and long-range attraction. The repulsion has smaller range for nuclear than for vesicular proteins, explaining the tighter molecular packing in the nucleus. The nuclear proteins further show stronger long-range attraction, which facilitates efficient coverage of the nucleus, accelerating biochemical reactions in the diffusion-limited regime (Subic & Sbalzarini, 2024). This is corroborated by the conditional intensities $\lambda_\xi(X, u|z)$ predicted by the SI-VAE (Fig. 16) showing high event probabilities in the nuclei. We did not model or impose nuclear confinement. The SI-VAE reveals it from the data, providing a mechanistic explanation for the observed patterns.

4 CONCLUSION

We introduced a self-supervision target grounded in point-process statistics. The loss function of the resulting SI-VAE architecture can be understood as the ELBO of a joint model over images and point processes. This showed effective in capturing spatial interactions and generalizing to unseen data. The learned representations can directly be interpreted in the framework of spatial statistics. Since SI-VAE constitute hybrid models, we also demonstrated zero-shot conditional (on a query image) simulation of point processes. Unlike purely generative models (Lüdke et al., 2025; Zhou et al., 2022), SI-VAE remain interpretable. We highlighted the practical utility of SI-VAE by applying them to localization patterns of proteins in human cells. The SI-VAE correctly identified protein localization classes and provided a mechanistic explanation for their differences. This demonstrates that SI-VAE learn interpretable visual representations of spatial localization patterns.

In the future, SI-VAE could be extended to non-pairwise interactions by estimating the full density using, e.g., score matching (Hyvärinen, 2005; Cao et al., 2024) or Deep Sets (Zaheer et al., 2017). SI-VAE could also be extended to anisotropic interactions, if directionality is present in the data, and to marked point processes to model interactions across different types of points. Additionally, SI-VAE could be combined with more expressive priors on the latent variables, such as GP-VAE (Casale et al., 2018; Pearce, 2020; Jazbec et al., 2021) or VampPrior (Tomczak & Welling, 2018).

SI-VAE are straightforward to implement and train; they only require a small prediction model to be added to a VAE. The main additional cost during training is the evaluation of the Papangelou conditional intensity, which requires computing pairwise interactions between points and numerical quadrature. During inference, SI-VAE behave like regular VAE, as the point-process component is only used for training. This makes SI-VAE a drop-in replacement for VAE in applications where spatial localization patterns are an important feature.

540 REFERENCES
541

542 Meri Abgaryan, Xinning Cui, Nandu Gopan, Gabriel Della Maggiora, Artur Yakimovich, and Ivo F.
543 Sbalzarini. Regularized Gradient Statistics Improve Generative Deep Learning Models of Super
544 Resolution Microscopy. *Small Methods*, 9(7):2401900, July 2025. ISSN 2366-9608, 2366-9608.
545 doi: 10.1002/smtb.202401900. URL <https://onlinelibrary.wiley.com/doi/10.1002/smtb.202401900>.

546

547 H. Akaike. A new look at the statistical model identification. *IEEE Transactions on Automatic
548 Control*, 19(6):716–723, 1974. doi: 10.1109/TAC.1974.1100705.

549

550 Ismaïla Ba and Jean-François Coeurjolly. Inference for low- and high-dimensional inhomogeneous
551 Gibbs point processes. *Scandinavian Journal of Statistics*, 50(3):993–1021, September 2023.
552 ISSN 0303-6898, 1467-9469. doi: 10.1111/sjos.12616. URL <https://onlinelibrary.wiley.com/doi/10.1111/sjos.12616>.

553

554 A. J. Baddeley, J. Møller, and R. Waagepetersen. Non- and semi-parametric estimation of interaction
555 in inhomogeneous point patterns. *Statistica Neerlandica*, 54(3):329–350, November 2000. ISSN
556 0039-0402, 1467-9574. doi: 10.1111/1467-9574.00144. URL <https://onlinelibrary.wiley.com/doi/10.1111/1467-9574.00144>.

557

558 Adrian Baddeley. Spatial Point Processes and their Applications. In Wolfgang Weil (ed.), *Stochastic
559 Geometry*, volume 1892 of *Lecture Notes in Mathematics*, pp. 1–75. Springer Berlin Hei-
560 delberg, 2007. ISBN 978-3-540-38174-7. doi: 10.1007/978-3-540-38175-4_1. URL http://link.springer.com/10.1007/978-3-540-38175-4_1. Series Title: Lecture
561 Notes in Mathematics.

562

563 Adrian Baddeley, Peter J. Diggle, Andrew Hardegen, Thomas Lawrence, Robin K. Milne, and
564 Gopalan Nair. On tests of spatial pattern based on simulation envelopes. *Ecological Mono-
565 graphs*, 84(3):477–489, August 2014. ISSN 0012-9615. doi: 10.1890/13-2042.1. URL
566 <http://doi.wiley.com/10.1890/13-2042.1>.

567

568 Adrian Baddeley, Ege Rubak, and Rolf Turner. *Spatial point patterns: methodology and applications with R*. Chapman & Hall / CRC Interdisciplinary Statistics.
569 CRC Press, Taylor & Francis Group, Boka Raton London New York, 2016. ISBN
570 978-1-4822-1020-0 978-1-4822-1021-7. URL <https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/p/book/9781482210200>.

571

572

573 Y. Bengio, A. Courville, and P. Vincent. Representation Learning: A Review and New Per-
574 spectives. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(8):1798–1828,
575 August 2013. ISSN 0162-8828, 2160-9292. doi: 10.1109/TPAMI.2013.50. URL <http://ieeexplore.ieee.org/document/6472238/>.

576

577

578 G. Bradski. The OpenCV Library. *Dr. Dobb's Journal of Software Tools*, 2000. URL <https://opencv.org/>.

579

580

581 Haoqun Cao, Zizhuo Meng, Tianjun Ke, and Feng Zhou. Is score matching suitable for estimating
582 point processes? In *The Thirty-eighth Annual Conference on Neural Information Processing
583 Systems*, 2024. URL <https://openreview.net/forum?id=HQgHCVZiHw>.

584

585 Francesco Paolo Casale, Adrian Dalca, Luca Saglietti, Jennifer Listgarten, and Nicolo
586 Fusi. Gaussian process prior variational autoencoders. In S. Bengio, H. Wal-
587 lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Ad-
588 vances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,
589 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/1c336b8080f82bcc2cd2499b4c57261d-Paper.pdf.

590

591 Safiye Celik, Jan-Christian Huetter, Sandra Melo, Nathan Lazar, Rahul Mohan, Conor Tillinghast,
592 Tommaso Biancalani, Marta Fay, Berton Earnshaw, and Imran S. Haque. Biological Cartography:
593 Building and Benchmarking Representations of Life. In *NeurIPS 2022 Workshop on Learning
Meaningful Representations of Life*, 2022. URL <https://openreview.net/forum?id=0gccw3tTXwR>.

594 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework
 595 for Contrastive Learning of Visual Representations. In Hal Daumé III and Aarti Singh (eds.),
 596 *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings
 597 of Machine Learning Research*, pp. 1597–1607. PMLR, July 2020. URL <https://proceedings.mlr.press/v119/chen20j.html>.
 598

599

600 Valerie Chen, Muyu Yang, Wenbo Cui, Joon Sik Kim, Ameet Talwalkar, and Jian Ma. Applying
 601 interpretable machine learning in computational biology—pitfalls, recommendations and oppor-
 602 tunities for new developments. *Nature Methods*, 21(8):1454–1461, August 2024. ISSN 1548-
 603 7091, 1548-7105. doi: 10.1038/s41592-024-02359-7. URL <https://www.nature.com/articles/s41592-024-02359-7>.
 604

605

606 Nathan H. Cho, Keith C. Cheveralls, Andreas-David Brunner, Kibeam Kim, André C. Michaelis,
 607 Preethi Raghavan, Hirofumi Kobayashi, Laura Savy, Jason Y. Li, Hera Canaj, James Y. S. Kim,
 608 Edna M. Stewart, Christian Gnann, Frank McCarthy, Joana P. Cabrera, Rachel M. Brunetti,
 609 Bryant B. Chhun, Greg Dingle, Marco Y. Hein, Bo Huang, Shalin B. Mehta, Jonathan S. Weiss-
 610 man, Rafael Gómez-Sjöberg, Daniel N. Itzhak, Loïc A. Royer, Matthias Mann, and Manuel D.
 611 Leonetti. Opencell: Endogenous tagging for the cartography of human cellular organization.
 612 *Science*, 375(6585):eabi6983, 2022. doi: 10.1126/science.abi6983. URL <https://www.science.org/doi/abs/10.1126/science.abi6983>.
 613

614 Jean-François Coeurjolly, Jesper Møller, and Rasmus Waagepetersen. A Tutorial on Palm Dis-
 615 tributions for Spatial Point Processes. *International Statistical Review*, 85(3):404–420, De-
 616 cember 2017. ISSN 0306-7734, 1751-5823. doi: 10.1111/insr.12205. URL <https://onlinelibrary.wiley.com/doi/10.1111/insr.12205>.
 617

618

619 Peter J. Diggle. *Statistical Analysis of Spatial and Spatio-Temporal Point Patterns*. Monographs on
 620 Statistics and Applied Probability 128. Chapman and Hall/CRC, New York, 3 edition, July 2013.
 621 ISBN 978-0-429-09809-3. doi: 10.1201/b15326. URL <https://www.taylorfrancis.com/books/9781466560246>.
 622

623

624 Albert Dominguez Mantes, Antonio Herrera, Irina Khven, Anjalie Schlaepi, Eftychia Kyriacou,
 625 Georgios Tsissios, Evangelia Skoufa, Luca Santangeli, Elena Buglakova, Emine Berna Durmus,
 626 Suliana Manley, Anna Kreshuk, Detlev Arendt, Can Aztekin, Joachim Lingner, Gioele La Manno,
 627 and Martin Weigert. Spotiflow: accurate and efficient spot detection for fluorescence microscopy
 628 with deep stereographic flow regression. *Nature Methods*, June 2025. ISSN 1548-7091, 1548-
 629 7105. doi: 10.1038/s41592-025-02662-x. URL <https://www.nature.com/articles/s41592-025-02662-x>.
 630

631 Letian Fu, Long Lian, Renhao Wang, Baifeng Shi, XuDong Wang, Adam Yala, Trevor Dar-
 632 rell, Alexei A. Efros, and Ken Goldberg. Rethinking Patch Dependence for Masked Au-
 633 toencoders. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856. URL
 634 <https://openreview.net/forum?id=JT2KMuo2BV>.
 635

636 Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P. Kingma. Learning Energy-Based
 637 Models by Diffusion Recovery Likelihood. In *International Conference on Learning Represen-
 638 tations*, 2021. URL https://openreview.net/forum?id=v_1Soh8QUNC.
 639

640 Ioannis Gatopoulos and Jakub M. Tomczak. Self-Supervised Variational Auto-Encoders. *Entropy*,
 641 23(6):747, June 2021. ISSN 1099-4300. doi: 10.3390/e23060747. URL <https://www.mdpi.com/1099-4300/23/6/747>.
 642

643 Charles J. Geyer. Likelihood inference for spatial point processes. In Ole E. Barndorff-
 644 Nielsen, Wilfrid S. Kendall, and Marie-Colette N. M. Van Lieshout (eds.), *Stochas-
 645 tic Geometry: Likelihood and Computation*, volume 80 of *Monographs on Statistics
 646 and Applied Probability*, pp. 79–140. Chapman and Hall / CRC, 1999. URL <https://www.taylorfrancis.com/chapters/edit/10.1201/9780203738276-3/likelihoood-inference-spatial-point-processes-geyer>.
 647

648 Lauren E. Gillespie, Megan Ruffley, and Moises Exposito-Alonso. Deep learning models map rapid
 649 plant species changes from citizen science and remote sensing data. *Proceedings of the National
 650 Academy of Sciences*, 121(37):e2318296121, September 2024. ISSN 0027-8424, 1091-
 651 6490. doi: 10.1073/pnas.2318296121. URL <https://pnas.org/doi/10.1073/pnas.2318296121>.
 652

