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ABSTRACT

Robust Fine-Tuning (RFT) is a low-cost strategy to obtain adversarial robustness
in downstream applications, without requiring a lot of computational resources
and collecting significant amounts of data. This paper uncovers an issue with the
existing RFT, where optimizing both adversarial and natural objectives through
the feature extractor (FE) yields significantly divergent gradient directions. This
divergence introduces instability in the optimization process, thereby hindering
the attainment of adversarial robustness and rendering RFT highly sensitive to
hyperparameters. To mitigate this issue, we propose a low-rank (LoRa) branch
that disentangles RFT into two distinct components: optimizing natural objec-
tives via the LoRa branch and adversarial objectives via the FE. Besides, we in-
troduce heuristic strategies for automating the scheduling of the learning rate and
the scalars of loss terms. Extensive empirical evaluations demonstrate that our
proposed automated RFT disentangled via the LoRa branch (AutoLoRa) achieves
new state-of-the-art results across a range of downstream tasks. AutoLoRa holds
significant practical utility, as it automatically converts a pre-trained FE into an
adversarially robust model for downstream tasks without the need for searching
hyperparameters. Our source code is available at the GitHub.

1 INTRODUCTION

With the emergence of foundation models (Bommasani et al., 2021), fine-tuning the pre-trained
feature extractor (FE) has become a low-cost strategy to obtain superior performance in downstream
tasks. Notably, GPT-3 (Brown et al., 2020) can achieve state-of-the-art (SOTA) performance on
GLUE benchmarks (Wang et al., 2018) via parameter-efficient fine-tuning (Hu et al., 2021). Due
to the ubiquitous existence of adversarial attacks (Goodfellow et al., 2014; Madry et al., 2018; Xu
et al., 2022), adopting pre-trained FEs to safety-critical downstream areas such as medicine (Buch
et al., 2018) and autonomous cars (Kurakin et al., 2018) necessitates the strategy of robust fine-
tuning (Hendrycks et al., 2019) that can yield adversarial robustness in downstream applications.

Robust fine-tuning (RFT) (Hendrycks et al., 2019) that contains an adversarial objective to learn
features of adversarial data (Madry et al., 2018) can gain adversarial robustness in downstream
tasks. To further improve generalization, vanilla RFT (formulated in Eq. 1, shown in the left panel
of Figure 1c) optimizes both adversarial and natural objectives to learn the features of adversarial
and natural data simultaneously via the FE (Zhang et al., 2019; Shafahi et al., 2019; Jiang et al.,
2020). Recently, TWINS (Liu et al., 2023) (formulated in Eq. 2) further enhances performance in
downstream tasks by incorporating vanilla RFT with a dual batch normalization (BN) (Xie et al.,
2020; Wang et al., 2020) module. TWINS takes advantage of extra information from the pre-trained
FE (i.e., pre-trained statistics in a frozen BN) via the dual BN module, thus improving performance.

However, we empirically find that vanilla RFT and TWINS have a common issue, where optimizing
both adversarial and natural objectives via the FE leads to significantly divergent gradient directions.
As shown in Figure 1a, the cosine similarity between the gradient of natural and adversarial objective
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(c) Left panel: Vanilla RFT. Right panel: Our proposed automated RFT
disentangled via a low-rank branch (AutoLoRa). The yellow module is
the LoRa branch. Scalars β, λ1, λ2 serve as reweighting loss terms.

Figure 1: Figure 1a shows the cosine similarity between the gradients of natural and adversarial
objective w.r.t. the feature extractor (FE) (dubbed as gradient similarity) on DTD-57 (Cimpoi et al.,
2014). Figure 1b shows the robust test accuracy evaluated via PGD-10 on DTD-57. Extra empirical
results are shown in Figures 2a and 2b (Appendix B.1). Figure 1c shows the framework of vanilla
RFT that learns both adversarial and natural data via the FE while our proposed AutoLoRa learns
adversarial and natural data via the FE and the LoRa branch, respectively.

w.r.t. the FE, dubbed as gradient similarity, achieved by vanilla RFT (blue lines) and TWINS (green
lines) is very low. It indicates that optimizing both natural and adversarial objectives through the FE
can result in a divergent and even conflicting optimization direction.

The divergent optimization directions make the optimization process of RFT unstable, thus impeding
obtaining robustness in downstream tasks and making RFT sensitive to hyperparameters. Compared
to TWINS, vanilla RFT has a lower gradient similarity (in Figure 1a) while gaining a lower robust
test accuracy (in Figure 1b). It indicates that the issue of divergent optimization direction could
prevent gaining adversarial robustness in downstream tasks. TWINS tackles this issue to some extent
via the dual BN module while gaining only slightly improved robustness. Thus, we conjecture that
mitigating the aforementioned issue can further enhance adversarial robustness.

To this end, we propose to disentangle RFT via a low-rank (LoRa) branch (Hu et al., 2021) (details
in Section 4.1). As shown in the right panel of Figure 1c, we disentangle the RFT by forwarding
adversarial and natural data through the FE (blue module) and the LoRa branch (yellow module),
respectively. In this way, the FE parameters are updated only by the adversarial objective to learn the
features of adversarial data, which exactly solves the aforementioned issue of the divergent optimiza-
tion direction. Besides, the FE also learns the knowledge of the natural objective via minimizing
the Kullback-Leibler (KL) loss between adversarial logits and natural soft labels provided by the
LoRa branch to avoid degrading generalization. Therefore, benefiting from the parameter-efficient
LoRa branch, RFT disentangled via a LoRa branch can be a low-cost strategy to further improve
adversarial robustness while maintaining generalization.

