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ABSTRACT

We introduce spatially informed variational autoencoders (SI-VAE) as self-
supervised deep-learning models that use stochastic point processes to predict spa-
tial organization patterns from images. Existing approaches to learning visual rep-
resentations based on variational autoencoders (VAE) struggle to capture spatial
correlations between objects or events, focusing instead on pixel intensities. We
address this limitation by incorporating a point-process likelihood, derived from
the Papangelou conditional intensity, as a self-supervision target. This results
in a hybrid model that learns statistically interpretable representations of spatial
localization patterns and enables zero-shot conditional simulation directly from
images. Experiments with synthetic images show that SI-VAE improve the clas-
sification accuracy of attractive, repulsive, and uncorrelated point patterns from
48% (VAE) to over 80% in the worst case and 90% in the best case, while gen-
eralizing to unseen data. We apply SI-VAE to a real-world microscopy data set,
demonstrating its use for studying the spatial organization of proteins in human
cells and for using the representations in downstream statistical analysis.

1 INTRODUCTION

The spatial distribution of objects or events in images is an important readout in many applications.
Examples include distributions of forest fires (Kato et all [2020) or species abundance (Gillespie
et al.l 2024) in satellite imagery, or the distributions of viruses in biological cells observed by fluo-
rescence microscopy (Helmuth et al., 2010). In these examples, semantic categories are not defined
by appearance or texture of the imaged objects or events. The goal then is to infer representations
of the observed spatial patterns that determine or explain them.

Deep learning has been particularly powerful to infer visual representations (Moen et al.,2019) and
identify major sources of variation (Bengio et al.| 2013). Microscopy images, for example, encode
spatially structured patterns of discrete objects, such as cells in tissues or molecules in cells, that are
causal for biological function and its dysregulation in disease (Hung & Linkl |[2011).

Several un- and self-supervised approaches have been proposed to extract information about spatial
distributions in images. This includes contrastive learning by comparing augmented views of the
same image (Chen et al., 2020). Contrastive learning, however, relies on pixel similarity and might
therefore fail to capture spatial correlations. This was addressed by Cyfoself in a domain-aware
approach that used a classification pretext task to predict ground-truth protein labels (Kobayashi
et al., [2022), constituting a semi-supervised approach (Kingma et al.,|2014). Alternatively, protein
sequences have be used to predict cellular localization (Khwaja et al.l [2023] [Kilgore et al., [2025).
Such hybrid approaches model the joint density of the feature and label space, leading to useful
representations (Nalisnick et al.,2019) leveraging ideas from predictive coding (Oord et al.,[2019).

In the absence of annotated ground truth, self-supervised autoencoders have shown promise for ex-
tracting biological features from microscopy images (Kraus et al.| [2024). Usually, self-supervision
is based on pixel intensities using masked autoencoders (He et al., 2022)) or image transformations
(Gatopoulos & Tomczakl 2021). Gaussian processes (GP) have been used to encode correlations
in the data through structured priors (Casale et al.l |2018}; [Pearce, 2020; Jazbec et al., |2021)). This
allows modeling correlations between images but not spatial correlations among objects within im-
ages. Recently, |Vasan et al.| (2025)) proposed point clouds for representation learning of shapes and
spatial distributions. The prediction likelihoods of point-cloud models structure the latent space to
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become discriminative about the spatial distribution. This is in contrast to class labels encouraging
a categorical latent space and augmentations encouraging pixel-level similarity.

Such learned representations can be used to study biological associations and perturbations (Celik
et al} |2022). They do, however, not provide mechanistic insight into spatial organization, and they
lack a statistical framework for rigorous downstream analysis, which is a prerequisite for scientific
applications. It has been shown that VAE can learn accurate surrogate models of GP priors for fast
sampling (Semenova et al., [2022). While this accelerates spatial Bayesian inference, it does not
model interactions between objects within an image. Recent work also revealed fundamental limi-
tations of un- and self-supervised settings, such as the Clever Hans effect preferring bogus cues to
true features (Kauffmann et al., 2025). Transformer-based masked autoencoders have been argued
to primarily learn a representation based on the unmasked patches, ignoring the spatial arrangement
of masked tokens in the decoder (Fu et al., [2025). This limits their ability to reason about spatial
correlations between objects within an image. In addition to inherent limitations of the architec-
tures, (Gunawan et al.| (2025) and |Abgaryan et al.| (2025) have recently shown that image metrics
commonly used in loss functions focus on image appearance rather than spatial content. Together,
these observations suggest that learning interpretable spatial representations from images requires
additional priors.

Here, we propose spatial point processes as a self-supervision prior for visual representation learn-
ing. Spatial point processes are discrete stochastic processes from spatial statistics. As we show, they
enable spatially informed variational autoencoders (SI-VAE) that learn statistically interpretable rep-
resentations of spatial distributions of point-like objects in images. Spatial statistics has long been
a powerful tool for analyzing localization patterns in images (Helmuth et al., |2010; [Lagache et al.,
2015; Summers et al., 2022). It provides interpretable and generative models, aligning with the
growing interest in explainable models for biology (Chen et al.|[2024; Rotem & Zaritsky, 2024). SI-
VAE combine the mathematical rigor and statistical interpretability of spatial point processes with
the approximation power of deep learning, where the latent representation acts as a predictor for the
probability density of spatial distributions.

2 METHODS

SI-VAE learn spatially referenced representations from images by augmenting VAE with spatial
point processes. We describe the VAE framework and introduce spatial point processes before com-
bining them to the SI-VAE architecture in a common probabilistic framework. There, the VAE
approximates the density of a spatial point process for modeling spatial distributions. This pro-
vides statistically interpretable models, as well as zero-shot generative models to sample from the
estimated distribution.

2.1 VISUAL REPRESENTATION LEARNING USING VARIATIONAL AUTOENCODERS

We use VAE to learn representations from an unlabeled set of images x = {z;}Y |, x; € RW>Hx*C,

A VAE is a generative model working under the assumption that the data = can be reconstructed from
a latent vector z € R! (Kingma & Welling,|2014)). The aim is to maximize the likelihood of the data
x under the latent representation z, pg(x) = | pg(x|2)p(z) dz. Since this likelihood is intractable,
VAE approximate the posterior distribution by a variational form, gy (z|z) =~ p(z|x). The variational
form is commonly chosen as gg(z|x) = N (1(0),0(0)%1;). Here, N(-) is a Gaussian with mean
1(0) and standard deviation o (), predicted by an encoding neural network, samples of which can
be used to approximate the evidence lower bound (ELBO) (Kingma & Welling, 2014):

log po(z) = Eq[pe(2(2)] — BKL(go(2]2) [| p(2)) , ey

where p(z) is a prior over the latent vector z, commonly chosen as N'(0,1;), and 3 weighs between
the reconstruction and the prior (Higgins et al.l [2017). The standard ELBO is obtained for 8 = 1.
Maximimzing the ELBO approximately maximizes py(x) and minimizes the Kullback—Leibler (KL)
divergence between gy (z|z) and the true posterior p(z|z) (Kingma & Welling, [2019). Therefore,
samples from the variational distribution z ~ ¢g(z|x) (or quantities derived from them) can be
used as representations for downstream analysis (Zhang et al., 2022). This, however, is limited
to information contained in the posterior, possibly ignoring the second-order correlation structure
between objects in the data.
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2.2 SPATIAL POINT PROCESS MODELS

A spatial point process X is a discrete stochastic process on W C R%, d > 1, where X € W
is an finite unordered set of points. Their distribution can be characterized by N(B) =
i.e., the number of points in some subregion B C W (Mgller & Waagepetersen, 2003). Such
distributions are difficult to characterize, except for the uncorrelated Poisson point process. It is
therefore common to define the density of a point process relative to the unit-rate Poisson process
(see Appendix [A). This defines Gibbs point processes, which model second-order correlations as
interactions between points, specified in terms of an energy-based density

£
pe(X) ocexpq — > pe(u) = > el(u,v) p. 2)
ueX {u,v}CX

Here, ¢¢ : R? — R and ¢ : RY x R? — R are the first- and second-order potentials. In SI-VAE,
they are represented by two separate shallow neural networks with parameters § = (§¢ &y) € 2.
These potentials control the a-priori propensity of observing a point and the pair-wise interaction
between points, respectively. Depending on ¢ (u, v), points can be attractive, neutral, or repulsive.
This defines a general class of point processes, which we infer from data.

Maximum-likelihood estimation (MLE) of Gibbs processes from data is intractable due to the un-
known normalizing partition function of the density p(X). This is common to many energy-based
models (Bengio et all 2013} |Gao et al.l [2021; Tomczakl [2024). Therefore, we instead model the
Papangelou conditional intensity (Ba & Coeurjolly} 2023))

) = pe(XU{u})/pe(X) ug X
A (X, )‘{an)/pg(X\{u}) ue X, )

In an infinitesimal volume du around w, )\g(X u) du can be interpreted as the probability of ob-
serving a point at u glven all other points in X . For densities following equation [2] the Papangalou
conditional intensity is A¢ (X, u) = exp { —¢¢(u) — >, c x e (u, v) }. This has been used to derive
pseudo-likelihood estimators that provide unbiased estimating equations without the normalizing
constant (Mgller & Waagepetersen, [2007). The pseudo-likelihood approximates the MLE under a
conditional independence assumption (Baddeley, 2007). While this can limit the statistical efficiency
of the estimator, we still use pseudo-likelihood estimation here, as it provides a computationally ef-
ficient and statistically consistent objective for learning spatial point-process models from data. For
a Gibbs process with conditional intensity A¢ (X, u), the log-pseudo-likelihood is

log PL(¢) = Y log Ae(X,u) — /D Ae(X,u)du, (4)

ueXND

where D = W © R is an erosion of the domain W by an interaction distance R to avoid edge effects
(Ba & Coeurjolly, 2023). We directly use equation 4 as a loss function for learning the Papangelou
conditional intensity A¢ (X, u) in a VAE.