653 Ihuan Gunawan, Richard J Marsh, Nandini Aggarwal, Erik Meijering, Susan Cox,
 654 John G Lock, and Siân Culley. Image quality metrics fail to accurately represent
 655 biological information in fluorescence microscopy. *bioRxiv*, 2025. doi: 10.
 656 1101/2025.08.05.668508. URL <https://www.biorxiv.org/content/early/2025/08/07/2025.08.05.668508>. Publisher: Cold Spring Harbor Laboratory eprint:
 657 <https://www.biorxiv.org/content/early/2025/08/07/2025.08.05.668508.full.pdf>.
 658

660 Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical Learning*.
 661 Springer Series in Statistics. Springer New York, New York, NY, 2009. ISBN 978-0-387-84857-
 662 0 978-0-387-84858-7. doi: 10.1007/978-0-387-84858-7. URL <http://link.springer.com/10.1007/978-0-387-84858-7>.
 663

664 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 665 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF Conference on Com-
 666 puter Vision and Pattern Recognition (CVPR)*, pp. 16000–16009, June 2022. URL <https://ieeexplore.ieee.org/document/9879206>.
 667

668 Jo A. Helmuth, Grégory Paul, and Ivo F. Sbalzarini. Beyond co-localization: inferring
 669 spatial interactions between sub-cellular structures from microscopy images. *BMC
 670 Bioinformatics*, 11(1):372, December 2010. ISSN 1471-2105. doi: 10.1186/1471-2105-11-372. URL <https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-372>.
 671

672 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 673 Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
 674 constrained variational framework. In *International Conference on Learning Representations*,
 675 2017. URL <https://openreview.net/forum?id=Sy2fzU9gl>.
 676

677 Mien-Chie Hung and Wolfgang Link. Protein localization in disease and therapy. *Journal of
 678 Cell Science*, 124(20):3381–3392, October 2011. ISSN 1477-9137, 0021-9533. doi: 10.1242/jcs.089110. URL <https://journals.biologists.com/jcs/article/124/20/3381/31946/Protein-localization-in-disease-and-therapy>.
 679

680 Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. *Journal of
 681 Machine Learning Research*, 6(24):695–709, 2005. URL <http://jmlr.org/papers/v6/hyvarinen05a.html>.
 682

683 Metod Jazbec, Matt Ashman, Vincent Fortuin, Michael Pearce, Stephan Mandt, and Gunnar Rätsch.
 684 Scalable Gaussian Process Variational Autoencoders. In Arindam Banerjee and Kenji Fukumizu
 685 (eds.), *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*,
 686 volume 130 of *Proceedings of Machine Learning Research*, pp. 3511–3519. PMLR, April 2021.
 687 URL <https://proceedings.mlr.press/v130/jazbec21a.html>.
 688

689 Akira Kato, David Thau, Andrew T. Hudak, Garrett W. Meigs, and L. Monika Moskal. Quantifying
 690 fire trends in boreal forests with Landsat time series and self-organized criticality. *Remote Sensing of Environment*, 237:111525, February 2020. ISSN 00344257. doi:
 691 10.1016/j.rse.2019.111525. URL <https://linkinghub.elsevier.com/retrieve/pii/S0034425719305449>.
 692

693 Jacob Kauffmann, Jonas Dippel, Lukas Ruff, Wojciech Samek, Klaus-Robert Müller, and
 694 Grégoire Montavon. Explainable AI reveals Clever Hans effects in unsupervised learning
 695 models. *Nature Machine Intelligence*, 7(3):412–422, March 2025. ISSN 2522-
 696 5839. doi: 10.1038/s42256-025-01000-2. URL <https://www.nature.com/articles/s42256-025-01000-2>.
 697

702 Emaad Khwaja, Yun S. Song, Aaron Agarunov, and Bo Huang. CELLE-2: Translating proteins to
 703 pictures and back with a bidirectional text-to-image transformer. In *Thirty-seventh Conference*
 704 *on Neural Information Processing Systems (NeurIPS)*, 2023. URL <https://openreview.net/forum?id=YSLMVffl5u>.

705

706 Henry R. Kilgore, Itamar Chinn, Peter G. Mikhael, Ilan Mitnikov, Catherine Van Dongen, Guy Zyl-
 707 berberg, Lena Afeyan, Salman F. Banani, Susana Wilson-Hawken, Tong Ihn Lee, Regina Barzilay,
 708 and Richard A. Young. Protein codes promote selective subcellular compartmentalization. *Sci-
 709 ence*, pp. eadq2634, February 2025. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.adq2634.
 710 URL <https://www.science.org/doi/10.1126/science.adq2634>.

711

712 Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Yoshua
 713 Bengio and Yann LeCun (eds.), *3rd International Conference on Learning Representations, ICLR
 714 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*, 2015. URL <http://arxiv.org/abs/1412.6980>.

715

716 Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In *2nd International
 717 Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
 718 Conference Track Proceedings*, 2014. URL <https://arxiv.org/abs/1312.6114>.

719 Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. *Found-
 720 ations and Trends® in Machine Learning*, 12(4):307–392, 2019. ISSN 1935-8237. doi:
 721 10.1561/2200000056. URL <http://dx.doi.org/10.1561/2200000056>.

722

723 Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max Welling. Semi-supervised learn-
 724 ing with deep generative models. In *Proceedings of the 28th International Conference on Neural
 725 Information Processing Systems - Volume 2*, NIPS’14, pp. 3581–3589, Cambridge, MA, USA,
 726 2014. MIT Press. URL <https://dl.acm.org/doi/10.5555/2969033.2969226>.

727 Hirofumi Kobayashi, Keith C. Cheveralls, Manuel D. Leonetti, and Loic A. Royer. Self-
 728 supervised deep learning encodes high-resolution features of protein subcellular localiza-
 729 tion. *Nature Methods*, 19(8):995–1003, August 2022. ISSN 1548-7091, 1548-7105.
 730 doi: 10.1038/s41592-022-01541-z. URL <https://www.nature.com/articles/s41592-022-01541-z>.

731

732 Oren Kraus, Kian Kenyon-Dean, Saber Saberian, Maryam Fallah, Peter McLean, Jess Le-
 733 ung, Vasudev Sharma, Ayla Khan, Jia Balakrishnan, Safiye Celik, Dominique Beaini, Maciej
 734 Sypetkowski, Chi Vicky Cheng, Kristen Morse, Maureen Makes, Ben Mabey, and Berton Earn-
 735 shaw. Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology. In *2024
 736 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11757–11768,
 737 Seattle, WA, USA, June 2024. IEEE. ISBN 9798350353006. doi: 10.1109/CVPR52733.2024.
 738 01117. URL <https://ieeexplore.ieee.org/document/10657479/>.

739

740 Mikko Kuronen, Mari Myllymäki, Adam Loavenbruck, and Aila Särkkä. Point process models for
 741 sweat gland activation observed with noise. *Statistics in Medicine*, 40(8):2055–2072, April 2021.
 742 ISSN 0277-6715, 1097-0258. doi: 10.1002/sim.8891. URL <https://onlinelibrary.wiley.com/doi/10.1002/sim.8891>.

743

744 Thibault Lagache, Nathalie Sauvionnet, Lydia Danglot, and Jean-Christophe Olivo-Marin. Statisti-
 745 cal analysis of molecule colocalization in bioimaging: Statistical Analysis of Molecule Colocal-
 746 ization in Bioimaging. *Cytometry Part A*, 87(6):568–579, June 2015. ISSN 15524922. doi:
 747 10.1002/cyto.a.22629. URL <https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22629>.

748

749 David Lüdke, Enric Rabasseda Raventós, Marcel Kolloviev, and Stephan Günemann. Unlock-
 750 ing Point Processes through Point Set Diffusion. In *The Thirteenth International Confer-
 751 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=4anfpHj0wf>.

752

753 Erick Moen, Dylan Bannon, Takamasa Kudo, William Graf, Markus Covert, and David Van Valen.
 754 Deep learning for cellular image analysis. *Nature Methods*, 16(12):1233–1246, December
 755 2019. ISSN 1548-7091, 1548-7105. doi: 10.1038/s41592-019-0403-1. URL <http://www.nature.com/articles/s41592-019-0403-1>.

756 Jesper Møller and Rasmus P. Waagepetersen. Modern Statistics for Spatial Point Processes. *Scandi-
757 navian Journal of Statistics*, 34(4):643–684, December 2007. ISSN 0303-6898, 1467-9469. doi:
758 10.1111/j.1467-9469.2007.00569.x. URL <https://onlinelibrary.wiley.com/doi/10.1111/j.1467-9469.2007.00569.x>.
759
760

761 Jesper Møller and Rasmus Plenge Waagepetersen. *Statistical Inference and Simulation for Spatial
762 Point Processes*, volume 100 of *Monographs on Statistics and Applied Probability*. Chapman and
763 Hall/CRC, 1 edition, September 2003. ISBN 978-1-135-44228-6. doi: 10.1201/9780203496930.
764 URL <https://www.taylorfrancis.com/books/9781135442286>.
765
766

767 Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan.
768 Hybrid models with deep and invertible features. In Kamalika Chaudhuri and Ruslan Salakhut-
769 dinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97
770 of *Proceedings of Machine Learning Research*, pp. 4723–4732. PMLR, 09–15 Jun 2019. URL
771 <https://proceedings.mlr.press/v97/nalisnick19b.html>.
772
773

774 Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
775 ing. In *Proceedings of the 31st International Conference on Neural Information Processing
776 Systems*, NIPS’17, pp. 6309–6318, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
777 9781510860964.
778
779

780 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with Con-
781 trastive Predictive Coding, January 2019. URL <http://arxiv.org/abs/1807.03748>.
782 arXiv:1807.03748 [cs].
783
784

785 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
786 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
787 ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
788 Lu Fang, Junjie Bai, and Soumith Chintala. *PyTorch: an imperative style, high-performance
789 deep learning library*. Curran Associates Inc., Red Hook, NY, USA, 2019. URL <https://dl.acm.org/doi/10.5555/3454287.3455008>.
790
791

792 Michael Pearce. The gaussian process prior vae for interpretable latent dynamics from pixels.
793 In Cheng Zhang, Francisco Ruiz, Thang Bui, Adji Bousso Dieng, and Dawen Liang (eds.),
794 *Proceedings of The 2nd Symposium on Advances in Approximate Bayesian Inference*, volume
795 118 of *Proceedings of Machine Learning Research*, pp. 1–12. PMLR, 08 Dec 2020. URL
796 <https://proceedings.mlr.press/v118/pearce20a.html>.
797
798

799 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
800 Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
801 Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
802 esnay. Scikit-learn: Machine learning in python. *J. Mach. Learn. Res.*, 12(null):2825–2830,
803 November 2011. ISSN 1532-4435.
804
805

806 T. Rajala, D. J. Murrell, and S. C. Olhede. Detecting Multivariate Interactions in Spatial Point
807 Patterns with Gibbs Models and Variable Selection. *Journal of the Royal Statistical Society
808 Series C: Applied Statistics*, 67(5):1237–1273, November 2018. ISSN 0035-9254, 1467-9876.
809 doi: 10.1111/rssc.12281. URL <https://academic.oup.com/jrssc/article/67/5/1237/7058395>.
810
811

812 Oded Rotem and Assaf Zaritsky. Visual interpretability of bioimaging deep learning mod-
813 els. *Nature Methods*, 21(8):1394–1397, August 2024. ISSN 1548-7091, 1548-7105.
814 doi: 10.1038/s41592-024-02322-6. URL <https://www.nature.com/articles/s41592-024-02322-6>.
815
816

817 Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
818 analysis. *Journal of Computational and Applied Mathematics*, 20:53–65, 1987. doi: 10.1016/0377-0427(87)90125-7.
819
820

821 Royer Lab. Cytoself github repository. <https://github.com/royerlab/cytoself>,
822 September 2025.
823
824

810 David W. Scott. *Multivariate Density Estimation: Theory, Practice, and Visualization*. Wiley Series
 811 in Probability and Statistics. Wiley, 1 edition, March 2015. ISBN 978-0-471-69755-8 978-1-118-
 812 57557-4. doi: 10.1002/9781118575574. URL <https://onlinelibrary.wiley.com/doi/book/10.1002/9781118575574>.