Moreover, we propose heuristic strategies of automatically scheduling the learning rate (LR) as
well as the scalars λ1 and λ2 (details in Section 4.2). Lin et al. (2019) analogized the generation
process of adversarial data to the training process of the neural model. It motivates us to employ
the automatic step size scheduler in AutoAttack (Croce & Hein, 2020), which is proven to enhance
the convergence of adversarial attacks, for scheduling the LR, thus helping the convergence of RFT.
Inspired by graduated optimization (Hazan et al., 2016; Hulse et al., 2019), we take λ1 and λ2 to be
negatively and positively proportional to the standard accuracy of natural training data, respectively.
In this way, our proposed scheduler will enforce the model to first focus on solving the natural
objective which is a simplified optimization problem and then tackling the difficult optimization
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problem of the adversarial objective. Therefore, our automated scheduler of the scalars utilizes
graduated optimization to improve robustness.

Our comprehensive experimental results validate that our proposed automated robust fine-tuning
disentangled via a LoRa branch (AutoLoRa) is effective in improving adversarial robustness among
various downstream tasks. We conducted experiments using different robust pre-trained models
(ResNet-18 and ResNet-50 adversarially pre-trained on ImageNet-1K (Salman et al., 2020)) and
both low-resolution (Krizhevsky, 2009) and high-resolution (Cimpoi et al., 2014; Khosla et al.,
2011; Wah et al., 2011; Griffin et al., 2007) downstream tasks. Empirical results validate that our
proposed AutoLoRa can consistently yield new state-of-the-art adversarial robustness performance
without tunning hyperparameters compared to TWINS (Liu et al., 2023).

2 RELATED WORK

Here, we introduce the related work of fine-tuning and robust fine-tuning.

Fine-tuning. With recent advances in self-supervised pre-training (Chen et al., 2020a;b), fine-
tuning foundation models via self-supervision on large-scale unlabelled datasets can efficiently
achieve powerful performance in downstream tasks. As the number of parameters of pre-trained
FE grows significantly, it requires the parameter-efficient fine-tuning (PEFT) strategy that decreases
the trainable parameters during fine-tuning. One popular strategy is to introduce an adapter layer
during fine-tuning (Houlsby et al., 2019; Lin et al., 2020); however, it brings extra inference latency.
Recent studies propose to freeze the pre-trained FE parameters and inject trainable decomposition
matrices that are low-rank and thus parameter-efficient (Hu et al., 2021; Chavan et al., 2023). No-
tably, only fine-tuning low-rank matrices for GPT-3 (Brown et al., 2020) can achieve the SOTA
performance on GLUE benchmarks (Wang et al., 2018) without incurring inference latency (Hu
et al., 2021; Chavan et al., 2023).

Robust fine-tuning (RFT). RFT (Shafahi et al., 2019; Hendrycks et al., 2019) is a low-cost strat-
egy to obtain adversarially robust models in downstream tasks by fine-tuning the pre-trained FEs on
adversarial training data (Madry et al., 2018; Zhang et al., 2020; 2021; Chen et al., 2022). To further
improve generalization in downstream tasks, recent studies propose to learn the features of natural
and adversarial data together (i.e., vanilla RFT) (Zhang et al., 2019; Shafahi et al., 2019). Note that
vanilla RFT has been widely applied to fine-tuning adversarially self-supervised pre-trained mod-
els (Jiang et al., 2020; Fan et al., 2021; Zhang et al., 2022; Yu et al., 2022; Xu et al., 2023b;c) and
achieved powerful robustness in downstream tasks. Furthermore, various strategies about how to
utilize extra information from the pre-trained FEs for improving performance have been proposed.
Liu et al. (2022) proposed to jointly fine-tune on extra training data selected from the pre-training
datasets and the whole downstream datasets to further improve RFT. TWINS (Liu et al., 2023) is
the existing SOTA RFT method that incorporates vanilla RFT with a dual BN framework (Xie et al.,
2020). TWINS uses the dual BN framework to take advantage of the pre-trained statistics in a frozen
BN branch, which is the extra useful information of the pre-trained FEs, thus resulting in superior
performance.

3 A CLOSER LOOK AT VANILLA RFT AND TWINS

In this section, we first introduce preliminaries of vanilla RFT (Zhang et al., 2019; Jiang et al., 2020)
and TWINS (Liu et al., 2023). Then, we empirically disclose the issues of vanilla RFT and TWINS.

3.1 PRELIMINARIES

Let (X , d∞) be the input space X with the infinity distance metric d∞(x, x′) = ∥x − x′∥∞, and
Bϵ[x] = {x′ ∈ X | d∞(x, x′) ≤ ϵ} be the closed ball of radius ϵ > 0 centered at x ∈ X . ϵ is also
denoted as adversarial budget. Let D = {(xi, yi)}ni=1 be a downstream dataset, where xi ∈ Rd, d
is the dimensionality of the input data, and yi ∈ Y = {0, 1, ..., C − 1} is the ground-truth label.
Let fθ1 : Rd → Rv be a pre-trained feature extractor parameterized by θ1 ∈ Rd×v where v is the
dimensionality of the hidden features, gθ2 : Rv → Rz be a randomly-initialized linear classifier
parameterized by θ2 ∈ Rv×z where z = |Y| is the dimensionality of the predicted logits. For
notational simplicity, we denote hθ(·) = gθ2 ◦ fθ1(·) where θ = {θ1, θ2}.
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Vanilla RFT (Zhang et al., 2019). The training loss of vanilla RFT is formulated as follows:

Lvanilla(D; θ, β) =
1

n

∑
(x,y)∈D

{
ℓCE(hθ(x), y)︸ ︷︷ ︸
natural objective

+β · ℓKL(hθ(x̃), hθ(x))︸ ︷︷ ︸
adversarial objective

}
, (1)

where β > 0 is a scalar of the adversarial objective, ℓCE(·, ·) is the Cross-Entropy (CE) loss func-
tion, ℓKL(·, ·) is the Kullback–Leibler (KL) loss function, and x̃ is the adversarial data generated
via projected gradient descent (PGD) (Madry et al., 2018). Natural and adversarial objectives
are used to learn the features of natural and adversarial data, respectively. In our paper, follow-
ing Liu et al. (2023), the adversarial data x̃ is generated by maximizing the CE loss using PGD, i.e.,
x̃ = argmaxx̃∈Bϵ[x] ℓCE(hθ(x̃), y).

