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ABSTRACT

The integration of data-driven supervised learning and reinforcement learning has
demonstrated promising potential for stock trading. It has been observed that
introducing training examples to a learning algorithm in a meaningful order or
sequence, known as curriculum learning, can speed up convergence and yield im-
proved solutions. In this paper, we present a financial curriculum learning method
that achieves superhuman performance in automated stock trading. First, with
high-quality financial datasets from smart retail investors, such as trading logs,
training our algorithm through imitation learning results in a reasonably compe-
tent solution. Subsequently, leveraging reinforcement learning techniques in a
second stage, we develop a novel curriculum learning strategy that helps traders
beat the stock market.

1 INTRODUCTION

In the existing vast body of games and simulations Team et al. (2021), finance is a fertile yet
formidable ground for open-ended learning applications. The less foreseeable nature of financial
markets, exemplified by phenomena such as Black Swan events, poses challenges for agent learning.
The markets are characterized by emergent complexity and sporadic patterns, making the prediction
and management of financial events, even with abundant information, a daunting task. This raises a
pivotal question: Can agents proficiently excel at tasks in the financial domain?

Asset management with financial advisors, which aligns with individual portfolio selections and
risk preferences, is typically deemed wise for investors. Robo-advising, in particular, has gained
popularity with financial reinforcement learning (FinRL) applications Hambly et al. (2023); Liu
et al. (2020). However, several challenges currently impede its real-world adoption:

• Environment: The financial markets dynamics are often noisy, with a low signal-to-noise ratio
(SNR).

• Algorithm: Deep reinforcement learning approaches are often considered black-box algorithms,
lacking model interpretability. Many existing works are also subject to look-ahead bias and model
overfitting, and thus less empirical and convincing.

• Expert Demonstration: There is a variety of traders in the market, such as swing traders, con-
trarian traders, systematic traders, etc. Valuable perspectives derived from trade logs often remain
neglected, while understanding how these entities trade not only provides significant insights into
the market dynamics but also informs valuable trading heuristics.

• Community and Culture: Financial institutions are conservative in embracing open-source
benchmarks and dataset development in the industry, and user privacy concerns and confiden-
tiality agreements surrounding trade logs data have made it difficult for research purposes.

To address these challenges, curriculum learning emerges as a promising approach, enabling the
analysis of large-scale financial data by learning a series of incrementally complex tasks. In our
context, we commence by emulating the strategies of human experts, subsequently employing rein-
forcement learning techniques to refine the model further.
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Our contributions Financial curriculum learning, a two-stage imitation-and-reinforcement
learning method, has the potential of surpassing inherent human performance. By imitating the
trading behaviors exhibited in the preserved historical trade logs of alpha traders, an intelligent
agent can learn from their expertise. Followed by reinforcement learning techniques, the agent is
trained to perform trading decisions through market feedback overhead. This approach, rooted in
open-ended learning, emphasizes adaptability and curriculum learning, offering innovative solutions
in real-world financial applications.

2 RELATED WORKS

2.1 CURRICULUM LEARNING

In order to have an agent that could approach and finally beat the human traders, we adopt the idea
of curriculum learning. This approach draws parallels to human education systems, where concepts
are introduced gradually, building upon previously learned knowledge. Elman (1993) first proposed
the idea of curriculum learning by demonstrating its effectiveness in teaching a recurrent network
of simple grammar. Bengio et al. (2011) revisited the concept of curriculum learning by conducting
experiments in vision and language tasks. They both draw a conclusion that by presenting examples
in a meaningful order, the learner avoids wasting time on noisy or challenging examples that it is not
yet prepared to handle effectively. The star product ChatGPT Ouyang et al. (2022) with GPT-3.5 is
applying the similar idea with a two-stage framework, pretraining and fine-tuning using reinforce-
ment learning from human feedback (RLHF). Compared to the GPT-3 baseline, it has a remarkable
improvement in the accuracy and reliability of its answers. However, existing curriculum learning
techniques have primarily been applied to language processing or games with full information. They
have not been thoroughly tested to determine whether curriculum learning can achieve satisfactory
performance in stochastic and information-hidden environments, such as the financial market.

We aim to validate the effectiveness of curriculum learning in the noisy finance environment. The
first stage involves using imitation learning to capture the trading behaviors of smart retail investors.
The second stage is to use deep reinforcement learning to further develop additional strategies.