2.3  SPATIALLY INFORMED VARIATIONAL AUTOENCODERS

We derive a VAE architecture that learns a latent image representation from which the Papangelou
conditional intensity of a Gibbs point process, defined in equation |2} can be predicted that explains
the observed point pattern in the image. While this self-supervision target is not limited to VAE
architectures, a VAE enables uncertainty quantification of the model by resampling gy (z|x).

The pretext task for the VAE exploits point-process statistics with realizations X obtained from
images x through, e.g., spot detection. Such weak labeling is commonly used for biomedical data
(Yakimovich et al., [2021). The loss enforces the joint parameters of the model gy (z|x) to approxi-
mate the marginal pg(x) and the conditional probabilities p¢ (X |z) of a point process by maximizing
the likelihood of the observed points X with the latent vector z as predictor:

L£(0,€) := Eqllog po(z|2)] + Eq[log pe (X |2)] — BKL(go(2]2) [ p(2)) - (5)

~log PL(&|z)
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This is illustrated in Fig. The inference model qp(z|z) only relies on x, such that X is only
necessary during training, as usual in self-supervised VAE (Kobayashi et al., [2022). This estima-
tion procedure generalizes the Bayesian variational formulation proposed by [Zhou et al.| (2022)
for parametric models to non-parametrically estimating a model of the point process from images.
Therefore, SI-VAE do not require (learning) an inference function from the complete point pattern to
the model parameters, which is usually unavailable in practice. We approximate log pe (X |z) by the
log-pseudo-likelihood in equationusing Ae(X, u|z). The Gibbs potentials ¢ and v are represented
by two-layer neural networks with input z. We choose 9 (u, v) = 1 (||u — v]||2) to be a symmetric,
isotropic function. This ensures that the interactions between points are invariant under translation
and rotation of the whole point pattern. As shown in Appendix [B] models with more degrees of free-
dom for 1 tend to converge to trivial solutions that do not account for the local interactions between
points. We further constrain the model with distance-decaying weights w,,, (equation[I4) to learn
local interactions of range L with ¢ (u,v) = wy,(]|u — v||2). Since long-range interactions are
indistinguishable from density inhomogeneity, this regularization is required for identifiability of
inhomogeneous point processes. The interaction range L is a hyperparameter (see Appendix [C.2).
Conceptually, this framework extends to anisotropic interactions by considering the (signed) differ-
ence between point positions, i.e., ¥ (u,v) = ¥ (u — v) if sufficiently diverse directional data are
available. The input to the prediction network then becomes a vector.

The loss in equation [5|admits a probabilistic in- p(X])
terpretation as a hybrid model of p(X,z) = I
p(X|z)p(z). Hybrid models p(X,z) have
been shown to learn richer and more outlier- {)\S(XJHZ) :exp{,ag(mz) - Us(uﬂv’@}} o)
robust representations than purely discrimina- vex .
tive models (Nalisnick et al.| [2019; Tomczak, Prediction Model
2024). We assume that © L X|z, such that

z captures all correlations, and that the vari- Inferenas
ational posterior gp(z|x) provides a good ap- Model
proximation to p(z|X, ). The first assumption X ’

is common in multimodal VAE (Wu & Good-| Figyre 1: Schematic of the proposed SI-VAE ar-
man, 2018). It is not limiting in our setting, chitecture consisting of an inference model gy
since the point pattern X is deterministically and a prediction model \¢. The inference model
obtained from the image x. Therefore, z cap- yges an input image z to sample the latent code
tures all relevant information about bothmodal- ., The Jatent sample is used by the prediction
ities, trivially rendering them conditionally (on 0del to predict the Papangelou conditional in-

z) independent; their cross correlation given z tensity A¢ (X, w) of the point process X
. . . . . ) .
is a Dirac delta. The second assumption implies

that the model should only rely on images for inference, which is fulfilled by design when learn-
ing visual representations. Under these assumptions, the loss in equation [5]is the ELBO of a joint
generative latent-variable model of the point process, see Appendix @] for a proo This model has
joint density p(X, z, z) = p(X |z, 2)p(x|z)p(z), where p(z) = [ p(z,z) dz is a standard VAE. The
pseudo-likelihood in equation [] can moreover be interpreted as the limit of Bernoulli random vari-
ables over partitions (or pixels) u; € W, i € {1,..., I} (Mgller & Waagepetersen, 2003 with each
partition/pixel conditioned on X:

z~ qo(2l2)

PLO) = lm [T Oe(Xuil)lui)™ (1 = Ae(X, wf2)ul) ®)

The indicator N; = 1(N(u;) > 0) denotes the presence of a point in partition i. Therefore, the
prediction model ¢ (X, u|z) can be interpreted as the limit of a pixel-wise classifier for the presence
of a point given the data X. From Jensen’s inequality, the second term in equation [5 provides a
lower bound on the approximate conditional log-likelihood log pe o(X|x) ~ logE, [pe(X|2)] >
E, [log p(X|z)]. This connects SI-VAE with other hybrid models, such as DIGLM (Nalisnick et al.,
2019). SI-VAE, however, estimate z using amortized variational inference instead of flow mod-
els. Therefore, SI-VAE learn a latent z that approximates p(X |«) while providing a model for the
features p(x). The details of the SI-VAE architecture used here, and of its training, are given in

Appendix [C]

"Note that the assumptions are only needed for the interpretation of the loss as an ELBO. They are not
needed for SI-VAE to predict valid features of the Papangelou conditional intensity of a Gibbs process.
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Table 1: Accuracy (Acc) and F} score for linear classification of point-pattern types in the latent
space of the models (SI-VAE, VAE, mask VAE trained with perfect location knowledge) trained
on images of different quality (SNR). We compare two different weak-labeling methods (Spotiflow,
Thresholding) with a ground truth (GT) baseline using perfect knowledge of point locations. For the
weak-labeling methods we also report the sensitivity Sp, = (F{i&3 — Ffias, )/(1 — Filoopoq) t0

1,method 1,method
quantify the robustness of the I} score to spot-detection errors.
GT Knowledge Spotiflow Thresholding
Model SNR Acc(t) Fi () Acc() F1 (1) Sk () Acc(t) F1 (D) Sp ()
mask VAE oo 0.63 0.62 X X X X X X
VAE 12.8 0.48 0.47 X X X X X X
VAE 9.6 0.48 0.47 X X X X X X

SI-VAE 12.8 0.90 0.90 0.90 0.90 0.0 0.80 0.80 0.56
SI-VAE 9.6 0.88 0.88 0.83 0.83 0.42 0.81 0.81 0.22

3 EXPERIMENTS AND RESULTS

We benchmark SI-VAE on synthetic data, comparing them to VAE with the same architecture. The
only difference between the VAE baseline and the SI-VAE is the presence of spatial supervision in
the latter. This permits relative comparison. Then, we illustrate the workflow of applying SI-VAE to
learning interpretable representations of protein localization patterns in human cells. We highlight
introspection and interpretation of the latent space and show how the probabilistic framework of
SI-VAE enables conditional simulation and downstream statistical analysis over learned representa-
tions.

3.1 LEARNING SPATIAL INTERACTIONS ON SYNTHETIC DATA

We first show that SI-VAE are able to learn representations that disentangle clustering due to attrac-
tive correlations from clustering due to inhomogeneous intensity functions. For this, we show that
the latent space of an SI-VAE linearly separates homogeneous from inhomogeneous point processes
and is able to classify their correlation structure.

VAE SI-VAE
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s 14 13 a2 -1 -10 25 00 25 50 7.5 100 125

Figure 2: UMAP projections of the latent representations obtained by VAE (left) and SI-VAE (right)
trained on images with an SNR of 12.8 and perfect GT knowledge of the point locations. Cold
colors denote homogeneous processes (Poisson (HP), Strauss (HS), Thomas (HT)), warm colors
inhomogeneous processes (Poisson (IP), Strauss (IS), Thomas (IT)).

Data Generation We generate noisy synthetic images with known ground-truth point locations.
Point locations are sampled from attractive (Thomas), repulsive (Strauss) and uncorrelated (Poisson)
point processes with either homogeneous or inhomogeneous intensity functions. Appendix [A]details
the benchmark point processes, Appendix [E] the synthetic image generation. It is important to note
that Cox processes, such as the Thomas process, are not Gibbs processes, since their distribution
is not defined via an energy function. Nevertheless, Gibbs processes constitute a flexible modeling
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framework, and our aim is to identify a Gibbs process that provides a suitable approximation to their
distribution. We generate 5000 images for each of the six cases. All images have the same expected
number of points EN (W) a 52. This prevents the encoding network from simply discriminating
between the processes by total pixel intensity.

Experiment Design We compare the representation-learning performance of SI-VAE against a
baseline VAE with the same architecture (see Appendix but without the point-process supervi-
sion target. Both models use the same encoder and decoder networks. The Papangelou conditional
intensity A¢ (X, u|z) is modeled using two separate two-layer neural networks for ¢¢ and ¢ (see
Appendix to predict the spatial distribution of X from a given latent vector z. Both models
are trained using the Adam optimizer (Kingma & Bal 2015) over their respective ELBO until con-
vergence on the validation set. We set 8 = 0.1, identified in a grid search over three orders of
magnitude (0.001 to 1.0), and distance weight w,,,, with L = 0.25 determined from prior knowledge
(see Appendix [C.2). During evaluation, a representation is obtained as the mean of the posterior
qo(z|z). We evaluate the representations obtained by both models using a linear evaluation protocol
following |Chen et al.| (2020). This tests if z contains enough information to distinguish the six dif-
ferent point processes in the data, thus linearly disentangling correlation from inhomogeneity. Since
the performance of the proposed self-supervision task depends on the accuracy of the point patterns
X provided during training, we repeat the experiment for two different signal-to-noise ratios (SNR)
using two different spot detectors (simple Otsu thresholding and the recent deep-learning method
Spotiflow (Dominguez Mantes et al.|[2025)). We compare them to a baseline with ground-truth (GT)
knowledge of X.