TWINS (Liu et al., 2023). TWINS proposed to combine vanilla RFT with a dual BN (Xie et al.,
2020) framework to take advantage of pre-trained statistics, whose loss function is shown below:

LTWINS(D; θ, β, γ) = Lvanilla(D; θ̄, β) + γ · Lvanilla(D; θ, β), (2)

where β > 0 and γ > 0 are hyperparameters. During conducting TWINS, all the parameters of
θ are adaptively updated; the BN statistics of θ̄ are frozen as the pre-trained statistics and other
parameters except for BN statistics of θ̄ are copied from θ. Note that the adversarial data x̃ is
generated according to the parameters θ via PGD.

3.2 ISSUES OF VANILLA RFT AND TWINS

We empirically discover vanilla RFT and TWINS have the issue of the optimization directions of
minimizing both adversarial and natural objectives being significantly divergent. This issue can
make the optimization unstable, thus impeding obtaining robustness and making RFT sensitive to
hyperparameters. To validate the aforementioned issue, we calculate the gradient similarity (GS)
as the cosine similarity between the gradient of the natural objective and that of the adversarial
objective w.r.t. the FE parameters. To be specific, given a data point (x, y) ∈ D, the GS of vanilla
RFT and TWINS w.r.t. the FE (i.e., θ1) are calculated as follows:

GSvanilla(x, y; θ, β) =sim
(
∇θ1ℓCE(hθ(x), y),∇θ1ℓKL(hθ(x̃), hθ(x))

)
; (3)

GSTWINS(x, y; θ, β, γ) =sim
(
∇θ1

(
ℓCE(hθ̄(x), y) + γ · ℓCE(hθ(x), y)

)
,

∇θ1

(
ℓKL(hθ̄(x̃), hθ̄(x)) + γ · ℓKL(hθ(x̃), hθ(x))

))
, (4)

where sim(·, ·) is the cosine similarity function. The smaller the GS is, the more divergent the
gradient direction of optimizing natural and adversarial adversarial is. We report the average GS
over all training data of vanilla RFT (blue lines) and TWINS (green lines) on DTD-57 (Cimpoi
et al., 2014) in Figure 1a as well as extensive datasets (Cimpoi et al., 2014; Wah et al., 2011) in
Figure 2a (in Appendix B.1).

Noticed from Figures 1a and 2a, we can observe the GS achieved by vanilla RFT and TWINS is quite
low, which indicates that optimizing both natural and adversarial objectives via the FE can make the
optimization direction orthogonal and even conflicting, thus leading to optimization oscillation. As
shown in Figures 1b and 2b, compared to TWINS, vanilla RFT yields worse adversarial robustness in
downstream tasks while achieving a lower GS. It indicates that the divergent optimization direction
can lead to a lower robust test accuracy, which impedes obtaining adversarial robustness.

Besides, the issue of unstable optimization makes vanilla RFT and TWINS sensitive to hyperpa-
rameters. In Appendix B.2, we empirically validate that vanilla RFT and TWINS are sensitive to
hyperparameters such as the learning rate. To achieve superior performance in downstream tasks,
the authors of TWINS (Liu et al., 2023) conducted a grid search to find appropriate hyperparameters
for each downstream task, which is extremely time-consuming and inconvenient for practical usage.

4 AUTOLORA: AUTOMATED RFT DISENTANGLED VIA A LOW-RANK
BRANCH

To mitigate the aforementioned issue, we propose to disentangle RFT via a low-rank branch and
then introduce heuristic strategies for automating scheduling hyperparameters.

4



Published as a conference paper at ICLR 2024

4.1 DISENTANGLING RFT VIA A LOW-RANK BRANCH

To resolve the issue caused by optimizing both adversarial and natural objectives via the FE, we
propose to leverage an auxiliary branch to disentangle the optimization procedure of natural and
adversarial objectives. Inspired by PEFT (Hu et al., 2021; Chavan et al., 2023), we introduce a low-
rank (LoRa) branch as an auxiliary parameter-efficient branch composed of two rank decomposition
matrices B ∈ Rd×rnat and A ∈ Rrnat×v where rnat ∈ N is the rank, d and v are the dimensionality
of the input data and hidden features, respectively. Therefore, BA ∈ Rd×v has the same size as the
parameters of the FE (i.e., θ1 ∈ Rd×v).

To disentangle the RFT, we propose to optimize the natural and adversarial objectives via the LoRa
branch and the FE, respectively. Thus, we formulate the loss function of the RFT disentangled via
the LoRa branch as follows:

LLoRa(D;θ,A,B, λ1, λ2) =
1

n

∑
(x,y)∈D

{
λ1 · ℓCE(h{θ̄1+BA,θ2}(x), y)︸ ︷︷ ︸

natural objective

+ (1− λ1) · ℓCE(hθ(x̃), y) + λ2 · ℓKL(hθ(x̃), h{θ̄1+BA,θ2}(x))︸ ︷︷ ︸
adversarial objective

}
, (5)

where λ1 ≥ 0 and λ2 ≥ 0 are the scalars, θ = {θ1, θ2} denotes all the trainable parameters com-
posed of the FE parameters θ1 and the classifier parameters θ2, and θ̄1 denotes that the parameters
θ1 do not require gradients.