2.2 IMITATION LEARNING

In complicated tasks such as Go and Atari games, imitation learning Hussein et al. (2017) is often
used to initialize deep neural networks that approach human-level performance. Imitation learning
involves training a model to imitate a human’s behavior, typically using a dataset of expert demon-
strations. This process provides a warm starting point for further refinement using reinforcement
learning, which could learn through trial and error to find strategies that surpass human performance.
AlphaGo Silver et al. (2016) also uses a two-stage training to learn from expert chess players. It first
mimics moves from expert human players with a deep neural network. Afterwards, AlphaGo tran-
sitions to reinforcement learning through self-play. By changing the chess expert players into stock
smart investors, we extend this meaningful framework in financial market trading. Given a board
position, AlphaGo is trying to optimize the next move. Given a market position, our agent is trying
to optimize the next trading action.

Therefore, we consider imitation learning as a specific form of supervised learning, and for simplic-
ity, we will refer to them interchangeably in this paper.

2.3 FINANCIAL REINFORCEMENT LEARNING

There are many existing researches that have already applied deep reinforcement learning (DRL) in
financial applications. Liu et al. (2018) presented a comprehensive process of trading using DRL
that involved converting historical market data into gym-style environments, and training using the
DDPG algorithm. Zhang et al. (2020) utilized deep Q-learning networks (DQN), policy gradients
(PG) and advantage actor-critic (A2C) algorithms for training. Liang et al. (2018) applied three DRL
algorithms, including DDPG, PPO, and PG, to utilize an adversarial training method for portfolio
management, and demonstrated promising results in backtesting. Hambly et al. (2023) surveyed
popular financial applications that researchers have used DRL in, including equity trading, portfolio
management, trade execution, market making, bid-ask optimization, and robo-advising.
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FinRL Liu et al. (2020) is an open-source library that establishes the full pipeline of financial rein-
forcement learning: data processing, gym environment design, training DRL agents and backtesting.
The work of FinRL-Meta Liu et al. (2022) provides dynamic datasets to produce high-quality market
environments and benchmarks for financial reinforcement learning.

Nonetheless, no previous works resolve the instability convergence issue of deep reinforcement
learning. Thus they barely have exceeding performance comparing to smart retail investors.

3 HIGH-FREQUENCY RETAIL TRADING ACTIVITY AND INFORMATION IN
THE STOCK MARKET

In this section, we will focus on our dataset and answer the following questions:

Why do we focus on learning the behavior of retail investors? One important application of Fin-
Tech is the robo advisor, so it is important to understand the behavior of retail investors in order to
provide them with advice on investment decisions. The availability of high-frequency financial data
+ DRL makes it possible to accomplish this task.

Why is it possible to use a curriculum learning approach to study retail investor trading behavior?
Typically, investor transaction data is not publicly available. However, a recent important finance
study Boehmer et al. (2021) shows that we can obtain data on high-frequency retail trading activities
from market orders. Also, we have a broad set of indicators constructed from high-frequency price
and trading data to effectively capture real-time information in the constantly evolving stock market.
These high-quality retail trading data lay the foundation of open-ended solutions with FinRL.

3.1 DATASET OVERVIEW

We identify marketable retail purchases and sales from a publicly available database of US equity
transaction data (TAQ) following the novel method proposed in Boehmer et al. (2021). It shows
that stocks with positive order imbalance (net buying) by retail investors outperform stocks with
negative imbalances over the next 5 days. This empirical evidence suggests that retail marketable
order imbalances contain information on the price movements of individual stocks and thus reflect
”the wisdom of the crowd” of retail investors.

Our sample consists of daily marketable orders for all US common stocks, with over 11 million
daily stock observations from 2010 to 2021. This comprehensive dataset covers more than 6,700
publicly traded equities popular among retail investors in the US equity market. We rigorously
validate our sample by replicating the main finding in Boehmer et al. (2021) and test the predictive
power of imbalances in retail market order across various groups of stocks formed by sectors (e.g.,
technology, health care) or size and style (e.g., large cap and growth). We find that investment
strategies tracking retail investor trading activities are particularly profitable in small-cap firms and
specific sectors such as consumer goods, energy, technology, and healthcare. A diversified portfolio
by combining the investment strategies formed by the retail market order imbalances across different
size-sector groups delivers an annualized return of 20.5% and a Sharpe ratio of 2.54 over the sample
period of 2010-2021. This return significantly outperforms major US market indices such as S&P
500 and Russell 1000.

