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Abstract

Today’s online advertisers procure digital ad impressions through interacting with
autobidding platforms: advertisers convey high level procurement goals via setting
levers such as budget, target return-on-investment, max cost per click, etc. Then ads
platforms subsequently procure impressions on advertisers’ behalf, and report final
procurement conversions (e.g. click) to advertisers. In practice, advertisers may
receive minimal information on platforms’ procurement details, and procurement
outcomes are subject to non-stationary factors like seasonal patterns, occasional
system corruptions, and market trends which make it difficult for advertisers to op-
timize lever decisions effectively. Motivated by this, we present an online learning
framework that helps advertisers dynamically optimize ad platform lever decisions
while subject to general long-term constraints in a realistic bandit feedback envi-
ronment with non-stationary procurement outcomes. In particular, we introduce a
primal-dual algorithm for online decision making with multi-dimensional decision
variables, bandit feedback and long-term uncertain constraints. We show that our
algorithm achieves low regret in many worlds when procurement outcomes are gen-
erated through procedures that are stochastic, adversarial, adversarially corrupted,
periodic, and ergodic, respectively, without having to know which procedure is the
ground truth. Finally, we emphasize that our proposed algorithm and theoretical
results extend beyond the applications of online advertising.

1 Introduction
Automated bidding (or autobidding for short) has become the dominant mode for advertisers to
procure digital ad inventories and impressions, contributing to more than $120 billion dollar ad
spend in 2022 and more than 90% of total online ad transaction volumes [2, 1]. In an autobidding
platform, advertisers only need to convey their high-level procurement goals for an ad campaign to
the platform, which then takes charge of procuring ads on advertisers’ behalf. Such procurement
goals are communicated to a platform through platform levers, which are adjustable parameters that
advertisers can control to influence the bidding process and campaign performance. To exemplify,
Figure 1 displays certain several levers presented on the Google Ads interface, where an advertiser can
set per-campaign budgets, target cost-per-actions, campaign duration, campaign schedules, targeting,
etc; similar examples are also shown in related literature [21].

As the primary avenue for advertisers to run ad campaigns on autobidding platforms and influence
ad conversion outcomes (e.g., clicks), making efficient lever decisions is vital to advertisers to
achieve their procurement objectives. However, advertisers face many challenges in practice when
optimizing for lever decisions, namely high-dimensional decision making under long-term constraints,
non-stationary autobidding environments, and limited procurement feedback.

High-dimensional decision making and long-term constraint satisfaction. Making multiple
lever decisions involves evaluating numerous possible combinations of lever configurations, which is
computationally intensive and time-consuming in real-time decision making setups. Also, advertisers
need to understand the potential interactions and dependencies between levers, as adjusting one
lever may have unintended consequences or interactions with other levers, making it challenging to
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Figure 1: Example levers on the Google Ads interface to create digital advertising campaigns.

predict the overall impact of adjustments accurately. Furthermore, advertisers may need to satisfy
certain long-term constraints over time, e.g., limiting total spend under a budget, or achieving certain
return-on-investment targets. Hence in addition to analyzing the interactions between different levers,
advertisers also need to concern long-term consequences of making certain lever decisions.

Limited feedback on procurement outcome and constraints. Despite the fact that autobidding
via lever decisions greatly simplifies advertisers’ ad procurement process as they no longer have to
handle the intricacies of procuring individual ad impressions, the procurement procedure becomes a
black box for advertisers, as advertisers only have limited visibility into the specific details of how
the platform executes ad placement processes. This lack of transparency can make it challenging
for advertisers to control the nuances of their campaign execution through lever decisions, and it
amplifies the complexity to conduct counterfactual analyses on outcomes for past lever decisions.

Many non-stationary autobidding worlds. Autobidding procurement environments are highly
non-stationary, as a wide spectrum of latent factors in online ad marketplaces may greatly vary
procurement outcomes of the same lever decisions in different time periods. These latent factors
include but are not limited to changing user preferences, seasonality effects, shifts in market trends,
occasional malfunctions in autobidding platforms, etc. These dynamics may influence how users
interact with different types of ads, which necessitates continuous adjustment of lever decision
strategies to adapt to current and future market conditions.

To address these challenges, in this work we answer the following questions: How should an
advertiser dynamically set multiple levers to optimize conversion outcomes subject to long-term
constraints under limited information? And can she run a unified algorithm that can perform well
while being agnostic to many types of non-stationary autobidding procurement environments?

Motivated by these questions, in this work we study an advertiser’s online high-dimensional lever
decision problem with long-term constraints under limited bandit feedback in many non-stationary
worlds. We summarize our main contributions as followed:

1. Modelling online lever decisions in many worlds using online constrained optimization with
bandit function-valued feedback and uncertain constraints (Section 2). We cast the advertiser
lever decision problem as an online constrained optimization with bandit function-valued feedback
and uncertain constraints, where functions at which (lever) decisions are evaluated correspond to
the conversion and constraint functions in our autobidding setup. Further, we model real-world non-
stationarity in autobidding environments as possibly time-varying distributions from which conversion
and constraint functions are sampled, and then further applied to lever decisions. Under this model,
we discuss five different input procedures from which the sequence of functional distributions are
sampled to model stochastic, adversarial, corrupted, periodic, and ergodic environments; see Section
2.2 for more details. To the best of our knowledge, from a modelling perspective this is the first work
to model a high-dimensional lever decision problem in practical non-stationary autobidding worlds.

2. Proposing a constrained bandit optimization algorithm universally applicable to many
worlds (Section 3). We develop a unified bandit optimization algorithm with robust performance
guarantees across different worlds. Our algorithm incorporates four key designs to handle bandit
function-valued feedback and unknown non-stationary environments. 1. we utilize dual descent to
update dual variables associated with long-term constraints and decouple decisions over time; 2. we
employ a primal-ascent-based bandit online convex optimization (BOCO) approach to make (primal)
lever decisions to cope with bandit function valued feedback; 3. we implement an exponential weights
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expert algorithm on top of primal-ascent BOCO, where each expert corresponds to a different primal
ascent step size. This enables our algorithm to adapt to the optimal primal ascent step size for each
world without prior knowledge on which world we are in; 4. our algorithm dynamically checks
for realized constraint violations and applies "safe lever decisions" to ensure long-term constraint
satisfaction. For further details, we refer the readers to Algorithm 1 in Section 3.

3. Analyzing the performance of proposed algorithms in many worlds (Section 4). We present
theoretical analysis (Theorem 4.2) on the regret bound of the proposed algorithm, and we show that
our unified algorithm can achieve reasonable regret bounds with all five input procedures. These
regret bounds are summarized in the following Table 1.
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3
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+Õ
(
A · T

3
4

) O(T
3
4 + q

√
T ) O(T

3
4 + κ

√
T )

Table 1: T -period regret bounds for Algorithm 1 under different input models. Here A > 0 is some algorithm
dependent factor which we will later specify in Section 4.

The parameters (δ, ξ, OPT(P1:T ), q, κ) are formally defined in Section 2.2 and Theorem 4.2. Finally,
in Section 5 we remark all results are applicable to other problems.

1.1 Related works.

Autobidding. In an autobidding framework, there is a considerable body of works that study the
price of anarchy, which aims to improve worst case individual or total advertiser welfare guarantees
w.r.t. the optimal welfare via mechanism design frameworks; see e.g. [23, 7, 20, 38, 22]. We
remark that this line of work does not concern developing online learning algorithms. On the other
hand, numerous works have concentrated on developing online bidding algorithms for repeated
ad auctions [41, 10, 31, 30], as well as designing repeated selling mechanisms for ad impression
allocation; see [12, 27] and references therein. However, as discussed in the introduction, autobidding
platforms conduct bidding on behalf of advertisers while keeping bidding and selling mechanism
details undisclosed. In this study, we treat the bidding procedure and selling mechanism as a black
box and directly model bidding and auction outcomes using conversion functions; see Section 2. To
the best of our knowledge, the most pertinent work to this paper is [21], which explores a similar ad
procurement problem by optimizing levers within a bandit environment. However, this work solely
focuses on the stochastic world and optimizing a single lever (i.e., a 1-dimensional decision space). In
contrast, our paper develops a unified algorithm capable of making high-dimensional lever decisions
in many worlds.

Online convex optimization. In Section 2, we cast the advertiser’s online learning problem of
interest to a high-dimensional bandit online convex optimization problem with uncertain long-term
constraints, and develop an algorithm that yields good performance guarantees under different
procedures from which the objective and constraint functions are generated. There has been a rich
line of works that study bandit convex optimization with no long-term constraints in stochastic and
adversarial worlds [25, 32, 42, 17, 44], as well as works that study (full-information feedback) online
convex optimization with long-term constraints [36, 33, 43, 35]. Further, works that study both bandit
feedback and long-term constraints either consider single-dimensional (such as multi-arm bandits
with constraints) [40, 6, 4, 24], or consider static regret (i.e., benchmarking performance to that of
a single optimal action) [13, 16, 14, 37]. This paper distinguishes itself from these two streams of
works by considering high-dimensional decisions as well as dynamic regret, i.e., comparing to the
best sequence of actions instead of a single action; see Eq. (1). Finally, all aforementioned works
only study algorithms in stochastic or adversarial setups, whereas in this work we go beyond these
two worlds and address more complex learning environment such as periodic, corrupted, ergodic,
and finite switching. To the best of our knowledge, the only related work that develops a universal
algorithm under “many world” setups is [10]. However, [10] considers a full-information scenario
where the online decisions in period can be made after observing realized objective and constraint
functions during that period. In this work, we present an efficient algorithm to handle bandit feedback.

Notation. For any vector z ∈ Rd, let ∥z∥ be its Euclidean norm. Denote B = {z ∈ Rd : ∥z∥ ≤ 1}
as the d-dimensional unit ball centered at 0, and let S = {z ∈ Rd : ∥z∥ = 1} be the unit sphere. For
any set S, let U(S) be the uniform distribution over S. Let e denote the vector whose components
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are all 1’s, and ej be the unit vector whose j’th position is 1. We use O notation to represent the
asymptotic order of a term when the period T → ∞ and ignore the log T terms.