According to Eq. 5, RFT disentangled via the LoRa branch can separate the optimization procedure
of adversarial and natural objectives. Thus, disentangled RFT will update the FE parameters θ1
only by minimizing the adversarial objective that aims to learn the features of adversarial data;
whereas, the gradient incurred by the natural objective will affect the LoRa branch instead of the
FE. Therefore, the auxiliary LoRA branch solves the issue of divergent optimization directions, thus
being able to improve adversarial robustness.

Besides, the FE also indirectly learns the knowledge of the natural objective via distilling knowledge
from the LoRa branch, so that it prevents RFT from degrading the generalization. We can regard
the LoRa branch as the teacher model that learns features of natural data and provides high-quality
natural soft labels for the student model (i.e., the FE). Thus, the KL loss term in Eq. 5, which is
used to penalize the KL divergence between the adversarial logits and natural soft labels generated
by the LoRa branch, can be regarded as the knowledge distillation loss. In this way, the FE can
implicitly learn the knowledge of natural objectives from the LoRa branch, thus maintaining the
standard generalization.

Note that our proposed disentangled RFT via a LoRa branch is still low-cost thanks to the parameter-
efficient LoRa branch. We empirically verify that the LoRa branch only introduces a quite small
amount of extra trainable parameters that are less than 5% of the FE parameters (i.e., |A| + |B| <
0.05 · |θ1| when rnat ≤ 8 validated in Table 4). Besides, the auxiliary LoRa branch does not incur
extra inference latency since we drop this LoRa branch and only use the parameters θ for predicting
test data during inference. Therefore, disentangled RFT can be an efficient and effective strategy to
improve adversarial robustness while maintaining generalization in downstream tasks.

4.2 AUTOMATING SCHEDULING HYPERPARAMETERS

In this subsection, we introduce heuristic strategies of automating scheduling the hyperparameters
including the learning rate and the scalars λ1 and λ2. We demonstrate the algorithm of our proposed
automated RFT disentangled via a LoRa branch (AutoLoRa) in Algorithm 1.

Automated scheduler of the learning rate (LR) η. Lin et al. (2019) analogized the adversarial
example generation process to the neural model training process. Therefore, recent studies (Wang &
He, 2021; Yuan et al., 2022) have taken a similar strategy to control the step size in the adversarial
example generation process inspired by the scheduler of LR in the neural model training process
in order to improve the convergence of adversarial attack. Note that the step size and the LR are
used to adjust the change rate of the adversarial example and the model parameters, respectively.
Conversely, we conjecture that we can adopt the strategy of adjusting the step size for scheduling
the LR as well. AutoAttack (Croce & Hein, 2020) proposed an automated scheduler of the step size

5



Published as a conference paper at ICLR 2024

Algorithm 1 Automated RFT disentangled via a LoRa branch (AutoLoRa)

1: Input: Training set D, pre-trained feature extractor θ1, maximum training epoch E
2: Output: Adversarially robust model θ
3: Initialize classifier parameters θ2, θ = {θ1, θ2}, and LoRa branch A = N (0,σ) and B = 0
4: Initialize learning rate η = 0.01, epoch e = 0, batch size τ = 128, training flag FLAG = True
5: while FLAG do
6: Update scalars λ1 and λ2 according to Eq. 6 and Eq. 7, respectively
7: for batch m = 1, . . . , ⌈|D|/τ⌉ do
8: Sample a minibatch Sm from D
9: Calculate training loss L∗ = LLoRa(Sm; θ,A,B, λ1, λ2)

10: Update parameters θ ← θ − η · ∇θL∗, A← A− η · ∇AL∗, B ← B − η · ∇BL∗

11: end for
12: if Condition 1 or Condition 2 then
13: η ← η/2
14: end if
15: if η < 1e− 5 or e ≡ E − 1 then
16: FLAG← False
17: else
18: e← e+ 1
19: end if
20: end while

guided by the classification loss, which has been validated as effective in improving the convergence
of adversarial attacks. Therefore, we use a similar strategy to automatically adjust the LR.

Here, we introduce our proposed dynamic scheduler of the LR η based on the robust validation
accuracy during RFT inspired by AutoAttack (Croce & Hein, 2020). We start with the LR η(0) =
0.01 at Epoch 0 and identify whether it is necessary to halve the current LR at checkpoint epoch
cj ∈ N+ where j ∈ {1, . . . ,M} and M is the number of checkpoint epochs. For example, when
maximum training epoch E = 60 and M = 15, we check the LR every 4 epochs, i.e., cj ∈
{0, 4, 8, . . . , 56}. Given a validation set Dval = {(xi, yi)}nval

i=1 of nval data points and maximum
training epoch E ∈ N, we set the following two conditions:

1.
∑cj−1

e=cj−1
1[RA(Dval; θ

(e+1)) < RA(Dval; θ
(e))] ≤ 0.75 · (cj − cj−1);

2. η(cj−1) ≡ η(cj) and RA(Dval; θ
(cj−1))max ≡ RA(Dval; θ

(cj))max,

where 1[·] is an indicator function, θ(e) refers to the parameters at Epoch e ∈ {0, 1, . . . , E − 1},
Dval denotes a validation set, RA(Dval; θ

(e)) refers to the robust accuracy (RA) evaluated on the
adversarial validation data using the parameter θ(e), RA(Dval; θ

(cj))max denotes the highest robust
validation accuracy found until cj epochs.

Condition 1 says that we halve the LR if the robust validation accuracy does not increase in the
75% stage between two adjacent checkpoint epochs (i.e., cj−1 and cj). Condition 2 says that we
halve the LR if both the LR and the best robust validation accuracy remain the same at two adjacent
checkpoint epochs. If at a checkpoint epoch cj , the LR gets halved, then we take the parameters
of the checkpoint that achieves the best robust validation accuracy (i.e., RA(Dval; θ

(cj))max) as the
initialization at next epoch.