The sheer scale and quality of this dataset also make it a valuable resource for researchers and
analysts alike. More importantly, it is a highly informative source of alternative data for smart
retail investors, serving as a target for imitation learning. Undertaking imitation learning holds the
potential to achieve favorable performance, as real retail investors. Going one step ahead, the data
of retail investors is valuable for robo advisor. Based on the investor’s historical trading behavior,
the robo advisor can have a chance to understand the investor’s behaviors and tastes, and provide
them with advice on investment decisions accordingly.

3.2 TRADING ACTIVITY AND PERFORMANCE

One may effectively distinguish retail investors’ marketable orders from institutional ones, as in-
stitutions are typically not entitled to fractional penny price improvements with their trades. The
authors in Boehmer et al. (2021) have identified marketable retail price-improved orders from the
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Figure 1: Expected cumulative returns for retail investor trading activity. The expected daily return
rate is calculated as the geometric mean over the next 5 days.

publicly available information, which stems from all historical transactions for stocks listed on na-
tional exchanges in the U.S.

To largely eliminate potential noise within the market micro-structure, we categorize extreme signals
into binary labels based on pre-established thresholds, as follows:

• Buy: Order imbalance greater than the 95th percentile.
• Sell: Order imbalance lower than the 5th percentile.
• Hold: The remaining data points, i.e., order imbalance between the above two marks.

Before these classifications, we have also applied a simple detection filter by considering the trade
days before and after to capture such ”anomalies” (or spikes).

We now transform the trading activities into a multi-classification problem, and Figure 1 with our
identified trade points reaffirms the effectiveness of smart retail investors. When considering fixed
shares to trade each time, the buy portfolio yields approximately a 10-fold return. Conversely, the
sell portfolio reflects pessimistic views, resulting in a much lower curve with 3 times return over the
12-year sample period. The significant discrepancy between the two curves highlights the strong
trading behaviors exhibited by retail investors. Additionally, implementing a long-short strategy
utilizing both portfolios demonstrates an expected return rate of close to 170%.

Note that we use the 5-day geometric mean return as our daily return rate, as buy portfolios tend
to significantly outperform sell portfolios over the 5-day period. It may be intriguingly interpreted
as investors managing 5 brokerage accounts of equivalent purchasing power, with each account
engaging in weekly trading.

3.3 TRADING INDICATORS

Human traders themselves are decision-makers upon fundamental stock analysis. Among market
participants, retail investors are extremely passionate about the technical analysis over stock charts.
Therefore, on top of known retail investors’ trade activities, we have curated over 40 trading in-
dicators per stock-day observation. We tend to investigate how these overarching stock indicators
contribute to the stock trading decisions of retail investors.

4 PROBLEM FORMULATION

We approach stock trading as a Markov Decision Process (MDP) and formulate it as an optimization
problem. Next, we use a year-long snapshot of data from 2021 to merit further investigation into
how to study these smart trade investors. The summary statistics can be found in Appendix A.

4



2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

4.1 ASSUMPTIONS

We facilitate several assumptions to augment the completeness of our problem formulation.

• Long-only strategy: Short selling is not allowed in the trading strategy, as retail investors
typically seek undervalued securities.

• Free transaction costs: We assume that no fees are incurred for buying or selling stocks.

• Zero stock dividends: Dividends from stocks are not factored into the trading model.

• Market liquidity: Order execution is always successful at daily close prices without im-
pacting the underlying stock price.

• Trading heuristics: Our imitation target, retail investors, employs informed trading heuris-
tics based on various technical indicators. To capture all the public information available in
the financial market that can potentially be used by retail investors, we construct a dataset
of 43 high-frequency trading indicators from the Trade and Quote (TAQ) database Bogous-
slavsky et al. (2023). To the best of our knowledge, we are the first study to implement
deep reinforcement learning with such a comprehensive dataset of trading indicators.