Results The results in Table |1{ show that the SI-VAE consistently outperforms the standard VAE
across all experiments. They also show that simple spot-detection methods, here Otsu thresholding,
suffice to provide weak labels for the self-supervision task, especially at low SNR. When using
state-of-the-art spot detection (Spotiflow (Dominguez Mantes et al., [2025))), the SI-VAE performs
close to the GT-knowledge baseline. The SI-VAE predicts meaningful representations even at high
noise levels (low SNR). We also report the degradation of the F) classification score w.r.t. the F}
score of the spot detector, yielding the error sensitivity index Sr, . In all cases, SI-VAE predictions
degrade less quickly than spot-detection performance (Sr, < 1), indicating that SI-VAE dampen
spot-detection errors during training. As errors mainly occur by missing points in dense regions (see
Table , however, they can bias the learned correlations (Kuronen et al., 2021).

Since SI-VAE incorporates structured knowledge in the form of (detected) point locations, we also
compare it against a VAE trained on ground-truth binary object-location masks (mask VAE). This
performs better than the VAE trained on whole images but does not reach the performance of SI-
VAE. The UMAP projections of the latent spaces in Fig. 2] reveal that the standard VAE mainly
learns global pixel-intensity patterns. This clearly manifests in the linear separation between homo-
geneous and inhomogeneous point processes, while not separating different process types (Strauss,
Thomas, Poisson). WhileSemenova et al.|(2022) have shown that VAE can learn spatial correlations
for GP priors, our results indicate that this is insufficient for explaining spatial point patterns. Only
the SI-VAE distinguishes between process types, explaining the downstream classification accuracy.
The latent space of the SI-VAE also maintains interpretability in the sense that mathematically more
similar processes, like Poisson and Thomas, are mapped closer together than dissimilar processes
(Strauss). This confirms that the proposed self-supervision task leads to more meaningful represen-
tations of the underlying spatial organization.

3.2 GENERALIZATION TO UNSEEN PROCESSES

In addition to testing the generalization of SI-VAE on a holdout data set, we quantify generalization
to point processes of types not seen during training.

Experiment Design We generate images from a homogeneous log-Gaussian Cox process (LGCP),
which admits clustering through a Gaussian process (see Appendix [A.4). Because of this clustering
and definition based on a background process, it should behave similar to a homogeneous Thomas
process, which is a special case of a Cox process. We generate 150 synthetic images of point patterns
from a LGCP with the same expected number of points as the other processes. We then use the linear
classifier trained in the previous subsection on the (SI-)VAE representations from Table|l|to predict
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the class labels for the LGCP images. (SI-)VAE are provided with images only, without (extracted
or ground truth) point locations.

Results The results are shown in Fig.[3] The VAE 10

. VAE

baseline fails to generalize to the LGCP, as it mainly = SLVAE (Threshold)
mmm SI-VAE (Spotiflow)
mmm SI-VAE (Complete)

captures global pixel-intensity patterns. Even when
trained on weak labels (colors, inset legends), the
SI-VAE correctly classifies the LGCP to belong to
the same class of processes as the Thomas pro-
cess most similar to a homogeneous Thomas process
(HT). The SI-VAE trained in Section [3.1] with com-
plete knowledge of point locations classifies per-
fectly. Since the SI-VAE was not trained on LGCP S " HP "’ HS s
data, this shows its capacity to generalize to unseen
point processes, even when trained on weak labels.

Classifaction Frequency

Figure 3: Class frequencies of the LGCP
images predicted by the linear classifier on

the representations trained in Table [] for the
3.3 INTERPRETING higher SNR.

THE LEARNED REPRESENTATIONS

SI-VAE provide representations that are inter-

pretable in the framework of spatial statistics. The SI-VAE prediction A¢ (X, u|z) approximates
the Papangelou conditional intensity of a point process from an image. According to equation [3]
the inferred point process is repulsive for A¢ (X, u|z) > Ae(Y,u|z), X C Y, and attractive oth-
erwise. The predicted conditional intensities can also be visualized over the domain D. Finally,
sampling multiple latent vectors z from the posterior gg(z|z) enables uncertainty quantification of
the estimates.
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Figure 4: Visualization of the predicted conditional intensities Ag(X,u|z) for the latent codes z
obtained from different images = from all considered point processes with homogeneous (top row)
and inhomogeneous (bottom row) distributions over the eroded domain D = W & R. Orange circles
show the ground-truth point set X for image x, which was not used during inference.

Experiment Design = We consider the SI-VAE from Section[3.1] trained with GT knowledge of the
point locations at the higher image SNR. We randomly select images from the test set for each of
the six point-process types. For each image, without knowledge of the point locations, the SI-VAE
predicts the conditional intensity A¢ (X, u|z).

Results Figure E| shows the predicted conditional intensities A¢ (X, u|z) for different latent codes
z (additional plots in Fig. [TT). Differences between homogeneous and inhomogeneous distributions
are clearly visible. Moreover, the learned representations correctly capture local repulsion (Strauss)
or clustering (Thomas) between the points, providing insight into the spatial organization directly
from an image. Since SI-VAE model Gibbs processes, the learned potentials ¢ and v can directly
be interpreted as the first- and second-order interaction structure of the process. For a Poisson point
process, A(X,u) = exp{—¢(u)}, such that ¢)(u,v) = 0 for all u,v. This means that the SI-VAE
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Table 2: Relative intensity errors (RIE) of intensity estimates and rejection rates (RR) of second-
order models for zero-shot conditional simulation of A¢ (X, u|z) from the SI-VAE trained in Section
Average scores are computed over 100 random samples from the test set for each class.

Poisson Strauss Thomas
RIE(})) RR() RIE(}) RR() RIE(J) RR(})
Homogeneous 0.34 0.08 0.23 0.13 0.62 0.20
Inhomogeneous 0.27 0.03 0.14 0.14 0.49 0.15

should not predict any interactions between points. In Fig. ] the SI-VAE predicts both attractive
and repulsive interactions for the Poisson processes, depending on the latent code z. This suggests
that the representations z are sensitive toward the observed point configurations and unable to disen-
tangle first- and second-order characteristics of the observed point pattern, which is a difficult task
in general. Nevertheless, SI-VAE provide interpretable, mechanistic insight into learned representa-
tions. The interpretations, however, may be biased by specific point configurations observed in the
image.

3.4 ZERO-SHOT CONDITIONAL SIMULATION FROM IMAGES

As shown in the previous experiment, SI-VAE learn Papangelou conditional intensities of point
processes. Since A¢(X, u|z) parameterizes the distribution of X, it can be incorporated into an
MCMC sampler (Mgller & Waagepetersen, 2003)), enabling conditional simulation. This provides
a conditional (on a query image) generative model of the point process in addition to the generative
model pg(z) for the images. Once trained, SI-VAE can thus explore the distribution of X directly
from an image z in a zero-shot fashion. To our knowledge, this is the first instance of image-based
conditional simulation for point processes.

Experiment Design We perform conditional simulation (see Appendix using the SI-VAE
from Section [3.1] trained with GT point locations at high image SNR. For each point-process class,
we select 100 random test images. We evaluate the simulations by comparing the predicted process
X¢ to the observed X under A\¢. Accuracy is assessed by nonparametric estimates of first- and
second-order quantities: kernel density estimation (KDE) for intensity, and the K -function (Diggle}
2013) for interactions (see Appendix [F). We compute the relative intensity error (RIE) between
the KDE of observed and simulated point patterns, measuring over-/underprediction relative to the
observed pattern. For interactions, we use a Monte Carlo test for point processes (Baddeley et al.,
2014) and measure its rejection rate (RR), i.e., the frequency with which the K -function of the
observed pattern significantly (5% significance level) deviates from the mean K -function.

Results Table [2 shows the RIE and RR obtained from the simulations. They confirm that the SI-
VAE is able to generate point patterns close to the observed ones. The lowest RIE are obtained for the
Strauss process, which is correctly predicted to be repulsive. In this case approximating A¢ (X, u|z)
works best and does not require model saturation (see Appendix [A.6). As the envelopes in Fig. [12]
show, the majority of hom. Poisson samples are also predicted to be repulsive. The higher RIE
in this case is due to samples that appear clustering, producing excess points in the simulation. For
estimates with non-clustering potentials we obtain good simulation results (Fig.[T4). The RIE further
increases for the Thomas process, which is always clustering. Here, model saturation (Appendix
[A.6) is crucial to obtain stable simulations. The error indicates that the model predicts too many
points, which can also be seen in Figs. [I4] and [I5] This suggests that the saturation parameter
s is too large for these cases, motivating further investigation. The RR computed from the K-
functions (Figs. [12]and[13) are overall low, indicating that the interaction structure is well captured.
The lowest RR are obtained for the Poisson process, where the true interaction is always close to
the conditioning sample when corrected by the normalization of the KDE (Fig. [[3). The Strauss
and Thomas processes have higher RR, which is expected due to the more complex interactions
(repulsive, attractive). For these, Figs.[I2]and [I3|show that simulated point patterns exhibit weaker
interactions than the conditioning sample. Overall, however, the results show that the SI-VAE can
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be used for zero-shot conditional simulation of point processes, qualitatively capturing the correct
correlation structure of the process from a single query image.