Automated scheduler of the scalars λ1 and λ2. Given a training set Dtrain = {(xi, yi)}ni=1 of n
training data points, we set

λ
(e)
1 = 1− SA(Dtrain; {θ(e)1 +B(e)A(e), θ

(e)
2 })α, (6)

λ
(e)
2 = λmax

2 · SA(Dtrain; {θ(e)1 +B(e)A(e), θ
(e)
2 })α, (7)

where λ(e)
1 and λ

(e)
2 denote the weight terms at Epoch e, λmax

2 ≥ 0 is a hyper-parameter that controls
the scale of λ2 ∈ [0, λmax

2 ], SA(Dtrain; {θ(e)1 +B(e)A(e), θ
(e)
2 }) refers to the standard accuracy (SA)

of natural training data at Epoch e evaluated via the LoRa branch, and α > 0 is used for sharpening
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Table 1: Performance benchmarks using ResNet-18. “SA” refers to the standard test accuracy.
“PGD-10” and “AA” refer to the robust test accuracy evaluated by PGD-10 and AutoAttack, respec-
tively. We report p-values of t-tests in Table 7 to justify the significance of performance gain.

ResNet-18 Vanilla RFT TWINS AutoLoRa
(ours)

Diff. (ours vs.
Vanilla RFT)

Diff. (ours
vs. TWINS)

CIFAR-10
SA 81.51 85.27 84.20 +2.69 -1.07

PGD-10 52.97 53.04 54.27 +1.30 +1.23
AA 47.52 47.89 48.95 +1.43 +1.06

CIFAR-100
SA 58.55 63.03 62.10 +3.55 -0.93

PGD-10 30.08 30.37 32.71 +2.63 +2.34
AA 24.07 25.45 27.48 +3.41 +2.03

DTD-57
SA 47.86 49.07 48.72 +0.86 -0.35

PGD-10 23.49 24.87 27.34 +3.85 +2.47
AA 20.37 20.87 21.91 +1.54 +1.04

DOG-120
SA 47.23 48.73 48.57 +1.34 -0.16

PGD-10 14.93 15.12 16.60 +1.67 +1.48
AA 8.14 9.35 10.75 +2.61 +1.40

CUB-200
SA 47.88 51.62 51.00 +3.12 -0.62

PGD-10 21.13 21.35 22.70 +1.57 +1.35
AA 15.66 15.95 16.62 +0.96 +0.67

Caltech-256
SA 61.85 65.22 64.16 +2.31 -1.06

PGD-10 43.22 43.36 44.13 +0.90 +0.76
AA 38.17 38.23 39.00 +0.83 +0.77

the SA inspired by Zhu et al. (2021). As the training progresses with gradually increased standard
training accuracy, λ1 and λ2 will decrease and increase, respectively.

Next, we provide the explanations for our design of the scheduler from the perspective of gradu-
ated optimization (Hazan et al., 2016; Hulse et al., 2019). The graduated optimization proposes to
address a challenging optimization problem by first tackling a significantly simplified version, and
gradually transforming the problem through optimization steps until it aligns with the complexity of
the original optimization challenge. Our proposed scheduler gradually decreases λ1 and increases
λ2, which lets the model first focus on optimizing the natural objective which is a simplified opti-
mization problem, and then focus on solving the complex optimization problem of the adversarial
objective in Eq. 5. In this way, our proposed scheduler improves the optimization of RFT, thus
enhancing the performance.

5 EXPERIMENTS
In this section, we first conduct robustness benchmarks on various downstream tasks to validate
the effectiveness of our proposed AutoLoRa shown in Algorithm 1. Then, we conduct ablation
studies on various pre-trained backbones, the rank rnat, the adversarial budgets ϵpt during robust
pre-training, the sharpening hyperparameter α, and the automated scheduler of LR.
Baselines. We take vanilla RFT (Zhang et al., 2019; Jiang et al., 2020) and TWINS (Liu et al.,
2023) as the baseline methods. As for configurations of the learning rate and the scalars β and γ, we
exactly follow TWINS and also provide the detailed configurations in Table 5 (Appendix A).
Pre-trained feature extractors. In our work, we utilized ResNet-18 (He et al., 2016) and ResNet-
50 that are adversarially pre-trained on ImageNet-1K (Deng et al., 2009) of 224×224 resolution. To
be specific, we downloaded the pre-trained weights from the official GitHub of Salman et al. (2020).
Following the settings of TWINS (Liu et al., 2023), we used pre-trained models with adversarial
budget ϵpt = 4/255 by default.
Downstream tasks. We considered six datasets as the downstream tasks. ➊ CIFAR-10 with 10
classes and ➋ CIFAR-100 (Krizhevsky, 2009) with 100 classes are low-resolution image datasets,
whose training and test sets have 50,000 and 10,000 images, respectively. ➌ Describable textures
dataset with 57 classes (DTD-57) (Cimpoi et al., 2014) is a collection of high-resolution textu-
ral images in the wild, which contains 2,760 training images and test 1,880 images. ➍ Stanford
Dogs dataset with 120 dog categories (DOG-120) (Khosla et al., 2011) contains 12,000 training im-
ages and 8,580 test images. ➎ Caltech-UCSD Birds-200-2011 with 200 categories of birds (CUB-
200) (Wah et al., 2011) is a high-resolution bird image dataset for fine-grained image classifica-
tion, which contains 5,994 training images and 5,794 validation images. ➏ Caltech-256 with 257
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Table 2: Performance benchmarks using ResNet-50. We report p-values of t-tests in Table 7 to
justify the significance of performance gain.