4.2 MDP MODELING AND MARKET ENVIRONMENT

The secondary market allows investors to trade securities among themselves. However, the market
dynamics often present significant noise, making alpha generation and future price prediction chal-
lenging. Consequently, we formulate our stock trading task as a concise Markov Decision Process
(MDP), incorporating D stocks into our portfolio. Our objective is to maximize the cumulative re-
turn, treating each trading day as a discrete time step denoted by t, and making decisions based on
the performance of individual stock i. Specific details of the MDP of our environment are outlined
below:

• State Space st = [bt, ht, pt, Ft] :

– bt ∈ IR: the remaining cash balance of our accounts and our purchasing power. It is
initialized at 100,000 dollars by default.

– ht∈ IRD: A vector that represents the current holdings in terms of the number of
shares of each stock in our portfolio, indicating our position.

– pt∈ IRD: A vector of the daily closing prices for each stock i. Combined with our
holdings, this allows us to calculate the market values for each security.

– Ft∈ IRD×43: A vector of 43 technical indicators that we have curated for stock in-
vestors. These are considered stock features and can be used to mine alpha signals.

• Action Space at ∈ ZD: A set of three discrete trading actions applicable to each underlying
stock. Here, ait = 0 signifies a hold action, ait = 1 denotes buying one share, and ait = -1
indicates selling one share of stock i on day t. Collectively, at ∈ {−1, 0,+1}D forms an
action vector that operates across D stocks.

• Reward r (st, at, st+1): the relative change in portfolio value after taking action at, transi-
tioning from state st to st+1. The reward is calculated as the return rate of portfolio value

between day t and day t+ 1, expressed as hT
t+1pt+1−hT

t pt

hT
t pt

in terms of holdings and prices.

• Policy π(·|s): the stock trading strategy at state s. The policy is determined by the proba-
bility p, which measures the agent’s propensity to either long, short or hold the stocks.

Overall, Figure 2 summarizes our learning-based stock trading environment, where on each trading
day, the agent adjusts its strategy based on the available market information and its current portfolio.
The agent can choose from three possible actions: buy, sell with a limit of 1 unit per stock, or hold
current positions.

Followed by selected actions, the agent receives feedback and observes the consequences on the next
trading day. Feedback naturally comprises market rewards, which are defined as the rate of change
in portfolio value. Apart from our environment and its rewarding property, we place an expert agent
alongside the learning agent to incorporate human feedback, playing the role of supervisor on-site
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Figure 2: The overview of agent-and-environment interactions.

to prevent one from going astray. More crucially, the two types of existing feedback altogether
consolidate the foundation of our curriculum learning solution whose details are disclosed in the
next few sections.

5 FINANCIAL CURRICULUM LEARNING

Stock trading involves multiple stock assets, leading to a high-dimensional combinatorial problem.
The sole use of either supervised learning or reinforcement learning presents several limitations
in this context. Nevertheless, our two-stage financial curriculum learning solution integrates the
strengths of both learning approaches. In Figure 2, the first stage, imitation learning, helps the agent
approach retail traders fast. Then the second stage deep reinforcement learning makes it possible to
have an exceeding performance.

5.1 IMITATION LEARNING

Stock prices are known to be non-stationary time series, driven by market sentiments. Coinci-
dentally, our dataset provides expert demonstrations of stock trading, which makes it possible to
accomplish this task by imitation learning.

5.1.1 OBJECTIVE FUNCTIONS

Supervised learning has an upper bound on learning performance because it does not interact with
the environment, and reinforcement learning can be unstable to use, due to the low SNR in financial
data. Therefore, we employ the idea of curriculum learning, which combines the advantages of both
methods, into the following objective:

(1− λ) · L(aAt − aEt ) + λ · r(st, aAt , st+1), (1)

where

L(aAt , a
E
t ) =

1

D

D∑
aEt · log

(
p(aAt )

)
, (2)

r(st, a
A
t , st+1) =

PVt+1 − PVt

PVt
=

(ht + aAt )
T pt+1 − hT

t pt
hT
t pt

, (3)

where

• aAt , a
E
t : Action of the training agent (A) and human expert (E) at time t;

• PVt: The portfolio value worth on day t;
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• D: The size of data points at each step. D = 100 for our case;
• λ: A weight factor that increases over time, with λ = min

(
1, k

T

)
where k being the current

time step and T being a hyper-parameter.

Equation 2 is simply the cross-entropy loss as common in multi-classification tasks, whereas Equa-
tion 3 is the daily return rate to represent market feedback. With coefficient schedule λ, we give
precedence over learning from smart traders, followed by fine-tuning with reinforcement learning.
This allows the agent to adopt domain knowledge provided by human traders and to avoid getting
stuck in local minima through the powerful search ability of reinforcement learning.