3.5 APPLICATION TO PROTEIN LOCALIZATION IN HUMAN CELLS

Having benchmarked SI-VAE on synthetic data, we next illustrate a workflow applying them to
protein localization patterns in human cells. Specifically, we show that SI-VAE representations of
cellular microscopy images distinguish between different localization patterns and that, thanks to
their statistical interpretability, they allow for a meaningful biological interpretation.

SNX1
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Figure 5: First-order (contour plots with detected point locations in orange) and second-order (top-
right plot) Gibbs potentials of the SI-VAE representations on the test set. Insets show the nucleus
channel for each sample as a reference. The two clusters (blue, orange) emerging in the latent space
separate vesicle-localizing proteins from nuclear proteins with cluster-assignment frequencies for
the six proteins given at the bottom right.

Experiment Design We train an SI-VAE on the OpenCell data set 2022), comprising
fluorescence microscopy images of the subcellular localization of over 1000 human proteins. We
focus on six proteins from three families: four that localize to vesicles (SNX1, SNX12, STAM,
STAM?2) and two that form nuclear punctae (POLR3E, POLR3F). For SI-VAE training, we generate
weak labels using Spotiflow (Dominguez Mantes et al., 2025). The SI-VAE is trained on 5499
images of the fluorescence signal of the tagged proteins, the nucleus channel, and a channel for the
signed distance to the nucleus as previously described (Kobayashi et al.,[2022)). The full details are
provided in Appendix[G] We set the interaction length scale to L = 0.25, corresponding to the mean
half-radius of the nuclei. We assess the learned representations on a disjoint test set containing
687 images of the same six proteins by clustering them with a Gaussian mixture model (GMM),
selecting K' = 2 clusters based on the Akaike information criterion (AIC) (see Appendix |§|) We
compare the SI-VAE results with two baselines — a VAE with the same architecture but without
spatial supervision and the specialized state-of-the-art Cytoself model (Kobayashi et al., 2022) with
a substantially deeper architecture of two VQ-VAE and a classification head.

Results Figure [5|shows the first-order p¢(u) = exp{—¢¢(u)} and second-order )¢ (r) Gibbs po-
tentials learned by the SI-VAE for the two GMM-identified clusters (cluster-assignment frequencies
at the bottom right). The first cluster (blue) contains the four vesicle-associated proteins, while the
second (orange) contains the two nucleus-localizing proteins. The GMM clusters obtained by the
VAE and by Cytoself show the same result (Fig. [T0). For the VAE, however, the clusters are diffuse
with a Silhouette score of 0.04 (Table[). SI-VAE and Cytoself obtain tighter clusters with Silhou-
ette scores of 0.29 and 0.33, respectively, indicating that the learned representations more effectively
capture differences in the images. This is confirmed by the UMAPs in Fig. [f] where SI-VAE obtains
a good visual representation of the two protein families. The UMAP for VAE is similar to that in
Fig. 2] suggesting that the VAE again mainly separates global intensity patterns. The tighter cluster-
ing of Cytoself is likely due to its deeper architecture and discrete latent space (vector quantization
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Figure 6: UMAP projections of the latent representations obtained by VAE (left), SI-VAE (middle),
and Cytoself (right) trained on the OpenCell (Cho et al.| 2022) human-protein data set. Cold colors
denote vesicle-localizing proteins (SNX1, SNX12, STAM, STAM2), warm colors nuclear proteins
(POLR3E, POLR3F).

and classification labels as supervision target). SI-VAE achieves comparable clustering quality at
much lower model complexity, while ensuring interpretability as spatial point processes. It also
does not require ground-truth classification labels during training, enabling unbiased discovery.

The first-order potentials correctly reflect known localization patterns: proteins in vesicles are more
homogeneously distributed, leading the SI-VAE to group them together, while nuclear proteins show
inhomogeneous distributions localized to the nuclei. The two baseline models identify the same
classes but do not explain them by an underlying probability distribution. The second-order SI-
VAE potentials further distinguish the clusters according to the spatial interactions. They reveal
short-range repulsion and long-range attraction. The repulsion has smaller range for nuclear than
for vesicular proteins, explaining the tighter molecular packing in the nucleus. The nuclear proteins
further show stronger long-range attraction, which facilitates efficient coverage of the nucleus, ac-
celerating biochemical reactions in the diffusion-limited regime (Subic & Sbalzarini, 2024)). This
is corroborated by the conditional intensities A¢ (X, u|z) predicted by the SI-VAE (Fig. show-
ing high event probabilities in the nuclei. We did not model or impose nuclear confinement. The
SI-VAE reveals it from the data, providing a mechanistic explanation for the observed patterns.

4 CONCLUSION

We introduced a self-supervision target grounded in point-process statistics. The loss function of the
resulting SI-VAE architecture can be understood as the ELBO of a joint model over images and point
processes. This showed effective in capturing spatial interactions and generalizing to unseen data.
The learned representations can directly be interpreted in the framework of spatial statistics. Since
SI-VAE constitute hybrid models, we also demonstrated zero-shot conditional (on a query image)
simulation of point processes. Unlike purely generative models (Liidke et al., [2025; [Zhou et al.,
2022), SI-VAE remain interpretable. We highlighted the practical utility of SI-VAE by applying
them to localization patterns of proteins in human cells. The SI-VAE correctly identified protein
localization classes and provided a mechanistic explanation for their differences. This demonstrates
that SI-VAE learn interpretable visual representations of spatial localization patterns.

In the future, SI-VAE could be extended to non-pairwise interactions by estimating the full density
using, e.g., score matching (Hyvarinen, |2005; |Cao et al., [2024) or Deep Sets (Zaheer et al., [2017).
SI-VAE could also be extended to anisotropic interactions, if directionality is present in the data,
and to marked point processes to model interactions across different types of points. Additionally,
SI-VAE could be combined with more expressive priors on the latent variables, such as GP-VAE
(Casale et al., 2018; [Pearce}, 2020; Jazbec et al., [2021)) or VampPrior (Tomczak & Welling, 2018)).

SI-VAE are straightforward to implement and train; they only require a small prediction model to
be added to a VAE. The main additional cost during training is the evaluation of the Papangelou
conditional intensity, which requires computing pairwise interactions between points and numerical
quadrature. During inference, SI-VAE behave like regular VAE, as the point-process component is
only used for training. This makes SI-VAE a drop-in replacement for VAE in applications where
spatial localization patterns are an important feature.
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A POINT PROCESS MODELS

We provide details of the point processes used in the synthetic benchmarks. All parameters were
chosen such that all samples, independent of the process model and the homogeneity, have an ex-
pected number of EN(W) =~ 52 points. We used the observation window W = [—1,1]? for
inference, whereas sampling was performed in extended domains Wy depending on the process,
as discussed below, to avoid edge effects. For the inhomogeneous processes we used intensity trend
functions of the form p(u) = x exp{—||u||3/a?}. For each process we generated 5000 independent
samples. More information on spatial point processes can be found in the popular monographs by
Baddeley| (2007), Mgller & Waagepetersen| (2007), and Mgller & Waagepetersen| (2003)).

A.1 POISSON PROCESS

The Poisson point process is the simplest model, in which spatial variations in the point density arise
solely from intensity inhomogeneitites as there are no interactions between points. Since points in
a Poisson process are pairwise uncorrelated, this provides a baseline that is fully characterized by
the intensity function. The intensity function p(u) of a point process is related to the first moment
of the point distribution as EN(W) = [}, p(u) du. X is a Poisson point process with intensity
function p(u) if and only if N(B) ~ P(EN(B)) forall B C W, and all w € X are i.i.d. in W with
density p(u) = p(u)/EN(W). Here, P denotes the Poisson probability distribution. The density of
a Poisson point process with respect to the unit-rate Poisson process (p(u) = 1) is

90 =esp{= [ o) - au T o). ™

ueX

Therefore, the Papangelou conditional intensity of a Poisson process is A(X,u) = p(u), such that
the probability of observing a point at « does not depend on X.

We sample realizations of a homogeneous Poisson process with p(u) = 13 and N ~ P(EN(W))
points uniformly over W. For the inhomogeneous Poisson case, we choose x = 67 and a@ =
0.5. The inhomogeneous samples are obtained by first sampling a homogeneous Poisson process
with intensity pmax = maxyuew p(u), followed by independently thinning it using the thinning
probability 7(u) = p(u)/pmax- This results in an inhomogeneous Poisson process with the desired
intensity (Mgller & Waagepetersen, [2003)).

A.2 THOMAS PROCESS
A Thomas process is a clustering process and a special case of a Cox process (Mgller &

Waagepetersen, 2003)). It is described by a parent Poisson process Y with intensity function p(u).
Conditional on each y € Y, there is a child Poisson process X, with intensity

py(u) = AN (u; y,0°14), (8)

17


https://opg.optica.org/ao/abstract.cfm?URI=ao-46-10-1819
https://opg.optica.org/ao/abstract.cfm?URI=ao-46-10-1819
http://arxiv.org/abs/2205.14539
https://proceedings.mlr.press/v168/zhou22a.html
https://proceedings.mlr.press/v168/zhou22a.html

Under review as a conference paper at ICLR 2026

where N(+) is the d-dimensional normal distribution and A > 0 controls the number of child points.
The standard deviation ¢ controls the spatial range (length scale) of the clustering. A Thomas point
process is then defined by the superposition of all child point patterns U,y X,,. This also provides
a straightforward way of sampling from a Thomas process by two nested realizations of a Poisson
processes. Due to the dependence on the parent process Y, Thomas processes are said to be driven
by a random field Z(u) = >_ .y py(u). Following Coeurjolly et al. (2017), we write their density

i exp{/W(Z(u) - 1)du} IT 2w

ueX

p(X)=E = Ep(X|2), ©)

where p(X|Z) is the density of X conditioned on Z. The Papangelou conditional intensity follows
as M(X,u) = Ep(X U {u}|Z)/Ep(X|Z), which is expected to increase in the vicinity of a point in
X.

