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ABSTRACT

The popularity of LLaMA (Touvron et al., 2023a;b) and other recently emerged
moderate-sized large language models (LLMs) highlights the potential of build-
ing smaller yet powerful LLMs. Regardless, the cost of training such models
from scratch on trillions of tokens remains high. In this work, we study struc-
tured pruning as an effective means to develop smaller LLMs from pre-trained,
larger models. Our approach employs two key techniques: (1) targeted structured
pruning, which prunes a larger model to a specified target shape by removing
layers, heads, and intermediate and hidden dimensions in an end-to-end manner,
and (2) dynamic batch loading, which dynamically updates the composition of
sampled data in each training batch based on varying losses across different do-
mains. We demonstrate the efficacy of our approach by presenting the Sheared-
LLaMA series, pruning the LLaMA2-7B model down to 1.3B and 2.7B param-
eters. Sheared-LLaMA models outperform state-of-the-art open-source models
of equivalent sizes, such as Pythia, INCITE, OpenLLaMA and the concurrent
TinyLlama models, on a wide range of downstream and instruction tuning eval-
uations, while requiring only 3% of compute compared to training such models
from scratch. This work provides compelling evidence that leveraging existing
LLMs with structured pruning is a far more cost-effective approach for building
competitive small-scale LLMs.1

1 INTRODUCTION

Large language models (LLMs) are extremely performant on a wide range of natural language tasks,
but they require enormous amounts of compute to train (OpenAI, 2023; Anthropic, 2023). As such,
there is growing interest in building strong moderate-sized models, such as LLaMA (Touvron et al.,
2023a;b), MPT (MosaicML, 2023), and Falcon (Almazrouei et al., 2023), that allow for efficient
inference and fine-tuning. These LLMs are available in varied sizes suited for different use cases, but
training each individual model from scratch—even the smallest billion-parameter models—requires
substantial computational resources that are cost-prohibitive for most organizations. In this work,
we seek to address the following question:

Can we produce a smaller, general-purpose, and competitive LLM by leveraging existing
pre-trained LLMs, while using much less compute than training one from scratch?

We explore structured pruning as a means to achieve this goal. Pruning is commonly viewed as a so-
lution for compressing task-specific models (Han et al., 2016; Li et al., 2016; Lagunas et al., 2021;
Xia et al., 2022; Kurtic et al., 2023), removing redundant parameters and accelerating inference
without sacrificing task performance. However, for general-purpose LLMs, pruning inevitably re-
sults in performance degradation compared to original models (Frantar & Alistarh, 2023; Sun et al.,
2023; Ma et al., 2023), especially when without significant compute invested post-pruning. In this
work, we use pruning as an effective approach for developing smaller yet competitive LLMs that
require only a fraction of the training compute compared to training them from scratch.

1Please find our code and models at https://github.com/princeton-nlp/LLM-Shearing.
We present frequently asked questions and answers in Appendix G.
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We identify two key technical challenges in this problem. First, how can we decide on fi-
nal pruned architectures that are strong in performance and efficient for inference? Exist-
ing structured pruning techniques for LLMs (Xia et al., 2022; Ma et al., 2023) do not spec-
ify targeted structures and lead to suboptimal pruned models in terms of performance and in-
ference speed (Table 4 and Appendix F.2). Second, how can we continue pre-training the
pruned model to reach desired performance? We observe that training using the original pre-
training data leads to imbalanced rates of loss reduction across different domains, compared to
when training such models from scratch. This indicates that the pruned model retains vary-
ing levels of knowledge for different domains (e.g., GitHub vs. C4) and simply using the pre-
training domain proportion results in an inefficient use of data (Figure 4). To address these is-
sues, we propose “LLM-shearing”, an algorithm consisting of the following two components:

OPT

Pythia

INCITE

OpenLLaMA v1

Sheared-LLaMA (ours)
OpenLLaMA v2

32x faster

Figure 1: Sheared-LLaMA-2.7B surpasses a se-
ries of open-source models at a similar scale and
only requires 1/32 (3%) of budget to achieve on-
par performance with OpenLLaMA-3B-v2.

• We propose a novel pruning algorithm,
dubbed targeted structured pruning, which
prunes a source model to a specified tar-
get architecture. The target architecture
is determined by leveraging the configura-
tions of existing pre-trained models. Our
pruning approach searches for substruc-
tures within the source model that maxi-
mally preserve performance while adher-
ing to the given constraints.

• We devise a dynamic batch loading algo-
rithm that loads training data from each
domain in proportion to its rate of loss re-
duction, thereby making an efficient use of
the data and accelerating the overall per-
formance improvement.

We demonstrate the efficacy of our proposed method by pruning a LLaMA2-7B model (Touvron
et al., 2023b) into two smaller LLMs: Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B. Despite
using only 50 billion addtional tokens (i.e., 5% of OpenLLaMA’s pre-training budget) for prun-
ing and continued pre-training, Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B outperform other
popular LLMs at similar scales, including Pythia (Biderman et al., 2023), INCITE (TogetherAI,
2023b), and OpenLLaMA (Geng & Liu, 2023), on 11 representative downstream tasks (Figure 1;
commonsense, reading comprehension, and world knowledge) and instruction tuning for open-
ended generation. Additionally, the downstream performance trajectory suggests that further train-
ing the pruned model with more tokens would result in even greater gains. While we only conduct
experiments with up to 7B parameter models, our LLM-shearing algorithm is highly generalizable
and can be extended to large language models of any size in future work.

2 LLM-SHEARING

Given an existing large modelMS (the source model), we study how to efficiently produce a smaller,
strong modelMT (the target model). We consider this as a two-stage process: (1) PruningMS into
MT . This reduces the number of parameters but inevitably incurs a performance drop. (2) Continue
pre-trainingMT with a standard language modeling objective to reach a target performance. While
most recent efforts (Xia et al., 2022; Ma et al., 2023) focus on the former stage, we find the latter
stage crucial for producing competitive general-purpose LLMs from structured pruning.

2.1 TARGETED STRUCTURED PRUNING

Structured pruning removes groups of model parameters to compress models and accelerate infer-
ence. However, existing structured pruning approaches often result in unconventional model config-
urations that deviate from popular architectures. For example, CoFiPruning (Xia et al., 2022) pro-
duces models with non-uniform layer configurations (e.g., different numbers of heads across layers),
which incurs inference overhead compared to standard uniform layer configurations (Section 4.2).
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Figure 2: Targeted structured pruning produces a compact and dense model of a pre-specified shape.
Light colors indicate pruned substructures. Masking variables z are learned to control whether a
substructure is pruned (z = 0) or retained (z = 1).

In this work, we aim to prune the source model into any target configuration that we specify.This
goal is challenging because it requires surgically scaling down all dimensions in a transformer ar-
chitecture, an endeavor that, to our knowledge, has not been accomplished before for large language
models. We leverage the configurations of existing pre-trained models as the target architectures,
based on the intuition that these configurations have already been well-optimized to balance model
expressivity and inference efficiency. For example, we use the INCITE-Base-3B architecture (To-
getherAI, 2023a) as the target structure when producing a 2.7B model.