2 Autobidding with bandit feedback in many worlds (input models)
2.1 Autobidding as a bandit online optimization with long-term uncertain constraints

Consider an advertiser repeatedly interacting with an ad platform over T ∈ N periods, where each
period can be interpreted as a single ad campaign that is run on the platform. During each period
t ∈ [T ], the advertiser makes d ≥ 1 lever decisions denoted as xt ∈ X ⊆ Rd, e.g., setting the
per-campaign budget, campaign duration, per-campaign target return-on-investment, and max spend
per conversion; see Figure 1 for example lever decisions in practice. Here, X is some compact and
convex decision set whose diameter is D = sup{x,x′}⊆X ∥x− x′∥. For simplicity, assume 0 ∈ X so
∥x∥ ≤ D for any x ∈ X . After the lever decisions xt are made the campaign is fully executed via
autobidding, the advertiser observes bandit feedback for her campaign outcomes: she only observes
her realized conversion ft(xt) ∈ R≥0 (e.g., number of clicks on her ads), as well as some constraint
balance gt(xt) ∈ RK . The conversion and constraint functions (ft, gt) are sampled from some
(possibly infinite) support S according to distribution Pt ∈ ∆(S) (we will discuss how Pt’s are
generated by nature in Section 2.2). Using the notation P1:T = (Pt)t∈[T ] the advertiser’s hindsight
optimization problem is

OPT(P1:T ) = max
x∈XT

∑
t∈[T ]

EPt
[ft(xt)] s.t.

∑
t∈[T ]

EPt [gk,t(xt)] ≥ 0 k = 1 . . .K . (1)

Here, we use a constraint function gk,t : X → R to characterize general performance metrics of
the advertiser for her ad campaigns. In the following, we present several examples for constraint
functions that are widely used in practice or studied in literature. For illustrative purposes, we assume
xt,1 = e⊤1 xt (i.e., the first lever) represents the per-campaign budget for the t’th campaign.

• Long-term budget constraint. The advertiser has a total budget BT > 0. Then by letting constraint
function gk,t(x) = B − xt,1, we have

∑
t∈[T ] gk,t(xt) ≥ 0 =⇒

∑
t∈[T ] xt,1 ≤ BT , which means

total campaign spent over T periods (assuming each campaign fully depletes the campaign budget)
must be less than the advertiser’s total budget BT .

• Long-term return-on-investment constraint. The advertiser intends to safeguard a long-term return-
on-investment γ > 0, i.e., she attains a long-term average of at least γ conversions per dollar spent.
Then by considering gk,t(x) = ft(x)−γxt,1, we have

∑
t∈[T ] gk,t(xt) ≥ 0 =⇒

∑
t∈[T ] ft(xt) ≥

γ
∑

t∈[T ] xt,1, which means total conversion over T periods is at least γ times total spend.

Finally, we make the following mild assumptions on conversion and constraint functions.1

Assumption 2.1 (Mild assumptions on conversion and constraint functions). For any (f, g) ∈
S, f , g1 . . . gK are all bounded concave functions, i.e., we assume supx∈X ∥g(x)∥∞ ≤ Ḡ and
supx∈X |f(x)| ≤ F̄ for some Ḡ, F̄ < ∞. Moreover, f and g are L-Lipschitz, i.e., for any {x,x′} ⊆
X , we have |f(x)− f(x′)| ≤ L∥x− x′∥ and ∥g(x)− g(x′)∥ ≤ L∥x− x′∥. Furthermore, there
exists (f, g) ∈ S such that minx∈X mink∈[K] gk(x) < 0.

2.2 Five input models characterizing many autobidding worlds

In this subsection, we describe structural properties of the input distribution sequence P1:T , and shed
light on how we utilize various properties to model a wide spectrum of autobidding environments
(called worlds) such as time-varying user preferences, seasonality, shifts in market trends, etc., that
may potentially lead to different procurement outcomes for the same ad campaign lever decisions.

Stochastic: There exists some probability distribution P ∈ ∆(S) such that P1 = . . . = PT = P .
This stochastic world represents a stationary autobidding environment where the underlying latent
factors influencing user behaviors (and correspondingly conversion results) remain constant over
time; see [31, 9, 21].

1These assumptions are justified in many related works in autobidding; see [21, 14] and references therein.
For example, [21] shows that the conversion function is concave and piecewise-linear when autobidding platforms
procure ad impressions on behalf of advertisers in standard second price or VCG auctions.
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δ-corrupted. There exists P ∈ ∆(S) as well as δ ∈ N periods T = {τ1 . . . τδ} ⊂ [T ] such that
Pt = P for all t /∈ T . This δ-corrupted input sequence represents occasional anomalies in the
autobidding environment that may be caused by systematic malfunctions in the autobidding platform,
or deliberate attempts by malicious competitors to exploit the system for their own benefit; e.g., some
competitors may engage in click fraud to inflate the number of clicks on our ads to exhaust our budget
or generate false data to manipulate autobidding algorithms (for example, see [29]).

Adversarial. P1:T is adversarially chosen by nature before the process starts, and the distributions
over time can possibly be non-identical and/or dependent. This adversarial world can be viewed a
hypothetical extreme case for the δ-corrupted world where each period the procurement outcomes
can potentially be corrupted by an adversary. Adversarial input sequences have been widely studied
in the literature to assess algorithmic performances in worst-case scenarios; see [3, 30].

Periodic. There exists period length q ∈ N such that T = cq for some integer c ≥ 2 with P1:T

satisfying P1:q = Pq+1:2q = · · · = P(c−1)q+1:T . This periodic world captures regular cyclic patterns
or fluctuations in the user behavior over specific time intervals; e.g., seasonality, day-of-week patterns,
and time of a day.

Ergodic. P1:T is an ergodic process (e.g., an irreducible and aperiodic Markov chain or stationary
autoregressive processes), where there exists some κ > 0 and a stationary distribution such that the
distance between κ-step transition probabilities and this stationary distribution decreases exponentially
fast in κ. Mathematically, given the input distribution sequence P1:T , denote P(t+κ)|[t−1] as the
conditional distribution of (ft+κ, gt+κ) conditioned on the realizations {(fτ , gτ )}τ∈[t]. Then, for the
ergodic input model there exists a stationary distribution P̃ ∈ ∆(S) and absolute constant R > 0
such that

sup
{(ft,gt)}t∈[T ]∈ST

sup
t∈[T−κ]

∥P(t+κ)|[t−1] − P̃∥TV ≤ δ := R exp(−κ) ; (2)

We remark that exponentially decaying ergodic models have been studied widely in the context
of online optimization; see e.g. [10, Section 5.2] for further discussions. To make the problem
of interest tractable, we assume κ > log(T ). Intuitively, an ergodic input sequence signifies that
the procurement outcomes in close time proximity are correlated, which is commonly observed in
real-world autobidding systems, as they often involve iterative processes that enable procurement
algorithms (operated on behalf of advertisers) to converge to a stable state; see details in [9, 28].

2.3 Minimizing regret subject to long-term constraints with a universal algorithm
In this work, we take the perspective of an advertiser making repeated lever decisions as described in
Section 2.1. We focus on designing a single online algorithm that determines a lever decision xt ∈ X
in each period t with the goal to minimize regret RT (defined as follows) under any input sequence
P1:T while satisfying long-term constraints

RT = OPT(P1:T )−
∑

t∈[T ] E [ft(xt)] and
∑

t∈[T ] E [gt(xt)] ≥ 0. (3)

Here, the expectation is taken w.r.t. randomness from the input sequence as well as any randomness
in our algorithm. We highlight that our desired policy should be agnostic to the input model as well
as the input sequence P1:T . We remark that our work distinguishes itself from related work that
study solely stochastic and/or adversarial input models, as we aim to design a universal algorithm
that achieves salient performance over any input model described in Section 2.2.

3 A universal constrained BOCO framework for many worlds
In this section, we focus on designing an algorithm that achieves low regret (per Eq. (3)) while
maintaining long-term constraint satisfaction in any world described in Section 2.2, without having
to know which world we are in. We first highlight three main challenges for our problem of interest.

Dynamic benchmark lever sequence and unknown input sequence P1:T . Recall the hindsight
optimal problem in Eq. (1), with which we are comparing our algorithm’s performance to the optimal
sequence of lever decisions over time given any input sequence P1:T , instead of comparing to a single
optimal lever decision as in many related works; e.g., see [15] and references therein. This dynamic
optimal sequence presents a very strong benchmark and makes learning very difficult as we (ideally)
need to account for variations in the underlying non-stationary ground truth input sequence P1:T .
Nevertheless, we do not know the input sequence P1:T in advance, nor do we know in which world
the sequence belongs (Section 2.2).
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Bandit function-value (zeroth-order) feedback. Our setup concerns a bandit function-value
feedback model, where the realized conversion and constraint functions in each period, namley
ft : X → R≥0 and gt : X → RK are never revealed to us, and we can only access their function
values at our single lever decisions during the period. We also contrast our setup with a “two-point
feedback” setup in online convex optimization literature, where in each period one can access
function values twice (see [44] and references therein). Using the context of our setup, in a “two-point
feedback” after nature samples ft : X → R≥0 and gt : X → RK from Pt, we can observe the values
for two lever decisions {x(1)

t ,x
(2)
t } ⊆ X , namely (ft(x

(1)
t ), gt(x

(1)
t )) and (ft(x

(2)
t ), gt(x

(2)
t )).

Universal algorithm for many worlds. Instead of developing separate algorithms that cope with
each individual world described in Section 2.1, we aim to develop a single universal algorithm that
performs well in every world without exploiting any knowledge on the realized input sequence P1:T

or its structural properties.

The key component of our algorithm to handle the aforementioned challenges is the following
Lagrangian function: for any ft : X → R≥0 and gt : X → RK , let’s define Lt : X × RK

≥0 → R
such that

Lt(x,λ) = ft(x) + λ⊤gt(x) . (4)

Surrounding this Lagrangian function, our proposed algorithm is formally stated in Algorithm 1 with
four key components described as follows.