813

814 Elizaveta Semenova, Yidan Xu, Adam Howes, Theo Rashid, Samir Bhatt, Swapnil Mishra, and
 815 Seth Flaxman. PriorVAE: encoding spatial priors with variational autoencoders for small-area
 816 estimation. *Journal of The Royal Society Interface*, 19(191):20220094, June 2022. ISSN 1742-
 817 5662. doi: 10.1098/rsif.2022.0094. URL <https://royalsocietypublishing.org/doi/10.1098/rsif.2022.0094>.

818

819 Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation us-
 820 ing deep conditional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
 821 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Cur-
 822 ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf.

823

824

825 Tina Subic and Ivo F. Sbalzarini. Loss of bimolecular reactions in reaction-diffusion master equa-
 826 tions is consistent with diffusion limited reaction kinetics in the mean field limit. *The Jour-
 827 nal of Chemical Physics*, 161(23):234107, December 2024. ISSN 0021-9606, 1089-7690. doi:
 828 10.1063/5.0227527. URL <https://pubs.aip.org/jcp/article/161/23/234107/3325820/Loss-of-bimolecular-reactions-in-reaction>.

829

830 Huw D. Summers, John W. Wills, and Paul Rees. Spatial statistics is a comprehensive tool
 831 for quantifying cell neighbor relationships and biological processes via tissue image analy-
 832 sis. *Cell Reports Methods*, 2(11):100348, November 2022. ISSN 26672375. doi: 10.1016/j.crmeth.2022.100348. URL <https://linkinghub.elsevier.com/retrieve/pii/S2667237522002454>.

833

834

835 Jakub Tomczak and Max Welling. Vae with a vampprior. In Amos Storkey and Fernando Perez-Cruz
 836 (eds.), *Proceedings of the Twenty-First International Conference on Artificial Intelligence and*
 837 *Statistics*, volume 84 of *Proceedings of Machine Learning Research*, pp. 1214–1223. PMLR, 09–
 838 11 Apr 2018. URL <https://proceedings.mlr.press/v84/tomczak18a.html>.

839

840 Jakub M. Tomczak. *Deep Generative Modeling*. Springer International Publishing, Cham, 2024.
 841 ISBN 978-3-031-64086-5 978-3-031-64087-2. doi: 10.1007/978-3-031-64087-2. URL <https://link.springer.com/10.1007/978-3-031-64087-2>.

842

843 Ritvik Vasan, Alexandra J. Ferrante, Antoine Borensztein, Christopher L. Frick, Philip Garri-
 844 son, Nathalie Gaudreault, Saurabh S. Mogre, Fatwir S. Mohammed, Benjamin Morris, Guil-
 845 herme G. Pires, Daniel Saelid, Susanne M. Rafelski, Julie A. Theriot, and Matheus P.
 846 Viana. Interpretable representation learning for 3D multi-piece intracellular structures us-
 847 ing point clouds. *Nature Methods*, 22(7):1531–1544, July 2025. ISSN 1548-7091, 1548-
 848 7105. doi: 10.1038/s41592-025-02729-9. URL <https://www.nature.com/articles/s41592-025-02729-9>.

849

850 Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised
 851 learning. In *Proceedings of the 32nd International Conference on Neural Information*
 852 *Processing Systems*, NIPS’18, pp. 5580–5590, Red Hook, NY, USA, 2018. Curran Asso-
 853 ciates Inc. URL https://papers.nips.cc/paper_files/paper/2018/hash/1102a326d5f7c9e04fc3c89d0ede88c9-Abstract.html.

854

855 Artur Yakimovich, Anaël Beaugnon, Yi Huang, and Elif Ozkirimli. Labels in a haystack: Ap-
 856 proaches beyond supervised learning in biomedical applications. *Patterns*, 2(12):100383, Decem-
 857 ber 2021. ISSN 26663899. doi: 10.1016/j.patter.2021.100383. URL <https://linkinghub.elsevier.com/retrieve/pii/S2666389921002506>.

858

859 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhut-
 860 dinov, and Alexander J Smola. Deep Sets. In I. Guyon, U. Von Luxburg,
 861 S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
 862 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 863 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

864 Bo Zhang, Josiane Zerubia, and Jean-Christophe Olivo-Marin. Gaussian approximations of fluorescence
 865 microscope point-spread function models. *Appl. Opt.*, 46(10):1819–1829, Apr 2007. doi:
 866 10.1364/AO.46.001819. URL <https://opg.optica.org/ao/abstract.cfm?URI=ao-46-10-1819>.

868
 869 Mingtian Zhang, Tim Z. Xiao, Brooks Paige, and David Barber. Improving VAE-based
 870 Representation Learning, May 2022. URL <http://arxiv.org/abs/2205.14539>.
 871 arXiv:2205.14539 [cs, stat].

872 Zihao Zhou, Xingyi Yang, Ryan Rossi, Handong Zhao, and Rose Yu. Neural Point Process
 873 for Learning Spatiotemporal Event Dynamics. In Roya Firoozi, Negar Mehr, Esen Yel, Rika
 874 Antonova, Jeannette Bohg, Mac Schwager, and Mykel Kochenderfer (eds.), *Proceedings of The*
 875 *4th Annual Learning for Dynamics and Control Conference*, volume 168 of *Proceedings of Ma-*
 876 *chine Learning Research*, pp. 777–789. PMLR, June 2022. URL <https://proceedings.mlr.press/v168/zhou22a.html>.

880 A POINT PROCESS MODELS

881
 882 We provide details of the point processes used in the synthetic benchmarks. All parameters were
 883 chosen such that all samples, independent of the process model and the homogeneity, have an ex-
 884 pected number of $\mathbb{E}N(W) \approx 52$ points. We used the observation window $W = [-1, 1]^2$ for
 885 inference, whereas sampling was performed in extended domains W_{ext} depending on the process,
 886 as discussed below, to avoid edge effects. For the inhomogeneous processes we used intensity trend
 887 functions of the form $\rho(u) = \kappa \exp\{-\|u\|_2^2/\alpha^2\}$. For each process we generated 5000 independent
 888 samples. More information on spatial point processes can be found in the popular monographs by
 889 Baddeley (2007), Møller & Waagepetersen (2007), and Møller & Waagepetersen (2003).

890 A.1 POISSON PROCESS

891
 892 The Poisson point process is the simplest model, in which spatial variations in the point density arise
 893 solely from intensity inhomogeneities as there are no interactions between points. Since points in
 894 a Poisson process are pairwise uncorrelated, this provides a baseline that is fully characterized by
 895 the intensity function. The intensity function $\rho(u)$ of a point process is related to the first moment
 896 of the point distribution as $\mathbb{E}N(W) = \int_W \rho(u) du$. X is a Poisson point process with intensity
 897 function $\rho(u)$ if and only if $N(B) \sim \mathcal{P}(\mathbb{E}N(B))$ for all $B \subseteq W$, and all $u \in X$ are *i.i.d.* in W with
 898 density $p(u) = \rho(u)/\mathbb{E}N(W)$. Here, \mathcal{P} denotes the Poisson probability distribution. The density of
 899 a Poisson point process with respect to the unit-rate Poisson process ($\rho(u) = 1$) is

$$900 \quad p(X) = \exp \left\{ - \int_W (\rho(u) - 1) du \right\} \prod_{u \in X} \rho(u). \quad (7)$$

901
 902 Therefore, the Papangelou conditional intensity of a Poisson process is $\lambda(X, u) = \rho(u)$, such that
 903 the probability of observing a point at u does not depend on X .

904
 905 We sample realizations of a homogeneous Poisson process with $\rho(u) = 13$ and $N \sim \mathcal{P}(\mathbb{E}N(W))$
 906 points uniformly over W . For the inhomogeneous Poisson case, we choose $\kappa = 67$ and $\alpha =$
 907 0.5. The inhomogeneous samples are obtained by first sampling a homogeneous Poisson process
 908 with intensity $\rho_{\max} = \max_{u \in W} \rho(u)$, followed by independently thinning it using the thinning
 909 probability $\pi(u) = \rho(u)/\rho_{\max}$. This results in an inhomogeneous Poisson process with the desired
 910 intensity (Møller & Waagepetersen, 2003).

912 A.2 THOMAS PROCESS

913
 914 A Thomas process is a clustering process and a special case of a Cox process (Møller &
 915 Waagepetersen, 2003). It is described by a parent Poisson process Y with intensity function $\rho(u)$.
 916 Conditional on each $y \in Y$, there is a child Poisson process X_y with intensity

$$917 \quad \rho_y(u) = \lambda \mathcal{N}(u; y, \sigma^2 \mathbb{I}_d), \quad (8)$$

918 where $\mathcal{N}(\cdot)$ is the d -dimensional normal distribution and $\lambda > 0$ controls the number of child points.
 919 The standard deviation σ controls the spatial range (length scale) of the clustering. A Thomas point
 920 process is then defined by the superposition of all child point patterns $\cup_{y \in Y} X_y$. This also provides
 921 a straightforward way of sampling from a Thomas process by two nested realizations of a Poisson
 922 processes. Due to the dependence on the parent process Y , Thomas processes are said to be driven
 923 by a random field $Z(u) = \sum_{y \in Y} \rho_y(u)$. Following Coeurjolly et al. (2017), we write their density
 924 as

$$925 \quad p(X) = \mathbb{E} \left[\exp \left\{ - \int_W (Z(u) - 1) du \right\} \prod_{u \in X} Z(u) \right] = \mathbb{E} p(X|Z), \quad (9)$$

926 where $p(X|Z)$ is the density of X conditioned on Z . The Papangelou conditional intensity follows
 927 as $\lambda(X, u) = \mathbb{E} p(X \cup \{u\}|Z) / \mathbb{E} p(X|Z)$, which is expected to increase in the vicinity of a point in
 928 X .
 929

930 For our synthetic samples, we choose $\sigma = 0.1$ as the clustering range. We sample the Thomas
 931 process in a domain that is extended by 7σ in all directions in order to capture all interactions.
 932 For the homogeneous Thomas case, we use the parent intensity $\rho(u) = 4$ and $\lambda = 3$. In the
 933 inhomogeneous case, we use $\kappa = 23$, $\alpha = 0.5$, and $\lambda = 3$ and obtain the parent Poisson process
 934 through thinning as described in Appendix A.1. The number of child points for each cluster center
 935 $y \in Y$ follows $N_y \sim \mathcal{P}(\lambda)$ sampled *i.i.d.* in W following $u \sim \mathcal{N}(y, \sigma^2 \mathbb{I})$.
 936

937 A.3 STRAUSS PROCESS

938 The Strauss process is a repulsive point process where points repel each other within a certain radius
 939 R . Unlike Poisson and Thomas processes, it is directly defined in terms of its Papangelou conditional
 940 intensity

$$942 \quad \lambda(X, u) = \rho(u) \gamma^{\sum_{v \in X} \mathbf{1}(v \in B(u, R))}, \quad (10)$$

943 where $\rho(u) = \exp\{-\phi(u)\}$ corresponds to equation 2, $B(u, R)$ is the ball with radius R centered
 944 at u and $0 \leq \gamma \leq 1$ controls the strength of repulsion. For $\gamma = 0$ no points are allowed within
 945 a distance R from any other point (hard-core process), whereas $\gamma = 1$ results in a Poisson point
 946 process where points do not interact at all.

947 Point processes directly defined by a conditional intensity are best sampled using MCMC (Møller
 948 & Waagepetersen, 2003). We here used the Metropolis–Hastings sampler from the `spatstat`
 949 package available in R (Baddeley et al., 2016).