Our method learns a set of pruning masks on model parameters at different granularities—from
global ones like layers and hidden dimensions (persist across all layers), to local ones like attention
heads and intermediate dimensions. Assume that the source modelMS has LS layers, with each
layer consisting of one multi-head attention module (MHA) and one feed-forward network (FFN).
MS has a hidden state dimension of dS , HS heads in each MHA, and an intermediate dimension of
mS in each FFN. We introduce the following mask variables:

Granularity Layer Hidden dimension Head Intermediate dimension

Pruning masks zlayer ∈ RLS zhidden ∈ RdS zhead ∈ RHS (×LS) zint ∈ RmS (×LS)

Each mask variable controls whether the associated substructure is pruned or retained. For example,
we remove a layer if its corresponding zlayer = 0. Figure 2 illustrates an example of how the pruning
masks control the pruned structures.

We formulate pruning as a constrained optimization problem (Platt & Barr, 1987) where we
learn pruning masks to search for a subnetwork matching a pre-specified target architecture while
maximizing performance.2 Following the ℓ0 regularization approach (Louizos et al., 2018), we
parametrize the pruning masks to model hard concrete distributions. These distributions have sup-
port on [0, 1] but concentrate their probability mass at 0 or 1, enabling discrete prune or retain
decisions. While prior work usually control for a target sparsity (Wang et al., 2020; Xia et al.,
2022), we use a pair of Lagrange multipliers to impose constraints on the pruned model shape di-
rectly. For example, for a target number of heads HT (and we use LT , dT , and mT to represent the
target number of layers, hidden dimension, and intermediate dimension respectively), we have the
imposed constraint on a single layer as:

L̃head(λ, ϕ, z) = λhead ·
(∑

zhead −HT

)
+ ϕhead ·

(∑
zhead −HT

)2

.

Similar constraints are applied to pruning other substructures. Overall, we jointly optimize the
model weights and pruning masks by a min-max objective minθ,z maxλ,ϕ Lprune(θ, z, λ, ϕ):

Lprune(θ, z, λ, ϕ) = L(θ, z) +
LS∑
j=1

L̃head
j +

LS∑
j=1

L̃int
j + L̃layer + L̃hidden,

where L(θ, z) is the language modeling loss computed with the masked model weights. This objec-
tive will produce a pruned model with the target shape. Ideally, running this pruning algorithm on
a large amount of data will directly produce a strong compact model. In practice, the pruning stage
is expensive (roughly 5× slower compared to standard LM training), and we find that the learned

2Please find a more detailed exposition of the algorithm in Appendix A.
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Algorithm 1: Dynamic Batch Loading

Require: Training data of k domains D1, D2, · · · , Dk, validation data Dval
1 , Dval

2 , · · · , Dval
k ,

initial data loading weights w0 ∈ Rk, reference loss ℓref ∈ Rk, LM loss L or pruning loss
Lprune, training steps T , evaluation per m steps, model parameters θ (θ, z, ϕ, λ for pruning)

for t = 1, · · · , T do
if t mod m = 0 then

ℓt[i]← L(θ, z,Dval
i ) if pruning else L(θ,Dval

i )
∆t[i]← max {ℓt[i]− ℓref [i], 0} ▷ Calculate loss difference
wt ← UpdateWeight(wt−m, ∆t) ▷ Update data loading proportion

end
Sample a batch of data B from D1, D2, · · · , Dk with proportion wt;
if pruning then

Update θ, z, ϕ, λ with Lprune(θ, z, ϕ, λ) on B
else

Update θ with L(θ,B)
end

end

Subroutine UpdateWeight(w, ∆)
α← w · exp (∆) ▷ Calculate the unnormalized weights
w ← α∑

i α[i]
return w ▷ Renormalize the data loading proportion

return θ

masks often converge fast. Therefore, we only allocate a limited budget for pruning (see Table 5).
Following pruning, we finalize the pruned architecture by preserving the highest-scoring compo-
nents associated with the mask variables in each substructure, and continue pre-training the pruned
model with the language modeling objective. We refer to this second stage as continued pre-training.

2.2 DYNAMIC BATCH LOADING

Continued pre-training on a large amount of data is crucial for recovering the pruned model perfor-
mance. We observe a surprising finding in our preliminary experiments: continuing pre-training our
pruned models on an existing pre-training dataset RedPajama (TogetherAI, 2023b; LLaMA’s repli-
cated pre-training dataset) reduces loss at different rates across domains compared to pre-training a
model from scratch, which signifies an inefficient use of data.

To be more specific, we begin by fitting a scaling function (Hoffmann et al., 2022; details in Ap-
pendix B) on the series of LLaMA2 models for each domain. Using this function, we predict the
loss of a hypothetical 1.3B LLaMA2 model if it were trained from scratch on the same data. We
then compare these estimated reference losses to the losses of our pruned model after continued
pre-training. Figure 4 (left) shows that our model’s loss on GitHub is better than the reference loss,
while it is significantly worse than the reference loss on C4. This observation indicates that pruning
preserves a greater amount of knowledge in low-entropy and smaller domains (e.g., GitHub) com-
pared to high-entropy and larger domains (e.g., C4). Simply reusing the original pre-training data
distribution3 results in an inefficient use of data and worse downstream performance, even if the
overall loss is seemingly low, as demonstrated later in Section 4.1.

Inspired by recent work (Xie et al., 2023), we propose dynamic batch loading, an efficient algorithm
to adjust domain proportions on the fly based on losses. The goal is to ensure the model achieves
the reference loss at roughly the same time across domains. We introduce the algorithm below.

Problem setup. The pre-training data comprises of k domains D1, D2, · · · , Dk and we have a held-
out validation dataset for each domain, denoted as Dval

i . At each training step t, a proportion wt[i]
of the data comes from domain Di. We set a reference validation loss ℓref(Di) for each domain and
train the pruned model to reach the reference loss.

3The LLaMA2 pre-training data is not public. We conducted the same analysis on LLaMA1 models and
observed a similar phenomenon, indicating that this is a universal issue unrelated to specific pre-training data.

4



Published as a conference paper at ICLR 2024

Dynamic batch loading. We present the full algorithm in Algorithm 1. In a sketch, for every m
steps, we evaluate the model to get the validation loss ℓt (step t) on Dval, and update wt based on the
difference ∆t(Di) between ℓref [i] and ℓt[i] on each domain. The update rule is exponential ascent
following Xie et al. (2023),

αt = wt−m · exp(∆t); wt =
αt∑
i αt[i]

.

We apply dynamic batch loading to both the pruning stage and the continued pre-training stage. For
pruning, we use the original pre-training data’s domain weights as w0. For continued pre-training,
we use the final weights from the pruning stage as w0. Dynamic batch loading is an on-the-fly
solution that adjusts data proportions during training without the need for training auxiliary models.
It leverages reference losses on validation sets and adjusts the weights dynamically, adding minimal
overhead to standard training. This approach differs from Xie et al. (2023), which requires a complex
multi-stage process to train reference and proxy models.

More broadly, dynamic batch loading can train an LLM to match any reference model’s performance
by using open-source pre-training datasets like RedPajama, even without knowing the reference
model’s exact training data.

Choices of reference losses. By default, we use the loss predicted by the fitted scaling function
as the reference (denoted as scaling reference). We also experiment with an alternative where we
directly use the source model’s domain validation loss as the reference (denoted as source reference).
We show in F.4 that while both variants perform well, using scaling reference leads to slightly better
downstream results, especially on math and coding tasks. However, source reference is a viable
alternative when a series of source models at different scales is not available.