ResNet-50 Vanilla RFT TWINS AutoLoRa
(ours)

Diff. (ours vs.
Vanilla RFT)

Diff. (ours
vs. TWINS)

CIFAR-10
SA 86.33 86.50 86.93 +0.60 +0.43

PGD-10 56.51 56.77 57.16 +0.65 +0.39
AA 51.67 51.73 52.00 +0.33 +0.27

CIFAR-100
SA 63.25 65.52 66.20 +2.95 +0.68

PGD-10 33.25 33.79 35.25 +2.00 +1.46
AA 28.26 28.37 29.50 +1.24 +1.13

DTD-57
SA 52.99 54.22 53.35 +0.36 -0.87

PGD-10 27.36 28.94 30.21 +2.85 +1.28
AA 23.35 23.88 25.59 +2.24 +1.71

DOG-120
SA 62.68 63.64 62.33 +0.15 -1.31

PGD-10 24.87 24.98 25.32 +0.45 +0.34
AA 12.73 14.41 17.44 +4.71 +3.03

CUB-200
SA 57.27 63.58 62.78 +5.51 -0.81

PGD-10 28.37 29.60 31.07 +2.70 +1.47
AA 23.09 23.71 24.40 +1.31 +0.69

Caltech-256
SA 66.78 69.41 69.85 +3.07 +0.44

PGD-10 47.76 47.79 47.82 +0.06 +0.03
AA 42.17 42.27 42.63 +0.46 +0.36

classes (Griffin et al., 2007) is a high-resolution dataset composed of 42,099 images in total. We
randomly split it into 38,550 training data and 3,549 test data. Following Liu et al. (2023), we
resized the images from both low-resolution image datasets (CIFAR-10 and CIFAR-100) and high-
resolution datasets (DTD-57, DOG-120, CUB-200, Caltech-256) to 224 × 224 resolution. In this
way, the input sizes are the same for pre-training and fine-tuning.

Training configurations. For the fair comparison, we set maximum training epoch E = 60 fol-
lowing (Liu et al., 2023). We used SGD as the optimizer, froze the weight decay of SGD as 1e− 4,
and set the rank of the LoRa branch rnat = 8 by default. We set α = 1.0 and λmax

2 = 6.0 by de-
fault. We randomly selected 5% of the entire training data as the validation set. During training, we
used PGD-10 with an adversarial budget of 8/255 and step size of 2/255 to generate the adversarial
training and validation data.

Evaluation metrics. We take standard test accuracy (SA) as the measurement of the generalization
ability in downstream tasks. To evaluate the adversarial robustness, we use robust test accuracy
evaluated by PGD-10 and AutoAttack (AA) (Croce & Hein, 2020) of the adversarial budget being
8/255. For each method, we select the checkpoint that has the best PGD-10 test accuracy as the
best checkpoint and report the performance of this best checkpoint in our results. We repeated the
experiments 3 times and then conducted t-tests between the results of baselines (i.e., vanilla RFT and
TWINS) and the results of our proposed AutoLoRa. We report the p-value of the t-test in Table 7
(Appendix B.3), which validates the significance of the improvement achieved by our AutoLoRa.

5.1 ROBUSTNESS BENCHMARKS ON VARIOUS DOWNSTREAM TASKS

In Tables 1 and 2, we demonstrate the performance benchmarks on six downstream tasks achieved
by ResNet18 and ResNet-50, respectively. We annotate the robust test accuracy achieved by our
proposed AutoLoRa in bold with underlining in Table 1 and 2. We can observe that AutoLoRa
consistently obtains a higher robust test accuracy under both PGD-10 and AA for each downstream
task and each backbone. Besides, the p-values obtained by t-tests in Table 7 (Appendix B.3) further
validate that our improvement in adversarial robustness is significant. Notably, even compared with
the previous SOTA method TWINS Liu et al. (2023), AutoLoRa achieves a 2.03% (from 25.45%
to 27.48%) robustness gain using ResNet-18 on CIFAR-100 and a 3.03% (from 14.41% to 17.44%)
robustness gain using ResNet-50 on the DOG-120 task.

5.2 ABLATION STUDY

In this subsection, we conducted ablation studies on the various pre-trained backbones, rank rnat,
the adversarial budgets ϵpt during robust pre-training, the sharpening hyperparameter α, and the
automated scheduler of LR.
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Table 3: We report the performance benchmarks using vision transformers including ViT (Dosovit-
skiy et al., 2020) and DeiT (Touvron et al., 2021) on the CIFAR-10 dataset. SA and RA refer to
standard test accuracy and PGD-10 robust test accuracy, respectively.

RFT method ViT (S/16) ViT (B/16) DeiT (DeiT-tiny) DeiT (DeiT-small)
SA RA SA RA SA RA SA RA

Vanilla RFT 80.31 51.06 83.87 53.39 78.85 49.72 81.73 51.92
AutoLoRa 80.97 51.51 84.79 54.10 79.49 50.52 82.33 52.63

Table 4: We report the effect of various ranks rnat on the performance of downstream tasks as well
as the ratio of the LoRa branch’s parameters to the original parameters (denoted as “Param. Ratio”).

Rank rnat Param. Ratio CIFAR-10 CIFAR-100 DTD-57 CUB-200
SA RA SA RA SA RA SA RA

2 1.30% 84.89 52.71 61.86 32.00 45.85 25.43 52.04 22.06
4 2.49% 83.69 52.75 62.91 32.75 45.81 24.95 50.50 22.51
8 4.87% 84.20 54.27 62.10 32.71 48.72 27.34 51.00 22.70
16 9.62% 84.87 54.17 61.81 32.63 49.15 27.23 50.43 21.92

Various pre-trained backbones. Table 3 demonstrates the performance of ImageNet (Deng et al.,
2009) pre-trained vision transformers including ViT (Dosovitskiy et al., 2020) and DeiT (Touvron
et al., 2021) achieved on the downstream CIFAR-10 dataset after RFT. The results validate that
AutoLoRa is compatible with various pre-trained backbones and consistently achieves better gener-
alization and adversarial robustness on downstream tasks compared to vanilla RFT.