950 For all samples, we chose $R = 0.2$ and $\gamma = 0.4$, which constitutes a strongly repulsive process.
 951 For the homogeneous case, we chose $\rho(u) = 40$, and for the inhomogeneous case $\kappa = 400$ and
 952 $\alpha = 0.5$. We run each MCMC chain for 10^6 iterations and use 200 uniformly random points to
 953 define the initial condition. The sample is obtained after the last iteration.
 954

955 A.4 LOG-GAUSSIAN COX PROCESS

956 A log-Gaussian Cox process (LGCP) is a clustering Cox process similar to a Thomas process. How-
 957 ever, instead of using a parent Poisson process to define the driving random field Z , a LGCP uses a
 958 Gaussian process. Therefore, $Z = \exp\{Y\}$, where $Y \sim \mathcal{GP}(\mu, K)$ is a Gaussian process with mean
 959 function μ and covariance function K (Møller & Waagepetersen, 2003). The density is the same as
 960 that of a Thomas process, albeit with this Z .
 961

962 We sample a LGCP with $\mu = 1$ and Gaussian covariance function. The variance of the Gaussian
 963 covariance function is set to $\sigma = 3.31$ and the scale parameter to 0.4. This LGCP is sampled using
 964 the `spatstat` package in R (Baddeley et al., 2016).
 965

966 A.5 SATURATION PROCESSES

967 The Strauss process defined in Appendix A.3 only possesses a valid density for $0 \leq \gamma \leq 1$. For
 968 $\gamma > 1$, the density is not integrable with respect to the unit-rate Poisson process. This implies that
 969 a Strauss process cannot be used to model clustering point patterns, as the parametric model might
 970 suggest. In fact, this property holds for all Gibbs processes, where purely attractive potentials lead
 971 to ill-defined densities. To avoid an unbounded number of events during simulation in such cases,

972 we introduce a saturation parameter similar to a Geyer saturation process (Geyer, 1999; Rajala et al.,
 973 2018; Ba & Coeurjolly, 2023). Then, the density with respect to the unit-rate Poisson process is
 974

$$975 \quad p(X) \propto \exp \left\{ \sum_{u \in X} \phi(u) - \frac{1}{2} \sum_{u \in X} \max \left[-s, \sum_{\substack{v \in X \\ u \neq v}} \psi(u, v) \right] \right\}, \quad (11)$$

979 where $s \geq 0$ is a saturation parameter capping the interaction strength. The one-half prefactor
 980 originates from iterating over all non-unique point pairs. This recovers the density in equation 2 in
 981 the limit $s \rightarrow \infty$, since ψ is symmetric. The saturation s renders the density integrable, defining a
 982 valid point process that can also account for clustering. The Papangelou conditional intensity of this
 983 process is

$$984 \quad \lambda(X, u) = \exp \left\{ -\phi(u) - \left(\Psi_s(u, X) + \sum_{v \in X} \Psi_s(v, X \cup \{u\}) - \Psi_s(v, X) \right) \right\}, \quad (12)$$

987 with Gibbs interaction term $\Psi_s(u, X) = \max \left[-s, \sum_{v \in X} \psi(u, v) \right] / 2$.

989 In practice, s needs to be estimated from the data. Since SI-VAE do not account for saturation,
 990 we estimate the saturation parameter *post hoc* by minimizing the MSE between the saturated and
 991 unsaturated models over $X \cap D$. This ensures that the true conditional intensity is approximately
 992 equal to the estimated one under saturation.

994 A.6 ZERO-SHOT CONDITIONAL SIMULATION

996 To simulate from the learned conditional intensity $\lambda_\xi(X, u|z)$ we use a birth–death Metropolis–
 997 Hastings Algorithm (Alg. 7.4 in Møller & Waagepetersen (2003)). The sampler iteratively proposes
 998 to add or remove a point in the current configuration X (with probability $p = 0.5$) using uniform
 999 proposal and death probabilities, i.e., $p_b(u) = 1/|D|$ and $p_d(u) = 1/|X|$, with acceptance determined
 1000 based on $\lambda_\xi(X, u|z)$. We perform simulations in the eroded domain $D = W \ominus R$, with
 1001 $R = 0.2$, to avoid bias outside the estimation domain. Each point is obtained after 30,000 iterations
 1002 of the sampler. The obtained points are then eroded by R again to avoid edge effects. We initialize
 1003 the Markov chain with 52 uniformly distributed points in D .

1004 In a Gibbs point process, the density can become ill-defined for attractive potentials, as it may
 1005 become unbounded for increasing numbers of points. This can lead to instabilities during simulation.
 1006 We avoid this by introducing a saturation parameter as previously suggested (Geyer, 1999; Rajala
 1007 et al., 2018) (see Appendix A.5). This caps $\lambda_\theta(X, u|z)$ beyond a certain number of observed points
 1008 around u , ensuring that the density remains bounded and hence valid for simulation. The saturation
 1009 parameter s influences the model. We determine s using grid search over $s \in [10^{-3}, 3.5]$ with 50
 1010 log-equidistant points such that the MSE between the saturated and unsaturated models over $X \cap D$
 1011 is always below $\epsilon = 10^{-3}$. This ensures that the saturated model is close to the original model,
 1012 while avoiding the instability. We find this to work reliably in our benchmarks.

1013 We simulate the Strauss process directly from the learned conditional intensity $\lambda_\xi(X, u|z)$, while
 1014 for the Poisson and Thomas processes we use the saturated model to mitigate instabilities due to
 1015 clustering.

1016 B APPROXIMATING CONDITIONAL INTENSITIES BY NEURAL NETWORKS

1019 SI-VAE represent the Papangelou conditional intensity of a point process in Gibbs form using first-
 1020 and second-order potential functions $\phi : \mathbb{R}^d \rightarrow \mathbb{R}$ and $\psi : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ (see equation 2). We
 1021 restrict $\psi : \mathbb{R} \rightarrow \mathbb{R}$ to be a isotropic and symmetric in its arguments. This ensures that interactions
 1022 between points are invariant under translation and rotation. While this choice is reasonable and
 1023 widely used in spatial statistics (Møller & Waagepetersen, 2003), it does limit the space of functions
 1024 an SI-VAE model can approximate.

1025 In the following we will motivate this choice by a validation study considering different choices to
 model ψ . Specifically, we compare $\psi(u, v)$, $\psi(u - v)$, and $\psi(\|u - v\|)$. We use 150 samples from the

homogeneous Strauss process as described in Appendix A.3. We train the three different models by minimizing the negative log-pseudo-likelihood from equation 4 over 500 iterations using batches of size 32 and the Adam optimizer (Kingma & Ba, 2015) with learning rate 5×10^{-4} . For these tests, we use deeper neural networks than those used in the main text (see Appendix C.2). Specifically, we here use 4 layers with 64 neurons each for both the first- and second order potential networks ϕ_ξ and ψ_ξ . This increased depth accounts for the missing information about the latent variable z of the VAE inference model, which is absent in the present test. Overall then, the models have a similar number of parameters to the SI-VAE conditional intensities in the main text.

Figure 7 shows the predicted conditional intensities (CI) for a fixed point pattern X for the different models. It can be seen that only the isotropic and symmetric model $\psi(\|u - v\|)$ is able to approximate the Papangelou conditional intensity of the observed point pattern (which, in this case, is a collection of overlapping disks). The other two models ($\psi(u, v)$, $\psi(u - v)$) fail to capture the locally repulsive behavior and instead predict an almost homogeneous conditional intensity. The magnitude of these conditional intensities corresponds to the intensity of a Poisson process (Appendix A.1). We think that this identifiability issue arises due to the conditional independence assumption of the pseudo-likelihood in equation 4, which does not sufficiently account for the local interactions between points. This causes the network to favor trivial solutions when given too much freedom in the form of the function to be learned. Constraining the second-order potential to be symmetric and isotropic sufficiently regularizes the second-order interaction structure in SI-VAE. This rationalizes the choice of an isotropic interaction function $\psi(\|u - v\|)$ in the main text.

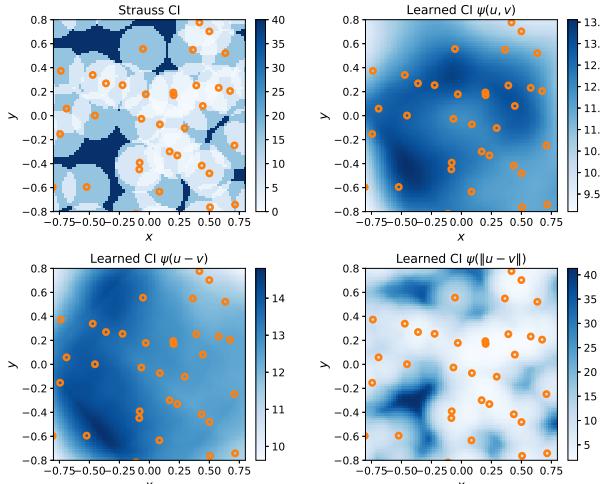


Figure 7: Comparison of different neural network architectures to model the conditional intensity (CI) $\lambda(X, u)$ of a homogeneous Strauss process. We compare the ground truth Papangelou conditional intensity of the Strauss process (top left) to predictions obtained from neural networks making no assumptions about the structure of the second-order potential ($\psi(u, v)$, top right), assuming it to be stationary ($\psi(u - v)$, bottom left), and assuming it to be symmetric and isotropic ($\psi(\|u - v\|)$, bottom right).

C ARCHITECTURE DETAILS

We detail our (SI)-VAE architecture and the training procedure. The code, implemented in `pytorch` (Paszke et al., 2019), is available at <https://github.com/username/repo>.

C.1 VAE ARCHITECTURE FOR THE INFERENCE MODEL

Both VAE and SI-VAE use the same convolutional variational autoencoder architecture to encode images into a 64-dimensional latent space and reconstruct them from there. This constitutes the *inference model* from Section 2.3. The encoder consists of three convolutional layers with kernel size 4, stride 2, and padding 1, progressively downsampling the images from 256×256 pixel to

1080 32 \times 32 while increasing the number of channels as 1 \rightarrow 16 \rightarrow 32 \rightarrow 64. The output is flattened
 1081 into a 512-dimensional vector and passed through a fully connected layer. Two linear layers then
 1082 map this 512-dimensional vector to the mean μ and log-variance $\log \sigma^2$ of the 64-dimensional latent
 1083 distribution (512 \rightarrow 64). Latent vectors z are sampled using the reparameterization trick (Kingma
 1084 & Welling, 2014). To reduce the variance, we average 100 samples per image to obtain z , effectively
 1085 changing the latent distribution to $\mathcal{N}(\mu, \sigma^2/100)$ with the Kullback–Leibler divergence in the loss
 1086 adjusted accordingly. We observed that this stabilizes training and improves convergence.

1087 The decoder reconstructs images via a symmetric sequence of three transposed convolutional layers,
 1088 progressively upsampling to the original image size, with channels decreasing as 64 \rightarrow 32 \rightarrow
 1089 16 \rightarrow 1. All layers except the output layer use ReLU activations. The output layer generates the
 1090 standardized image $\hat{x} \in \mathbb{R}^{W \times H \times C}$ without activations. As outlined in Appendix E.1, we treat pixel
 1091 intensities as continuous and standardized. The autoencoders are thus trained by minimizing the
 1092 mean squared error (MSE) between the input and reconstructed images in the reconstruction term of
 1093 equation 1. Alternatively, pixel intensity levels could be treated as discrete categories, and the data-
 1094 fitting term in the loss replaced with a categorical cross-entropy loss. All VAE models use $\beta = 0.1$,
 1095 identified in a grid search over [0.001, 1.0].

1096 C.2 ARCHITECTURE OF THE CONDITIONAL INTENSITY PREDICTION MODEL

1097 In addition to the common inference model, SI-VAE additionally contain a *prediction model* as
 1098 described in Section 2.3. The prediction model uses two neural networks, ϕ_ξ and ψ_ξ , to predict the
 1099 conditional intensity function of a Gibbs process (cf. equation 2) as:

$$1102 \lambda_\xi(X, u|z) = \exp \left\{ -\phi_\xi(u, z) - \sum_{v \in X} w_{uv} \psi_\xi(\|u - v\|_2, z) \right\}, \quad (13)$$

1103 where z is the latent representation of the image x , X is the corresponding point pattern, and $u \in W$
 1104 is the location at which the conditional intensity is to be predicted. The weights w_{uv} emphasize
 1105 local interactions between points to ensure model identifiability as discussed in Section 2.3. The
 1106 network ϕ_ξ predicts the first-order potential $\phi(u, z)$ of the point process at location u from the latent
 1107 representation z . The network ψ_ξ models the second-order potential $\psi(u, v, z)$ for the pairwise
 1108 interaction between two points $u, v \in X$. Its inputs are a latent vector z from the inference model
 1109 and the Euclidean distances $\|u - v\|_2$. These pairwise interactions are aggregated in the sum over
 1110 $v \in X$. Both ϕ_ξ and ψ_ξ are implemented as separate two-layer neural networks, where the input
 1111 is projected to 128 dimensions using a fully connected layer with ReLU activation, followed by
 1112 another fully connected layer predicting the scalar potential value.