1. Dual descent to decouple decisions across time. As our lever decisions over time should be
somewhat intertwined with one another due to the presence of long term constraints, we decouple this
cross-period dependency by lagrangifying the hindsight problem in Eq. (1) w.r.t. some benchmark
dual variables. In each period t, we maintain an estimate of dual variables λt ∈ RK

≥0 corresponding
to each of our K constraints, and adopt a standard dual descent approach to dynamically adjust these
estimates; see Eq. (9). In particular, after observing (ft(xt), gt(xt)), we update our dual variable by
projecting each coordinate of λt − η∇λLt(xt,λt) = λt − ηgt(xt) onto some interval [0, F̄

β ] where
η > 0 is the dual descent step size, F̄ is the maximum achievable conversion, and β > 0 is some
“safety buffer” to be defined later.

2. Primal ascent to handle bandit function-valued feedback in many worlds. Given a dual
variable λt during period t, standard optimization frameworks suggest optimizing primal decisions
(i.e., lever decisions) by setting xt = argmaxx∈X EPt [Lt(x,λt)]. However, in our setting this is
not possible due to the bandit function-valued feedback structure: we do not know ft(·), gt(·) nor Pt,
and hence cannot optimize for EPt [Lt(·,λt)]. To handle this, we view the primal decision problem
as a bandit online convex optimization problem (BOCO) where the adversarial objective functions are
Lt(·,λt), and run a BOCO algorithm to make primal lever decisions in each period.

Mathematically, we define the BOCO objective function ht : X → R as

ht(x) = Lt(x,λt) = ft(x) + λ⊤
t gt(x) . (5)

Then, the BOCO algorithm constructs an estimate ∇t of ∇ht(x) based on a random perturbation
approach with perturbation parameter ρ > 0 (see Eq. (7) and [25] for more details in random
perturbations methods to estimate gradients). Next, the BOCO algorithm computes primal decision
xt by an ascent type update, i.e., projecting xt−1 + γ∇t back onto X , where γ > 0 is the primal
ascent step size; see Eq. (9). The loss we incur by running BOCO primal update instead of setting
argmaxx∈X EPt [ht(xt)] in the full information setting depends on the specific type of world we
are in, i.e., the input sequence P1:T . We later show in Lemma 4.3 that input sequences in each
world induce some comparator sequence y1 . . .yT ∈ X , so the conversion loss due to BOCO primal
ascent updates can be characterized as some BOCO “dynamic” regret

∑
t∈[T ] ht(yt)− ht(x

BOCO
t ).

Later in Lemma 4.6, we show that our BOCO algorithm achieves low dynamic regret against any
comparator sequence y1 . . .yT ∈ X .

3. Choosing primal ascent step sizes from expert advice for different worlds. Different worlds
(and correspondingly different BOCO comparator sequences) may require different “optimal” BOCO
primal ascent step sizes in order to achieve optimal regret guarantees. Since we are unaware of the
world from which the input sequence P1:T is generated, on top of our primal ascent procedure we
run a meta “expert” algorithm that allows us to adaptively approximate optimal step sizes in each
world. In particular, we consider N experts, each corresponding to a primal ascent step size γi > 0,
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and produce independent lever decision based on primal ascent with her own step size; see Eq. (9).
Then, we dynamically maintain exponential weights wt ∈ ∆N in the N -dimensional simplex over
N experts, based on their past performance measured by some surrogate loss function defined in
Eq. (8). Finally we set the weighted average primal decision over all experts as our ultimate primal
decision; see Eq. (6). We later show in Lemma A.3 that such exponentially weighted average BOCO
primal ascent decisions achieve low conversion loss compared to the “optimal” BOCO primal ascent
expert (i.e., step size) in every world, without having to know which world we are in.

4. Constraint violation check to ensure constraint satisfaction. To ensure long-term constraint
satisfaction, we maintain a constraint balance Bk,t =

∑
τ∈[t−1] gk,t(xτ ) for each constraint k ∈ [K]

that keeps track of our deviation from satisfying the constraint. To make our problem tractable, we
make the assumption that there is always a “safe action” with which we are always guaranteed to
attain some small positive constraint balance.2

Assumption 3.1 (Safe action). Assume there exists some β̄ > 0 and an action x̃β ∈ X such that for
any (f, g) ∈ S, we have gk(x̃β) > β̄ for all k ∈ [K].

With the constraint balance, in each period before making a lever decision, we check the following:
if by playing the safe action in all future rounds nearly violates constraints (step 2 in Algorithm 1),
then we hard stop our algorithm and play the safe action in all subsequent rounds. We remark that
we do not necessarily know the constraint function value lower bound β̄ > 0 in Assumption 3.1.
However, we show later in Theorem 4.1 that by considering any safety buffer β < β̄ (e.g., taking
β = 1/ log(T ) for large enough T ), we are hard stopping more conservatively, and thus maintain
constraint satisfaction. Note that our final regret scales with 1

β2 ; see Lemma 4.6.

Algorithm 1
Input: Initial dual variable λ1 = 0, primal expert solutions x̃i

1 = 0 for any i ∈ [N ]; perturbation parameter
ρ > 0 and α ∈ (0, 1); primal ascent step sizes for experts {γ1, . . . , γN} > 0; dual descent step size η;
learning rate of the meta-algorithm ϵ; initial expert weights wi,1 = 1 for all i ∈ [N ]; safety buffer β > 0.

1: Initialize constraint balance Bk,1 = 0 for all k ∈ [K]
2: while {for all k ∈ [K], Bk,t − Ḡ+ β(T − t− 1) ≥ 0} do
3: Compute exponentially weighted average forecaster:

x̃t =
1∑

i∈[N] w
i
t

∑
i∈[N ] w

i
tx̃

i
t (6)

4: Sample ut ∼ U(S) uniformly at random from the unit sphere.
5: Set xt = x̃t + ρut and observe ft(xt) and gt(xt). Update Bk,t+1 = Bk,t + gk,t(xt).
6: Construct gradient estimate for ∇xL(xt,λt)

∇t =
d
ρ

(
ft(xt) + λ⊤

t gt(xt)
)
· ut (7)

7: Update exponential weights for experts: Let ℓt : X → R be a surrogate loss function to measure the
performance of each expert. Then we update expert weights by

wi,t+1 = wi,t exp
(
−ϵℓt(x̃

i
t)
)

where ℓt(z) = ∇⊤
t (x̃t − z) (8)

8: Primal ascent per expert and dual descent:

x̃i
t+1 = Π(1−α)X (x̃i

t + γi∇t) and λt+1 = Π
[0, F̄

β
e]
(λt − η∇λLt(xt,λt))+ (9)

9: end while
10: Set stopping time τA = t. For t = τA . . . T set safety option xt = x̃β .

4 Performance analysis of our constrained BOCO algorithm

In this section, we analyze the performance of Algorithm 1 under input sequence P1:T which may
be generated from any world described in Section 2.2. Our first result Lemma 4.1 shows that our
algorithm maintains long-term constraint satisfaction almost surely for any input sequence.

2The existence of a safe action is not unnatural, and is studied in many literature; see [24, 21, 14]. For
instance, let’s recall our examples for constraint functions in Section 2.1 and assume we only have a long-term
budget constraint. Then the corresponding safe action for the constraint function gk,t(xt) = B − xt,1 would be
any xt whose first entry xt,1 = 0 so that we acquire positive constraint value B > 0.

7



Lemma 4.1 (Strict constraint satisfaction). Suppose Assumption 3.1 hold, and T is large enough so
that the safety buffer β = 1

log(T ) < β̄, where β̄ is defined in Assumption 3.1. Then, for any k ∈ [K],
we have

∑
t∈[T ] gk,t(xt) > 0.

The main result of this paper is the following Theorem 4.2, where we bound the regret of our proposed
Algorithm 1 in all worlds specified in Section 2.2.
Theorem 4.2 (Bounding regret in many worlds). Let the safety buffer β = 1

log(T ) , and the

number of experts N = max
(
1,
⌈
− log2

(
K− 1

6 (1 +DT )
1
2T− 3

4

)⌉
+ 1
)

, where K is the to-
tal number of constraints and D is diameter of the decision set X . Choose the corresponding
primal ascent step sizes for the N experts as {γ1 . . . γN} = {2−iK− 1

6 (1 + DT )
1
2T− 3

4 : i =
0 . . . N − 1}. Then by taking dual descent step size η = 1√

KT
, random perturbation parame-

ter ρ = K
1
3T− 1

4 and α = min
(

1
2 ,K

1
3T− 1

4

)
, and exponential weighted expert learning rate

ϵ = T− 1
2 , we obtain the following bounds on RT in each input setting of interest: (1) Stochastic:

RT ≤ O(T 3/4); (2) Adversarial: RT ≤
(
1− 1

ξ

)
OPT(P1:T ) + Õ

(√
1 + P (ỹ1:T ) · T

3
4

)
, where

ξ = 1 − 1
β̄
min(f,g)∈S mink∈[K],x∈X gk(x) > 1 under Assumption 2.1, β̄ > 0 is defined in As-

sumption 3.1, ỹt = argmaxx∈X ft(xt) + λ⊤
t gt(xt), and P (ỹ1:T ) =

∑
t∈[T−1] ∥ỹt − ỹt+1∥;

(3) δ-corrupted: RT ≤ O(T 3/4 + δ); (4) Periodic: RT ≤ O(T 3/4 + q
√
T ); (5) Ergodic:

RT ≤ O(T 3/4 + κ
√
T ).

We also summarize our regret bounds in Table 1. Although it is always challenging to identify which
input procedure the data currently comes from, Theorem 4.2 shows that the proposed Algorithm 1
achieves reasonable regret bound in five input settings without knowing which setting we are in. We
remark that in the adversarial setting, our algorithm is (1− 1

ξ )-competitive, namely, it can achieve at
least a 1

ξ -portion of the reward compared to OPT; later in Section 5 we comment that no sublinear
regret is achievable. For the δ-corrupted world, we corrupt δ instances in the input sequence over
time, so if δ = 0, we recover the stochastic world and achieve diminishing O(T 3/4) regret; in the
case we corrupt all samples, then we recover the adversarial case, and the regret becomes O(T ) as
expected. In the periodic world, if period length q = 1, we recover the stochastic case.
Remark 4.1. We remark that our regret upper bound in the adversarial case depends on the dual
variables {λt}t∈[T ] generated throughout the algorithm, which contrasts adversarial regret bounds
in [44] that only depend on the total variance of the optimal sequence of 1. This is due to that fact
that [44] handles a non-constrained online optimization problem, whereas we tackle a more difficult
problem with long-term adversarial constraints that leads to more severe regret degradation as we
ensure satisfaction of long-term adversarial constraints. We acknowledge that this bound should
ideally be independent of dual variables, and we leave this for future work.