3 EXPERIMENTS

3.1 SETUP

Model configurations. We use the LLaMA2-7B model (Touvron et al., 2023b) as the source
model throughout all of our main experiments.4 We then conduct structured pruning experiments
to compress this model down to two smaller target sizes—2.7B and 1.3B parameters. We compare
to strong pre-trained language models of similar sizes, including OPT-1.3B (Zhang et al., 2022),
Pythia-1.4B (Biderman et al., 2023), TinyLlama-1.1B (Zhang et al., 2024), OPT-2.7B, Pythia-2.8B,
INCITE-Base-3B (TogetherAI, 2023b), OpenLLaMA-3B-v1, and OpenLLaMA-3B-v2 (Geng &
Liu, 2023). We use Pythia-1.4B and INCITE-Base-3B as the target architecture for the 1.3B and
the 2.7B model respectively. Table 8 summarizes model architecture details of all these models.

Table 1: A summary of pre-training
datasets used by Sheared-LLaMA and
other models.

Model Pre-training Data #Tokens

LLaMA1 LLaMA data 1T
LLaMA2 Unknown 2T

OPT OPT data5 300B
Pythia The Pile 300B
INCITE-Base RedPajama 800B
OpenLLaMA v1 RedPajama 1T
OpenLLaMA v2 OpenLLaMA data6 1T
TinyLlama TinyLlama data7 3T
Sheared-LLaMA RedPajama 50B

Data. As the training data for LLaMA2 is not pub-
licly accessible, we use RedPajama (TogetherAI, 2023b),
which is a replicated pre-training dataset of the LLaMA1
models (Touvron et al., 2023a), for pruning and
continued-pretraining. This dataset encompasses training
data from seven domains: CommonCrawl, C4, Github,
Wikipedia, Books, ArXiv, and StackExchange. We con-
struct a held-out validation set with 2 million tokens
(equivalent to 500 sequences of 4,096 tokens) for each do-
main. We allocate 0.4 billion tokens for the pruning phase
and 50 billion tokens for the continued pre-training pro-
cess. Following the conventions of LLaMA2, we main-
tain a sequence length of 4,096 tokens. Table 1 provides
a summary of the pre-training data used by our models and the baseline models.

4Please find results on LLaMA1 models in Appendix F.6 and Pythia models in Appendix F.5.
5OPT data contains BookCorpus (Zhu et al., 2015), Stories (Trinh & Le, 2018), CCNews (Hamborg et al.,

2017), the Pile (Gao et al., 2020), and PushShift.io Reddit (Baumgartner et al., 2020).
6OpenLLaMA v2 is pre-trained with a mixture of RefinedWeb (Penedo et al., 2023), StarCoder (Li et al.,

2023), and part of RedPajama.
7TinyLlama data is a mixture of SlimPajama (Shen et al., 2023) and StarCoder data.
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Table 2: Sheared-LLaMA outperforms publicly available models of comparable size on downstream
tasks. The shot number used is noted in parentheses, with 0-shot if not specified. Models with † use
a different training data from RedPajama. Please refer to Table 1 for details.

Commonsense & Reading Comprehension
Model (#tokens for training) SciQ PIQA WinoGrande ARC-E ARC-C (25) HellaSwag (10)

LLaMA2-7B (2T)† 93.7 78.1 69.3 76.4 53.0 78.6

OPT-1.3B (300B)† 84.3 71.7 59.6 57.0 29.7 54.5
Pythia-1.4B (300B)† 86.4 70.9 57.4 60.7 31.2 53.0
TinyLlama-1.1B (3T)† 88.9 73.3 58.8 55.3 30.1 60.3
Sheared-LLaMA-1.3B (50B) 87.3 73.4 57.9 61.5 33.5 60.7

OPT-2.7B (300B)† 85.8 73.7 60.8 60.8 34.0 61.5
Pythia-2.8B (300B)† 88.3 74.0 59.7 64.4 36.4 60.8
INCITE-Base-3B (800B) 90.7 74.6 63.5 67.7 40.2 64.8
Open-LLaMA-3B-v1 (1T) 91.3 73.7 61.5 67.6 39.6 62.6
Open-LLaMA-3B-v2 (1T)† 91.8 76.2 63.5 66.5 39.0 67.6
Sheared-LLaMA-2.7B (50B) 90.8 75.8 64.2 67.0 41.2 70.8

Continued LM World Knowledge
Model (#tokens for training) LogiQA BoolQ (32) LAMBADA NQ (32) MMLU (5) Average

LLaMA2-7B (2T)† 30.7 82.1 28.8 73.9 46.6 64.6

OPT-1.3B (300B)† 26.9 57.5 58.0 6.9 24.7 48.2
Pythia-1.4B (300B)† 27.3 57.4 61.6 6.2 25.7 48.9
TinyLlama-1.1B (3T)† 26.3 60.9 58.8 12.1 25.5 50.0
Sheared-LLaMA-1.3B (50B) 26.9 64.0 61.0 9.6 25.7 51.0

OPT-2.7B (300B)† 26.0 63.4 63.6 10.1 25.9 51.4
Pythia-2.8B (300B)† 28.0 66.0 64.7 9.0 26.9 52.5
INCITE-Base-3B (800B) 27.7 65.9 65.3 14.9 27.0 54.7
Open-LLaMA-3B-v1 (1T) 28.4 70.0 65.4 18.6 27.0 55.1
Open-LLaMA-3B-v2 (1T)† 28.1 69.6 66.5 17.1 26.9 55.7
Sheared-LLaMA-2.7B (50B) 28.9 73.7 68.4 16.5 26.4 56.7

Evaluation. We use the lm-evaluation-harness package (Gao et al., 2021) to evaluate
on an extensive suite of downstream tasks: (1) We follow Pythia and LLaMA2 to report the 0-shot
accuracy of ARC easy (ARC-E; Clark et al., 2018), LAMBADA (Paperno et al., 2016), LogiQA (Liu
et al., 2020), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), and WinoGrande (Sakaguchi et al.,
2021). (2) We report accuracy of the tasks used by Open LLM Leaderboard (Beeching et al., 2023),
including 10-shot HellaSwag (Zellers et al., 2019), 25-shot ARC Challenge (ARC-C; Clark et al.,
2018), and 5-shot MMLU (Hendrycks et al., 2021). (3) We also report exact match of 32-shot
Natural Questions (NQ; Kwiatkowski et al., 2019) to measure the factual knowledge in the model.

As training models to follow instructions has become a crucial application of LLMs (Ouyang et al.,
2022; Taori et al., 2023), we evaluate our models on instruction tuning and fine-tune both baseline
models and Sheared-LLaMA on instruction-response pairs sampled from the ShareGPT dataset.8
Please refer to Appendix E for more details.

3.2 SHEARED-LLAMA OUTPERFORMS LMS OF EQUIVALENT SIZES

We demonstrate that Sheared-LLaMA outperforms existing LLMs of similar sizes on both standard
LLM benchmarks and instruction tuning, while using only a fraction of the compute budget required
to train those models from scratch.