1113 To ensure model identifiability as discussed in Section 2.3, the network ψ_ξ emphasizes local inter-
 1114 actions through exponential weights

$$1117 w_{uv} = \exp \left\{ -\frac{1}{2L^2} \|u - v\|_2 \right\}, \quad (14)$$

1118 with the hyperparameter L informed by the interaction range in the data. For training, we compute
 1119 the log-pseudo-likelihood for each pattern as in equation 4. The integral is numerically evaluated
 1120 using the trapezoidal rule over a fixed grid of size 100×100 . Edge correction is applied via domain
 1121 erosion $D = W \ominus R$ with $R = 0.2$.

1122 For each model variant, the three neural networks (VAE, ϕ_ξ , ψ_ξ) are trained jointly, each with its
 1123 own Adam optimizer (Kingma & Ba, 2015) using a fixed learning rate of 10^{-5} and a weight decay
 1124 of 10^{-5} . All SI-VAE variants were trained for 100 epochs, while the baseline VAE was trained for
 1125 150 epochs to achieve convergence. Early stopping was permitted to prevent overfitting.

1126 D DERIVATION OF THE ELBO

1127 For a paired set $\{(x_i, X_i)\}_{i=1}^N$ of unlabeled images $x_i \in \mathbb{R}^{W \times H \times C}$ and corresponding point patterns
 1128 $X_i = \{u_j : u_j \in W \subseteq \mathbb{R}^d\}$, we aim to learn latent representations $\{z_i\}_{i=1}^N$ using a VAE with joint
 1129 probability density $p(X, x, z) = p(X|x, z)p(x|z)p(z)$. We assume that $X \perp x|z$, i.e., that X and
 1130 x are conditionally independent on z . We assume furthermore that $p(z|X, x)$ can be approximated

1134 by the inference model $q_\theta(z|x)$. While X could hold additional information in practice, such as
 1135 labels on the points, we require that during inference only x is required. This is an architectural
 1136 design choice. Under these assumptions, the evidence lower bound (ELBO) of the log-likelihood
 1137 $\log p(X, x)$ can be derived as

$$\begin{aligned}
 1138 \log p(X, x) &= \mathbb{E}_q [\log p(X, x)] \\
 1139 &= \mathbb{E}_q \left[\log \left(\frac{p(X, x, z)}{p(z|X, x)} \right) \right] \\
 1140 &= \mathbb{E}_q \left[\log \left(\frac{p(X, x, z)}{q_\theta(z|x)} \frac{q_\theta(z|x)}{p(z|X, x)} \right) \right] \\
 1141 &= \underbrace{\mathbb{E}_q \left[\log \left(\frac{p(X, x, z)}{q_\theta(z|x)} \right) \right]}_{=: \text{ELBO}} + \mathbb{E}_q \left[\log \left(\frac{q_\theta(z|x)}{p(z|X, x)} \right) \right].
 \end{aligned}$$

1142 Since the KL divergence in the last term is always positive, we find a lower bound on the log-
 1143 evidence $\log p(X, x)$. Moreover, maximizing the first expectation, which corresponds to the ELBO,
 1144 minimizes the KL divergence between the variational distribution $q_\theta(z|x)$ and the true posterior
 1145 $p(z|X, x)$. The quality of $q_\theta(z|x)$ thus determines how well the ELBO approximates the true log-
 1146 likelihood. This implies that the inference model $q_\theta(z|x)$ has to be sufficiently expressive to ap-
 1147 proximate the true posterior well. This approximation could be improved by also using the point
 1148 locations X during inference. Here, however, we aim to learn visual representations, for which in-
 1149 ference should only rely on images x . Focusing on the bound, the expression above can be further
 1150 simplified to obtain equation 5 with $\beta = 1$:

$$\begin{aligned}
 1151 \log p(X, x) &\geq \mathbb{E}_q [\log p(X, x, z) - \log q_\theta(z|x)] \\
 1152 &= \mathbb{E}_q [\log (p(X, x|z)p(z)) - \log q_\theta(z|x)] \\
 1153 &= \mathbb{E}_q [\log p(X, x|z)] + \mathbb{E}_q [\log p(z) - \log q_\theta(z|x)] \\
 1154 &= \mathbb{E}_q [\log p(X, x|z)] - \text{KL}(q_\theta(z|x)||p(z)) \\
 1155 &= \mathbb{E}_q [\log p(x|z)] + \mathbb{E}_q [\log p(X|z)] - \text{KL}(q_\theta(z|x)||p(z)).
 \end{aligned}$$

1156 The last line relies on the conditional independence assumption.

1157 The self-supervision target $\mathbb{E}_q[\log p(X|z)]$ provides a lower bound on the conditional log-likelihood
 1158 $\log p(X|x)$. This follows from the joint model under the conditional independence assumption with
 1159 $p(X|x, z) = p(X|z)$. It then follows that

$$\begin{aligned}
 1160 \log p(X|x) &= \log \int p(X, z|x) dz \\
 1161 &= \log \int p(X|z)p(z|x) dz \\
 1162 &\geq \int \log p(X|z)p(z|x) dz \\
 1163 &\approx \int \log p(X|z)q_\theta(z|x) dz = \mathbb{E}_q [\log p(X|z)].
 \end{aligned}$$

1164 This shows that $q_\theta(z|x)$ is sufficient for predicting the point process X conditioned on an image x .

1165 The conditional independence assumption $X \perp x|z$ is an architectural design choice to simplify the
 1166 model and the derivation of the ELBO. It postulates that z captures the relevant information from
 1167 both X and x , such that once z is known, knowing X in addition to x does not provide additional
 1168 information about x , and vice versa. As a consequence, $p(X|x, z) = p(X|z)$, i.e., the point process
 1169 X can be predicted from the latent representation z alone. This is desired, since we want z to
 1170 act as the predictor for the spatial distribution. Without this assumption, we would have to model
 1171 $p(X|x, z)$ directly, which would require the image as a direct input to the prediction model, similar
 1172 to conditional VAE (Sohn et al., 2015). The same conditional independence assumption is also used
 1173 in multimodal VAE (Wu & Goodman, 2018). In practical applications of SI-VAE, the assumption
 1174 should be fulfilled by construction, such that it is not limiting. Whenever the point locations X
 1175 are deterministically obtained from the image x , e.g., by spot detection (see Appendix E.3), or the
 1176

1188 images are synthetically generated from point locations (Appendix E), this is trivially the case. Both
 1189 data modalities then capture the same underlying point process, and the conditional independence
 1190 assumption is fulfilled.

1191

1192

1193 E SYNTHETIC BENCHMARK DATA SET

1194

1195 We describe the procedure used to generate the synthetic benchmark data set used in the main text
 1196 and how it was prepared for model training. The data sets are available at <https://github.com/username/repo>.

1197

1198

1199 E.1 SYNTHETIC IMAGE GENERATION

1200

1201 We generate synthetic images that mimic the appearance of biological fluorescence-microscopy images.
 1202 Images are generated from point process realizations by rendering each point as a disk-shaped
 1203 region on a 300×300 pixel grid. Disk radii are sampled uniformly between 2 and 6 pixels to reflect
 1204 the natural size variability of subcellular structures. All disks have a foreground intensity of 1.0 and
 1205 the background intensity is 0.0 at the stage. The resulting binary disk image is convolved with a
 1206 Gaussian kernel with standard deviation $\sigma_{\text{blur}} = 4$ pixels, modeling the point-spread function of a
 1207 fluorescence microscope (Zhang et al., 2007). A constant background intensity of 0.2 is added to
 1208 simulate autofluorescence and ambient light. To realistically model photon shot noise, the blurred
 1209 image with background is scaled by a gain factor of 100, converted to photon counts, and corrupted
 1210 by Poisson noise with a rate proportional to the pixel intensity. This models detector shot noise.
 1211 Subsequently, additive Gaussian noise with zero mean and standard deviation $\sigma_{\text{read}} = 3$ is superimposed
 1212 to model electronic amplification and readout noise. The final noisy image is normalized to
 1213 $[0, 1]$ intensity range. An example of this process is shown in Fig. 8. The images were saved in PNG
 1214 format with bit depth `uint8`. While this effectively discretizes the intensity levels, the discretization
 1215 is fine enough to resolve the simulated photon-count levels. Therefore, we mathematically treat
 1216 pixel intensities as continuous, thus images $x \in \mathbb{R}^{W \times H \times C}$.

1217

1218

1219

1220

1221

1222

1223

1224

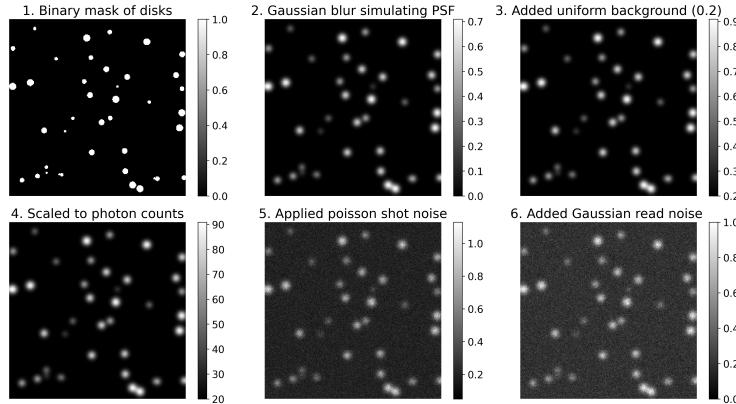
1225

1226

1227

1228

1229



1230

1231

1232

Figure 8: Example of the synthetic microscopy image generation pipeline for a spatial point pattern sampled from a homogeneous Poisson point process.

1233

1234

1235

To evaluate the impact of noise on representation learning, we also generated a data set with higher background intensity ($I_{\text{bg}} = 0.4$). This changes the signal-to-noise ratio (SNR) of the images,

1236

1237

1238

$$\text{SNR} = \frac{I_{\text{max}} - I_{\text{bg}}}{\sqrt{I_{\text{max}}}}, \quad (15)$$

1239

1240

1241

where I_{max} is the maximum pixel intensity and I_{bg} is the background intensity. The numerator represents the maximum signal contrast, while the denominator measures the Poisson shot noise at the brightest pixel. The SNR of the images with the standard background ($I_{\text{bg}} = 0.2$) is 12.8, whereas it is 9.6 for the higher background ($I_{\text{bg}} = 0.4$).

