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Abstract

Offline RL is an important step towards making data-hungry RL algorithms more
widely usable in the real world, but conventional assumptions on the distribution
of logging data do not apply in some key real-world scenarios. In particular, it is
unrealistic to assume that RL practitioners will have access to sets of trajectories
that simultaneously are mutually independent and explore well. We propose two
natural ways to relax these assumptions: by allowing the data to be distributed
according to different logging policies independently, and by allowing logging
policies to depend on past trajectories. We discuss Offline Policy Evaluation (OPE)
in these settings, analyzing the performance of a model-based OPE estimator when
the MDP is tabular.

1 Introduction

Reinforcment Learning (RL) studies algorithms that learn to optimize a reward criterion by dy-
namically interacting with an environment. By balancing exploration with exploitation, online RL
algorithms can very effectively learn to behave optimally. However, this mode of randomized ex-
ploration precludes some crucial use-cases for RL, such as for running medical trials, or training
self-driving cars. Even in (comparatively) low-stakes applications like advertising, adopting elemen-
tary RL algorithms would mean throwing away vast reserves of data gathered from previous strategies.
Both of these problems would be partially addressed by practical methods for offline learning, which
seeks to solve the control problem using existing data.

In the offline RL setting, the goal is to perform RL tasks using existing data, D, generated by some
logging policy, µ, and MDP M. In Offline Policy Evaluation (OPE), we seek to estimate the value
of a target policy π under M. In Offline Learning (OL), the goal is to use D to find a good policy
π ∈ Π where Π is some policy class.

Practically, OL would allow RL practitioners to exercise more control over the gathering of training
data. However, in order for D to be a rich enough dataset to learn from, strong assumptions need to
be made about the exploratory properties of µ. This is in addition to the already strong assumption
that the set of trajectories is i.i.d. In Section 3, we discuss the problems that such assumptions pose
and propose ways of weakening them. We believe the most fruitful of these to be Adaptive OPE
(AOPE), where we allow each trajectory to be distributed according to a different logging policy,
which may depend on previous data.

Some scenarios that AOPE covers and OPE does not are presented below.

1. The dataset D has been collected over a long period of time, during which unrecorded
changes have been made to the policy. An example of this would be the portfolio of a
longterm client at an investment company, which will certainly change over time.
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2. The dataset D was gathered by humans, and therefore influenced by a number of unobserved
factors. For example, a doctor prescribing medicine may make a determination based on her
conversation with the patient – a factor not recorded in any state variable.

3. The dataset D has been generated through a combination of algorithmic decisions and
human input. For example, an engineer may tune the parameters of a recommendation
algorithm based on the observed level of engagement.

If it can be demonstrated that existing OPE estimators extend to the AOPE setting with no performance
drop, a new class of use-cases for Offline RL emerges. If AOPE is, in fact, verifiably harder than
OPE, practitioners will know that to achieve optimal performance in Offline RL tasks, they will need
to collect remarkably clean data. This paper represents our first steps towards resolving this key
question.

2 Related Work

The OPE literature is vast. We do not attempt to provide a survey of the excellent body of work but
instead refer readers to the recent work of Mou et al. [2022] and the references therein for a more
comprehensive discussion. To the best of our knowledge, we are the first to study the problem of OPE
under the adaptive data setting. Most existing work on OPE that we have seen makes the assumption
that the data are collected iid from a single logging policy. The only exception is the work of Kallus
et al. [2020] who studied OPE from multiple loggers, but they only considered the contextual bandits
model and non-adaptive loggers, while we studied the RL with possibly adaptively chosen loggers.

OPE is also closely related to the average treatment effect estimation problem in the causal inference
literature, but typically only only one-step decision is considered and the observational data are
assumed to be iid.

3 Notation

Let ∆(X ) be the set of all PMFs over X , for |X | < ∞. Let [H] := {1, ...,H}
A Tabular, Finite-Horizon Markov Decision Process is a tuple (S,A, r, P, d1, H), where S is the
state space (|S| =: S), and A is the action space (|A| =: A). Its dynamics are governed by a
nonstationary transition kernel, P = {Ph : S ×A → ∆(S)}Hh=1, where Ph(s

′|s, a) is the probability
of transitioning to state s′ ∈ S after taking action a ∈ A from state s ∈ S at time h ∈ [H]. r is a
collection of reward functions {rh : S × A → [−1, 1]}Hh=1. Finally, d1 ∈ ∆(S) is the initial state
distribution of the MDP and H is the horizon.

A policy, π, is a collection of maps, {πh : S → ∆(A)}Hh=1.