Downstream tasks. Table 2 presents the zero-shot and few-shot downstream task performance
of Sheared-LLaMA and similarly-sized pre-trained models. Even with a limited budget of ap-
proximately 50B tokens for pruning and continued pre-training, Sheared-LLaMA models outper-
form existing models pre-trained on significantly larger compute. Sheared-LLaMA-1.3B outper-
forms OPT-1.3B, Pythia-1.4B (pre-trained with 300B tokens), and TinyLlama-1.1B (pre-trained

8https://sharegpt.com/
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Sheared-LLaMA-1.3B Pythia-1.4B
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Sheared-LLaMA-2.7B INCITE-Base-3B
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25.0% 50.0% 75.0%

Sheared-LLaMA-2.7B Open-LLaMA-v1-3B

Figure 3: Sheared-LLaMAs outperform Pythia-1.4B, INCITE-Base-3B, OpenLLaMA-3B-v1 and
OpenLLaMA-3B-v2 in instruction tuning.

on 3T tokens). Sheared-LLaMA-2.7B outperforms INCITE-Base-3B (pre-trained on 800B Red-
Pajama tokens), OpenLLaMA-3B-v1 (pre-trained on 1T RedPajama tokens), and OpenLLaMA-3B-
v2 (trained on 1T tokens from RedPajama, RefinedWeb, and StarCoder). The most noteworthy
result is that Sheared-LLaMA-1.3B outperforms TinyLlama-1.1B, despite TinyLlama-1.1B being
pre-trained on 3T tokens—more than the total data used for pre-training LLAMA2-7B and our
pruning process combined. This demonstrates that structured pruning is a more sample-efficient
approach for training smaller-scale LLMs.

Instruction tuning. As shown Figure 3, instruction-tuned Sheared-LLaMA achieves higher win
rates compared to all the other pre-trained models at a comparable scale. This demonstrates that our
2.7B model can serve as a strong foundation for instruction tuning and has the capacity to generate
long, coherent and informative responses (See examples in Appendix E).

4 ANALYSIS

4.1 EFFECTIVENESS OF DYNAMIC BATCH LOADING

We analyze the effectiveness of dynamic batch loading by examining its impact on three aspects:
(1) the final LM loss across domains, (2) the data usage of each domain throughout training, (3) the
downstream task performance. All results in this section are based on Sheared-LLaMA-1.3B.9

Loss differences across domains. Dynamic batch loading aims to balance the rate of loss reduc-
tion across domains, ensuring that the losses reach the reference value at roughly the same time.
Figure 4 shows the difference between our model’s loss (with both original and dynamic batch load-
ing) and the reference loss, estimated by fitting a scaling function to a hypothetical 1.3B parameter
LLaMA2 model. The original batch loading results in widely varying loss differences across do-
mains; for example, the GitHub loss decreases below the reference value, while the C4 loss lags
behind. Dynamic batch loading, however, reduces losses evenly and leads to very similar loss dif-
ferences across domains, suggesting more efficient data use.

Data usage. Table 3 compares the data proportion of RedPajama and the data usage of our dy-
namic loading approach (Figure 6 illustrates how the domain weights change during training). It
shows that dynamic batch loading loads more data from the Book and C4 subsets, indicating that
these domains are more challenging for a pruned model to recover.

Table 3: Domain data usage with dynamic batch loading compared to the original proportions.

CC GitHub Book StackExchange Wiki ArXiv C4
RedPajama (Original) 67.0% 4.5% 4.5% 2.0% 4.5% 2.5% 15.0%
Dynamic Batch Loading 36.1% 0.8% 9.1% 1.0% 3.1% 0.7% 49.2%

Downstream performance. As shown in Figure 5, pruned models trained with dynamic batch
loading achieve better downstream performance than when trained on the original RedPajama dis-
tribution. This suggests that the more balanced loss reduction from dynamic batch loading transfers
to improved downstream capabilities.

9We also experiment with a heuristic approach to exclude the easy domains from pruning, but find that the
loss disparaty issue persists after continued pre-training. Please refer to Appendix F.8 for mode details.
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Figure 4: Loss difference between the pruned
model (1.3B) and estimated reference loss, with
original vs. dynamic batch loading.
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Figure 5: Downstream task performance of
Sheared-LLaMA-1.3B with original data pro-
portion and dynamic batch loading.

4.2 COMPARISON TO OTHER PRUNING APPROACHES

We compare our LLM-shearing to other pruning approaches on validation perplexity, a strong indi-
cator of overall model capabilities (Xia et al., 2023).

Targeted pruned models have a higher inference speed. Previous works like CoFiPruning (Xia
et al., 2022) produce structued pruned models, but these models often have non-uniform layer con-
figurations (e.g., different numbers of heads across layers). Such non-uniformity across layers intro-
duces training and inference overhead due to irregularities in model architectures. We experiment
with both CoFiPruning and targeted structured pruning, with a 0.4B pruning budget with the Red-
Pajama data proportion for a fair comparison. Table 4 shows that our targeted pruned models have
a higher inference speed compared to the non-uniformly pruned CoFiPruning model at the same
sparsity, despite having a slightly higher perplexity. Targeted structured pruning needs about 0.5B
more tokens in continued pre-training to match CoFiPruning’s perplexity. However, this one-time
extra compute during training is justified, as it results in a more efficient model architecture that is
essential for real-world applications and effective practical use. Please find more details on inference
speed of different pruning methods in Appendix F.9.

Table 4: Validation perplexity and generation speed during inference (tokens/second) of targeted
structured pruning with a uniform layer configuration, and CoFiPruning, with a non-uniform layer
configuration. Inference speed is measured on a Nvidia A100 (80G) GPU, on a singal instance
generating up to 512 tokens.

Layer Config PPL ↓ Speed ↑ Layer Config PPL ↓ Speed ↑

1.3B CoFiPruning 9.1 51 2.7B CoFiPruning 7.0 37
Targeted pruning 10.3 58 Targeted pruning 7.7 43

Comparison to LLM-Pruner (Ma et al., 2023). We compare targeted structured pruning to
LLM-Pruner, a recent work in structured pruning, in Appendix F.2. We demonstrate that, given
the same compute budget, sparsity level, and training data distribution, our pruned models achieve
lower perplexity, have a more optimized architecture, and faster inference speed.

4.3 ADDITIONAL ANALYSIS

Table 5: Data budget allocation to prun-
ing and continued pre-training (CT) and
corresponding perplexity.

# Tokens PPL

Pruning CT Pruning CT

0.2B 4.6B 12.99 7.46
0.4B 4.4B 10.29 7.32
0.8B 4.0B 9.01 7.23
1.6B 3.2B 8.04 7.08

Budget allocation for pruning and continued pre-
training. Intuitively, allocating more compute to the
pruning stage helps identify better subnetwork structures.
We explore distributing data across pruning and contin-
ued pre-training stages differently, within a fixed budget
of 5B tokens. Table 5 shows that when controlling the to-
tal amount of tokens, increasing the pruning budget con-
sistently improves perplexity. However, since pruning is
more expensive than continued pre-training, we decide
to allocate 0.4B tokens to pruning. Please refer to Ap-
pendix C for details on training throughputs.
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More analysis. We provide further analysis in the appendix: (1) Sheared-LLaMA evaluation on
math and coding (Appendix F.3), (2) Pythia model pruning (Appendix F.5), and (3) impact of ex-
cluding easy domains during pruning (Appendix F.8).

5 RELATED WORK

Pruning. Structured pruning has been extensively studied as a model compression technique in
computer vision and natural language processing, where task-specific models like classification
ones are often overparameterized and can be pruned significantly with minimal impact on perfor-
mance (Han et al., 2016; Wen et al., 2016; Liu et al., 2017; Luo et al., 2017; Cai et al., 2019; Deng
et al., 2020; Hou et al., 2020; Wang et al., 2020; Lagunas et al., 2021; Xia et al., 2022; Kurtic et al.,
2023). Unstructured pruning (Frankle & Carbin, 2018; Li et al., 2020; Chen et al., 2020; Sanh et al.,
2020) prunes individual neurons instead of structured blocks. Though unstructured pruning usually
achieve higher compression rates, they are not practical for model speedup.