1242 E.2 DATA SET PREPARATION
12431244
1245 The data set consists of 5000 simulated images for each of the six point processes considered, paired
1246 with their respective ground-truth point clouds (see Section E.1). We split the data set into training
1247 (80%), validation (10%), and test (10%) sets. All images are scaled to 256×256 pixels to match the
1248 model input layer and normalized using the mean and standard deviation computed from the training
1249 set, with the same normalization applied to all splits to prevent data leakage. Batches of size 64 were
1250 used for training, with point coordinates zero-padded to the maximum number of points in the batch
1251 and an additional channel indicating the number of points.
12521253
1254 E.3 WEAK LABEL GENERATION
12551256
1257 In a synthetic benchmark setting, the ground-truth point locations shown in an image are known. In
1258 practical applications, however, points first need to be detected in the images. This is only required
1259 for training an SI-VAE model. Inference can then be done on raw images.
12601261 We evaluate the robustness of SI-VAE to different point-detection methods and imperfect point
1262 detection. In addition to the ground-truth baseline, we therefore generate imperfect point locations
1263 as *weak labels* using two methods: (1) a simple global Otsu thresholding using OpenCV (Bradski,
1264 2000) followed by contour centroid extraction, (2) the state-of-the-art deep-learning spot-detection
method *Spotiflow* (Dominguez Mantes et al., 2025).1265 Before applying either spot-detection method, images were denoised using an isotropic Gaussian
1266 filter with standard deviation $\sigma = 3.0$ pixels. This value of σ provided the best results. Smaller
1267 values left residual noise, whereas larger values caused too many misdetections.
12681269 Global Otsu thresholding was performed using OpenCV (Bradski, 2000) to obtain a binary mask.
1270 From this mask, we extracted the contour pixels of each connected component and retained all con-
1271 tours with nonzero enclosed area. For each retained contour we computed the geometric centroid (in
1272 \mathbb{R}^2). The centroid coordinates were then mapped to the normalized domain $[-1, 1]^2$ using standard
1273 Cartesian coordinates. This provides a simple and fast spot detector, which, however, tends to miss
1274 nearby spots and have low detection accuracy. It serves as a low-quality baseline for weak labeling.
12751276 To obtain high-quality weak labels of point positions, we used *Spotiflow* (Dominguez Mantes et al.,
1277 2025), a deep-learning spot-detection method specifically trained for fluorescence microscopy. It
1278 predicts the locations of bright spots in the image with subpixel resolution in \mathbb{R}^2 . For each denoised
1279 image, we ran the pretrained *Spotiflow* model in subpixel mode, lowering the probability threshold
1280 to 0.40 to include candidates that might otherwise be rejected. This choice was informed by visual
1281 inspection of stereographic flow plots, where some spots were clearly visible but excluded under the
1282 default adaptive probability threshold. The resulting coordinates were normalized to $[-1, 1]^2$ and
1283 mapped to standard Cartesian coordinates.
12841285 We quantify the quality of the two weak labeling methods—Otsu thresholding and *Spotiflow*—for
1286 the synthetic images for both image quality levels (SNR). For each image, we compare the detected
1287 points against the known ground truth. For this, we first use one-to-one Hungarian matching to
1288 compute a globally optimal correspondence between the two point clouds that minimizes the sum of
1289 squared distances between predicted and ground-truth points. A spatial cutoff of 3 pixels is applied
1290 to determine valid matches (Dominguez Mantes et al., 2025). This ensures that each predicted point
1291 is matched to at most one GT point, and vice versa. A matched pair is counted as a *true positive* (TP)
1292 if their Euclidean distance is below the cutoff. Unmatched predictions are counted as *false positives*
1293 (FP), and unmatched ground-truth points as *false negatives* (FN), while true negatives are undefined
1294 in this continuous-space setting.
12951296 For each point process type, we report the absolute difference (AD) between the ground truth num-
1297 ber of points and the detected number of points, the True Positive Rate (TPR, recall), the Positive
1298 Predictive Value (PPV, precision), and the F_1 score across all 5000 images. The results are given in
1299 Table 3. As expected, *Spotiflow* consistently outperforms Otsu thresholding and is more robust to
1300 noise in the images (low SNR).
1301

1296 Table 3: Spot-detection performance for the two weak labeling methods (*Spotiflow* and Otsu thresh-
 1297 olding) for images of different quality (SNR). We report the absolute difference (AD) between the
 1298 ground truth and detected numbers of points, the True Positive Rate (TPR, recall), the Positive Pre-
 1299 dictive Value (PPV, precision), and the F_1 score. The expected number of points for all generated
 1300 point patterns is $\mathbb{E}N(W) \approx 52$.

Point process	SNR	Spotiflow				Otsu thresholding			
		AD (\downarrow)	TPR (\uparrow)	PPV (\uparrow)	F_1 (\uparrow)	AD (\downarrow)	TPR (\uparrow)	PPV (\uparrow)	F_1 (\uparrow)
Homogeneous Poisson	9.6	6.68	0.874	0.999	0.932	19.03	0.637	1.000	0.777
Homogeneous Poisson	12.8	7.16	0.865	1.000	0.927	9.31	0.825	0.999	0.902
Homogeneous Strauss	9.6	4.32	0.918	0.999	0.956	15.60	0.701	1.000	0.824
Homogeneous Strauss	12.8	4.65	0.912	0.999	0.953	6.18	0.885	0.997	0.936
Homogeneous Thomas	9.6	14.99	0.732	0.999	0.843	29.38	0.466	1.000	0.633
Homogeneous Thomas	12.8	15.64	0.719	1.000	0.835	20.33	0.635	0.999976	0.772
Inhomogeneous Poisson	9.6	14.47	0.727	1.000	0.840	29.68	0.437	1.000	0.604
Inhomogeneous Poisson	12.8	15.28	0.712	1.000	0.830	20.06	0.622	0.999969	0.762
Inhomogeneous Strauss	9.6	6.7	0.870	0.999	0.929	18.81	0.634	1.000	0.775
Inhomogeneous Strauss	12.8	7.3	0.859	1.000	0.923	9.15	0.824	0.999168	0.901
Inhomogeneous Thomas	9.6	19.6	0.645	0.999	0.781	35.73	0.342	1.000	0.503
Inhomogeneous Thomas	12.8	20.57	0.627	0.999	0.767	27.10	0.508	0.999752	0.665

F SUMMARY STATISTICS AND SIMULATION METRICS

To validate the accuracy of the learned conditional intensity models, conditioned on a latent variable z , we compare nonparametric estimates of the first two moments of the predicted process and the observed point pattern. The first moment is the intensity function, defined as $\mathbb{E}N(W) = \int_W \rho(u) du$. It can be interpreted as the expected number of points per unit area. We obtain a nonparametric estimator using kernel density estimation (Møller & Waagepetersen, 2003). In particular, for an observed point pattern $X \subseteq W$, the intensity at location $u \in W$ is estimated as

$$\hat{\rho}(u) = \sum_{v \in X} \kappa_\eta(u - v) / w(v), \quad (16)$$

where $\kappa_\eta(u) = k(u/\eta)/\eta^2$ with density function k . We choose k as the multivariate standard Gaussian and the weights $w(u) = \int_W \kappa(u - v) dv$ to account for edge effects in the finite domain W (Møller & Waagepetersen, 2003). We choose the bandwidth $\eta = 0.5$ empirically to yield good estimates for all considered point-process types. This is close to Scott's rule of thumb for $\mathbb{E}N(W) \approx 52$ points in $W = [-1, 1]^2$, which is $\eta_{\text{scott}} = 0.518$ (Scott, 2015).

The accuracy of an intensity estimate is then quantified by the relative intensity error $\text{RIE}(X_\xi, X) = n^{-1} \sum_{i=1}^n \int_W |\hat{\rho}(u|X_{i,\xi}) - \hat{\rho}(u|X)| / N(X) du$ for different samples $X_{i,\xi}$ obtained from the conditional intensity $\lambda_\xi(X, u|z)$ predicted by the SI-VAE for a given input image x .

To assess the quality of the estimated interaction structure, we leverage ideas from Monte Carlo goodness-of-fit tests for spatial point processes (Diggle, 2013; Baddeley et al., 2014). While such tests are strictly invalid and conservative for any significance level when parameters need to be estimated from the data, they provide a useful proxy to measure the quality of the learned model. We say that a model is not able to capture the interaction structure in the observed pattern if the observation X lies outside the maximum envelope of the samples $X_{i,\xi}$ from the predicted conditional intensity $\lambda_\xi(X, u|z)$.

The sample envelope considers the minimum and maximum values of a functional summary statistic, such as the K -function, over multiple distances r . The K -function counts the number of points at distance r . It is commonly used to characterize interactions in spatial point processes (Diggle, 2013). Following Baddeley et al. (2000), we estimate it as

$$\hat{K}(r) = \sum_{(u,v) \in X}^{\neq} \frac{\mathbf{1}(v \in B(u, r))}{\hat{\rho}(u)\hat{\rho}(v)e_{uv}}, \quad (17)$$

where $\hat{\rho}(u)$ is the estimated intensity at u , and e_{uv} is an edge correction weight to account for the domain boundaries. We use translation-based edge correction as described by Møller & Waagepetersen

(2003). The intensity function $\hat{\rho}(u)$ is estimated using equation 16. This shows that it can be difficult to disentangle errors in the first and second moments of the distribution, since both depend on $\hat{\rho}(u)$. This is especially true for clustering processes, where it is often unclear whether the clustering is due to a spatially varying intensity or due to attractive interaction between the points.

Since the functional summary statistic is a function of the r , we reduce it to a single test statistic t_i . Following Baddeley et al. (2014), we perform a maximum absolute deviation (MAD) test, which considers the maximum deviation from the mean $\bar{K}(r) = \frac{1}{n+1} (\hat{K}_1(r) + \dots + \hat{K}_n(r) + \hat{K}_{\text{obs}}(r))$, where $\hat{K}_{\text{obs}}(r)$ is the K -function of the conditioning sample and $\hat{K}_i(r)$ is the K -function of the i -th simulated sample. The test statistic then is

$$t_i = \max_{0 \leq r \leq R} |\hat{K}_i(r) - \bar{K}(r)|, \quad (18)$$

which fulfills the necessary symmetry property under the null hypothesis H_0 for a Monte Carlo test. We choose $R = 0.24$, which corresponds to the rule of thumb proposed by Diggle (2013). The rate of rejection of the test is used as a metric to assess the quality of the learned model. It quantifies how frequently the observed pattern X achieves a larger maximum deviation from the mean than the samples $X_{i,\xi}$ from the learned model. Formally,

$$\text{RR} = \frac{1}{M} \sum_{j=1}^M \mathbf{1}(\max_i t_{i,j} \leq t_{\text{obs},j}), \quad (19)$$

which measures the number of times the test rejects H_0 . A high rejection rate (RR) indicates that the predicted conditional intensity significantly deviates from the observation and therefore insufficiently captures the interaction structure in the image. This is in line with the *post-hoc* model evaluation typically done for spatial point processes (Møller & Waagepetersen, 2007). We use $M = 100$ random images for each class from the test set and $n = 19$. This would correspond to a test significance level of 5% for a one-sided test, if the parameters of the null model were known.

G APPLICATION TO SUBCELLULAR PROTEIN LOCALIZATION

We describe the data set preparation, model architecture, and training procedure for the protein localization experiment of Section 3.5.

We used the publicly available *OpenCell* data set (Cho et al., 2022), which contains fluorescence microscopy images of over 1000 human proteins. The present SI-VAE model was trained on images of size 100×100 pixels, each centered around a nucleus. Three channels were used for training: the protein fluorescence signal, the nucleus fluorescence signal, and the signed distance function to the nucleus (see Fig. 9). Centering the observation window around a nucleus ensures that at least one cell is completely contained within an image. Since the same data preparation was used for *Cytoself* (Kobayashi et al., 2022), we directly took the images from the *Cytoself* repository (Royer Lab, 2025). We generated weak labels for protein spot locations using *Spotiflow* (Dominguez Mantes et al., 2025) on the protein fluorescence channel, with a low probability threshold of 0.35 to include candidate points that might otherwise be rejected. No Gaussian smoothing was applied to the images prior to spot detection. This yielded better results upon visual inspection. The resulting point coordinates were normalized to $[-1, 1]^2$ and mapped to standard Cartesian coordinates. These point coordinates were then used as self-supervision target when training the SI-VAE model.

For the application case presented in the main text, we chose six proteins from three families. For each protein, about 1000 images were available (POLR3E: 1162, POLR3F: 1068, SNX1: 1001, SNX12: 1260, STAM: 1361, STAM2: 1021). This resulted in a data set of 6873 images, which was split into disjoint training (80% = 5499 images), validation (10% = 687 images), and test (10% = 687 images) sets. Each channel in the training data set was standardized to zero mean and unit variance. The same standardization was then also applied to the validation and test sets to prevent data leakage. Representative images for each of the six proteins are shown in Fig. 9. These are the same representative examples as in Figs. 5 and 16.