For our synthetic samples, we choose ¢ = 0.1 as the clustering range. We sample the Thomas
process in a domain that is extended by 7o in all directions in order to capture all interactions.
For the homogeneous Thomas case, we use the parent intensity p(u) = 4 and A = 3. In the
inhomogeneous case, we use k = 23, a = (0.5, and A = 3 and obtain the parent Poisson process
through thinning as described in Appendix [A.T} The number of child points for each cluster center
y € Y follows N, ~ P () sampled i.i.d. in W following u ~ N (y, o°I).

A.3 STRAUSS PROCESS

The Strauss process is a repulsive point process where points repel each other within a certain radius
R. Unlike Poisson and Thomas processes, it is directly defined in terms of its Papangelou conditional
intensity

MX,u) = plu)y>vex HEBLR), (10)

where p(u) = exp{—¢(u)} corresponds to equation 2} B(u, R) is the ball with radius R centered
at v and 0 < v < 1 controls the strength of repulsion. For v = 0 no points are allowed within
a distance R from any other point (hard-core process), whereas v = 1 results in a Poisson point
process where points do not interact at all.

Point processes directly defined by a conditional intensity are best sampled using MCMC (Mgller
& Waagepetersen, |2003). We here used the Metropolis—Hastings sampler from the spatstat
package available in R (Baddeley et al.l 2016).

For all samples, we chose R = 0.2 and v = 0.4, which constitutes a strongly repulsive process.
For the homogeneous case, we chose p(u) = 40, and for the inhomogeneous case x = 400 and
a = 0.5. We run each MCMC chain for 106 iterations and use 200 uniformly random points to
define the initial condition. The sample is obtained after the last iteration.

A.4 LoG-GAUSSIAN COX PROCESS

A log-Gaussian Cox process (LGCP) is a clustering Cox process similar to a Thomas process. How-
ever, instead of using a parent Poisson process to define the driving random field Z, a LGCP uses a
Gaussian process. Therefore, Z = exp{Y}, where Y ~ GP(u, K) is a Gaussian process with mean
function y and covariance function K (Mgller & Waagepetersen, 2003). The density is the same as
that of a Thomas process, albeit with this Z.

We sample a LGCP with ¢ = 1 and Gaussian covariance function. The variance of the Gaussian
covariance function is set to o = 3.31 and the scale parameter to 0.4. This LGCP is sampled using
the spatstat package in R (Baddeley et al., 2016)).

A.5 SATURATION PROCESSES

The Strauss process defined in Appendix [A.3]only possesses a valid density for 0 < v < 1. For
v > 1, the density is not integrable with respect to the unit-rate Poisson process. This implies that
a Strauss process cannot be used to model clustering point patterns, as the parametric model might
suggest. In fact, this property holds for all Gibbs processes, where purely attractive potentials lead
to ill-defined densities. To avoid an unbounded number of events during simulation in such cases,
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we introduce a saturation parameter similar to a Geyer saturation process (Geyer,|1999; Rajala et al.,
2018} Ba & Coeurjolly, [2023). Then, the density with respect to the unit-rate Poisson process is

1
p(X) ccexpq D o(u) = 5 D max | —s, > (uv)| o (1D
ueX ueX 11)56)5

where s > 0 is a saturation parameter capping the interaction strength. The one-half prefactor
originates from iterating over all non-unique point pairs. This recovers the density in equation 2] in
the limit s — oo, since 1 is symmetric. The saturation s renders the density integrable, defining a
valid point process that can also account for clustering. The Papangelou conditional intensity of this
process is

A(X,u) = exp {—qb(u) - <\Ils(u, X)+ > W(v, X U{u}) - \I/S(U,X)> } . (12

veX
with Gibbs interaction term ¥ (u, X ) = max [—s, EZ?;’( ¥(u, v)} /2.

In practice, s needs to be estimated from the data. Since SI-VAE do not account for saturation,
we estimate the saturation parameter post hoc by minimizing the MSE between the saturated and
unsaturated models over X N D. This ensures that the true conditional intensity is approximately
equal to the estimated one under saturation.

A.6 ZERO-SHOT CONDITIONAL SIMULATION

To simulate from the learned conditional intensity A¢ (X, u|z) we use a birth—death Metropolis—
Hastings Algorithm (Alg. 7.4 inMgller & Waagepetersen| (2003)). The sampler iteratively proposes
to add or remove a point in the current configuration X (with probability p = 0.5) using uniform
proposal and death probabilities, i.e., pp(u) = 1/|D| and ps(u) = 1/|X|, with acceptance deter-
mined based on A¢ (X, u|z). We perform simulations in the eroded domain D = W & R, with
R = 0.2, to avoid bias outside the estimation domain. Each point is obtained after 30,000 iterations
of the sampler. The obtained points are then eroded by R again to avoid edge effects. We initialize
the Markov chain with 52 uniformly distributed points in D.

In a Gibbs point process, the density can become ill-defined for attractive potentials, as it may
become unbounded for increasing numbers of points. This can lead to instabilities during simulation.
We avoid this by introducing a saturation parameter as previously suggested (Geyer, [1999; Rajala
et al., 2018) (see Appendix . This caps A\p(X, u|z) beyond a certain number of observed points
around u, ensuring that the density remains bounded and hence valid for simulation. The saturation
parameter s influences the model. We determine s using grid search over s € [1073, 3.5] with 50
log-equidistant points such that the MSE between the saturated and unsaturated models over X N D
is always below ¢ = 1073, This ensures that the saturated model is close to the original model,
while avoiding the instability. We find this to work reliably in our benchmarks.

We simulate the Strauss process directly from the learned conditional intensity A¢ (X, u|z), while
for the Poisson and Thomas processes we use the saturated model to mitigate instabilities due to
clustering.

B APPROXIMATING CONDITIONAL INTENSITIES BY NEURAL NETWORKS

SI-VAE represent the Papangelou conditional intensity of a point process in Gibbs form using first-
and second-order potential functions ¢ : R — R and ¢/ : R? x R? — R (see equation [2)). We
restrict ¢ : R — R to be a isotropic and symmetric in its arguments. This ensures that interactions
between points are invariant under translation and rotation. While this choice is reasonable and
widely used in spatial statistics (Mgller & Waagepetersen, |2003)), it does limit the space of functions
an SI-VAE model can approximate.

In the following we will motivate this choice by a validation study considering different choices to
model v. Specifically, we compare 1) (u, v), ¥ (u—v), and ¥ (||u—v||). We use 150 samples from the
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homogeneous Strauss process as described in Appendix [A-3] We train the three different models by
minimizing the negative log-pseudo-likelihood from equation ] over 500 iterations using batches of
size 32 and the Adam optimizer (Kingma & Bal, 2015) with learning rate 5 x 10~*. For these tests,
we use deeper neural networks than those used in the main text (see Appendix [C.2). Specifically,
we here use 4 layers with 64 neurons each for both the first- and second order potential networks ¢¢
and 1)¢. This increased depth accounts for the missing information about the latent variable z of the
VAE inference model, which is absent in the present test. Overall then, the models have a similar
number of parameters to the SI-VAE conditional intensities in the main text.

Figure[7)shows the predicted conditional intensities (CI) for a fixed point pattern X for the different
models. It can be seen that only the isotropic and symmetric model v (||ju — v||) is able to approx-
imate the Papangelou conditional intensity of the observed point pattern (which, in this case, is a
collection of overlapping disks). The other two models (¢ (u, v), ¥(u—v)) fail to capture the locally
repulsive behavior and instead predict an almost homogeneous conditional intensity. The magnitude
of these conditional intensities corresponds to the intensity of a Poisson process (Appendix [A.T). We
think that this identifiability issue arises due to the conditional independence assumption of the
pseudo-likelihood in equation [ which does not sufficiently account for the local interactions be-
tween points. This causes the network to favor trivial solutions when given too much freedom in
the form of the function to be learned. Constraining the second-order potential to be symmetric and
isotropic sufficiently regularizes the second-order interaction structure in SI-VAE. This rationalizes
the choice of an isotropic interaction function ¢ (||u — v||) in the main text.
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Figure 7: Comparison of different neural network architectures to model the conditional intensity
(CD A(X,u) of a homogeneous Strauss process. We compare the ground truth Papangelou condi-
tional intensity of the Strauss process (top left) to predictions obtained from neural networks making
no assumptions about the structure of the second-order potential (¢)(u, v), top right), assuming it to
be stationary (¢)(u — v), bottom left), and assuming it to be symmetric and isotropic (¢ (||u — v||),
bottom right).

C ARCHITECTURE DETAILS

We detail our (SI-)VAE architecture and the training procedure. The code, implemented in
pytorch (Paszke et all [2019), is available at https://github.com/username/repol

C.1 VAE ARCHITECTURE FOR THE INFERENCE MODEL

Both VAE and SI-VAE use the same convolutional variational autoencoder architecture to encode
images into a 64-dimensional latent space and reconstruct them from there. This constitutes the
inference model from Section [2.3] The encoder consists of three convolutional layers with kernel
size 4, stride 2, and padding 1, progressively downsampling the images from 256 x 256 pixel to
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32 x 32 while increasing the number of channels as 1 — 16 — 32 — 64. The output is flattened
into a 512-dimensional vector and passed through a fully connected layer. Two linear layers then
map this 512-dimensional vector to the mean p and log-variance log o2 of the 64-dimensional latent
distribution (512 — 64). Latent vectors z are sampled using the reparameterization trick (Kingma
& Welling,, 2014). To reduce the variance, we average 100 samples per image to obtain z, effectively
changing the latent distribution to N (p1, 02 /100) with the Kullback—Leibler divergence in the loss
adjusted accordingly. We observed that this stabilizes training and improves convergence.