In the rest of this section, we present a proof scratch of Theorem 4.2, and the formal proof of the
results can be found in Appendix A. The high-level idea of the proof is that we decompose total regret
into three components as in Lemma 4.3 bellow, namely the conversion losses due to hard stopping,
dual descent, and primal ascent, respectively. Then, we bound each component’s regret.
Lemma 4.3 (Regret decomposition). Let

(
λt ∈ RK

≥0

)
t∈[T ]

be the sequence of dual variables gener-
ated from Algorithm 1, and define ht(x) = Lt(x,λt) where there Lagrangian function Lt(x,λ) is
defined in Eq. (4). Then we have

OPT(P1:T )−
∑

t∈[T ] E [ft(xt)] ≤ F̄ (T − τA) +
∑

t∈[τA] λ
⊤
t gt(xt) +RBOCO(τA) (10)

where RBOCO(τA) admits the following bounds in each input setting: (1) Stochastic:
maxx∈X

∑
t∈[τA] ht(x)−ht(xt); (2) Adversarial:

∑
t∈[τA] ht(ỹt)−ht(xt)+

(
1− 1

ξ

)
OPT(P1:T )

where ỹt = argmaxx∈X EPt
[ft(x) + λ⊤

t gt(x)]; (3) δ-corrupted: maxx∈X
∑

t∈[τA] ht(x) −
ht(xt) + O(δ); (4) Periodic: maxx∈X

∑
t∈[τA] ht(x) − ht(xt) + O(ηqT ); (5) Ergodic:

maxx∈X
∑

t∈[τA] ht(x)− ht(xt) +O(ηκT ).

Here, we remark that the first term F̄ (T − τA) is the loss due to hard stopping to maintain long-term
constraint satisfaction; the second term

∑
t∈[τA] λ

⊤
t gt(xt) is the loss due to dual descent; and the
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final term RBOCO(τA) is the loss due to primal ascent. The first two components turn out to be
identical in different settings, and the input model only affects the last term RBOCO(τA). We next
present our key results with which we use to bound first two components (dual descent and hard stop
loss), and the third component (primal ascent loss), respectively.

Bounding dual descent and hard stop loss. Our strategy to bound the loss due to dual descent and
hard stopping relies on bounding some cumulative “complementary slackness” induced from dual
descent in the following Lemma 4.4. We note that the bound in Lemma 4.4 holds for any λ ∈ [0, F̄

β e],
and thus by choosing appropriate λ, we can “internalize” the losses due to dual descent and hard
stopping, as demonstrted in Lemma 4.5.

Lemma 4.4 (Bounding complementary slackness). For any λ ∈ [0, F̄
β e] and t ∈ [T ], we have∑

τ∈[t](λτ − λ)⊤gτ (xτ ) =
∑

τ∈[t](λτ − λ)⊤∇λLτ (xτ ,λτ ) ≤ η
2 tKḠ2 + 1

2η∥λ∥
2
2

Lemma 4.5 (Internalizing dual descent and hard stop losses.). Given the stopping time τA ∈ [T ],

w.p. 1 we have F̄ (T − τA) +
∑

t∈[τA] λ
⊤
t gt(xt) ≤ η

2TKḠ2 + 1
2η

(
F̄
β

)2
+ F̄ + F̄

β Ḡ.

Bounding primal ascent loss (dynamic BOCO regret). We present our main result Lemma 4.6,
which bounds the loss due to primal ascent for given any comparator sequence y1 . . .yT ∈ X .

Lemma 4.6 (Bounding primal ascent (dynamic BOCO regret)). For any i ∈ [N ], t ∈ [T ] and any

sequence y1:t ∈ X t we have
∑

τ∈[t] hτ (yτ )−hτ (xτ ) ≤ O
(

(ρ+α)T
β + 1+P (y1:T )

γi
+ γiKT

β2ρ2 +Tϵ+ 1
ϵ

)
,

where P (y1:T ) =
∑

t∈[T−1]∥yt − yt+1∥, and parameters (α, γi, ϵ, ρ) are specified in Algorithm 1.

Proof sketch. We define the smoothed-versions of BOCO rewards ht : X → R as ĥt(x) =
Ev∼U(B)[Lt(x + ρv,λt)]. Then, we decompose the primal ascent loss (BOCO dynamic regret)∑

τ∈[t](hτ (yτ )− hτ (xτ )) into 3 terms:∑
τ∈[t](hτ (yτ )− ĥτ ((1− α)yτ )) +

∑
τ∈[t](ĥτ ((1− α)yτ )− ĥτ (x̃τ )) +

∑
τ∈[t](ĥτ (x̃τ )− hτ (xτ )),

where we recall the x̃τ is the un-perturbed version of our primal lever decision in Algorithm 1. The
first and third summands can be directly be bounded via exploiting Lipschtiz continuity properties
for ht (see Lemma A.1). The second summand can further be upper bounded (using Lemma A.2)
by the surrogate loss difference between the primal decision weighted over all expert decisions and
the comparator decision, namely ℓτ (x̃τ ) − ℓτ ((1− α)yτ ). Then, we choose any expert i ∈ [N ]
corresponding to primal ascent step size γi > 0 as an “intermediary” and decompose cumulative
surrogate loss as

∑
t∈[T ](ℓt (x̃t)−ℓt ((1− α)yt)) =

∑
t∈[T ](ℓt (x̃t)−ℓt

(
x̃i
t

)
)+
∑

t∈[T ](ℓt
(
x̃i
t

)
−

ℓt ((1− α)yt)). The first summand corresponds to the cumulative loss of our unperturbed primal
decisions against any expert, and the second summand represents the cumulative loss of any expert
w.r.t. the comparator sequence. Both summands are bounded in Lemma A.3.

We note that choosing different experts as the intermediary may yield different bounds. But since
Lemma A.3 holds for any expert i ∈ [N ], we can consider the expert with the “optimal” primal ascent
step size in each world, respectively.

5 Additional discussions
Lower bounds. A natural question to ask is whether regret bounds in Theorem 4.2 are optimal. Here,
we look at lower bounds in “relaxed” problem settings, e.g., bandit online convex optimization with
no-constraints [11, 44], or online constrained optimization under full-information feedback [8, 10]:

Stochastic δ-corrupted Adversarial Periodic Ergodic

Ω(
√
T ) [19] Ω(

√
T + δ) [10] Ω

((
1− 1

ξ

)
T
)

[8] Ω(
√
qT )[10] NA

These relaxed lower bounds are applicable to our setting (though they may not be the tightest bounds),
and we can see that it may be possible to employ more complex machinery to attain better regret
performances for our bandit convex online optimization setup with uncertain constraints. Yet, to
identify an algorithm that can achieve the optimal regret in many worlds is an extremely challenging
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open problem. For instance, even in the relaxed setting of bandit convex optimization with no-
constraints, to the best of our knowledge there is no universal algorithm that achieves optimal regret
in just the stochastic and adversarial worlds.

Other applications. Our proposed Algorithm 1 addresses a more general problem of online decision
making with multi-dimensional decisions, bandit feedback and long-time uncertain constraints. That
being said, our algorithm can also be applicable to other problem settings, for example:

Personalized recommendation and assortment in online retailing. Online retail platforms aim to
optimize sales or revenue by recommending a limited assortment of products to customers. However,
the likelihood of customer purchases given an assortment as well as their preferences are unknown,
and different customer types may change over time due to evolving market trends. Platforms only
observe bandit binary purchase decisions. Hence in our context, the decision set X represents a
probability simplex over d items. The online decisions xt ∈ X correspond to recommendation
probabilities for each item. The function ft(xt) reflects the revenue generated from customer
purchases, while gt(xt) captures assortment capacity constraints, product inventory limits, or fairness
considerations to ensure equal visibility for each product [18].

Real time posted pricing in E-commerce and cloud computing. In online E-commerce platforms
such as Amazon and eBay, sellers set prices to sell various items to sequentially arriving customers
[5, 34, 26]; and in cloud computing, operators of cloud services such as Alibaba Cloud (Alicloud)
or Amazon Web Services (AWS) set prices for renting out different computing capacities (virtual
machines, VMs etc.) upon customer requests [39]. The arrival of customer types as well as their
demand may differ significantly over time (think about demand for sanitary products during pandemics
outbursts, or computing resource demands during periodic business hours). Further, decision makers
only get to observe (bandit) demand at the realized pricing decisions. Thereby, we can view xt ∈ X
as the vector of prices for various sold products, ft(xt) as the generated revenue over a given period,
gt(xt) as real time product/resource capacity constraints, operating cost constraints, etc.
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Appendices for

Online Ad Procurement in Non-stationary Autobidding Worlds

A Proofs for Section 4

A.1 Additional definitions for Section 4

Definition A.1 (Total variation between probability distributions). Consider two distributions
{P,P ′} ⊆ ∆(S). Then we define their total variation as ∥P − P ′∥TV = 1

2

∫
S |P(s)− P ′(s)|ds.

We also define the smoothed version of ht : X → R (see Eq. (5)) for any t as follows:

ĥt(x) = Ev∼U(B)[Lt(x+ ρv,λt)] (11)

where we recall the Lagrangian function Lt is defined in Eq. (4).

A.2 Additional lemmas for Section 4

Lemma A.1 (Lipschitz continuity). Let Assumption 2.1 hold, and we recall the definitions of ht(x)

and ĥt(x) from Eqs. (5) and (11), respectively, and recall λ1 . . .λT as the dual variables generated
from Algorithm 1. Then for any {x,x′} ⊆ X , we have |ht(x)− ht(x

′)| ≤ (1 +K F̄
β )L · ∥x− x′∥

and
∣∣∣ht(x)− ĥt(x)

∣∣∣ ≤ (1 +K F̄
β )Lρ.