The rank rnat Table 4 shows that the test accuracy gradually rises in most cases as the rank rnat
increases from 2 to 8, which indicates that a higher rank yields better robustness. The reason could
be that a higher rank enables the LoRa branch to have more tunable parameters for fitting natural
data and outputting higher-quality natural soft labels, which coincides with the discovery in Zhu
et al. (2021) that high-quality soft labels are beneficial to improving performance. However, when
rnat ≥ 8, the performance gain is marginal which means that rnat = 8 is enough to capture the
features of natural data and provide accurate natural soft labels. Therefore, we keep rnat = 8 for the
experiments in Section 5.1 by default.

The adversarial budgets ϵpt during robust pre-training. In Table 8, we report the performance
using pre-trained FEs with different adversarial budgets ϵpt ∈ {0, 1/255, 2/255, 4/255, 8/255}.
The results show that larger ϵpt is beneficial to improving performance. Our proposed AutoLoRa
achieves consistently better adversarial robustness than baselines.

The automated scheduler of the LR. We apply our proposed automated scheduler of LR into
TWINS and report the performance in Table 9. We can observe that TWINS with an automated
scheduler of LR can achieve a comparable performance compared to TWINS with tuned hyperpa-
rameters. It validates the effectiveness of our proposed automatic LR scheduler.

The sharpening hyperparameter α. We report the performance under different α in Table 10.
We can observe that both standard and robust test accuracy rise as α increases from 0.2 to 1.0 while
the robust test accuracy begins to degrade as α increases from 1.0 to 5.0. It indicates that we do not
need to sharpen the values of the standard test accuracy. Therefore, we keep α = 1.0 by default.

6 CONCLUSIONS

This paper proposed an automated robust fine-tuning disentangled via a low-rank branch (Au-
toLoRa) that can automatically convert a pre-trained feature extractor to an adversarially robust
model for the downstream task. We highlighted that vanilla RFT and TWINS have the issue where
the gradient directions of optimizing both adversarial and standard objectives via the FE are di-
vergent. This issue makes optimization unstable, thus impeding obtaining adversarial robustness
and making RFT sensitive to hyperparameters. To solve the issue, we proposed a low-rank (LoRa)
branch to make RFT optimize adversarial and standard objectives via the FE and the LoRA branch,
respectively. Besides, we proposed heuristic strategies for automating the scheduling of the hyperpa-
rameters. Comprehensive empirical results validate that AutoLoRa can consistently yield state-of-
the-art adversarial robustness in downstream tasks without carefully tuning hyperparameters. There-
fore, AutoLoRa can be an automated and effective RFT framework which is significantly useful in
practice. We leave how to conduct RFT to robustify LLMs against adversarial attacks (Xu et al.,
2023a) and label-flipping attacks (Zhang et al., 2024) as the future work.
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A CONFIGURATIONS FOR BASELINES

We report the hyperparameters for reproducing the results of baselines. Note that we exactly
followed the hyperparameters provided by Liu et al. (2023) since they are obtained by a time-
consuming grid search. In our experiments, TWINS refer to the TRADES version of TWINS,
known as TWINS-TRADES in Liu et al. (2023).

Table 5: The hyperparameter configurations of vanilla RFT and TWINS in our experiment follow-
ing Liu et al. (2023). The format means (η(0),WD, γ) for TWINS and (η(0),WD) for baselines
where η(0),WD, β2 are the initial learning rate, the weight decay and the scalar. respectively.

Method CIFAR-10 CIFAR-100 DTD-57 DOG-120 CUB-200 Caltech-256
Vanilla RFT (1e-2,1e-4) (1e-3,1e-4) (1e-2,1e-4) (1e-3,1e-4) (1e-2,1e-4) (1e-2,1e-4)

TWINS (1e-2,1e-4,1.0) (1e-2,1e-4,1.0) (1e-3,1e-4,1.0) (3e-3,1e-4,1.0) (1e-2,1e-4,3.0) (3e-3,1e-4,1.0)

B EXTENSIVE EMPIRICAL RESULTS

B.1 EXTENSIVE RESULTS OF GRADIENT SIMILARITY AND ADVERSARIAL ROBUSTNESS

Here, we provide the extra results of gradient similarity and adversarial robustness evaluated on
CIFAR-10 (Krizhevsky, 2009) and CUB-200 (Wah et al., 2011). The experimental details exactly
follow Section 5.
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Figure 2: Figure 2a shows the cosine similarity between the gradients of natural and adversarial
objectives w.r.t. the feature extractor (FE). Figure 2b shows the robust test accuracy evaluated via
PGD-10.
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B.2 SENSITIVITY TO HYPERPARAMETERS

We empirically show that vanilla RFT and TWINS are very sensitive to the hyperparameter (e.g.,
initial learning rate) caused by poor training stability in Table 6. We performed vanilla RFT and
TWINS using the initial learning sampled from {0.001, 0.1, 0.03}. Table 6 shows that the robust
accuracy (AA) ranges from 18.29 to 24.07 obtained by Vanilla RFT and 1.00 to 25.45 obtained by
TWINS when the initial learning changes, which validates that vanilla RFT and TWINS are sensitive
to hyperparameters.

Furthermore, we conducted AutoLoRa without the automated learning rate scheduler on CIFAR-100
using Resnet-18. The initial learning rate is sampled from {0.001, 0.1, 0.03} and is divided by 10
and 100 at Epoch 30 and 50, following Liu et al. (2023). Table 6 validates that the LoRa branch is
effective in mitigating the sensitivity to the initial learning rate. It indicates that our proposed LoRa
branch would be beneficial in decreasing the sensitivity to hyperparameters to some extent.