In the era of LLMs, the prevalent NLP pipeline has shifted from task-specific models to general-
purpose LMs, which leaves little room for redundancy. Both unstructured pruning, semi-structured
pruning (Frantar & Alistarh, 2023; Sun et al., 2023), and structured pruning (Ma et al., 2023) lead to
significant performance drops on LLM even at a modest sparsity. Noticeably, all previous works fix
the original models or tune them minimally. We see pruning as an initialization and consider it nec-
essary to expend substantial compute to continually pre-training the model to recover performance.

Efficient pre-training approaches. As orthogonal to our pruning approach, There is an extensive
body of work on improving efficiency of training LLMs. For example, quantization reduces the
numeric precision of model weights and activations and speeds up training and inference (Dettmers
et al., 2022; 2023; Xiao et al., 2023). Knowledge distillation (Hinton et al., 2015; Sanh et al., 2019;
Jiao et al., 2020; Sun et al., 2020), which trains a smaller model on a larger model’s prediction, is
shown to be effective for task-specific models (Xia et al., 2022). For pre-training LLMs, though
distilling from a teacher model is shown to improve the quality of student models given the same
number of training steps (Rae et al., 2021; Blakeney et al., 2022), it is less cost-effective than pruning
and continued training due to the exceeding inference cost incured by the teacher model (Jha et al.,
2023). More methods have been introduced to enhance the efficiency of training LMs, such as
dynamic architectures (Gong et al., 2019; Zhang & He, 2020) and efficient optimizers (Chen et al.,
2023; Liu et al., 2023). However, as indicated by (Kaddour et al., 2023; Bartoldson et al., 2023), the
promised gains in training efficiency may not be consistently realized.

There are also data-based approaches to enhance training efficiency. Eliminating duplicated data is
found to be effective (Lee et al., 2021). Various batch selection techniques propose to prioritize data
based on criteria such as higher losses (Jiang et al., 2019) or a greater reducible loss (Mindermann
et al., 2022). Xie et al. (2023) propose to optimize data mixtures by training a proxy model to
estimate the optimal data weight of each domain.

6 DISCUSSION

Limitation and future work. First, The method heavily depends on the availability of open-
source pre-training datasets and models. If a specific domain is not covered in the pre-training
data, the method may not recover performance well on that domain. Second, Due to computational
constraints, we only experimented with a 7B parameter model as the source model. However, our
method is highly generalizable and can be scaled up to larger models in future research.

Conclusion. This work proposes structured pruning as an efficient method for creating competi-
tive smaller-scale LLMs. Our two-stage approach combines targeted structured pruning and contin-
ued pre-training (continued pre-training), and we introduce dynamic batch loading to improve pre-
training data efficiency. We train a series of competitive Sheared-LLaMA models using a fraction
of the compute required for standard pre-training. Our results show a promising path to producing
low-cost, small LLMs when strong large-scale models are available. As more capable LLMs and
larger pre-training datasets emerge, our method can easily extend to these advances to create even
better small models.
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A A DETAILED EXPOSITION OF PARAMATERIZING PRUNING MASKS

The key idea behind the pruning algorithm is to apply masks to the model parameters. After learning
a binary mask, it is equivalent to removing the corresponding parameters. The mask is parameterized
using a hard concrete distribution introduced in Louizos et al. (2018). Given a masking variable z
parameterized by α, the hard concrete distribution is defined as follows:

u = U(0, 1)

s = Sigmoid
(
1

β

(
log

u

1− u
+ logα

))
s̄ = s(ζ − γ) + γ

z = min(1,max(0, s̄))

where U is the uniform distribution, β is a temperature parameter, s is a relaxed binary mask that
conforms to the hard concrete distribution, and ζ and γ are the bounds of the hard concrete distribu-
tion. The hard concrete distribution serves as a continuous relaxation of the binary mask, allowing
the model to learn the binary mask in a continuous manner during training. The effectiveness of
this trick in learning sparse structures in neural networks has been demonstrated in previous studies
(Wang et al., 2020; Xia et al., 2022). In our experiments, we set β = 0.83, ζ = 1.1, and γ = −0.1.

To enforce the sparsity constraint, the masks are trained alongside with Lagrange multipliers λ,
as defined in Equation (1). After pruning, the parameters corresponding to the learned masks are
removed to ensure that the resulting model shape matches the target model. In practical implementa-
tions, we set a threshold to binarize the masks. Due to the adoption of the hard concrete distribution,
the masks typically converge to binary values that match the target model shape in most cases,
thereby avoiding any inconsistencies. However, in rare instances where the masks do not converge
to exactly 0 or 1, the masking variables need to be absorbed into the resulting model parameters.

As discussed in Section 2, we apply masks to heads, intermediate dimensions, layers and hidden di-
mensions. For heads, we simply multiply the head output by the mask. For intermediate dimensions,
we apply the mask to the intermediate output. For layers, we apply the mask to the layer output.
For hidden dimensions, we apply the mask to both the head and mlp output. Applying the mask to
outputs is equivalent to removing the corresponding parameters. Please refer to composer llama.py
for more details.

B REFERENCE LOSS PREDICTED BY SCALING LAWS

The scaling law of language modeling is a function of model size N and dataset size D:

L(N,D) = E +
A

Nα
+

B

Dβ

where E captures the loss for the true language distribution in an ideal generation process, and
A,α,B, β are scaling factors related to model scale or data size. Models in the same model family
are usually trained with the same amount of tokens on the same data distribution. In this case, we
need a minimum of three models to estimate the constant E+ B

Dβ , A and α. If the models are trained
with different amount of tokens, we can estimate E,A, α,B, β with a minimal of 5 models. Note
that we will estimate the scaling factors for each domain seperately.

LLAMA2 models have been trained on the same 2T tokens (Touvron et al., 2023b). We take the
LLAMA2-7B, LLAMA2-13B, and LLAMA2-70B checkpoints, evaluate them on each domain’s
validation set, and fit the scaling factors with the corresponding loss. Given the limited data points
for estimating the scaling law constant, the projected loss of a hypothetical LLaMA-2.7B model may
be biased compared to the true value. Table 6 presents the predicted loss. The evaluation process
takes less than 4 A100 GPU hours to complete.
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Table 6: Estimated reference loss of hypothetical LLaMA2-1.3B and LLaMA2-2.7B models.

CC GitHub Book StackExchange Wiki ArXiv C4
LLaMA2-1.3B 1.964 0.746 2.139 1.612 1.759 1.445 2.125
LLaMA2-2.7B 1.871 0.688 2.033 1.535 1.630 1.356 2.033

C TRAINING DETAILS

We present the hyperparameters used in our experiments in Appendix C. We use fully sharded data
parallel (Zhao et al., 2023) to train our models in parallel. We use FlashAttention V1 (Dao et al.,
2022) to speed up training. We use a cosine learning rate scheduler and decay the learning rate to a
minimum of 10% of the peak value. We conduct some preliminary experiment to determine the peak
learning rate for learning the masking variables and Lagrange multiplers, and we find that a learning
rate of 1.0 works well for pruning. We do not tune any other hyper-parameters. The throughput is
dependent on the implementations and we believe that our throughput can be further improved by
adopting more advanced recent optimizations such as FlashAttention V2 (Dao et al., 2022) and a
more recent version of Composer (MosaicML, 2021).