Lemma A.2 (Bounding BOCO dynamic regret with surrogate loss). Recall the definition ĥt(x) =

Ev∼U(B)[Lt(x + ρv,λt)]. Then, ĥt(x) is concave. Further, For any y ∈ (1 − α)X , we have
ĥt(y)− ĥt(x̃t) ≤ Eut∼U(S) [ℓt(x̃t)− ℓt(y)], where x̃t is defined in Eq. (6), and the surrogate loss
function ℓt : X → R is defined in Eq. (8).
Lemma A.3 (Bounding surrogate loss for each expert). Recall the definition of individual forecasters
x̃i
t defined in Eq. (9), and the surrogate loss function ℓt : X → R defined in Eq. (8). Then for

any i ∈ [N ] and any sequence y1:T ∈ X T , by defining P (y1:T ) =
∑

t∈[T−1]∥yt − yt+1∥ (see

Lemma 4.6), we have (i)
∑

t∈[T ](ℓt
(
x̃i
t

)
− ℓt ((1− α)yt)) ≤ O

(
1+P (y1:T )

γi
+ γi

β2ρ2T
)

and (ii)∑
t∈[T ](ℓt (x̃t)− ℓt

(
x̃i
t

)
) ≤ O(Tϵ+ 1

ϵ ). where the constant β is specified in Algorithm 1. Here,
recall D is the diameter of the decision set X .

The proofs of Lemmas A.1, A.2,A.3 are shown in Appendices A.9, A.10, and A.11, respectively.

A.3 Proof for Lemma 4.1

Proof. For any k ∈ [K] we have∑
t∈[T ]

gk,t(xt) =
∑

t∈[τA−1]

gk,t(xt) +

T∑
t=τA

gk,t(xt)
(a)

≥
∑

t∈[τA−1]

gk,t(xt) + β̄(T − τA + 1)

≥
∑

t∈[τA−1]

gk,t(xt) + β(T − τA) + β
(b)

≥ Ḡ+ β > 0 ,

(12)

where in (a) we set xt = x̃β for all t = τA . . . T and gk,t(x̃β) ≥ β̄ for any k ∈ [K]; (b) follows from
the definition of the stopping time such that for any t′ < τA and k ∈ [K] we have

∑
t∈[t′] gk,t(xt)−

Ḡ+ β(T − t′ − 1) ≥ 0.

A.4 Proof for Lemma 4.4

Proof. It is easy to see λt+1 = Π[0, F̄β e](λt − η∇λLt(xt,λt))+ =

argminλ∈[0, F̄β e] ∇λLt(xt,λt)
⊤λ + 1

2η∥λ − λt∥2. By the first-order stationary condition
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at λt+1, we have for any λ ∈ [0, F̄
β e](

∇λLt(xt,λt) +
1

η
(λt+1 − λt)

)⊤

(λ− λt+1) ≥ 0 .

Then for all λ ∈ RK
≥0, it follows that

∇λLt(xt,λt)
⊤(λt − λ)

= ∇λLt(xt,λt)
⊤(λt − λt+1) +∇λLt(xt,λt)

⊤(λt+1 − λ)

≤ ∇λLt(xt,λt)
⊤(λt − λt+1) +

1

η
(λt+1 − λt)

⊤(λ− λt+1)

≤ ∇λLt(xt,λt)
⊤(λt − λt+1) +

1

2η
∥λ− λt∥2 −

1

2η
∥λ− λt+1∥2 −

1

2η
∥λt+1 − λt∥2

≤ η

2
∥∇λLt(xt,λt)∥2 +

1

2η
∥λ− λt∥2 −

1

2η
∥λ− λt+1∥2 .

By a telescoping argument, we have∑
τ∈[t]

∇λLτ (xτ ,λτ )
⊤(λτ − λ) ≤ η

2

∑
τ∈[t]

∥∇λLτ (xτ ,λτ )∥2 +
1

2η
∥λ− λ1∥2

=
η

2

∑
τ∈[t]

∥∇λLτ (xτ ,λτ )∥2 +
1

2η
∥λ∥2 ,

(13)

where in the final equality we used λ1 = 0. Also,

∥∇λLτ (xτ ,λτ )∥2 = ∥gτ (xτ )∥2 ≤ KḠ2 . (14)

Hence, combining Eqs. (13) and (14), we get the desired bound.

A.5 Proof of Lemma 4.5

Proof. If τA = T , taking λ = 0 in Lemma 4.4 yields
∑

t∈[T ] λ
⊤
t gt(xt) ≤ η

2TKḠ2 and thus the
desired inequality holds. If τA < T , then there exists some k ∈ [K] such that

∑
t∈[τA] gk,t(xt) −

Ḡ+ β(T − τA − 1) < 0, so by taking λ = F̄
β ek (ek ∈ RK is the unit vector whose kth entry is 1)

in Lemma 4.4 yields∑
t∈[τA]

λ⊤
t gt(xt) ≤

∑
t∈[τA]

λ⊤gt(xt) +
η

2
TKḠ2 +

1

2η
∥λ∥2

=
F̄

β

∑
t∈[τA]

gk,t(xt) +
η

2
TKḠ2 +

1

2η

( F̄
β

)2
≤ − F̄

β
· β(T − τA − 1) +

F̄

β
Ḡ+

η

2
TKḠ2 +

1

2η

( F̄
β

)2
= − F̄ (T − τA) + F̄ +

F̄

β
Ḡ+

η

2
TKḠ2 +

1

2η

( F̄
β

)2
,

which completes the proof.

A.6 Proof of Lemma 4.6

Proof. Recall the definition of ht(x) in Eq. (5). Then, we have∑
τ∈[t]

hτ (yτ )−
∑
τ∈[t]

hτ (xτ )

=
∑
τ∈[t]

(
hτ (yτ )− ĥτ ((1− α)yτ )︸ ︷︷ ︸

A

+ ĥτ ((1− α)yτ )− ĥτ (x̃τ )︸ ︷︷ ︸
B

+ ĥτ (x̃τ )− hτ (xτ )︸ ︷︷ ︸
C

) (15)
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Bounding A.

hτ (yτ )− ĥτ ((1− α)yτ ) = hτ (yτ )− hτ ((1− α)yτ ) + hτ ((1− α)yτ )− ĥτ ((1− α)yτ )

(a)

≤ (1 +K
F̄

β
)Lα∥yτ∥+ (1 +K

F̄

β
)Lρ

(b)

≤ (1 +K
F̄

β
)LαD + (1 +K

F̄

β
)Lρ ,

(16)

where (a) follows from Lemma A.1; (b) follows from ∥yτ∥ = ∥yτ − 0∥ ≤ D since we assumed
0 ∈ X .

Bounding B. ∑
τ∈[t]

ĥτ ((1− α)yτ )− ĥτ (x̃τ )

(a)

≤
∑
τ∈[t]

Euτ∼U(S) [ℓτ (x̃τ )− ℓτ ((1− α)yτ )]

=
∑
τ∈[t]

Euτ∼U(S)
[
ℓτ (x̃τ )− ℓτ (x̃

i
τ ) + ℓτ (x̃

i
τ )− ℓτ ((1− α)yτ )

]
(b)

≤ O

(
P (y1:T )

γi
+

γiK
F̄
β T

ρ2
+ Tϵ+

1

ϵ

)
,

(17)

where (a) follows from Lemma A.2 and (b) follows from Lemma A.3 (i) and (ii).

Bounding C.

ĥτ (x̃τ )− hτ (xτ ) = ĥτ (x̃τ )− hτ (x̃τ ) + hτ (x̃τ )− hτ (xτ )

(a)

≤ (1 +K
F̄

β
)Lρ+ (1 +K

F̄

β
)L · ∥x̃τ − xτ∥

(b)
= (1 +K

F̄

β
)Lρ+ (1 +K

F̄

β
)L · ∥ρuτ∥

≤ 2ρ(1 +K
F̄

β
)L ,

(18)

where (a) follows Lemma A.1; (b) is from the definition xτ = x̃τ + ρuτ in Algorithm 1.

A.7 Proof of Lemma 4.3

In this section, we provide upper bounds of the regret term under five different environments of input
procedures: stochastic, adversarial, δ-corrupted, periodic, and ergodic. The structure of the following
proof might seem similar to [10]; see [10, Sections 3-5]. However, we note that the proof techniques
are fundamentally different since our paper considers the bandit feedback environment while [10]
makes sequential decisions after observations.

Stochastic.

Proof. In the stochastic regime, we have P = P1 = · · · = PT for some P , and therefore we can
rewrite OPT(P1:T ) in Eq. (1) as followed

OPT(P1:T ) = max
x1:T∈XT

∑
t∈[T ]

F (xt) s.t.
∑
t∈[T ]

G(xt) ≥ 0 .

3



where we defined F (x) = E(f,g)∼P [f(x)], and G(x) = E(f,g)∼P [g(x)] for any x ∈ X . Hence, for
any λ ≥ 0 we have

OPT(P1:T ) =
T − τA

T
OPT(P1:T ) +

τA
T

OPT(P1:T )

≤ (T − τA)F̄ +
τA
T

max
x1:T∈XT

∑
t∈[T ]

(
F (xt) + λ⊤G(xt)

)
= (T − τA)F̄ +

τA
T

max
x∈X

∑
t∈[T ]

(
F (x) + λ⊤G(x)

)
= (T − τA)F̄ + τA max

x∈X

(
F (x) + λ⊤G(x)

)
,

(19)

where in the inequality we applied Assumption 2.1 which states supx∈X |f(x)| ≤ F̄ for all (f, g) ∈
S. Choosing λ = λ̄τA := 1

τA

∑
t∈[τA] λt we have

OPT(P1:T ) ≤ E
[
(T − τA)F̄ + τA max

x∈X

(
F (x) + λ⊤G(x)

) ]
≤ E

[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

(F (x) + λ⊤
t G(x))

]
(a)

≤ E
[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

E
[
ft(x) + λ⊤

t gt(x)
∣∣∣ σ(Ht−1)

] ]
(b)
= E

[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

E
[
ht(x)

∣∣∣ σ(Ht−1)
] ]

≤ E
[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

ht(x)
]
,

(20)

where in (a) we used the fact that λt is Ht−1-measurable; in (b) we used definitions ht(x) =
Lt(x;λt) and Lt(x;λ) = ft(x) + λ⊤gt(x) in Eqs. (4) and (5) respectively.