The decoder reconstructs images via a symmetric sequence of three transposed convolutional layers,
progressively upsampling to the original image size, with channels decreasing as 64 — 32 —
16 — 1. All layers except the output layer use ReLU activations. The output layer generates the
standardized image & € R"*H#*C without activations. As outlined in Appendix we treat pixel
intensities as continuous and standardized. The autoencoders are thus trained by minimizing the
mean squared error (MSE) between the input and reconstructed images in the reconstruction term of
equation (1| Alternatively, pixel intensity levels could be treated as discrete categories, and the data-
fitting term in the loss replaced with a categorical cross-entropy loss. All VAE models use 5 = 0.1,
identified in a grid search over [0.001, 1.0].

C.2 ARCHITECTURE OF THE CONDITIONAL INTENSITY PREDICTION MODEL

In addition to the common inference model, SI-VAE additionally contain a prediction model as
described in Section The prediction model uses two neural networks, ¢¢ and ¢, to predict the
conditional intensity function of a Gibbs process (cf. equation|2)) as:

Ae(X,ulz) = exp {—(;Sg(u,z) - Z Wy Ve (|lu — v]|2, z)} , (13)

veX

where 7 is the latent representation of the image x, X is the corresponding point pattern, and u € W
is the location at which the conditional intensity is to be predicted. The weights w,,,, emphasize
local interactions between points to ensure model identifiability as discussed in Section The
network ¢, predicts the first-order potential ¢(u, z) of the point process at location u from the latent
representation z. The network 1 models the second-order potential 1(u, v, z) for the pairwise
interaction between two points u,v € X. Its inputs are a latent vector z from the inference model
and the Euclidean distances ||u — v||2. These pairwise interactions are aggregated in the sum over
v € X. Both ¢¢ and 9¢ are implemented as separate two-layer neural networks, where the input
is projected to 128 dimensions using a fully connected layer with ReLU activation, followed by
another fully connected layer predicting the scalar potential value.

To ensure model identifiability as discussed in Section the network )¢ emphasizes local inter-
actions through exponential weights

1
Way zexp{—wﬂu—vﬂg}, (14)

with the hyperparameter L informed by the interaction range in the data. For training, we compute
the log-pseudo-likelihood for each pattern as in equation f] The integral is numerically evaluated
using the trapezoidal rule over a fixed grid of size 100 x 100. Edge correction is applied via domain
erosion D = W © R with R = 0.2.

For each model variant, the three neural networks (VAE, ¢¢, 1¢) are trained jointly, each with its
own Adam optimizer (Kingma & Ba,[2015) using a fixed learning rate of 10~5 and a weight decay
of 10~2. All SI-VAE variants were trained for 100 epochs, while the baseline VAE was trained for
150 epochs to achieve convergence. Early stopping was permitted to prevent overfitting.

D DERIVATION OF THE ELBO

For a paired set {(2;, X;)}Y, of unlabeled images x; € RW>*#* and corresponding point patterns
X; ={uj : uj; € W C R}, we aim to learn latent representations {z; }¥; using a VAE with joint
probability density p(X, x, z) = p(X|x, z)p(x|z)p(z). We assume that X L x|z, i.e., that X and
2 are conditionally independent on z. We assume furthermore that p(z| X, z) can be approximated
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by the inference model gg(z|z). While X could hold additional information in practice, such as
labels on the points, we require that during inference only x is required. This is an architectural
design choice. Under these assumptions, the evidence lower bound (ELBO) of the log-likelihood
log p(X, x) can be derived as

logp(X,z) =E, [logp ;)]
_ p(X,xz, 2z
=E, |log (p GIX,2) )

—k, log(prz g0 (2|) ﬂ

g0( (2] X, x)
~E, log (p(X s ) + By [log <£|(z)c|x;>ﬂ '
=:ELBO

Since the KL divergence in the last term is always positive, we find a lower bound on the log-
evidence log p(X, z). Moreover, maximizing the first expectation, which corresponds to the ELBO,
minimizes the KL divergence between the variational distribution gg(z|x) and the true posterior
p(z| X, x). The quality of gp(z|z) thus determines how well the ELBO approximates the true log-
likelihood. This implies that the inference model gg(z|z) has to be sufficiently expressive to ap-
proximate the true posterior well. This approximation could be improved by also using the point
locations X during inference. Here, however, we aim to learn visual representations, for which in-
ference should only rely on images z. Focusing on the bound, the expression above can be further
simplified to obtain equation[5] with 3 = 1:

log p(X, I) > Eq [log p(X, z, 2) — log go(2[)]
log (p(X, x|2)p(z)) — log qo(z|)]

E, |
= Eq log p(X, z|2)] + E, [log p(z) — log go(2|z)]
= K, [log p(X, z|2)] — KL(gs(2[2)|[p(2))
= E, [log p(z|2)] + Eq [log p(X|2)] — KL(go(2|2)|[p(2)) -

The last line relies on the conditional independence assumption.

The self-supervision target E, [log p(X|z)] provides a lower bound on the conditional log-likelihood
log p(X|x). This follows from the joint model under the conditional independence assumption with
p(X|z, z) = p(X|z). It then follows that

logp(X|z) = log/p(X,z|x) dz
— log [ p(X[)p(z]o) dz
> /logp(X|z)p(z|x) dz

~~ /logp(X|z)q9(z|a:) dz = E, [logp(X|2)].

This shows that gy(z|z) is sufficient for predicting the point process X conditioned on an image x.

The conditional independence assumption X L z|z is an architectural design choice to simplify the
model and the derivation of the ELBO. It postulates that z captures the relevant information from
both X and z, such that once z is known, knowing X in addition to = does not provide additional
information about z, and vice versa. As a consequence, p(X|z, z) = p(X|z), i.e., the point process
X can be predicted from the latent representation z alone. This is desired, since we want z to
act as the predictor for the spatial distribution. Without this assumption, we would have to model
p(X|z, z) directly, which would require the image as a direct input to the prediction model, similar
to conditional VAE (Sohn et al.,|2015). The same conditional independence assumption is also used
in multimodal VAE (Wu & Goodmanl [2018). In practical applications of SI-VAE, the assumption
should be fulfilled by construction, such that it is not limiting. Whenever the point locations X
are deterministically obtained from the image z, e.g., by spot detection (see Appendix [E.3), or the
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images are synthetically generated from point locations (Appendix [E)), this is trivially the case. Both
data modalities then capture the same underlying point process, and the conditional independence
assumption is fulfilled.

E SYNTHETIC BENCHMARK DATA SET

We describe the procedure used to generate the synthetic benchmark data set used in the main text
and how it was prepared for model training. The data sets are available at https://github.
com/username/repol

E.1 SYNTHETIC IMAGE GENERATION

We generate synthetic images that mimic the appearance of biological fluorescence-microscopy im-
ages. Images are generated from point process realizations by rendering each point as a disk-shaped
region on a 300 x 300 pixel grid. Disk radii are sampled uniformly between 2 and 6 pixels to reflect
the natural size variability of subcellular structures. All disks have a foreground intensity of 1.0 and
the background intensity is 0.0 at the stage. The resulting binary disk image is convolved with a
Gaussian kernel with standard deviation oy}, = 4 pixels, modeling the point-spread function of a
fluorescence microscope (Zhang et al.l |2007). A constant background intensity of 0.2 is added to
simulate autofluorescence and ambient light. To realistically model photon shot noise, the blurred
image with background is scaled by a gain factor of 100, converted to photon counts, and corrupted
by Poisson noise with a rate proportional to the pixel intensity. This models detector shot noise.
Subsequently, additive Gaussian noise with zero mean and standard deviation o;¢,q = 3 is superim-
posed to model electronic amplification and readout noise. The final noisy image is normalized to
[0, 1] intensity range. An example of this process is shown in Fig.[8] The images were saved in PNG
format with bit depth uint 8. While this effectively discretizes the intensity levels, the discretiza-
tion is fine enough to resolve the simulated photon-count levels. Therefore, we mathematically treat
pixel intensities as continuous, thus images x € RW*H*C

1. Binary mask of disks

10 2. Gaussian blur simulating PSF o 3. Added uniform background (0.2)U o
2 (o7 .

4. Scaled to photon counts 5. Applied poisson shot noise

Figure 8: Example of the synthetic microscopy image generation pipeline for a spatial point pattern
sampled from a homogeneous Poisson point process.

To evaluate the impact of noise on representation learning, we also generated a data set with higher
background intensity (Is = 0.4). This changes the signal-to-noise ratio (SNR) of the images,

Imax - Ib
SNR = -max ‘b 15
V Imax ( )

where I,,,x is the maximum pixel intensity and Iy, is the background intensity. The numerator
represents the maximum signal contrast, while the denominator measures the Poisson shot noise
at the brightest pixel. The SNR of the images with the standard background (I,; = 0.2) is 12.8,
whereas it is 9.6 for the higher background (I, = 0.4).
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E.2 DATA SET PREPARATION

The data set consists of 5000 simulated images for each of the six point processes considered, paired
with their respective ground-truth point clouds (see Section [E.I)). We split the data set into training
(80%), validation (10%), and test (10%) sets. All images are scaled to 256 x 256 pixels to match the
model input layer and normalized using the mean and standard deviation computed from the training
set, with the same normalization applied to all splits to prevent data leakage. Batches of size 64 were
used for training, with point coordinates zero-padded to the maximum number of points in the batch
and an additional channel indicating the number of points.