Table 7: Training hyper-parameters and throughput.

Pruning Contined Pre-training

Training budget 0.4B 50B
Learning rate of z, ϕ, λ 1.0 -
Learning Rate of θ 0.0001 0.0001
LR warmup ratio 10% 3%
Batch size (tokens) 131K 1M
Evaluation interval m (steps) 50 400
Steps 3, 200 51, 200
# GPUs 8 16
Throughput (tokens/s) 15K 145K (1.3B) / 77K (2.7B)

D MODEL CONFIGURATIONS

In this section, we provide the model configurations for both our Sheared-LLaMA models and the
baseline models, as illustrated in Table 8. Our design closely adheres to the architecture of Pythia-
1.4B and INCITE-Base-3B, albeit with some nuanced distinctions. A noteworthy difference is found
in the intermediate size of Sheared-LLaMA, which is a consequence of its lineage from LLaMA2-
7B. Notably, LLaMA2-7B employs a GLU variant (Shazeer, 2020) within its feed-forward layer,
comprising a gate matrix, an upward-projection matrix, and a downward-projection matrix. In
contrast, other models employ the conventional double-matrix feed-forward layer structure. Fur-
thermore, we acknowledge that the shearing algorithm will have to inherit the head dimension of
the source model. Instead of explicitly specifying the number of heads based on existing language
models, we set the target number of heads to be the target hidden dimension divided by the head
dimension of the source model.

E INSTRUCTION TUNING

We evaluate our models on instruction tuning and fine-tune both Sheared-LLaMA and baseline mod-
els on 10,000 instruction-response pairs sampled from the ShareGPT dataset10. For evaluation, we
sample another 1,000 instructions from ShareGPT, generate responses from our fine-tuned models
and other baseline models, and use GPT-4 as an evaluator to compare the two responses (Dubois
et al., 2023). We report the win rate of our model compared to the baseline model.

During instruction tuning training, the instruction is prepended with “You are a helpful assistant.
Write a response that appropriately completes the request.”. For evaluating the instruction tuning

10https://sharegpt.com. We only use the first round in the multi-turn chat history.
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Table 8: Model configurations of our Sheared-LLaMA and baseline models.

Model #Param #Layers Hidden Intermediate #Heads Head Dim

OPT-1.3B 1.3B 24 2048 8192 32 64
Pythia-1.4B 1.4B 24 2048 8192 16 128
TinyLlama-1.1B 1.1B 22 2048 5632 32 64
Sheared-LLaMA-1.3B 1.3B 24 2048 5504 16 128

OPT-2.7B 2.7B 32 2560 10240 32 80
Pythia-2.8B 2.8B 32 2560 10240 32 80
INCITE-Base-3B 2.8B 32 2560 10240 32 80
OpenLLaMA-3B 2.7B 26 3200 8640 32 100
Sheared-LLaMA-2.7B 2.7B 32 2560 6912 20 128

LLaMA2-7B 6.7B 32 4096 11008 32 128

generations, Wang et al. (2023a) observes using GPT models as a judge could change its preference
when swapping the presentation order of the two outputs. Therefore, we compare each output pair
twice by swapping the presentation order of the two outputs and finally report the average win-rate
of the two rounds to eliminate the position bias.

We randomly select an output generated by Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B in
response to a given instruction, and present the generations in Table 10. Our findings demonstrate
that, after instruction tuning, Sheared-LLaMA-2.7B consistently produces long, coherent, and in-
formative outputs in response to the instruction.

Table 9: Training hyper-parameters for instruction tuning.

Instruction Tuning

Learning Rate of θ 5e− 5
LR warmup ratio 3%
Batch size (tokens) 128
# GPUs 8

F ADDITIONAL EXPERIMENT RESULTS

F.1 DATA USAGE IN CONTINUED PRE-TRAINING

Figure 6 illustrates the evolution of domain weights throughout the training process and the final
cumulative data usage for each domain. The trajectory reveals that the domain weights stabilize after
approximately 30% of the training. In contrast to other domains, Wikipedia exhibits an anomalous
spike early in the training process. The remaining domains show a steady, monotonic change in data
loading over time, as expected.
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Figure 6: Left: Data weight of each batch during the continued pre-training stage. Right: Cumulative
data usage for each domain.
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Table 10: An example output from Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B. It shows that
Sheared-LLaMA can generate long, coherent, and informative responses after instruction tuning.

Prompt: Act as semiconductor industry analyst

Sheared-LLaMA-1.3B: As a semiconductor industry analyst, I would be
responsible for conducting market research and analysis to help
companies in the industry understand and respond to market trends,
customer preferences, and competitive dynamics. This would include
analyzing market data such as sales, market share, and industry trends,
as well as conducting interviews with industry leaders, executives, and
customers to gain insights into customer needs and preferences. I would
also be responsible for developing and implementing marketing strategies
to promote products and services, and for identifying and pursuing new
business opportunities.

Sheared-LLaMA-2.7B: As a semiconductor industry analyst, my primary
responsibility is to provide insightful and accurate analysis on the
global semiconductor market. This includes evaluating the performance
of individual companies, industries, and trends within the market.

Here are some key areas where I would focus my analysis:

1. Market size and growth: I would track the size of the global
semiconductor market and analyze the growth prospects for each segment,
such as memory, logic, and sensors.
2. Competitive landscape: I would assess the competitive landscape,
including the top players, their market share, and strategic moves.
3. Technology trends: I would monitor the development of new
technologies, such as 5G, AI, and IoT, and their impact on the
semiconductor industry.
4. Industry trends: I would track industry trends, such as the shift
towards sustainable technologies, and evaluate their impact on the
market.
5. Market forecasts: I would provide forecasts for the semiconductor
market, including revenue and unit shipment growth, based on a range of
scenarios and assumptions.

In addition to these areas, I would also keep track of industry news and
developments, and provide insights on their impact on the market.

F.2 COMPARISON TO LLM-PRUNER

To ensure a fair comparison with the LLM-Pruner approach, we match the parameters (excluding
embeddings) to be roughly the same as our final model (1.23B), as embedding sizes do not affect
inference speed. We continue pre-training the pruned models derived from both LLM-Pruner and
our proposed targeted structured pruning. The total number of tokens for pruning and continued pre-
training is controlled to be the same, and data from the RedPajama dataset is used directly without
applying dynamic batch loading. We demonstrate that our proposed targeted structured pruning
is a better approach compared to LLM-Pruner from three aspects: the loss trajectory, the model
architecture, and the inference speed.

In terms of loss trajectory, Figure 7 shows that our proposed targeted structured pruning achieves a
lower loss than LLM-Pruner when consuming the same amount of data.

Table 11 compares the model configurations for an LLM-Pruner pruned model and our pruned
model. The LLM-Pruner model has an unconventional architecture where the intermediate size is
smaller than the hidden size, largely due to the algorithm’s inability to prune the hidden dimension
and layers, revealing a limitation of LLM-Pruner.