Running a policy on an MDP will yield a trajectory τi ∈ (S ×A× [−1, 1])H . Together, the policy
and MDP induce a distribution over trajectories, as well as a Markov Chain with transitions notated
as Pπ

h (s
′|s) :=

∑
a Ph(s

′|s, a)πh(a|s).
In a set of trajectories {τi}ni=1, we define nh,s,a to be the number of visitations to (s, a) at timestep h.

vπ := Eπ[
∑H

i=1 ri|s1 ∼ d1] is the value of the policy π, where the expectation is over the π-induced
distribution over trajectories. Similarly, V π(s) := Eπ[

∑H
i=1 ri|s1 = s].

dπh(s, a) is defined to be the probability of (sh, ah) occurring at time step h in a trajectory distributed
according to π.

4 Problem Formulation and Motivation

Naturally, both OPE and OL are hopeless if the logging-policy does not explore well. If the logger,
µ, does not visit a state that the target policy, π, visits very often, we will not be able to form an
accurate estimate of the target value vπ when doing OPE. In OL, this issue is compounded by the
fact that missing any state may correspond to missing high-value outcomes. Thus, upper bounds on
the performance of OPE or OL algorithms are given in terms of an exploration parameter, like

dm = min
h,s,a:dπ

h(s,a)>0
dµh(s, a) (1)
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Figure 1: Non-adaptive regime (left) versus adaptive regime (right), depicted as a graphical model.
We see that, in the adaptive regime, each policy depends on all previous trajectories. This induces
dependence between the trajectories.

Estimators that closely match lower bounds on relevant metrics have been established in existing
work, such as Duan et al. [2020]. However, the practicability of such bounds has been challenged.
Xiao et al. [2022] point out that it is difficult in practice to find a logging policy with a reasonable
exploration parameter. In what they consider a more realistic, “tabula rasa" case (where the logging
policy is chosen without knowledge of the MDP), they show a sample complexity exponential in H
and S to be necessary in offline learning.

Besides this limitation, we note that the motivating application of learning from existing, human-
generated data remains unfulfilled in the conventional OPE setting. We would not expect these data
to be identically distributed, or even independent (as the data collected in trajectory j almost certainly
influences future policies µj+1, ...).

Thus motivated, we augment our formulation of the OPE problem to more realistically accommodate
intelligent choices of logging-policy. We consider this to be middle ground between the sanguine
assumptions on dm common to Yin and Wang [2020], Yin et al. [2021], Duan et al. [2020], and the
assumption of total ignorance found in Xiao et al. [2022]. To this end, this paper studies two settings:

1. OPE on D = {τi ∼ µi}ni=1, where µ1, ...µn are distinct policies chosen in advance, and the
trajectories unfold independently. We call this the Non-Adaptive OPE (NOPE).

2. OPE on D = {τi ∼ µi}ni=1, where µ1, ...µn are chosen adaptively. That is, µi may depend
on the trajectories τ1, ...τi−1. We call this Adaptive OPE (AOPE).

NOPE allows us to hedge our bets with respect to the logging policy we choose. In particular, when
we derive a bound on the MSE of the model-based estimator from [Yin and Wang, 2020], it will be in
terms of the minimum of the average state-action occupancy:

d̄m :=
1

n
min
h,s,a

n∑
i=1

dµ
i

h (s, a) (2)

If there is some preexisting knowledge on the MDP, M, it may be easier to propose n logging policies
with (2) bounded away from zero than a single logging policy with (1) bounded away from zero.

NOPE does not adequately address concerns over finding good logging policies, but rather dilutes the
problem to that of finding a suite of policies that is good on average. Furthermore, it only eliminates
assumptions on identical distribution, and sets aside issues raised earlier over dependence between
trajectories.

Both of these problems are better addressed by AOPE. When logging policies can be tuned according
to previous trajectories, there is scope for starting from “tabula rasa”, and iteratively refining the
logging policy as we learn about the MDP. In other words, the logger can leverage online exploration
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techniques. Furthermore, by allowing arbitrary statistical dependence on previous trajectories, AOPE
addresses the key scenario of learning from intradependent, manually-collected datasets.

We conclude this section by noting that minimax bounds from the non-adaptive OPE setting can be
easily recovered in the following manner. For any dataset, D, let N := minh,s,a nh,s,a be the number
of occurrences of the least-observed (sh, ah) pair. If we consider a revised dataset, D′, that keeps only
the first N transitions out of (sh, ah) for all sh, ah, we see that all transitions are now independent
conditioned on N . Thus, under the conventional assumptions on exploration-parameters, the problem
reduces to a generative-model type setting. In particular, Theorem 3.7 in Yin et al. [2021] implies
minimax-optimal offline learning for the adaptive case. However, we do not like throwing data away
in this manner, and conjecture that it should not be necessary to do so. It would be preferable to
obtain bounds that adapt to the quantities {nh,s,a}h,s,a. To this end, we explore the extent to which
instance-dependent bounds on estimation error can be recovered in the adaptive setting.