E.3 WEAK LABEL GENERATION

In a synthetic benchmark setting, the ground-truth point locations shown in an image are known. In
practical applications, however, points first need to be detected in the images. This is only required
for training an SI-VAE model. Inference can then be done on raw images.

We evaluate the robustness of SI-VAE to different point-detection methods and imperfect point
detection. In addition to the ground-truth baseline, we therefore generate imperfect point locations
as weak labels using two methods: (1) a simple global Otsu thresholding using OpenCV (Bradski,
2000) followed by contour centroid extraction, (2) the state-of-the-art deep-learning spot-detection
method Spotiflow (Dominguez Mantes et al., [ 2025)).

Before applying either spot-detection method, images were denoised using an isotropic Gaussian
filter with standard deviation o = 3.0 pixels. This value of o provided the best results. Smaller
values left residual noise, whereas larger values caused too many misdetections.

Global Otsu thresholding was performed using OpenCV (Bradski, 2000) to obtain a binary mask.
From this mask, we extracted the contour pixels of each connected component and retained all con-
tours with nonzero enclosed area. For each retained contour we computed the geometric centroid (in
R?). The centroid coordinates were then mapped to the normalized domain [—1, 1] using standard
Cartesian coordinates. This provides a simple and fast spot detector, which, however, tends to miss
nearby spots and have low detection accuracy. It serves as a low-quality baseline for weak labeling.

To obtain high-quality weak labels of point positions, we used Spotiflow (Dominguez Mantes et al.,
2025), a deep-learning spot-detection method specifically trained for fluorescence microscopy. It
predicts the locations of bright spots in the image with subpixel resolution in R?. For each denoised
image, we ran the pretrained Spotiflow model in subpixel mode, lowering the probability threshold
to 0.40 to include candidates that might otherwise be rejected. This choice was informed by visual
inspection of stereographic flow plots, where some spots were clearly visible but excluded under the
default adaptive probability threshold. The resulting coordinates were normalized to [—1,1]? and
mapped to standard Cartesian coordinates.

We quantify the quality of the two weak labeling methods—Otsu thresholding and Spotiflow—for
the synthetic images for both image quality levels (SNR). For each image, we compare the detected
points against the known ground truth. For this, we first use one-to-one Hungarian matching to
compute a globally optimal correspondence between the two point clouds that minimizes the sum of
squared distances between predicted and ground-truth points. A spatial cutoff of 3 pixels is applied
to determine valid matches (Dominguez Mantes et al.,[2025)). This ensures that each predicted point
is matched to at most one GT point, and vice versa. A matched pair is counted as a true positive (TP)
if their Euclidean distance is below the cutoff. Unmatched predictions are counted as false positives
(FP), and unmatched ground-truth points as false negatives (FN), while true negatives are undefined
in this continuous-space setting.

For each point process type, we report the absolute difference (AD) between the ground truth num-
ber of points and the detected number of points, the True Positive Rate (TPR, recall), the Positive
Predictive Value (PPV, precision), and the F score across all 5000 images. The results are given in
Table [3] As expected, Spotiflow consistently outperforms Otsu thresholding and is more robust to
noise in the images (low SNR).
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Table 3: Spot-detection performance for the two weak labeling methods (Spotiflow and Otsu thresh-
olding) for images of different quality (SNR). We report the absolute difference (AD) between the
ground truth and detected numbers of points, the True Positive Rate (TPR, recall), the Positive Pre-
dictive Value (PPV, precision), and the F} score. The expected number of points for all generated
point patterns is EN (W) ~ 52.

Spotiflow Otsu thresholding
Point process SNR AD (}) TPR (1) PPV (1) F1 () AD (}) TPR (1) PPV (1) F1 ()
Homogeneous Poisson 9.6 6.68 0.874 0.999 0.932 19.03 0.637 1.000 0.777
Homogeneous Poisson 12.8 7.16 0.865 1.000 0.927 9.31 0.825 0.999 0.902
Homogeneous Strauss 9.6 4.32 0918 0.999 0.956 15.60 0.701 1.000 0.824
Homogeneous Strauss 12.8 4.65 0.912 0.999 0.953 6.18 0.885 0.997 0.936
Homogeneous Thomas 9.6 14.99 0.732 0.999 0.843 29.38 0.466 1.000 0.633
Homogeneous Thomas 12.8 15.64 0.719 1.000 0.835 20.33 0.635 0.999976 0.772
Inhomogeneous Poisson 9.6 14.47 0.727 1.000 0.840 29.68 0.437 1.000 0.604
Inhomogeneous Poisson 12.8 15.28 0.712 1.000 0.830 20.06 0.622 0.999969 0.762
Inhomogeneous Strauss 9.6 6.7 0.870 0.999 0.929 18.81 0.634 1.000 0.775
Inhomogeneous Strauss 12.8 73 0.859 1.000 0.923 9.15 0.824 0.999168 0.901
Inhomogeneous Thomas 9.6 19.6 0.645 0.999 0.781 3573 0.342 1.000 0.503
Inhomogeneous Thomas 12.8 20.57 0.627 0.999 0.767 27.10 0.508 0.999752 0.665

F SUMMARY STATISTICS AND SIMULATION METRICS

To validate the accuracy of the learned conditional intensity models, conditioned on a latent variable
z, we compare nonparametric estimates of the first two moments of the predicted process and the ob-
served point pattern. The first moment is the intensity function, defined as EN (W) = [, p(u) du.
It can be interpreted as the expected number of points per unit area. We obtain a nonparametric
estimator using kernel density estimation (Mgller & Waagepetersenl, 2003). In particular, for an
observed point pattern X C T, the intensity at location v € W is estimated as

plu) = ky(u—v)/w(v), (16)

veEX

where ki, (u) = k(u/n)/n? n With density function k. We choose k as the multivariate standard
Gaussian and the weights w( fW u — v) dv to account for edge effects in the finite domain
W (Mgller & Waagepetersen 2003) We choose the bandwidth n = 0.5 empirically to yield good
estimates for all considered point-process types. This is close to Scott’s rule of thumb for EN (W) =~
52 points in W = [—1,1]2, which is nscott = 0.518 (Scott, 2015).

The accuracy of an intensity estimate is then quantified by the relative intensity error RIE(X¢, X) =
n~tY L [ 1p(ul X e) — p(u|X)|/N(X) du for different samples X; ¢ obtained from the condi-
tional intensity A¢ (X, u|z) predicted by the SI-VAE for a given input image .

To assess the quality of the estimated interaction structure, we leverage ideas from Monte Carlo
goodness-of-fit tests for spatial point processes (Diggle, 2013; |Baddeley et al., 2014). While such
tests are strictly invalid and conservative for any significance level when parameters need to be esti-
mated from the data, they provide a useful proxy to measure the quality of the learned model. We say
that a model is not able to capture the interaction structure in the observed pattern if the observation
X lies outside the maximum envelope of the samples X; ¢ from the predicted conditional intensity
Ae(X, ulz).

The sample envelope considers the minimum and maximum values of a functional summary statistic,
such as the K -function, over multiple distances r. The K -function counts the number of points at
distance r. It is commonly used to characterize interactions in spatial point processes (Diggle},[2013)).
Following Baddeley et al. (2000), we estimate it as

Z L))’ 17)

nex u) p(v)euw

where p(u) is the estimated intensity at u, and e,,,, is an edge correction weight to account for the do-
main boundaries. We use translation-based edge correction as described by Mgller & Waagepetersen
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(2003)). The intensity function p(u) is estimated using equation This shows that it can be difficult
to disentangle errors in the first and second moments of the distribution, since both depend on j(u).
This is especially true for clustering processes, where it is often unclear whether the clustering is
due to a spatially varying intensity or due to attractive interaction between the points.

Since the functional summary statistic is a function of the r, we reduce it to a single test statistic
t;. Following|Baddeley et al.[(2014)), we perform a maximum absolute deviation (MAD) test, which

considers the maximum deviation from the mean K (1) = n%_l (Kl (r)+ -+ Kn(r) + Kobs(r)> ,

where Kobs(r) is the K -function of the conditioning sample and K (r) is the K-function of the i-th
simulated sample. The test statistic then is

t; = max |Ki(r) - K(r)], (18)

which fulfills the necessary symmetry property under the null hypothesis H for a Monte Carlo test.
We choose R = 0.24, which corresponds to the rule of thumb proposed by Diggle| (2013)). The rate
of rejection of the test is used as a metric to assess the quality of the learned model. It quantifies
how frequently the observed pattern X achieves a larger maximum deviation from the mean than
the samples X; ¢ from the learned model. Formally,
LM
RR = MZl(mzaxtm < tobs,j) s (19)

j=1

which measures the number of times the test rejects Hy. A high rejection rate (RR) indicates
that the predicted conditional intensity significantly deviates from the observation and therefore
insufficiently captures the interaction structure in the image. This is in line with the post-hoc model
evaluation typically done for spatial point processes (Mgller & Waagepetersen, 2007). We use M =
100 random images for each class from the test set and n = 19. This would correspond to a test
significance level of 5% for a one-sided test, if the parameters of the null model were known.