On the other hand, we have

ft(xt) = ht(xt)− λ⊤
t gt(xt), (21)

so combining this with Eq. (20) we have

OPT(P1:T )−
∑
t∈[T ]

E[ft(xt)] ≤ E
[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

(
ht(x)− ht(xt)

)
+
∑
t∈τA

λ⊤
t gt(xt)

]
(22)

where we also used the fact that ft(x) ≥ 0 for all t = τA + 1 . . . T and x ∈ X .

Adversarial.

Proof. Recall the definition of ξ is Theorem 4.2:

ξ = 1−
min(f,g)∈S mink∈[K],x∈X gk(x)

β̄
> 1 . (23)

For any t ∈ [T ], define ỹt = argmaxx ft(x) + λ⊤
t gt(x).

By comparing to the safety action xβ ∈ X which ensures gk(xβ) ≥ β̄ for any k ∈ [K] and
(f, g) ∈ S, as well as the optimal hindsight action x∗

t ∈ X (i.e., x∗
1 . . .x

∗
T is the optimal decision

sequence to OPT(P1:T )), we have

ft(ỹt) + λ⊤
t gt(ỹt) ≥ ft(xβ) + λ⊤

t gt(xβ) ≥ β̄λ⊤
t e

and ft(ỹt) + λ⊤
t gt(ỹt) ≥ ft(x

∗
t ) + λ⊤

t gt(x
∗
t ).

(24)
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We further have

ξft(ỹt) = ft(ỹt) + (ξ − 1)ft(ỹt)

(a)

≥ ft(x
∗
t ) + λ⊤

t gt(x
∗
t )− λ⊤

t gt(ỹt) + (ξ − 1)
(
−λ⊤

t gt(ỹt) + β̄λ⊤
t e
)

= ft(x
∗
t ) + λ⊤

t gt(x
∗
t )− ξλ⊤

t gt(ỹt) + (ξ − 1)β̄λ⊤
t e

(b)

≥ ft(x
∗
t )− ξλ⊤

t gt(ỹt)

(25)

where (a) follows Eq. (24); in (b) we used the fact that gk,t(x∗
t ) + (ξ − 1)β̄ ≥ 0 since we have

min(f,g)∈S mink∈[K],x∈X (gk,t(x) + (ξ − 1)β̄) ≥ 0 (see Eq. (23)). Hence we have

OPT(P1:T )−
∑
t∈[T ]

E[ft(xt)]

=
(
1− 1

ξ

)
OPT(P1:T ) +

∑
t∈[T ]

E
[1
ξ
ft(x

∗
t )− ft(xt)

]
≤
(
1− 1

ξ

)
OPT(P1:T ) +

∑
t∈[T ]

E
[
ft(ỹt)− ft(xt) + λ⊤

t gt(ỹt)
]

≤
(
1− 1

ξ

)
OPT(P1:T ) + E

[
(T − τA)F̄ +

∑
t∈τA

(
ft(ỹt)− ft(xt) + λ⊤

t gt(ỹt)
)]

,

(26)

which completes the proof.

δ-corrupted.

Here, we will prove a more general δ-corrupted model where the input distribution sequence P1:T

satisfies the following: ∑
t∈[T ]

∥Pt −
1

T

∑
s∈[T ]

Ps∥TV ≤ δ , (27)

where the total variation norm is defined in Definition A.1. In fact, the definition in Section 2.2 for
the δ-corrupted regime satisfies the above property: recall the definition in Section 2.2, there exists
P ∈ ∆(S) as well as δ ∈ N periods T = {τ1 . . . τδ} ⊂ [T ] such that Pt = P for all t /∈ T , so for
any t /∈ T , we have

∥Pt −
1

T

∑
s∈[T ]

Ps∥TV = ∥P − 1

T

(
TP +

∑
s∈T

(Ps − P)
)
∥TV

= ∥ 1
T

∑
s∈T

(P − Ps)∥TV ≤ δ

2T
.

(28)

On the other hand, we have for any t ∈ T , ∥Pt − 1
T

∑
s∈[T ] Ps∥TV ≤ 1

2 . After summing it up, we
get ∑

t∈[T ]

∥Pt −
1

T

∑
s∈[T ]

Ps∥TV =
∑
t∈T

∥Pt −
1

T

∑
s∈[T ]

Ps∥TV +
∑
t/∈T

∥Pt −
1

T

∑
s∈[T ]

Ps∥TV

≤ δ

2
+ (T − δ)

δ

2T
≤ δ ,

which coincides with our general definition of δ-corruption in Eq. (27).

We now prove the δ-corruption regime under the general definition in Eq. (27). Define P̃ =
1
T

∑
s∈[T ] Ps, F̃ (x) = E(f,g)∼P̃ [f(x)], G̃(x) = E(f,g)∼P̃ [g(x)], Ft(x) = E(f,g)∼Pt

[f(x)] and

Gt(x) = E(f,g)∼Pt
[g(x)] for all t ∈ [T ] and any x ∈ X . Then for any λ ∈ [0, F̄

β e], we have

5



OPT(P1:T ) ≤ max
x1:T∈XT

∑
t∈[T ]

(
Ft(xt) + λ⊤Gt(xt)

)
≤ max

x1:T∈XT

∑
t∈[T ]

(F̃ (xt) + λ⊤G̃(xt)) + (F̄ + ḠK
F̄

β
)δ

= T ·max
x∈X

(F̃ (x) + λ⊤G̃(x)) + (F̄ + ḠK
F̄

β
)δ,

(29)

where the last inequality follows the definitions of (F̃ , G̃), Assumption 2.1, and the general definition
of δ-corruption in Eq. (27). After choosing λ̄ = 1

τA

∑
t∈[τA] λt, similar to our proof in Eq. (20) for

the stochastic case we have
OPT(P1:T )

= E
[T − τA

T
OPT(P1:T ) +

τA
T

OPT(P1:T )
]

(a)

≤ E
[
(T − τA)F̄ + τA ·max

x∈X
(F̃ (x) + λ⊤G̃(x)) +

τA
T

(F̄ + ḠK
F̄

β
)δ
]

= E
[
(T − τA)F̄ +

τA
T

(F̄ + ḠK
F̄

β
)δ +max

x∈X
(
∑

t∈[τA]

F̃ (x) + λ⊤
t G̃(x))

]
(b)

≤ E
[
(T − τA)F̄ +

(
1 +

τA
T

)
(F̄ + ḠK

F̄

β
)δ +max

x∈X

∑
t∈[τA]

(Ft(x) + λ⊤
t Gt(x))

]
≤ E

[
(T − τA)F̄ +

(
1 +

τA
T

)
(F̄ + ḠK

F̄

β
)δ +max

x∈X

∑
t∈[τA]

E
[
ft(x) + λ⊤

t gt(x)
∣∣∣ σ(Ht−1)

] ]
≤ E

[
(T − τA)F̄ + 2(F̄ + ḠK

F̄

β
)δ +max

x∈X

∑
t∈[τA]

ht(x)
]
,

(30)
where (a) follows from Eq. (29); (b) follows from the definition of general δ-corruption in Eq. (27).

Finally, we complete the proof by using the definition ft(xt) = ht(xt)− λ⊤
t gt(xt) and following

the same argument as in Eq. (22) for the stochastic regime.

Periodic.

Recall in Section 2.2 that in the periodic regime, there exists cycle length q ∈ N such that T = cq
for some integer c ≥ 2 with P1:T as P1:q = Pq+1:2q = · · · = P(c−1)q+1:T . For any t ∈ [T ], define
ct ∈ [c] such that (ct − 1)q + 1 ≤ t ≤ ctq. After denoting P̃ = 1

q

∑
t∈[q] Pt, we define the mean

deviation within a single cycle of length q as

MD(P1:q) =
∑

1≤t≤q

∥Pt − P̃∥TV and δ = c ·MD(P1:q). (31)

We define F̃ (x) = E(f,g)∼P̃ [f(x)], G̃(x) = E(f,g)∼P̃ [g(x)], Ft(x) = E(f,g)∼Pt
[f(x)] and

Gt(x) = E(f,g)∼Pt
[g(x)] for all t ∈ [T ] and any x ∈ X . Then for any λ ∈ [0, F̄

β e], we have

OPT(P1:T ) ≤ max
x1:T∈XT

∑
t∈[T ]

(
Ft(xt) + λ⊤Gt(xt)

)
= c · max

x1:q∈X q

∑
t∈[q]

(
Ft(xt) + λ⊤Gt(xt)

)
≤ cq ·max

x∈X
(F̃ (x) + λ⊤G̃(x)) + (F̄ + ḠK

F̄

β
)c ·MD(P1:q)

≤ cq ·max
x∈X

(F̃ (x) + λ⊤G̃(x)) + (F̄ + ḠK
F̄

β
)δ,
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where the equality follows the nature of periodic setting and the last inequality follows the def-
initions of (F̃ , G̃), Assumption 2.1, and (31). After choosing λ =

∑
ĉ∈[cτA−1]

q
τA

λ(ĉ−1)q+1 +
τA−(cτA−1)q

τA
λ(cτA−1)q+1, we further have that

OPT(P1:T )

=
T − τA

T
OPT(P1:T ) +

τA
T

OPT(P1:T )

≤ (T − τA)F̄ + τA ·max
x∈X

(F̃ (x) + λ⊤G̃(x)) +
τA
T

(F̄ + ḠK
F̄

β
)δ

= (T − τA)F̄ +max
x∈X

τAF̃ (x) +

 ∑
ĉ∈[cτA−1]

qλ(ĉ−1)q+1 + (τA − (cτA − 1)q)λ(cτA−1)q+1

⊤

G̃(x)


+

τA
T

(F̄ + ḠK
F̄

β
)δ

= (T − τA)F̄ +max
x∈X

(
q ·

∑
ĉ∈[cτA−1]

(
F̃ (x) + λ⊤

(ĉ−1)q+1G̃(x)
)

+ (τA − (cτA − 1)q) ·
(
F̃ (x) + λ⊤

(cτA−1)q+1G̃(x)
))

+
τA
T

(F̄ + ḠK
F̄

β
)δ

≤ (T − τA)F̄ +max
x∈X

∑
t∈[τA]

(
F̃ (x) + λ⊤

t G̃(x)
)
+ Ḡ ·

∑
t∈[τA]

∥λt − λ(ct−1)q+1∥1 +
τA
T

(F̄ + ḠK
F̄

β
)δ.