The VAE architecture from Appendix C.1 was adjusted to the image shape of this application ($100 \times 100 \times 3$). The input channel size was set to 3, while the rest of the convolutional layers retained the same parameters as for the synthetic benchmarks, progressively downsampling the images

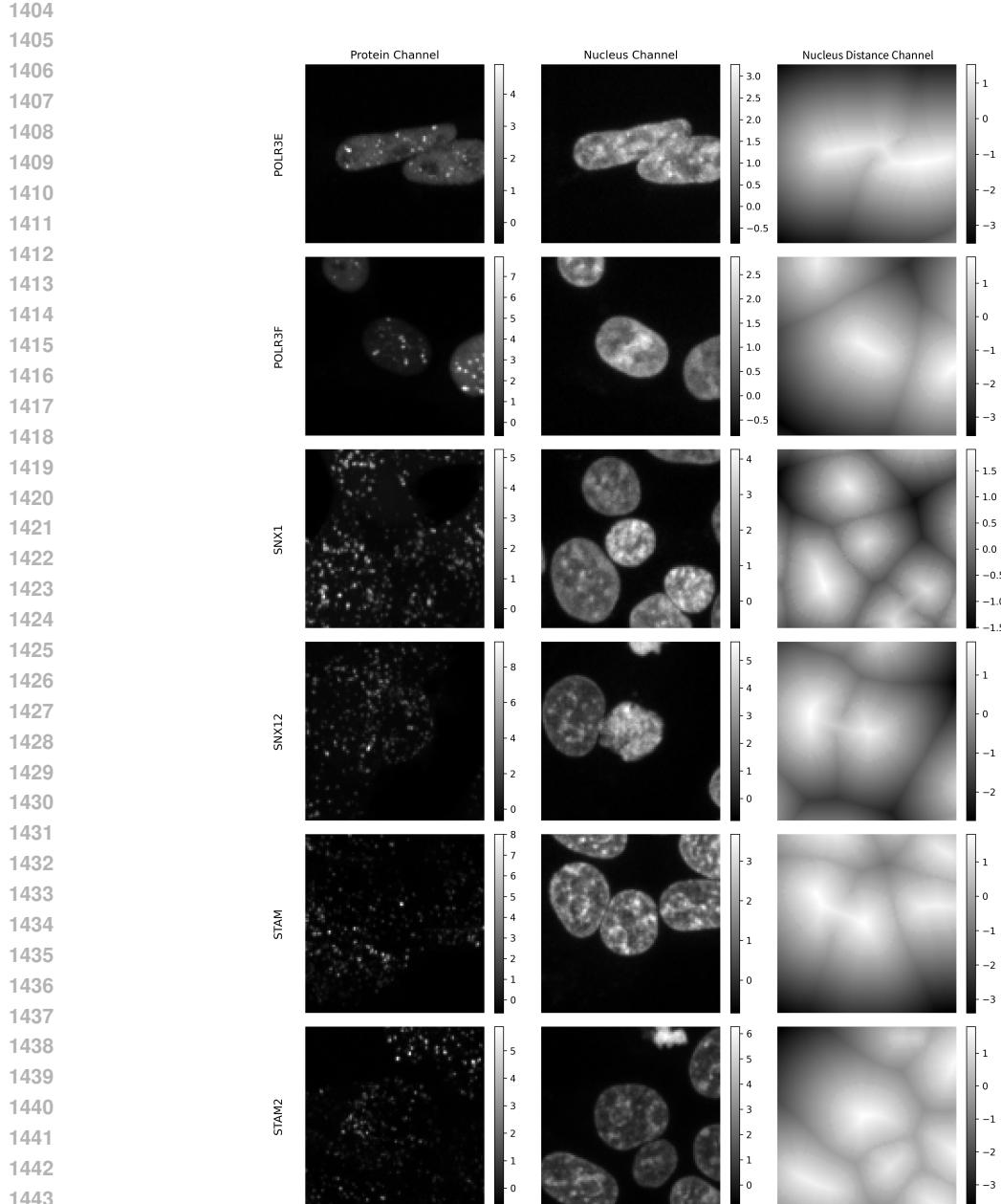


Figure 9: Representative standardized images from the test set for the six proteins (rows) considered in Section 3.5. Each image consists of three channels: the protein fluorescence signal (first column), the nucleus fluorescence signal (second column), and the signed distance function to the nucleus (third column). The same example images are also used in Figs. 5 and 16.

to 12×12 while increasing the number of channels as $3 \rightarrow 16 \rightarrow 32 \rightarrow 64$. All convolutional layers used ReLU activations. The latent space dimension remained 64. The decoder reconstructed images via a symmetric sequence of three transposed convolutional layers, decreasing the number of channels as $64 \rightarrow 32 \rightarrow 16 \rightarrow 3$. All transposed convolutional layers used the same parameters as in Appendix C.1, with ReLU activations in all layers except the output, to predict the standardized images. The reconstruction error in equation 1 was minimized using the mean squared error, with the KL divergence scaled by $\beta = 0.1$ as in the synthetic benchmarks.

1458 The conditional intensity prediction model remained unchanged from the synthetic benchmarks, as
 1459 described in Appendix C.2. We set the range of the interactions to half the average nucleus radius,
 1460 $L = 0.25$. This radius was identified from the central nuclei in all cropped images by taking the
 1461 largest connected component in the nucleus channel and computing its equivalent diameter (diameter
 1462 of a circle with the same area). This resulted in an average (across the entire data set) half-nucleus
 1463 radius of 12.59 pixels. Transformed to the coordinate space $[-1, 1]^2$ used by the model, this yields
 1464 $L = 0.25$. As in the synthetic benchmark, we used an erosion of $R = 0.2$ to avoid edge effects and
 1465 discretized integrals over the domain using trapezoidal quadrature on a fixed grid of size 100×100 .

1466 Like in Appendix C, all three neural networks (VAE, ϕ_ξ , ψ_ξ) were trained jointly on the training set,
 1467 each with its own Adam optimizer (Kingma & Ba, 2015), using batches of size 16 and learning rate
 1468 10^{-4} . Training stopped upon convergence of the validation loss.

1469 We compared SI-VAE with two baselines: the VAE without spatial supervision and *Cytoself*
 1470 (Kobayashi et al., 2022), a semi-supervised model based on vector-quantized VAE (VQ-VAE) that
 1471 leverages ground-truth protein labels as self-supervision target. *Cytoself* constitutes the state of the
 1472 art in human protein localization modeling, and it is significantly more complex than the present
 1473 SI-VAE.

1474 For the VAE baseline, we retained the SI-VAE’s VAE component alone with the same parameters
 1475 (64 latent dimensions, $\beta = 0.1$). Training was stopped upon convergence of the validation loss to
 1476 ensure comparability.

1477 For *Cytoself*, we used the published implementation (Royer Lab, 2025) but retrained the model
 1478 from scratch on our data set. To correct for the smaller size of our data set, we reduced both VQ-
 1479 VAE codebooks to 128 entries (from the original 512). The two VQ-VAE learn representations on
 1480 different scales: a local representation (VQ1) at 25×25 pixel capturing texture detail and a global
 1481 representation (VQ2) as a 4×4 pixel feature map with 64 features per pixel aimed at capturing long-
 1482 range patterns. Following the original *Cytoself* paper, downstream clustering was performed on the
 1483 global representation (VQ2). Training was performed with an initial learning rate of 10^{-4} , which
 1484 was reduced ten-fold whenever the validation loss did not improve for four consecutive epochs.
 1485 Early stopping was applied with 10 epochs patience. Training terminated after 14 epochs.

1486 All learned representations were analyzed using images from the test set. We determined the latent
 1487 representation z of each test image using the trained SI-VAE, VAE, and *Cytoself* encoders. For
 1488 SI-VAE and VAE, we used the mean prediction of the posterior $q_\theta(z|x)$. We then standardized the
 1489 latent representations across the test set to zero mean and unit variance for each latent dimension and
 1490 performed clustering using a Gaussian Mixture Model (GMM) with full covariance matrix (Hastie
 1491 et al., 2009). The number of clusters K was determined using the Akaike Information Criterion
 1492 (AIC) (Akaike, 1974), $AIC = -2 \log \hat{\ell} + 2K$, where $\hat{\ell}$ is the maximized likelihood of the model. We
 1493 fitted GMM for $K = 1, \dots, 6$ and selected the model with the lowest AIC, which was $K = 2$. We
 1494 used the `scikit-learn` implementation of GMM (Pedregosa et al., 2011) with default settings.
 1495 Silhouette scores (Rousseeuw, 1987) were computed using Euclidean distance on the serialized
 1496 (into a vector) 64-dimensional embeddings (1024-dimensional for *Cytoself*). This score quantifies
 1497 the average distance between points within the same cluster relative to the points in the nearest
 1498 neighboring cluster. Higher Silhouette scores indicate tighter and more separated clusters. The
 1499 Silhouette score for a single sample is defined as

$$S_c = \frac{b - a}{\max(a, b)}, \quad (20)$$

1500 where a is the mean intra-cluster distance, and b is the mean nearest-cluster distance. Scores range
 1501 from -1 to 1 .

1502 All three models consistently identified the same clusters (see Fig. 5 for SI-VAE and Fig. 10 for VAE
 1503 and *Cytoself*). SI-VAE and *Cytoself*, however, achieved significantly higher Silhouette scores than
 1504 the VAE baseline (Table 4). Since the cluster indices assigned by the GMM differ across models,
 1505 each cluster in the table is labeled according to its dominant protein localization: nuclear (POLR3E,
 1506 POLR3F) or vesicular (SNX1, SNX12, STAM, STAM2).

1507
 1508
 1509
 1510
 1511

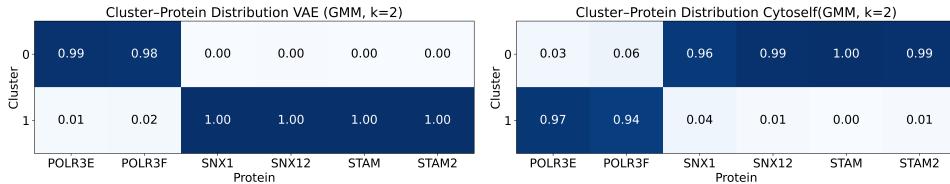
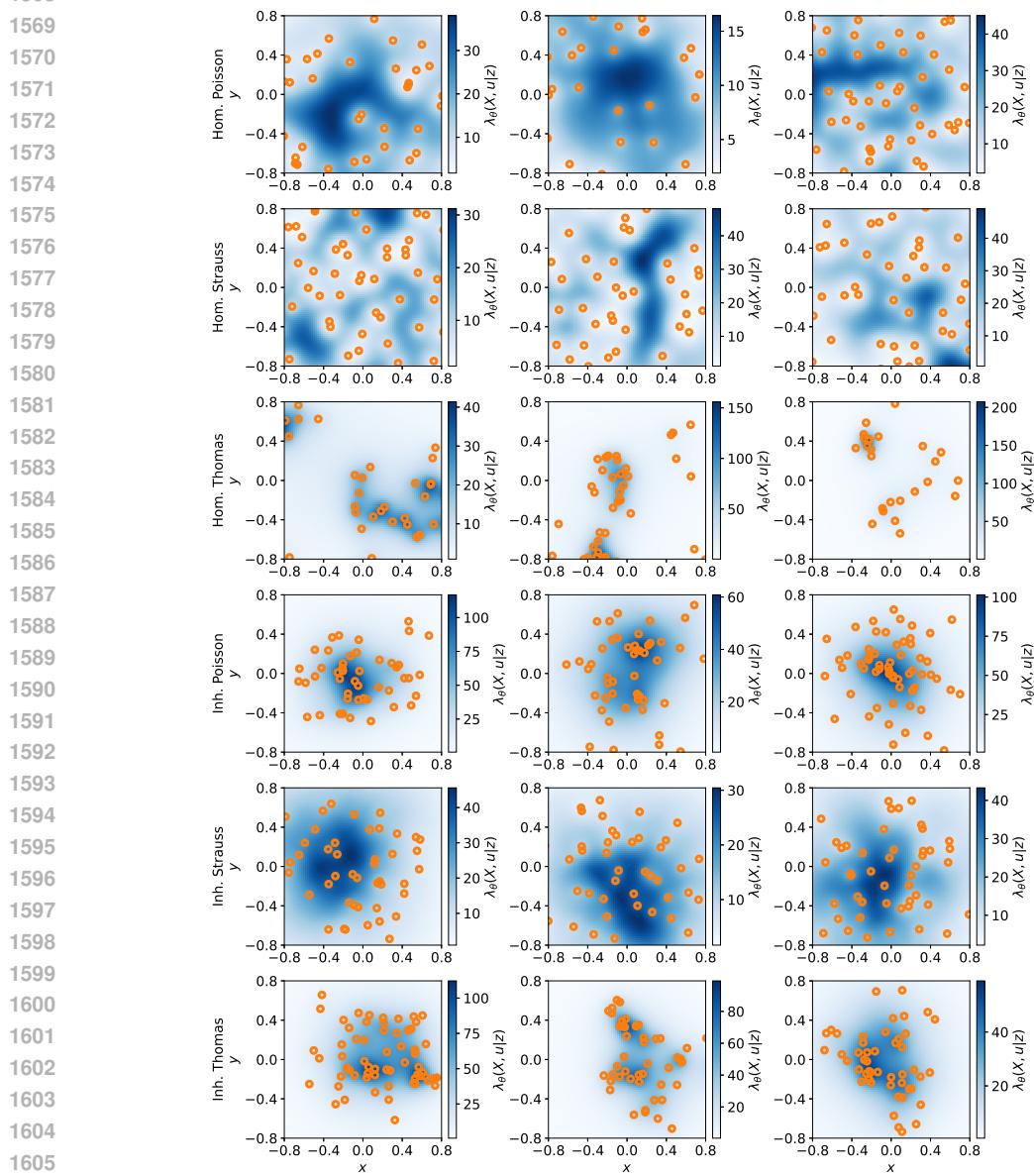


Figure 10: Cluster assignment frequencies for all proteins in the VAE (left) and *Cytoself* (right) embeddings. Each square shows the fraction of images of a given protein that was assigned to the corresponding cluster. Clusters were determined by Gaussian Mixture Models (GMM) with $K = 2$.