G APPLICATION TO SUBCELLULAR PROTEIN LOCALIZATION

We describe the data set preparation, model architecture, and training procedure for the protein
localization experiment of Section [3.3]

We used the publicly available OpenCell data set (Cho et al., |2022)), which contains fluorescence
microscopy images of over 1000 human proteins. The present SI-VAE model was trained on images
of size 100 100 pixels, each centered around a nucleus. Three channels were used for training: the
protein fluorescence signal, the nucleus fluorescence signal, and the signed distance function to the
nucleus (see Fig.[9). Centering the observation window around a nucleus ensures that at least one
cell is completely contained within an image. Since the same data preparation was used for Cyzo-
self (Kobayashi et al.,[2022), we directly took the images from the Cytoself repository (Royer Lab,
2025). We generated weak labels for protein spot locations using Spotiflow (Dominguez Mantes
et al.,[2025)) on the protein fluorescence channel, with a low probability threshold of 0.35 to include
candidate points that might otherwise be rejected. No Gaussian smoothing was applied to the im-
ages prior to spot detection. This yielded better results upon visual inspection. The resulting point
coordinates were normalized to [—1, 1]? and mapped to standard Cartesian coordinates. These point
coordinates were then used as self-supervision target when training the SI-VAE model.

For the application case presented in the main text, we chose six proteins from three families. For
each protein, about 1000 images were available (POLR3E: 1162, POLR3F: 1068, SNX1: 1001,
SNX12: 1260, STAM: 1361, STAM?2: 1021). This resulted in a data set of 6873 images, which was
split into disjoint training (80%=5499 images), validation (10%=687 images), and test (10%=687
images) sets. Each channel in the training data set was standardized to zero mean and unit variance.
The same standardization was then also applied to the validation and test sets to prevent data leak-
age. Representative images for each of the six proteins are shown in Fig.[0] These are the same
representative examples as in Figs. [5]and

The VAE architecture from Appendix [C.I] was adjusted to the image shape of this application
(100x100x3). The input channel size was set to 3, while the rest of the convolutional layers re-
tained the same parameters as for the synthetic benchmarks, progressively downsampling the images
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Figure 9: Representative standardized images from the test set for the six proteins (rows) considered
in Section[3.5] Each image consists of three channels: the protein fluorescence signal (first column),
the nucleus fluorescence signal (second column), and the signed distance function to the nucleus
(third column). The same example images are also used in Figs. E] and@}

to 12 12 while increasing the number of channels as 3—16—32—64. All convolutional layers used
ReLU activations. The latent space dimension remained 64. The decoder reconstructed images via a
symmetric sequence of three transposed convolutional layers, decreasing the number of channels as
64—32—16—3. All transposed convolutional layers used the same parameters as in Appendix[C.1]
with ReLU activations in all layers except the output, to predict the standardized images. The recon-
struction error in equation [I| was minimized using the mean squared error, with the KL divergence
scaled by 5 = 0.1 as in the synthetic benchmarks.
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The conditional intensity prediction model remained unchanged from the synthetic benchmarks, as
described in Appendix We set the range of the interactions to half the average nucleus radius,
L = 0.25. This radius was identified from the central nuclei in all cropped images by taking the
largest connected component in the nucleus channel and computing its equivalent diameter (diameter
of a circle with the same area). This resulted in an average (across the entire data set) half-nucleus
radius of 12.59 pixels. Transformed to the coordinate space [—1, 1]? used by the model, this yields
L = 0.25. As in the synthetic benchmark, we used an erosion of R = 0.2 to avoid edge effects and
discretized integrals over the domain using trapezoidal quadrature on a fixed grid of size 100x 100.

Like in Appendix all three neural networks (VAE, ¢¢, 1)¢) were trained jointly on the training set,
each with its own Adam optimizer (Kingma & Ba, [2015), using batches of size 16 and learning rate
10~%. Training stopped upon convergence of the validation loss.

We compared SI-VAE with two baselines: the VAE without spatial supervision and Cytoself
(Kobayashi et al., [2022), a semi-supervised model based on vector-quantized VAE (VQ-VAE) that
leverages ground-truth protein labels as self-supervision target. Cytoself constitutes the state of the
art in human protein localization modeling, and it is significantly more complex than the present
SI-VAE.

For the VAE baseline, we retained the SI-VAE’s VAE component alone with the same parameters
(64 latent dimensions, 8 = 0.1). Training was stopped upon convergence of the validation loss to
ensure comparability.

For Cytoself, we used the published implementation (Royer Labl 2025) but retrained the model
from scratch on our data set. To correct for the smaller size of our data set, we reduced both VQ-
VAE codebooks to 128 entries (from the original 512). The two VQ-VAE learn representations on
different scales: a local representation (VQ1) at 2525 pixel capturing texture detail and a global
representation (VQ2) as a 4 x4 pixel feature map with 64 features per pixel aimed at capturing long-
range patterns. Following the original Cytoself paper, downstream clustering was performed on the
global representation (VQ2). Training was performed with an initial learning rate of 10~%, which
was reduced ten-fold whenever the validation loss did not improve for four consecutive epochs.
Early stopping was applied with 10 epochs patience. Training terminated after 14 epochs.

All learned representations were analyzed using images from the test set. We determined the latent
representation z of each test image using the trained SI-VAE, VAE, and Cyroself encoders. For
SI-VAE and VAE, we used the mean prediction of the posterior gp(z|z). We then standardized the
latent representations across the test set to zero mean and unit variance for each latent dimension and
performed clustering using a Gaussian Mixture Model (GMM) with full covariance matrix (Hastie
et al., [2009). The number of clusters K was determined using the Akaike Information Criterion
(AIC) (Akaikel[1974), AIC = —2log 0 + 2K, where { is the maximized likelihood of the model. We
fitted GMM for K = 1,...,6 and selected the model with the lowest AIC, which was K = 2. We
used the scikit—-learn implementation of GMM (Pedregosa et al.l |2011) with default settings.
Silhouette scores (Rousseeuwl [1987) were computed using Euclidean distance on the serialized
(into a vector) 64-dimensional embeddings (1024-dimensional for Cytoself). This score quantifies
the average distance between points within the same cluster relative to the points in the nearest
neighboring cluster. Higher Silhouette scores indicate tighter and more separated clusters. The
Silhouette score for a single sample is defined as
b—a

Se max(a,b)’ 20)
where a is the mean intra-cluster distance, and b is the mean nearest-cluster distance. Scores range
from —1to 1.

All three models consistently identified the same clusters (see Fig. [5|for SI-VAE and Fig.[I0|for VAE
and Cytoself). SI-VAE and Cytoself, however, achieved significantly higher Silhouette scores than
the VAE baseline (Table d). Since the cluster indices assigned by the GMM differ across models,
each cluster in the table is labeled according to its dominant protein localization: nuclear (POLR3E,
POLR3F) or vesicular (SNX1, SNX12, STAM, STAM?2).
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Cluster-Protein Distribution Cytoself(GMM, k=2)

Cluster-Protein Distribution VAE (GMM, k=2)

Cluster

SNX12 STAM STAM2 POLR3E POLR3F SNX1 SNX12 STAM STAM2

POLR3E POLR3F SNX1
Protein

Protein
Figure 10: Cluster assignment frequencies for all proteins in the VAE (left) and Cytoself (right)
embeddings. Each square shows the fraction of images of a given protein that was assigned to the
corresponding cluster. Clusters were determined by Gaussian Mixture Models (GMM) with K = 2.

Table 4: Silhouette scores on the test set embeddings of each model. Higher values indicate more
compact and better-separated clusters. The table reports the average Silhouette score for each cluster
(Nuclear, Vesicular) as well as the overall score across all samples.

Model Overall Vesicular cluster  Nuclear cluster
Cytoself  0.331 0.227 0.550
SI-VAE 0.294 0.286 0.310
VAE 0.040 0.042 0.035
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Figure 11: Visualization of predicted conditional intensities A¢ (X, u|z) for different latent represen-
tations z predicted by the SI-VAE from Section [3.1] trained at high SNR with ground-truth knowl-
edge. Each row shows the conditional intensity for samples from all considered point processes (row
labels on the left) over the eroded domain D = W © R. For each point process, three i.i.d. examples
are shown (columns).
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Figure 12: Simulation envelopes of the K -function for different latent codes z in the homogeneous
cases over the domain [—0.6,0.6]2. The orange line shows the empirically observed K-function,
the blue area the maximum and minimum point-wise simulation envelopes, and the black dashed
line the theoretical K -function for a Poisson process. The simulation envelopes are obtained from
the learned representation of the SI-VAE from Section [3.1] trained at high SNR with ground-truth
knowledge.
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Figure 13: Simulation envelopes of the K -function for different latent codes z in the inhomogeneous
cases over the domain [—0.6,0.6]2. The orange line shows the empirically observed K-function,
the blue area the maximum and minimum point-wise simulation envelopes, and the black dashed
line the theoretical K -function for a Poisson process. The simulation envelopes are obtained from
the learned representation of the SI-VAE from Section [3.1] trained at high SNR with ground-truth
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Figure 14: Examples of conditional simulation results from the trained conditional intensity model
for different latent codes z in the homogeneous cases over the evaluation domain [—0.6, 0.6])2. The
trained conditional intensity model is from the SI-VAE from Section [3.1] trained at high SNR with
ground-truth knowledge. Ten i.i.d. samples are shown for each point process type (Poisson, Strauss,
Thomas).
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Figure 15: Examples of conditional simulation results from the trained conditional intensity model
for different latent codes z in the inhomogeneous cases over the evaluation domain [—0.6, 0.6]2. The
trained conditional intensity model is from the SI-VAE from Section [3.1] trained at high SNR with
ground-truth knowledge. Ten i.i.d. samples are shown for each point process type (Poisson, Strauss,
Thomas).
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Figure 16: Conditional intensity predictions (contour plots) over the eroded domain D = W © R
for representative samples from the test set of the OpenCell data with detected points in orange.
The same samples as in Fig. [5|are shown with insets showing the corresponding nucleus channel for
reference.
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