In terms of training throughput and inference speed, we find Sheared-LLaMA structures run more
efficiently than LLM-Pruner models. We performed an inference speed analysis comparing LLM-
pruner and Sheared-LLaMA’s model architectures using a single A100 GPU to generate up to 2048
tokens. As shown in Table 12, our pruned model architecture is significantly more efficient than

19



Published as a conference paper at ICLR 2024

LLM-Pruner at inference time. Additionally, LLM-Pruner’s model architecture introduces substan-
tial overhead during continued pretraining (Measured with 16 A100 80GB GPUs.), with a training
throughput of around 60% of Sheared-LLaMA’s. Overall, our Sheared-LLaMA architecture enables
higher throughput for both inference and continued training compared to LLM-Pruner.

In summary, we have demonstrated that at the same parameter scale, our pruning method produces
a model that has a lower perplexity (loss), a more reasonable final model architecture, and a faster
inference speed. We have effectively shown our targeted structured pruning algorithm to be more
effective for large-scale LLM pruning compared to LLM-Pruner.
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LLM-Pruner (Ma et al., 2023)
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Figure 7: The loss of LLM-Pruner and Sheared-LLaMA during the continued pre-training stage.
Note that we exclude dynamic batch loading and use the same data distribution for training both
models for a fair comparison.

Table 11: Model structure of Pythia-1.4B, LLM-pruner (1.6B), and Ours (1.3B).

Layers Heads Head size Intermediate size Hidden size Params
Pythia-1.4B 24 16 128 8192 2048 1.4B

LLM-pruner (1.6B) 32 7 128 2201 4096 1.6B
Sheared-LLaMA (1.3B) 24 16 128 5504 2048 1.3B

Table 12: Training throughput and generation speed of LLM-pruner (1.6B) and Sheared-LLaMA
(1.3B). With a similar parameter count, our pruned model structure has a lower perplexity when
fine-tuned with the same amount of tokens (around 6B tokens). Yet our pruned model architectures
are way more efficient for both training and inference.

Generation Speed Training Throughput PPL
LLM-Pruner 43 tokens/s 83K tokens/s 7.09
Sheared-LLaMA 58 tokens/s 139K tokens/s 6.85

F.3 CODING AND MATH REASONING

We examine the math and coding abilities of our pruned models compared to other language models.
We find that the math ability of existing 3B parameter models, including Sheared-LLaMA, is still
far below that of larger models. We also find that Sheared-LLaMA’s coding ability lags behind
models known to be trained on more code data, like Pythia-1.4B and Open-LLaMA-3B-v2. Sheared-
LLaMA’s coding ability likely comes from the original LLaMA2 model, speculated to have used
more code data, and the minimal code data used in our pruning experiments.

F.4 SCALING REFERENCE VS. SOURCE REFERENCE

Figure 8 This section compares the performance of Sheared-LLaMA when trained with the scaling
reference and the source reference in dynamic batch loading. The scaling reference uses the pre-
dicted loss from the scaling law as the reference loss, while the source reference uses the loss of the
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Table 13: Evaluation results on GSM8K and HumanEval and training percentage and tokens in
ArXiv and GitHub.

GSM8K (8) HumanEval ArXiv Github ArXiv GitHub
Models EM Pass@1 Pass@5 Percentage Percentage Tokens Tokens
LLaMA2-7B 13.7 12.8 23.8 - - - -

OPT-2.7B 0.1 0.0 0.0 - - - -
Pythia-2.8B 1.7 5.1 14.6 9.0% 7.6% 26.9 22.8
INCITE-Base-3B 1.8 4.3 4.9 2% 4.5% 16.0 36.0
Open-LLaMA-3B-v1 2.5 0.0 1.2 2% 4.5% 20.0 45.0
Open-LLaMA-3B-v2 2.7 10.4 20.1 - - - -
Sheared-LLaMA-2.7B (Source) 2.7 3.7 5.5 0.7% 0.4% 0.3 0.2
Sheared-LLaMA-2.7B (Scaling) 2.4 4.9 9.2 1.0% 0.8% 0.5 0.4

source model as the reference loss. Although both methods efficiently train the model, the scaling
reference consistently achieves slightly better downstream performance.
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Figure 8: Average downstream peformance of
Sheared-LLaMA-1.3B with the scaling refer-
ence and the source reference.

F.5 PRUNING PYTHIA MODELS

During the initial development of the approach, we experimented with a smaller-scale model on
Pythia (Biderman et al., 2023), a series of open-source models with open-source training data across
scales from 70M to 13B. We took the Pythia-440M model, pruned it down to 160M parameters,
and continued pre-training it using Pythia models’ training data Gao et al. (2020). Specifically,
we used 0.4B tokens for pruning and 33B tokens (32,000 steps) for continued pre-training of the
pruned model. Table 14 shows that the pruned model achieves a lower perplexity than the original
model, and continued pre-training further improves performance. Notably, with minimal compute
consumption (10B tokens), pruning a Pythia-410M model reaches roughly the same performance as
pretraining Pythia-160M from scratch. Adding more tokens further enhances the performance.

Table 14: Zero-shot performance of Pythia-160M and Sheared-Pythia.

Training Tokens Performance

Pythia-160M 300B 43.56
Sheared-Pythia (300B) + 10B 43.51
Sheared-Pythia (300B) + 33B 45.78

Additionally, we compared Sheared-Pythia-160M against keeping pre-training the Pythia-160M
model with the same amount of tokens. From Figure 9, we can see that continuing pre-training
Pythia-160M starts off performing better, however, the Sheared-Pythia-160M learns faster and even-
tually exceeds the performance of continuing pretraining on Pythia-160M. These are some very
preliminary results we see in this particular setting.
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Figure 9: The downstream performance of continued pre-training Pythia-160M and Sheared-Pythia-
160M. Sheared-Pythia-160M eventually outperforms the performance of continued pre-training
Pythia-160M.

We think that the benefit of pruning a larger model will be even more significant, based on the
conclusions from a previous work (Li et al., 2020) showing that pruning larger than compress leads
to better performance as the larger models are easier to optimize. However, we’d like to defer more
detailed analysis to future work.

F.6 PRUNING FROM LLAMA1 VS LLAMA2

This section compares the performance of pruning from LLaMA1 and LLaMA2. Both models
demonstrate strong downstream task performance, although pruning from LLaMA2 unsurprisingly
yields a consistent advantage. However, it is worth noting that the performance difference between
the two is not very large.
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Figure 10: A comparison between pruning from
LLaMA1 and LLaMA2 with dynamic loading
for 1.3B.

F.7 COMPARISON TO FURTHER CONTINUAL PRE-TRAINING INCITE-BASE-3B

We examine if pruning produces a better initialization for continued pre-training than an existing
LLM of equivalent size by comparing the performance of a continually pre-trained INCITE-Base-
3B model and Sheared-LLaMA-2.7B. We present the loss curves in Figure 11 and the downstream
performance in Figure 12. INCITE-Base-3B model starts with higher task accuracy but plateaus
after training, while Sheared-LLaMA rapidly improves and surpasses the INCITE-Base-3B model,
suggesting that pruned models from a strong base model serve as a better initialization.11

11In cases where the existing small model is competitive compared to the pruning source model, the small
model may offer a better starting point than a pruned model. Intuitively, the larger the discrepancy in perfor-
mance between the source model and the small model, the more advantages the pruned model has.
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Figure 11: The loss of continued pre-training
INCITE-3B and our pruned LLaMA model.
Both models have around 2.7B parameters.
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Figure 12: Average downstream performance
of continuing pre-training Sheared-LLaMA vs
INCITE-Base-3B.