From Eq. (9) in Algorithm 1, we know that ∥λt+1 − λt∥1 ≤ ηḠK, which further implies ∥λt+i −
λt∥1 ≤ ηḠKi for any i ∈ [q − 1] and thus∑

t∈[τA]

∥λt − λ(ct−1)q+1∥1 ≤ cτAηḠK
∑

i∈[q−1]

i ≤ 1

2
ḠKηcτAq

2. (32)

After combining the two equations above, it follows that

OPT(P1:T )

≤ E
[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

(
F̃ (x) + λ⊤

t G̃(x)
)
+

1

2
Ḡ2KηcτAq

2 +
τA
T

(F̄ + ḠK
F̄

β
)δ
]

≤ E
[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

(
Ft(x) + λ⊤

t Gt(x)
)
+

1

2
Ḡ2KηcτAq

2 + 2(F̄ + ḠK
F̄

β
)δ
]

≤ E
[
(T − τA)F̄ + 2(F̄ + ḠK

F̄

β
)δ +

1

2
Ḡ2KηqT +max

x∈X

∑
t∈[τA]

E
[
ht(x)

∣∣∣ σ(Ht−1)
] ]

≤ E
[
(T − τA)F̄ + 2(F̄ + ḠK

F̄

β
)δ +

1

2
Ḡ2KηqT +max

x∈X

∑
t∈[τA]

ht(x)
]
,

where the second last inequality follows from cτAq ≤ cq = T .

Finally, we complete the proof by using the definition ft(xt) = ht(xt)− λ⊤
t gt(xt) and following

the same argument as in Eq. (22) for the stochastic regime.

Ergodic.

Consider some κ ≥ log(T ). Given the input distribution sequence P1:T , denote P(t+κ)|[t−1] as the
conditional distribution of (ft+κ, gt+κ) conditioned on the {(fτ , gτ )}τ∈[t]. Then, in the ergodic
regime, there exists a stationary distribution P̃ ∈ ∆(S) and absolute constant R > 0 such that

sup
{(ft,gt)}t∈[T ]∈ST

sup
t∈[T−κ]

∥P(t+κ)|[t−1] − P̃∥TV ≤ δ := R exp(−κ) ; (33)
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see [10, Section 5.2] for further discussions. By defining F̃ (x) = E(f,g)∼P̃ [f(x)], G̃(x) =

E(f,g)∼P̃ [g(x)], F̂t+κ(x) = E(f,g)∼P(t+κ)|[t−1]
[f(x)], Ĝt+κ(x) = E(f,g)∼P(t+κ)|[t−1]

[g(x)],
Ft(x) = E(f,g)∼Pt

[f(x)] and Gt(x) = E(f,g)∼Pt
[g(x)] for all t ∈ [T ] and any x ∈ X , we

know that for any λ ∈ [0, F̄
β e], it follows that

OPT(P1:T )

≤ max
x1:T∈XT

E

∑
t∈[T ]

(
Ft(xt) + λ⊤Gt(xt)

)
= max

x1:κ∈Xκ
E

∑
t∈[κ]

(
Ft(xt) + λ⊤Gt(xt)

)+ max
xκ+1:T∈XT−κ

E

[
T−κ∑
t=1

(F̂t+κ(xt+κ) + λ⊤Ĝt+κ(xt+κ))

]

≤ (F̄ + ḠK
F̄

β
)κ+ max

xκ+1:T∈XT−κ

T−κ∑
t=1

(F̃ (xt+κ) + λ⊤G̃(xt+κ)) + (F̄ + ḠK
F̄

β
) · (T − κ)δ

≤ T ·max
x∈X

(F̃ (x) + λ⊤G̃(x)) + (F̄ + ḠK
F̄

β
)κ+ (F̄ + ḠK

F̄

β
) · Tδ .

(34)

By choosing λ = 1
τA

∑
t∈[τA] λt, we further have

OPT(P1:T )

= E
[T − τA

T
OPT(P1:T ) +

τA
T

OPT(P1:T )
]

≤ E
[
(T − τA)F̄ + τA ·max

x∈X

(
F̃ (x) + λ⊤G̃(x)

)]
+ (F̄ + ḠK

F̄

β
)κ+ (F̄ + ḠK

F̄

β
) · Tδ

= E
[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

(
F̃ (x) + λ⊤

t G̃(x)
) ]

+ (F̄ + ḠK
F̄

β
)κ+ (F̄ + ḠK

F̄

β
) · Tδ

≤ E
[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

(
F̂t+κ(x) + λ⊤

t Ĝt+κ(x)
)]

+ (F̄ + ḠK
F̄

β
)κ+ 2(F̄ + ḠK

F̄

β
) · Tδ

= E
[
(T − τA)F̄ +max

x∈X
E
∑

t∈[τA]

(F̂t+κ(x) + λ⊤
t+κĜt+κ(x) + (λt − λt+κ)

⊤Ĝt+κ(xt))
]

+ (F̄ + ḠK
F̄

β
)κ+ 2(F̄ + ḠK

F̄

β
) · Tδ

(a)

≤ E
[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

(F̂t+κ(x) + λ⊤
t+κĜt+κ(xt))

]
+ κηTKḠ2

+ (F̄ + ḠK
F̄

β
)κ+ 2(F̄ + ḠK

F̄

β
) · Tδ

≤ E
[
(T − τA)F̄ +max

x∈X

∑
t∈[τA−κ]

(F̂t+κ(x) + λ⊤
t+κĜt+κ(xt))

]
+ κηTKḠ2

+ 2(F̄ + ḠK
F̄

β
)κ+ 2(F̄ + K̄

F̄

β
) · Tδ

(b)

≤ E
[
(T − τA)F̄ +max

x∈X

τA∑
t=κ+1

ht(x)
]
+ κηTKḠ2 + 2(F̄ + ḠK

F̄

β
)κ+ 2(F̄ + ḠK

F̄

β
) · Tδ

≤ E
[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

ht(x)
]
+ κηTKḠ2 + 2(F̄ + ḠK

F̄

β
)κ+ 2(F̄ + ḠK

F̄

β
) · Tδ

8



(c)

≤ E
[
(T − τA)F̄ +max

x∈X

∑
t∈[τA]

ht(x)
]
+ κηTKḠ2 + 2(F̄ + ḠK

F̄

β
)κ+ 2R(F̄ + ḠK

F̄

β
),

where in (a), from (9) in Algorithm 1, we know that ∥λt+1 − λt∥1 ≤ ηḠK, which further implies
∥λt+κ − λt∥1 ≤ κηḠK and thus

(λt − λt+κ)
⊤Ĝt+κ(xt) ≤ κηKḠ2 . (35)

In (b), we used the fact that for any t ≥ κ+ 1, we have

E
[
max
x∈X

∑
t∈[τA−κ]

(F̂t+κ(x) + λ⊤
t+κĜt+κ(xt))

]
= E

[
max
x∈X

∑
t∈[τA−κ]

E
[
ht+κ(x) | (fτ , gτ )τ∈[t−1]

]]
≤ E

[
max
x∈X

∑
t∈[τA−κ]

ht+κ(x)
]
.

(36)

In (c) we used the fact that κ ≥ log(T ), so δ = R exp(−κ) ≥ R.

Finally, we complete the proof by using the definition ft(xt) = ht(xt)− λ⊤
t gt(xt) and following

the same argument as in Eq. (22) for the stochastic regime.

A.8 Proof of Theorem 4.2

Proof. We bound the regret in every world as followed

RT = OPT(P1:T )−
∑
t∈[T ]

E [ft(xt)]

(a)

≤ E
[
F̄ (T − τA) +

∑
t∈[τA]

λ⊤
t gt(xt) +RBOCO(τA)

]
(b)

≤ E
[
RBOCO(τA)

]
where (a) follows from Lemma 4.3, and (b) follows from Lemma 4.5. Recall RBOCO(τA) is specified
in Lemma 4.3 for each world.

In the following we bound RBOCO(τA) for each world.

Stochastic.

E
[
RBOCO(τA)

]
= E

[
max
x∈X

∑
t∈[τA]

ht(x)− ht(xt)
] (a)

≤ O
( (ρ+ α)T

β
+

1

γi
+

γiKT

β2ρ2
+ Tϵ+

1

ϵ

)
(b)
= O

(
T

3
4

)
,

(37)

where (a) follows from Lemma 4.6 by taking the comparator sequence yt =
argmaxx∈X

∑
t∈[τA] ht(x) for all t ∈ [τA] such that P (y1:T ) = 1, as well as any primal

ascent expert i ∈ [N ]; (b) follows from taking η = 1√
KT

, ρ = K
1
3T− 1

4 , ϵ = T− 1
2 , β = 1

log(T ) ,

and finally choosing γi = K− 1
6 (1 + DT )

1
2T− 3

4 . Recall all primal ascent expert stepsizes are
{γ1 . . . γN} = {2−iK− 1

6 (1 +DT )
1
2T− 3

4 : i = 0 . . . N − 1}.

δ-corrupted, Periodic, and Ergodic. The proof is nearly identical with that of the stochastic world
in Eq. (37) given that we still consider the comparator sequence yt = argmaxx∈X

∑
t∈[τA] ht(x)

for all t ∈ [τA] such that P (y1:T ) = 1. Hence we will omit the proof.
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Adversarial. Recall the definition ỹt = argmaxx∈X ft(xt) + λ⊤
t g(xt). Then we have

E
[
RBOCO(τA)

]
=

(
1− 1

ξ

)
OPT(P1:T ) +

∑
t∈[τA]

E
[
ht(ỹt)− ht(xt)

]
≤ O

( (ρ+ α)T

β
+

1 + P (ỹ1:T )

γi
+

γiKT

β2ρ2
+ Tϵ+

1

ϵ

)
≤
(
1− 1

ξ

)
OPT(P1:T ) + Õ

(√
1 + P (ỹ1:T ) · T

3
4

)
,

(38)

where we chose the primal ascent stepsize γi s.t.
1

2
K− 1

6 (1 + P (ỹ1:T ))
1
2T− 3

4 ≤ γi ≤ K− 1
6 (1 + P (ỹ1:T ))

1
2T− 3

4 (39)

We note that such a γi must exist because P (ỹ1:T ) ≤ DT given all ỹt ∈ X , so that the largest
element in the primal ascent stepsize set, namely K− 1

6 (1+DT )
1
2T− 3

4 is larger than the upper bound
above, namely K− 1

6 (1 + P (ỹ1:T ))
1
2T− 3

4 .