5.1.2 NORMALIZING REWARDS

The defined objective in Equation 1 is also exemplary of reward shaping. However, in the context
of our MDP-based state transition in RL, the environment dynamics are considerably more volatile,
particularly when multiple feedback types are considered.

Our environment reveals fast-paced and ever-changing dynamics, encompassing information from
both the market and human feedback, as derived from Equations 2 and 3. The scale of these feed-
back signals may vary, and during environment exploration, the agent is exposed to a broader range
of them. Additionally, neural networks are sensitive to extreme gradient values, causing gradient ex-
plosion or gradient vanishing. Consequently, for the purpose of dynamics normalization, it becomes
imperative to re-balance the feedbacks, respectively.

We introduce a dynamic standardization scheme during training, maintaining running statistics to
self-update the agent’s distributional parameters based on historical visits. This technique not only
contributes to stabler training but also accelerates convergence when neural networks are utilized.
The estimators of running mean (µ̂n), standard deviation (σ̂n), and sum of squared differences
(SSDn) for n steps are as follows:

µ̂n =
(n− 1) · µ̂n−1 + xn

n
, (4)

σ̂n =

√
SSDn

n− 1
, (5)

where
SSDn = SSDn−1 + (xn − µ̂n−1) · (xn − µ̂n). (6)

5.2 DEEP REINFORCEMENT LEARNING (DRL)

We use a state-of-the-art actor-critic algorithm, PPO, with tailored engineering to work with our
desired action space.

5.2.1 PROXIMAL POLICY OPTIMIZATION (PPO)

PPO Schulman et al. (2017) is an on-policy, actor-critic algorithm. The training procedure for PPO
is an artifact of offline training and online searching. The agent collects experiences by interacting
with the environment, and then learns and refines the policy after gathering sufficient data with a
buffer. A few technical details regarding our PPO implementation are highlighted in Appendix B.

5.2.2 POLICY NETWORK

The complex nature of stock trading presents numerous challenges for action simulation. First, with
over 3,000 publicly listed securities on Nasdaq and over 8,000 on NYSE as of July 2023, stock
selection resembles a multi-armed bandit problem. The number of available equities makes the
selection process difficult. Second, the crucial task of deciding which equities to trade—whether
to sell, buy, or hold—depends heavily on market timing, significantly impacting the outcomes. In
summary, both perspectives contribute to the high-dimensional characteristics of stock trading.

A novel idea is to parametrize our action space. We focus on the top 100 most traded stocks by retail
investors and narrow down the action space to represent the three distinct behaviors (buy, sell, and
hold) with the smallest possible unit (1 share per stock) at each step. By combining these insights, we
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Figure 3: a) Training curves of different methods: supervised learning (SL), reinforcement learn-
ing (RL), and curriculum learning (CL). All are smoothed by rolling windows of size 100 and 10,
respectively. b) Portfolio comparison over the year 2021. The environment is reset randomly to
validate model robustness.

simplify and standardize our problem setting by introducing a multivariate probability distribution P
over the 100 stocks with a neural network. Our space dimensionality is largely reduced to M100×3.

Notably, even with a limited number of discrete actions applicable to individual stocks, considering a
pool of 100 stocks would have resulted in an astronomical number of possible combinations—3100

actions are infinitely many to search iteratively, which is akin to the complexity encountered in
games like Go Silver et al. (2016). Over again, this emphasizes the necessity of employing an
actor-critic framework, where the actor network can better approximate the next moves.

6 PERFORMANCE EVALUATION

Our proposed curriculum learning method not only facilitates a smoother onboarding process for
”rookie” trading agents but also has the potential to achieve exceptional performance—the student
agent surpasses its master.

6.1 EXPERIMENT DESIGN

We conducted experiments using various approaches for agent training, denoted as supervised learn-
ing (SL), reinforcement learning (RL), and our proposed curriculum learning (CL). All these training
schemes follow a fashion of offline training and online searching. The experiment configurations
and algorithm parameters are specified as follows, and in Appendix C.1,

• SL: λ = 0 for all timestep k;
• RL: λ = 1 for all timestep k;
• CL: λ = min

(
1, k

104

)
for all timestep k.