We used a learning rate 1e− 5 for continued pre-training INCITE-Base-3B, along with a scheduler
to warm up the learning rate to 1e − 5 in the first 3% of the training steps, and follows a cosine
decay schedule. In hindsight, how we continued pre-training the INCITE-Base-3B model may not
be optimal according to recent research (Gupta et al., 2023).

F.8 EXCLUDING EASY DOMAINS DURING PRUNING

During the development of this project, we explored an easy and intuitive idea to address the im-
balanced loss decreasing rate during pruning and continued pre-training. Specifically, we excluded
GitHub, StackExchange, and ArXiv data during pruning since these three domains’ losses decrease
the fastest. We pruned LLaMA1-13B down to 7B using a composite dataset of C4, CC, Wiki, and
Books, with a heuristically constructed proportion of 40%, 40%, 10%, 10%, respectively. We then
continued pre-training the pruned model on the RedPajama dataset, which includes the excluded
domains during pruning.

The results showed that the perplexity difference was more even across domains when pruning
without using data from these three domains. However, after continued pre-training with all data
from the seven domains in the RedPajama dataset, the loss disparity grew, with the GitHub difference
being much smaller than domains like C4. These results demonstrate that simply excluding the
domains that are easy to recover during the pruning stage does not inherently resolve the imbalance
of loss difference across domains.

This set of experiments motivated us to develop dynamic batch loading as a more effective and
principled approach to address the domain-specific loss disparities that arise during pruning and
continued pre-training.

Table 15: Pruning LLaMA1-13B with a composite of 40% of CC, 40% of C4, 10% of Books and
10% of Wikipedia to a 7B model. We present the domain loss of the source model (LLaMA1-13B),
the loss of the pruned model and the loss after continued pre-training of the pruned model. The loss
differentce from the target model (LLaMA1-7B) is more balanced after pruning, but more disparate
after continued pre-training with all the domains.

CC GitHub Book StackExchange Wikipedia ArXiv C4
LLaMA1-13B 1.7585 0.6673 1.9499 1.4207 1.4331 1.3855 1.8619

LLaMA1-7B 1.8366 0.7108 2.0322 1.5112 1.5291 1.4340 1.9331

Pruned model (w/o three domains) 2.1849 1.0971 2.3726 1.9080 2.1151 1.7542 2.3187
diff from LLaMA1-7B 0.3483 0.3863 0.3404 0.3968 0.5860 0.3202 0.3857

Continued Pretraining (w RP) 1.8344 0.6325 2.0984 1.4542 1.4549 1.4460 2.0395
diff from LLaMA1-7B -0.0022 -0.0783 0.0661 -0.0570 -0.0743 0.0120 0.1064
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F.9 INFERENCE SPEED ANALYSIS

In this section, we analyze the inference speed of different pruning approaches, including the fol-
lowing models:

• The source model, i.e., LLaMA2-7B.

• Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B.

• Wanda pruning (Sun et al., 2023) to prune LLMs into a semi-structured 2:4 and 4:8 sparsity
pattern in one-shot.

• LLM-Pruner (Ma et al., 2023), which produces a model with the same number of non-
embedding parameters as Sheared-LLaMA.

We use an A100 GPU to test the generation speed (tokens/second) of all these pruned models. We
generate up to 2048 tokens with a batch size of 1. We present the results in Table 16. Sheared-
LLaMA’s speed is better than that of LLM-Pruner, largely due to the more optimized resulting
architecture. As shown in Table 11, LLM-pruner produces a model structure with a smaller interme-
diate size than the hidden size, which goes against the transformer designs where the intermediate
size is at least 3-4 times the hidden size.

Wanda-type semi-structured pruning also achieves inference speedup compared to the source model.
However, it is not as fast as small dense models and is less flexible because inference speedup is only
feasible when the sparsity is at 50%.

Table 16: Inference speed (tokens/s) of different pruning approaches.

Model Throughput
7B

LLaMA-7B 37

1.3B 2.7B
LLM Pruner 41 40
Sheared-LLaMA 62 47

50% sparsity
Wanda (2:4) - 42
Wanda (4:8) - 42

G FREQUENTLY ASKED QUESTIONS

In this section, we provide answers to frequently asked questions about our work.

▷ Is it fair to say that Sheared-LLaMA models can be produced using only 50B tokens, even
though the source model (LLaMA2) was trained on 2T tokens?

At the time of our paper submission, there were no models sufficiently trained for 2T tokens at the
1.3B and 2.7B scale to allow for a fair comparison. However, the recently released TinyLlama-1.1B
models, trained on 3T tokens, provide a suitable point of reference. We observe that the performance
of TinyLlama-1.1B is comparable to Sheared-LLaMA-1.3B on downstream benchmarks when used
as base models, and a similar observation can be found in Wang et al. (2023b). Considering that
TinyLlama-1.1B is trained with 3T tokens, which exceeds the total amount of pre-training and prun-
ing used by Sheared-LLaMA-1.3B (2T for pre-training the source model, and 50.4B for pruning and
continued training), we regard this as strong evidence suggesting that pruning might be an intrinsi-
cally more efficient and effective approach to training moderate-sized LMs.

▷ How is dynamic batch loading different from Doremi (Xie et al., 2023)?

Dynamic batch loading and Doremi share the same principle, which adjusts the data distribution
of each domain based on the model’s loss using an exponential ascent algorithm. However, dy-
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namic batch loading offers a more flexible and less complex approach that can be applied to various
scenarios.

Doremi follows a multi-step process: (1) Train a reference model. (2) Train a proxy model to
estimate the proportion of data from each domain by adjusting the proportion based on the proxy
model’s loss. (3) Train the final model using the estimated data distribution. In contrast, dynamic
batch loading can be directly applied to any model without the need for a reference or a proxy
model. Dynamic batch loading begins by deriving a reference loss based on a fixed evaluation
set. This reference loss can be estimated using scaling laws or simply by using the source model’s
evaluation loss. During training, the data proportion is adjusted in real-time based on the periodically
measured evaluation loss. The dynamic batch loading process can be seamlessly integrated into
the standard pre-training pipeline, as evaluating the loss is computationally efficient and does not
introduce significant overhead. Although dynamic batch loading relies on a fixed evaluation set,
which may not fully represent the model’s performance on the entire dataset, this issue can be
mitigated by periodically updating the evaluation set during training.

▷ When multiple source model sizes are available, how do you choose the source model size for
pruning?

Determining the optimal source model size for pruning is challenging. However, we can perform
a thought experiment by considering each parameter as a uniform ”unit of information.” For in-
stance, if a source model with 7B parameters is trained using 2T tokens, we can assume that each
parameter carries approximately 285 tokens of information, assuming a uniform distribution of in-
formation across the parameters. When randomly pruning this model down to 1.3B parameters, the
total amount of information is reduced to 1.3B × 285 = 0.37T tokens. In contrast, if we prune a
13B model (also trained with 2T tokens) down to 1.3B parameters, the total amount of information
is reduced to 1.3B × (2T / 13B) = 0.2T tokens. Although this estimation is rough, it suggests that
pruning from a larger model may be less effective, especially when the source models are trained
with the same number of tokens. It is important to note that this is a simplified estimate, and the
assumption of uniform information distribution across parameters may not hold in practice. More-
over, the structured pruning process itself clearly breaks this assumption. Nonetheless, this thought
experiment provides a general sense of how the source model size can impact the effectiveness of
pruning.
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