A.9 Proof for Lemma A.1

Proof. Recall the definition ht(x) = ft(x) + λ⊤
t gt(x) in Eq. (5). Then we have∣∣∣ht(x)− ht(x

′)
∣∣∣ ≤

∣∣∣ft(x)− ft(x
′)
∣∣∣+ ∥λt∥ · ∥gt(x)− gt(x

′)∥
(a)

≤ L∥x− x′∥+K
F̄

β
L∥x− x′∥ = (1 +K

F̄

β
)L · ∥x− x′∥ ,

(40)

where (a) follows from the fact that any (f, g) ∈ S are L-lipschitz under Assumption 2.1.

On the other hand, recall the definition ĥt(x) = Ev∼U(B)[Lt(x+ρv,λt)] in Eq. (11). Then we have∣∣∣ht(x)− ĥt(x)
∣∣∣ = Ev∼U(B)

[
ht(x)− ht(x+ ρv)

]
≤ (1 +K

F̄

β
)Lρ · Ev∼U(B)

[
∥v∥

]
≤(1 +K

F̄

β
)Lρ ,

(41)

where the inequality follows from the first part of this lemma.

A.10 Proof of Lemma A.2

Proof. Recall the definitions ht(x) = ft(x) + λ⊤
t gt(x) in Eq. (5), and ĥt(x) = Ev∼U(B)[Lt(x+

ρv,λt)] in Eq. (11). Then, we have

ĥt(y)− ĥt(x̃t)
(a)

≤ ⟨∇ĥt(x̃t),y − x̃t⟩
(b)
=
〈d
ρ
· Eu∼U(S) [ht(x̃t + ρu) · u] , y − x̃t

〉
= Eut∼U(S)

[〈d
ρ
· ht(x̃t + ρut) · ut , y − x̃t

〉]
(c)
= Eut∼U(S) [⟨∇t,y − x̃t⟩]
(d)
= Eut∼U(S) [ℓt(x̃t)− ℓt(y)]

(42)

where (a) follows from concavity of ĥt(·); (b) follows from Lemma B.2 by taking h = −ht,
so that in the lemma −∇xEv∼U(B)[h(x + ρv)] = ∇ĥt(x) and −Eu∼U(S) [h(x+ ρu) · u] =
Eu∼U(S) [ht(x+ ρu) · u]; (c) follows from the gradient estimate in Eq. (7) where

∇t =
d

ρ

(
ft(xt) + λ⊤

t gt(xt)
)
· ut =

d

ρ
· ht(xt) · ut =

d

ρ
· ht(x̃t + ρut) · ut

Finally, (d) follows from the definition of surrogate loss functions in Eq. (8).
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A.11 Proof of Lemma A.3

Proving (i):

Proof. Let’s denote ∇t = ∥∇t∥. Since x̃i
t+1 = Π(1−α)X (x̃i

t + γi∇t) we have ∥y − x̃i
t+1∥ ≤

∥y − (x̃i
t + γi∇t)∥ for any y ∈ (1− α)X . Then

∥y − x̃i
t+1∥2 ≤ ∥y − x̃i

t∥2 − 2γi∇⊤
t (y − x̃i

t) + γ2
i ∇2

t

=⇒ ∥x̃i
t+1∥2 ≤ ∥x̃i

t∥2 + 2y⊤(x̃i
t+1 − x̃i

t)− 2γi∇⊤
t (y − x̃i

t) + γ2
i ∇2

t .

Hence by taking y = (1− α)yt ∈ (1− α)X and rearranging we get

2γi
(
ℓt
(
x̃i
t

)
− ℓt ((1− α)yt)

)
= 2γi∇⊤

t ((1− α)yt − x̃i
t)

≤ ∥x̃i
t∥2 − ∥x̃i

t+1∥2 + 2(1− α)y⊤
t (x̃

i
t+1 − x̃i

t) + γ2
i ∇2

t .

(43)

Telescoping with τ = 1 . . . t we get∑
τ∈[t]

ℓτ
(
x̃i
τ

)
−
∑
τ∈[t]

ℓτ ((1− α)yτ )

≤ 1

2γi
∥x̃i

1∥2 +
1− α

γi

∑
τ∈[t]

y⊤
τ (x̃

i
τ+1 − x̃i

τ ) +
γi
2

∑
τ∈[t]

∇2
τ

=
1

2γi
∥x̃i

1∥2 +
1− α

γi

y⊤
t x̃

i
t+1+

∑
τ∈[t−1]

(yτ − yτ+1)
⊤
x̃i
τ+1

+
γi
2

∑
τ∈[t]

∇2
τ

≤ 1

2γi
∥x̃i

1∥2 +
1− α

γi

∥yt∥ · ∥x̃i
t+1∥+

∑
τ∈[t−1]

∥yτ − yτ+1∥ · ∥x̃i
τ+1∥

+
γi
2

∑
τ∈[t]

∇2
τ

≤ (1− α)2D2

2γi
+

(1− α)2D

γi
(P (y1:T ) +D) +

γid
2

2ρ2

(
F̄ +K

F̄

β
Ḡ

)2

t ,

(44)

where P (y1:T ) is defined in the lemma statement.

Proving (ii):

Proof. First, we have for any t ∈ [T ], i ∈ [N ]∣∣ℓt(x̃i
t)
∣∣ =

∣∣∇T
t (x̃t − x̃i

t)
∣∣ ≤ ∥∇t∥ · ∥x̃i

t − x̃t∥ ≤ d

ρ

(
F̄ +K

F̄

β
Ḡ

)
· (1− α)D , (45)

where we recall D = sup{x,x′}⊆X ∥x− x′∥ is the diameter of X , and both {x̃i
t, x̃t} ⊆ (1− α)X .

Define Wt =
∑

i∈[N ] wi,t for all t ∈ [T ], then

log

(
Wt+1

Wt

)
= log

∑
i∈[N ]

wi,t exp
(
−ϵℓt(x̃

i
t)
)

Wt


= log

(
EIt∼wt/Wt

[
exp

(
−ϵℓt(x̃

It
t )
)])

(a)

≤ − ϵEIt∼wt/Wt

[
ℓt(x̃

It
t )
]
+

ϵ2

2
·
(
d

ρ

(
F̄ +K

F̄

β
Ḡ

)
· (1− α)D

)2

(b)
= − ϵℓt

(
EIt∼wt/Wt

[
x̃It
t

])
+

ϵ2

2
·
(
d

ρ

(
F̄ +K

F̄

β
Ḡ

)
· (1− α)D

)2

(c)
= − ϵℓt (x̃t) +

ϵ2

2
·
(
d

ρ

(
F̄ +K

F̄

β
Ḡ

)
· (1− α)D

)2

.

(46)
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Here (a) follows from Hoeffding’s Lemma as described in Lemma B.1 where we take X = ℓt(x̃
It
t ),

a = −d
ρ

(
F̄ +K F̄

β Ḡ
)
· (1 − α)D and b = d

ρ

(
F̄ +K F̄

β Ḡ
)
· (1 − α)D; (b) follows from the

definition that ℓt(x̃) = ∇T
t (x̃− x̃t) is a linear function in x̃; (c) follows from Eq.(6).

Hence, telescoping the above we get

log

(
Wt+1

W1

)
≤ − ϵ

∑
τ∈[t]

ℓτ (x̃τ ) +
tϵ2

2
·
(
d

ρ

(
F̄ +K

F̄

β
Ḡ

)
· (1− α)D

)2

. (47)

On the other hand, we have

log

(
Wt+1

W1

)
= log(Wt+1)− log(W1)

≥ log(max
i∈[N ]

wi,t)− log(N)

= max
i∈[N ]

log(wi,t)− log(N)

(a)
= max

i∈[N ]
log

wi,1 exp

−ϵ
∑
τ∈[t]

ℓτ
(
x̃i
τ

)− log(N)

= − ϵ min
i∈[N ]

∑
τ∈[t]

ℓτ
(
x̃i
τ

)
− log(N) .

(48)

Hence, after combining Eqs. (47) and (48), and dividing both sides by ϵ > 0, we get

−
∑
τ∈[t]

ℓτ (x̃τ ) +
tϵ

2
·
(
d

ρ

(
F̄ +K

F̄

β
Ḡ

)
· (1− α)D

)2

≥ − min
i∈[N ]

∑
τ∈[t]

ℓτ
(
x̃i
τ

)
− log(N)

ϵ

=⇒
∑
τ∈[t]

ℓτ (x̃τ )− min
i∈[N ]

∑
τ∈[t]

ℓτ
(
x̃i
τ

)
≤ tϵ

2
·
(
d

ρ

(
F̄ +K

F̄

β
Ḡ

)
· (1− α)D

)2

+
log(N)

ϵ

=⇒
∑
τ∈[t]

ℓτ (x̃τ )−
∑
τ∈[t]

ℓτ
(
x̃i
τ

)
≤ tϵ

2
·
(
d

ρ

(
F̄ +K

F̄

β
Ḡ

)
· (1− α)D

)2

+
log(N)

ϵ
, ∀i ∈ [N ] ,

(49)

which completes the proof.

B Supplementary lemmas

Lemma B.1 (Hoeffding’s lemma). Let X be some random variable such that a ≤ X ≤ b almost
surely for some a, b ∈ R. Then for any ϵ ∈ R, we have E [exp(−ϵX)] ≤ exp

(
−ϵE [X] + ϵ2(b−a)2

8

)
.

Lemma B.2 ([25] Lemma 2.1). Let h : X → R be some convex function (not necessarily differen-
tiable). Then for any x ∈ X ⊆ Rd and δ > 0 we have

∇xEv∼U(B)[h(x+ δv)] =
d

δ
· Eu∼U(S) [h(x+ δu) · u] . (50)
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