6.2 RESULTS

We are analyzing our results from two perspectives, machine learning and portfolio performance.

6.2.1 MODEL TRAINING

In our sample run, we observe distinct training patterns among the different types of agents. The
pure RL agent initiates its training with completely random exploration and progressively evolves
to master the art of stock trading. On the other hand, the SL agent exhibits an upper limit to their
performance, reflecting the constraints of the knowledge imparted by the expert.

Most notably, our CL agent displays stable characteristics during training, as well as convergence
speed-up. It leverages the expertise of the trading expert at the early stage of training, resulting in a
higher rate of convergence compared to RL. Subsequently, while both RL and CL agents experience
diminishing convergence rates after 1 × 105 time steps, the latter shows higher stability with less
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Figure 4: Distribution of total rewards in the defined train (first 250 days) and test (last 52 days)
environments over 10 episodes.

oscillation in its training curve. It appears as if the CL agent could fine-tune its own strategy as
it gains a deeper understanding of the environment. Although both achieve comparable rewards
in our task, the CL agent demonstrates the ability to quickly find high-quality solutions within a
significantly reduced timeframe of about 40000 time steps, as illustrated in Figure 3-a).

6.2.2 PORTFOLIO PERFORMANCE

We explore the investment strategy constructed by our CL agent. In Figure 3-b), we compare our
best-trained CL agent against common benchmarks, such as S&P 500 ETF Trust (SPY), mean-
variance optimization (MVO), and equal weight (also known as buy-and-hold).

Under the exact same portfolio of 100 stock constituents, CL significantly outperforms the equally
weighted and mean-variance methods with a higher Sharpe ratio, as well as a lower max drawdown.
Moreover, it shows a highly competitive performance compared to SPY, surpassing the latter by
almost 2%. See Appendix C.2 for the full results in financial metrics.

We also conduct a traditional train-test evaluation, particularly for CL and RL. The first 200 trade
days are defined as the training environment, whereas the latter 52 days are used as the test environ-
ment. Both agents are trained with the previous setting until 2 × 105 timesteps, where their fitted
performance becomes close to one another. Figure 4 presents rewards distributions, confirming that
the CL agent’s performance demonstrates enhanced performance even in out-of-sample back-testing
when compared to RL.

7 FUTURE WORK AND CONCLUSION

Our curriculum learning solution bridges the multi-stage training with a simple yet concise imple-
mentation, leading to convergence speed-up and stable training, as well as high-quality portfolio
performance. Moreover, we hope to improve the investment skills of retail investors, with the ulti-
mate goal of fostering an efficient, fair market system, where more investors may benefit from this
collective good. In the future, we would like to continue our work in the following aspects:

Institutional Trading In contrast to retail investors, investigating macro, low-frequency trading
heuristics from institutional investors is also promising. Institutional investors are regulated to dis-
close their quarter-end holdings, coupled with publicly available earnings reports for thousands of
companies, which can serve as valuable data sources.

Multi-agent System The stock market is also typically regarded as a partially observable Markov
decision process (POMDP) involving multiple market participants who adopt diverse trading strate-
gies, frequencies, and underlying assets. Fujimoto & Gu (2021) introduces a minimal offline ap-
proach to learning an agent that leverages the advantages of different experts. However, a multi-
agent system is another natural approach to model such a multi-strategy mechanism, resembling a
hedge fund’s business model. Agents may cooperate or compete against each other to maximize
collective or individual rewards, respectively.
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A DATASET STATISTICS

Table 1: Summary statistics of top 100 traded stocks data by retail investors (from 2020-12-31 to
2021-12-31).

Data Source Sector Stocks (Prop) Annual Return Volatility Avg. Position

Retail Trade Activity XLB 2 (2.0%) -17.4% 93.1% 0.044
XLC 4 (4.0%) 24.3% 47.3% 0.072
XLE 8 (7.9%) 42.4% 80.7% 0.044
XLF 6 (5.9%) 34.7% 36.1% 0.071
XLI 15 (14.9%) -2.6% 48.9% 0.049
XLK 15 (14.9%) 4.9% 42.8% 0.048
XLP 5 (5.0%) 27.8% 44.7% 0.067
XLR 4 (4.0%) 0.8% 59.3% 0.082
XLU – – – –
XLV 27 (27.0%) -8.2% 60.1% 0.047
XLY 14 (13.9%) 25.7% 47.5% 0.045