5 Method

We consider the estimator of vπ studied in [Yin and Wang, 2020]. This boils down to computing the
value of a policy under the approximate MDP defined by (S,A, P̂ , r̂, d̂1), with the estimators P̂ , r̂
and d̂1 defined below.

That is, if D = {τ1, ...τn}, and τi = (si1, a
i
1, r

i
1, ...s

i
H , aiH , riH), we use plug-in estimates

P̂h(s
′|s, a) = nh,s,a,s′

nh,s,a
=

1

nh,s,a

∑
i

1{sih=s,ai
h=a,sih+1=s′} r̂h(s, a) =

1

nh,s,a

n∑
k=1

rkh1{skh=s,ak
h=a}

subject to these quantities being well-defined (nh,s,a ̸= 0). If nh,s,a = 0, we can define them to be 0.

We also define d̂1 :=: d̂π1 := 1
n

∑n
i=1 esi1 to be the plug-in estimate of d1 computed from D (where

ej is the jth standard basis vector in RS).

We then let:

P̂π
h (s

′|s) =
∑
a

πh(a|s)P̂h(s
′|s, a) r̂πh(s) =

∑
a

πh(a|s)r̂h(s, a)

and iteratively compute d̂πh := P̂π
h d̂

π
h−1 for h = 1, ...H .

Finally, we form the estimate

v̂π =

H∑
h=1

⟨d̂πh, r̂πh⟩

6 Current Results

We warm up by generalizing Yin and Wang [2020]’s bound on the MSE of v̂π to NOPE. By following
the proof of Theorem 1 in Yin and Wang [2020], and making some mild modifications, we recover a
bound of the MSE of v̂π in the Non-Adaptive OPE setting.
Theorem 1. [MSE performance of v̂π in NOPE setting] Suppose D is a dataset conforming to NOPE,
and v̂π is formed using this dataset. Let d̄m be as defined in (2). Let τs = maxh,s,a

dπ
h(s,a)

1
n

∑
i d

µi

h (s,a)
. Let

τa = maxh,s,a
πh(a|s)

1
n

∑
i µ

i
h(a|s)

. Then if n > 16 logn
d̄m

and n > 4Hτaτs

minh,s max {dπ
h(s),

1
n

∑
i d

µi

h (s)}
we have:

MSE(v̂π) ≤

(
1 +

√
16 log n

nd̄m

)
1

n

∑
h,s,a

dπh(s)
2π(a|s)2

1
n

∑
i d

µi

h (s, a)
Var[r

(1)
h + V π(s

(1)
h+1)|s

(1)
h = s, a

(1)
h = a]

+O(τ2aτsH
3/n2d̄m)

As a corollary, consider a “quasi-adaptive” data collection process, where each logging-policy, µi,
is run twice, generating i.i.d. τi and τ ′i . Suppose future logging-policies µj>i are chosen by some
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algorithm E depending on τi but not τ ′i . We can use the same v̂π-estimator to perform OPE with
Dshadow = {τ ′i}, as long as the estimator doesn’t touch D = {τi}. If we assume that average
exploration is sufficient w.h.p. over the execution of E , we can the bound MSE in this quasi-adaptive
case using Theorem 1, the fact that the {τ ′i} are mutually independent conditioned on {µi}, and the
tower rule.

Corollary 2. Let E be the algorithm described in the paragraph above. Assume that with high
probability (≥ 1 − δ), the policies µ1, ...µn generated by E satisfy 1

N

∑
i d

µi

h (s, a) ≥ d̄m for all
s ∈ S and a ∈ A, and for some d̄m. Then

MSE(v̂π) ≤ (1− δ)(∗) +H2δ

where (∗) is the bound on the MSE of the estimator in the non-adaptive case from Theorem 1.

We now turn our attention towards quantifying v̂π’s performance on AOPE. We first describe a
high-probability, uniform error bound in terms of the number of visitations to each (sh, ah) tuple.

Theorem 3 (High-probability uniform bound on estimation error in AOPE). Suppose D is a dataset
conforming to AOPE, and v̂π is formed using this dataset. Then, with probability at least 1− δ, the
following holds for all policies π.

|v̂π − vπ| ≤ K

H∑
h=1

∑
s,a

Hdπh(s, a)

√
S log HSAn

δ

nh,s,a

where nh,s,a is the number of occurrences of (sh, ah) in D, and K is an absolute constant.

This translates to the following worst-case bound, which underperforms the minimax-optimal bound
(over deterministic policies) implied by Yin et al. [2021] by a factor of

√
H .