Table 6: Sensitivity to the initial learning rate.

Initial learning rate 0.001 0.01 0.03
SA RA SA RA SA RA

Vanilla RFT 58.55 24.07 52.19 20.96 49.10 18.29
TWINS 61.54 23.51 63.03 25.45 1.00 1.00

AutoLoRa without the automated
learning rate scheduler 61.97 27.51 62.88 27.21 62.21 27.33

B.3 VALIDATING SIGNIFICANCE VIA T-TESTS

We repeated the experiments using the random seed from {0, 6, 66}. Therefore, for each down-
stream, each method has three results of SA, PGD-10, and AA, respectively. We conducted t-tests
between the three results of SA/PGD-10/AA obtained by vanilla RFT and our proposed AutoLoRa
as well as t-tests between the three results of SA/PGD-10/AA obtained by TWINS and our proposed
AutoLoRa. We report the p-values obtained by t-tests in Table 7. Note that the p-value is smaller
than 0.05, which means that the improvement gained by our proposed method is significant.

We annotate the p-value in bold when the p-value is smaller than 0.05 and the performance of Au-
toLoRa is better than the baseline. Table 7 validates that our proposed AutoLoRa achieves significant
improvement in most cases.

Table 7: We report the p-values of t-tests between our proposed AutoLoRa (ours) and vanilla RFT
as well as TWINS.

Model Method P-value (vanilla RFT vs. ours) P-value (TWINS vs. ours)
SA PGD-10 AA SA PGD-10 AA

ResNet-18

CIFAR-10 0.0001 0.0014 0.0020 0.0088 0.0002 0.0019
CIFAR-100 0.0010 8e-05 0.0008 0.0551 5e-05 0.0091

DTD-57 0.2393 0.0004 0.0037 0.4447 0.0036 0.0043
DOG-120 0.2568 0.0026 0.0002 0.4993 0.0043 0.0008
CUB-200 0.0215 0.0054 0.0051 0.8731 0.0244 0.0216

Caltech-256 0.0003 0.0023 0.0033 0.0458 0.0021 0.0026

ResNet-50

CIFAR-10 0.0019 0.0029 0.0056 0.0904 0.0341 0.0125
CIFAR-100 1e-05 3e-05 0.0024 0.0044 0.0004 0.0018

DTD-57 0.0320 9e-05 0.0002 0.0053 0.0031 0.0022
DOG-120 0.1595 0.0414 5e-06 0.0031 0.0329 6e-06
CUB-200 6e-06 5e-06 2e-06 0.1027 0.0010 0.0048

Caltech-256 1e-05 0.0457 0.0002 0.0151 0.0413 0.0050

B.4 EMPIRICAL VALIDATION FOR AUTOLORA MITIGATING OPTIMIZATION DIVERGENCE

Given a data point (x, y) ∈ D, the GS of AutoLoRa w.r.t. the FE (i.e., θ1) is calculated as follows:

GSAutoLoRa(x, y; {θ,A,B}) = sim
(
∇θ1ℓCE(hθ(x̃), y),∇θ1ℓKL(hθ(x̃), h{θ̄1+BA,θ2}(x))

)
, (8)
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where sim(·, ·) is the cosine similarity function.

Figure 3 demonstrates the average GS over all training data of AutoLoRa on CIFAR-10, DTD-57,
and CUB-200 datasets, respectively. We observe that, compared with the GS of Vanilla RFT and
TWINS shown in Figures 1a and 2a, AutoLoRa significantly improves the GS. Thus, it validates
that AutoLoRa alleviates the issue of divergent gradient directions.
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Figure 3: AutoLoRa mitigates the issue of divergent gradient directions.

B.5 EXTENSIVE RESULTS OF ABLATION STUDIES

Table 8: The effect of adversarial budget ϵpt during robust pre-training. We keep adversarial budget
as 8/255 during RFT and robustness evaluation.

Datasets CIFAR-100 DTD-57
ϵpt 0 1/255 2/255 4/255 8/255 0 1/255 2/255 4/255 8/255

SA
Vanilla RFT 30.62 55.37 57.03 58.55 59.78 23.94 47.13 48.78 47.86 47.39

TWINS 57.16 60.06 61.88 63.03 62.51 25.70 45.48 49.52 49.07 47.73
AutoLoRa 56.36 59.37 61.13 62.10 62.82 26.54 46.22 48.56 48.72 47.76

RA
Vanilla RFT 13.33 26.33 28.28 30.08 31.44 7.23 23.62 25.32 23.49 25.48

TWINS 26.24 27.67 28.33 30.37 31.83 8.72 20.32 24.15 24.87 25.16
AutoLoRa 27.21 29.97 31.60 32.71 33.31 9.63 24.41 26.38 27.34 27.63

Table 9: The effect of the automated scheduler of LR
on TWINS.

Automatic LR scheduler w/o w/ diff.

CIAFR-10 SA 85.27 85.43 +0.16
RA 53.04 52.98 -0.06

CIFAR-100 SA 63.03 63.66 +0.63
RA 30.37 30.33 -0.04

DTD-57 SA 49.07 51.17 +2.10
RA 24.87 23.56 -1.31

Caltech-256 SA 65.22 64.53 -0.69
RA 43.36 42.98 -0.38

Table 10: The effect of α on AutoLoRa.

α
CIFAR-10 CIFAR-100

SA RA SA RA
0.2 81.97 53.07 60.89 32.68
0.5 83.16 54.35 61.51 33.57
0.8 84.12 54.06 61.89 32.92
1.0 84.20 54.27 62.10 32.71
2.0 84.17 53.06 62.66 31.39
3.0 85.08 52.91 64.80 31.08
5.0 84.57 51.92 61.91 20.21
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