Data Source Russell Group Stocks (Prop) Annual Return Volatility Avg. Position

Retail Trade Activity Large – – – –
Mid 3 (2.4%) 43.8% 32.8% 0.067

Small 36 (29.0%) 15.9% 40.5% 0.005
Micro 74 (59.2%) 6.3% 55.2% 0.005
Nano 11 (8.8%) 0.7% 85.6% 0.019

Variables N Mean Std Min 25% 50% 75% Max

Price 25,200 45.94 87.03 0.56 10.03 23.04 44.81 729.80
Market Cap 25,200 1,062.26 1,309.57 9.87 369.80 678.27 1,328.83 10,505.10
ret 1 25,200 0.1% 3.5% -75.5% -1.6% 0.0% 1.6% 87.3%
ret 5 25,200 0.2% 7.8% -76.3% -3.5% 0.0% 3.5% 181.2%
Russell Group 25,200 3.78 0.64 2.00 3.00 4.00 4.00 5.00
Position Indicator 25,200 0.05 0.38 -1.00 0.00 0.00 0.00 1.00

Categories 43 high-frequency trading indicators (all lagged by one trading day)

Returns returns over different time zones (daily, overnight, intraday, morning, afternoon)
Liquidity effective spread, realized spread, Kyle lambda, intraday and overnight price impacts
Volatility absolute return and realized volatility (daily, intraday, overnight), variance ratios,

30-min return autocorrelation
Trading trade volumes (daily, intraday, overnight, morning, afternoon), Herfindahl index,

the number of 5, 15, 30-min time intervals with trade, buy-minus-sell share/dollar volume,
value-weighted average trade price of buys minus sells
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B IMPLEMENTATION NOTES

PPO extends beyond the Trust Region Policy Optimization (TRPO) algorithm Schulman et al.
(2015), with a novel clipped objective function to be optimized as:

LCLIP (θ) = Êt

[
min

(
r(θ)Ât, clip(r(θ), 1− ϵ, 1 + ϵ)Ât

)]
(7)

The clip() operation is indicating that r(θ) is clipped within [1 − ϵ, 1 + ϵ] to control update size.
Furthermore, the probability ratio r(θ) is the ratio between the current policy and the prior policy,
and the advantage Ât is computed by Monte Carlo estimation in our implementation for simplicity.
Both expressions are shown as follows:

r(θ) =
πθ(at|st)
πθold(at|st)

, (8)

Â(st, at) = Rt − V (st), (9)
where Rt is the return from state st to the terminal state of the episode, and V (st) is the estimated
value of state st from the critic network.

The final loss is a multi-objective, combining the clipped surrogate loss, the value function loss, and
a distributional entropy over πθ, which can be written as:

LFinal(θ) = E
[
LCLIP (θ)− c1MSE(V (st), Rt) + c2H(πθ)

]
(10)
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C EXPERIMENT DETAILS

C.1 ALGORITHM HYPERPARAMETERS

Table 2: PPO Hyperparameters. Our actor and critic are 3-linear-layer networks with 256 hidden
neurons. The update frequency is 4 times the maximum length of an episode.

Parameter Value
input size 4501
output size 100 × 3
hidden units [256, 256, 256]
activation Tanh()
total timestep 5× 105

update frequency 1004
buffer size 1004
K epochs update 40
eps clip 0.2
gamma 0.99
lr actor 0.0003
lr critic 0.001
c1 0.5
c2 0.01

C.2 PORTFOLIO PERFORMANCE

Table 3: Portfolio comparison over the year 2021 in terms of financial metrics.

Measure Ours Equal SPY MVO
Annual return 29.6% 13.8% 27.9% 15.9%
Annual volatility 22.3% 22.1% 13.1% 22.0%
Sharpe ratio 1.282 0.697 1.950 0.786
Calmar ratio 3.247 0.825 5.146 0.959
Stability 0.546 0.004 0.931 0.008
Max drawdown -9.1% -16.8% -5.4% -16.6%
Omega ratio 1.231 1.116 1.381 1.132
Sortino ratio 2.011 1.036 2.889 1.171
Tail ratio 1.241 1.175 1.068 1.175
Daily value at risk -0.027 -0.027 -0.015 -0.027
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