Corollary 4 (High-probability uniform bound on estimation error in AOPE). Suppose that D, v̂π are
as in Theorem 3. Then with probability 1− δ, we have that

sup
π

|v̂π − vπ| ≤ O(H2

√
S logHSAn/δ

nd̄m
)

The proof of Theorem 3 follows by a simulation lemma-type expansion of the error, which leads to a
dominant term of the form

∑
h Esh,ah∼π,M[(P̂h+1(·|sh, ah)− Ph+1(·|sh, ah))T V̂ π

h+1], and smaller
terms governed by r̂ and d̂1. In order to get around the issue of dependence between trajectories,
we cover all possible number of occurrences of each (sh, ah) across trajectories while applying
concentration, leading to to the HSAn term inside the logarithm.

We also give a high-probability, instance-dependent, pointwise bound, which is suboptimal by a factor
of

√
H when translated into a worst-case bound. In the pointwise case, we are able to shave off a

√
S

in the asymptotically dominant term.

Theorem 5 (Instance-dependent pointwise bound on estimation error in AOPE). Fix a policy π,
suppose D is a dataset conforming to AOPE, and v̂π is formed using this dataset. Assume that with
probability ≥ 1− δ

2 , nh,s,a ≥ nd̄m for all h, s, a for some d̄m > 0. Then with probability at least
1− δ, we have:

|v̂π − vπ| ≤ O(

H∑
h=1

∑
s,a

dπh(s, a)

√
Vars′∼Ph+1(·|s,a)[V

π
h+1(s

′)] log HSAn
δ

nh,s,a
+

H2S log HSAn
δ

nd̄m
)

The above translates into the following worst-case bound.

Corollary 6 (Worst-case pointwise bound on estimation error in AOPE). Fix a policy π, suppose D
is a dataset conforming to AOPE, and v̂π is formed using this dataset. Then with probability at least
1− δ, we have:

|v̂π − vπ| ≤ O(

√
H3 logHSAn/δ

nd̄m
+

H2S log HSAn
δ

nd̄m
)
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Figure 2: Single-run results of the simulations described in Section 7. On the x-axis, number of
trajectories used by v̂π . On the y-axis, the square-error scaled by n.

Inspired by Azar et al. [2017], Theorems 5 is proved by applying concentration inequalities (with the
same covering trick as Theorem 3) to (P̂h+1 − Ph+1)V

π
h+1 and (P̂h+1 − Ph+1)(V̂

π
h+1 − V π

h+1) sepa-
rately, instead of (P̂h+1−Ph+1)V̂

π
h+1. In order to treat the dominant term, we use Bernstein’s inequal-

ity. To recover the worst-case bound in the corollary, we analyze the variance term with the canonical
equality

∑
h Eπ[Vars′∼P (·|s,a)[V

π
h (s′)]] = Varπ[

∑
h rh] −

∑
h Eπ[Var[E[rh + V π

h+1(s
′)|s, a]]] =

O(H2).

7 Numerical Simulations

In Section 4, we stated our conjecture that learning from adaptively collected datasets should not be
harder than learning from mutually independent datasets. In this section, we present the early results
of simulations designed to study this question.

The simulations were conducted on a toy MDP with two states, two actions, and nonstationary
dynamics, and performed as follows. Fix a type of adaptive algorithm, Z (we used the well-known
exploration algorithms UCB-VI [Azar et al., 2017] and SARSA), and a target policy, π. 1

• Collect a dataset of k trajectories, D, by running Z . Record the policies Z uses in ΠZ

• Collect a "shadow" dataset, Dshadow by running each of the k policies in ΠZ

• For both datasets, and for a range of n ∈ {1, ...k}, estimate and v̂π using the first n
trajectories in D, and do the same for Dshadow

At a glance, Figure 2 suggests that the adaptive dataset does not suffer a performance hit in either
adaptivity regime. However, this data is noisy, and we intend to gather more extensive empirical
evidence for this conclusion in future.

Next Steps

On the theoretical side, the instance-dependent results from Theorems 3 and 6 fail to recover the
correct minimax behavior. This is because we could not salvage the martingale structure leveraged
across timesteps in [Yin et al., 2021]. However, based on our early simulations and our intuition that
throwing away data should not help us learn, we believe this gap to be an artifact of our analysis. As
future work, we intend to recover better bounds by more carefully analyzing the structure of the MDP,
or else demonstrate (by means of a lower bound) that the estimator v̂π is worse at AOPE than OPE.

On the experimental side, we plan on carrying out more detailed simulations than those presented
in Section 7. Empirically observing the behavior of certain error metrics under various adaptivity
regimes may illuminate theoretical aspects of the problem (especially concerning how adaptivity can
give rise to estimation bias for certain policies, an extension from Multiarm Bandits to RL of the
phenomena studied in [Shin et al., 2019]).

1We used a data-dependent π
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We believe that theoretically clarifying the extent to which OPE methods carry over to the AOPE
setting is a step towards making offline RL a yet more convincing candidate for real-world decision
problems.
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