Table 4: Silhouette scores on the test set embeddings of each model. Higher values indicate more compact and better-separated clusters. The table reports the average Silhouette score for each cluster (Nuclear, Vesicular) as well as the overall score across all samples.

	Model	Overall	Vesicular cluster	Nuclear cluster
	<i>Cytoself</i>	0.331	0.227	0.550
	SI-VAE	0.294	0.286	0.310
	VAE	0.040	0.042	0.035

1566 H ADDITIONAL FIGURES
1567

1607 Figure 11: Visualization of predicted conditional intensities $\lambda_\xi(X, u|z)$ for different latent representations
1608 z predicted by the SI-VAE from Section 3.1, trained at high SNR with ground-truth knowl-
1609 edge. Each row shows the conditional intensity for samples from all considered point processes (row
1610 labels on the left) over the eroded domain $D = W \ominus R$. For each point process, three *i.i.d.* examples
1611 are shown (columns).

1612
1613
1614
1615
1616
1617
1618
1619

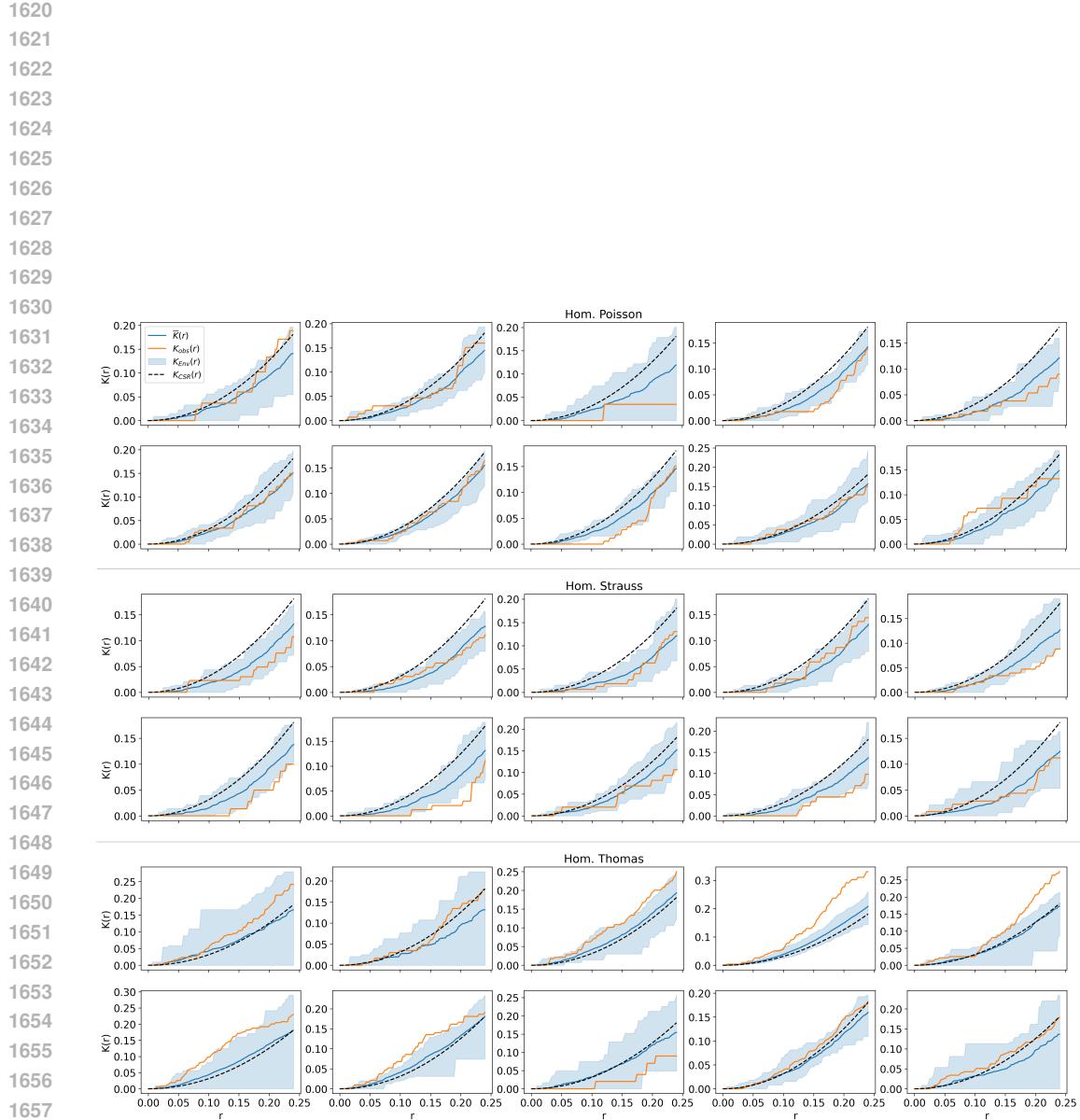


Figure 12: Simulation envelopes of the K -function for different latent codes z in the homogeneous cases over the domain $[-0.6, 0.6]^2$. The orange line shows the empirically observed K -function, the blue area the maximum and minimum point-wise simulation envelopes, and the black dashed line the theoretical K -function for a Poisson process. The simulation envelopes are obtained from the learned representation of the SI-VAE from Section 3.1, trained at high SNR with ground-truth knowledge.

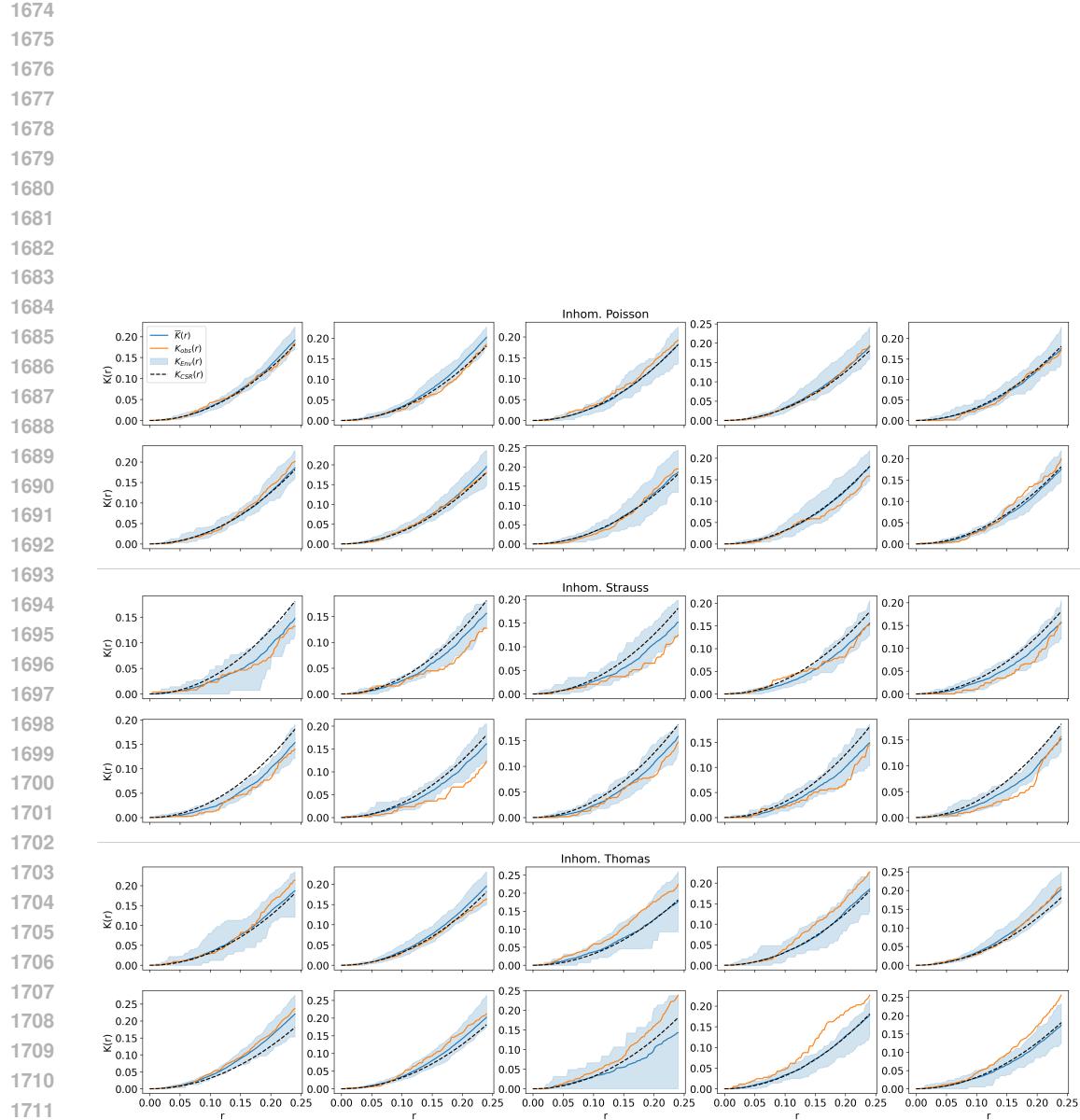


Figure 13: Simulation envelopes of the K -function for different latent codes z in the inhomogeneous cases over the domain $[-0.6, 0.6]^2$. The orange line shows the empirically observed K -function, the blue area the maximum and minimum point-wise simulation envelopes, and the black dashed line the theoretical K -function for a Poisson process. The simulation envelopes are obtained from the learned representation of the SI-VAE from Section 3.1, trained at high SNR with ground-truth knowledge.

1774 Figure 14: Examples of conditional simulation results from the trained conditional intensity model
 1775 for different latent codes z in the homogeneous cases over the evaluation domain $[-0.6, 0.6]^2$. The
 1776 trained conditional intensity model is from the SI-VAE from Section 3.1, trained at high SNR with
 1777 ground-truth knowledge. Ten *i.i.d.* samples are shown for each point process type (Poisson, Strauss,
 1778 Thomas).

1779
 1780
 1781

Figure 15: Examples of conditional simulation results from the trained conditional intensity model for different latent codes z in the inhomogeneous cases over the evaluation domain $[-0.6, 0.6]^2$. The trained conditional intensity model is from the SI-VAE from Section 3.1, trained at high SNR with ground-truth knowledge. Ten *i.i.d.* samples are shown for each point process type (Poisson, Strauss, Thomas).

1833
1834
1835

