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Abstract

This paper introduces Neurocache, an approach001
to extend the effective context size of large lan-002
guage models (LLMs) using an external vector003
memory to store its past states. Like recent vec-004
tor retrieval approaches, Neurocache uses an005
efficient k-nearest-neighbor (kNN) algorithm006
to retrieve relevant past states and incorporate007
them into the attention process. Neurocache008
improves upon previous methods by (1) stor-009
ing compressed states, which reduces cache010
size; (2) performing a single retrieval operation011
per token which increases inference speed; and012
(3) extending the retrieval window to neigh-013
boring states, which improves both language014
modeling and downstream task accuracy. Our015
experiments show the effectiveness of Neuro-016
cache both for models trained from scratch017
and for pre-trained models such as Llama2-7B018
and Mistral-7B when enhanced with the cache019
mechanism. We also compare Neurocache020
with text retrieval methods and show improve-021
ments in single-document question-answering022
and few-shot learning tasks. 1023

1 Introduction024

Recent advancements in natural language process-025

ing have been significantly driven by the develop-026

ment of large language models (LLMs) such as027

GPT-3, GPT-4, Llama, and Llama2 (Brown et al.,028

2020; OpenAI, 2023; Touvron et al., 2023a,b).029

While demonstrating impressive capabilities, these030

models are constrained by limited context window031

sizes. This limitation becomes apparent in tasks032

that require understanding long documents, such as033

document summarization and academic literature034

review, where processing hundreds of thousands of035

tokens is necessary.036

Various methods, including sparse attention037

(Child et al., 2019; Beltagy et al., 2020; Zaheer038

et al., 2020), have been explored to address this039

1Source code will be made available.

Figure 1: Performance and Scalability of Neurocache
vs. Memorizing Transformers (Wu et al., 2022) on
PG-19: The graph illustrates Neurocache’s consistently
lower token perplexity and faster inference times across
various cache sizes on the Project Gutenberg-19 dataset,
demonstrating its efficiency and scalability.

limitation. However, these approaches often strug- 040

gle to utilize their extended contexts (Liu et al., 041

2023) fully. Recent research by Xu et al. (2023) 042

shows that retrieval-augmented models with shorter 043

contexts (4K tokens) can match the performance 044

of models with longer contexts (16K/32K tokens), 045

maintaining efficiency during inference. This em- 046

phasizes the potential of retrieval-augmented strate- 047

gies in LLMs. 048

In response to these challenges, we introduce 049

Neurocache. Neurocache employs an efficient k- 050

nearest-neighbor (kNN) strategy for retrieving rele- 051

vant past states from a compressed external vector 052

cache. This approach is designed to optimize hid- 053

den state caching and retrieval, thereby enhancing 054

language modeling quality and increasing inference 055

speed. 056

Neurocache advances over exiting methods by 057

reducing the cache size through the storage of com- 058

pressed states, performing a single retrieval op- 059

eration per token to boost inference speed, and 060
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extending the retrieval window to include neigh-061

boring states for improved language modeling and062

downstream accuracy. Figure 1 illustrates the ad-063

vantages of Neurocache in terms of inference speed064

and language modeling accuracy over methods like065

Memorizing Transformers (Wu et al., 2022).066

Our evaluation of Neurocache encompasses both067

models trained from scratch and established pre-068

trained models such as Llama2-7B and Mistral-7B069

(Touvron et al., 2023b; Jiang et al., 2023), demon-070

strating its effectiveness in enhancing language071

models for downstream tasks. Specifically, we072

highlight Neurocache’s improvements in single-073

document question-answering and few-shot learn-074

ing tasks when compared to traditional text retrieval075

methods. Moreover, Neurocache’s integration ex-076

tends the maximum context length of these models077

to 128K tokens, indicating its significant impact on078

long-document processing.079

In summary, Neurocache represents a substan-080

tial step forward in addressing the challenges of081

processing long documents in LLMs, offering a082

blend of efficiency, adaptability, and enhanced per-083

formance. Our comprehensive experiments and084

analysis showcase Neurocache’s potential in revo-085

lutionizing the understanding of long documents in086

natural language processing.087

2 Related Work088

Transformers have made significant advancements089

in natural language processing but face challenges090

in processing long contexts. Various methods have091

been developed to extend the context window while092

maintaining computational efficiency (Huang et al.,093

2023).094

Recent methods include the continued training095

or fine-tuning of short-context language models096

(Nijkamp et al., 2023; Chen et al., 2023b), posi-097

tional interpolation (Chen et al., 2023a), ALiBi098

(Press et al., 2022), and sparse and efficient atten-099

tion designs (Child et al., 2019; Beltagy et al., 2020;100

Zaheer et al., 2020). These approaches reflect the101

evolving landscape of solutions for managing ex-102

tended attention windows in large language models103

(LLMs).104

However, language models still encounter diffi-105

culties in processing longer contexts (Liu et al.,106

2023). Studies have indicated that retrieval-107

augmented models with shorter contexts (4K) can108

surpass models with longer contexts (16K/32K) in109

performance (Xu et al., 2023).110

Prominent strategies in this area are Text Re- 111

trieval and Vector Retrieval. Text Retrieval involves 112

identifying and processing the most relevant seg- 113

ments of long documents. Vector Retrieval, on the 114

other hand, integrates relevant hidden representa- 115

tions of the input, like hidden states or key-value 116

pairs, into the model. 117

2.1 Text Retrieval 118

Text retrieval methods focus on processing rele- 119

vant segments of long documents. Integrating re- 120

trieval mechanisms into language models, such as 121

REALM (Guu et al., 2020), DPR (Karpukhin et al., 122

2020), RETRO (Borgeaud et al., 2021), and RALM 123

(Ram et al., 2023), has enhanced model perfor- 124

mance in various tasks. 125

A limitation of Text Retrieval is its dependency 126

on external retrievers for identifying relevant seg- 127

ments of the context, often employing algorithms 128

like BM25 (Robertson and Zaragoza, 2009), Con- 129

triever (Izacard et al., 2022), and others (Borgeaud 130

et al., 2021; Ram et al., 2023; Karpukhin et al., 131

2020). 132

2.2 Vector Retrieval 133

Vector retrieval methods extend the context window 134

by incorporating relevant hidden states from an 135

external cache of past inputs’ representations. 136

Memorizing Transformers present a novel 137

adaptation to the traditional transformer decoder 138

structure for handling lengthy documents. They 139

process documents in smaller segments and use a 140

dynamically updated external cache to track previ- 141

ous key-value pairs. These models employ an ap- 142

proximate k-nearest-neighbor (kNN) lookup over 143

this cache, merging dense self-attention on the cur- 144

rent context with external-attention over retrieved 145

key-value pairs, thus effectively extending the con- 146

text length (Wu et al., 2022). 147

Unlimiformer is a vector retrieval method, par- 148

ticularly suited for sequence-to-sequence models 149

like BART (Lewis et al., 2020). It extends encoding 150

length by using a kNN index over all input token 151

hidden states, focusing on the top-k input tokens 152

through kNN distance-based attention scores in 153

each decoder layer’s cross-attention head (Bertsch 154

et al., 2023). 155

2.3 Neurocache 156

Neurocache is a vector retrieval method designed 157

for processing long documents in large language 158

models (LLMs). It employs a kNN) strategy to 159
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efficiently retrieve compressed past states from an160

external vector cache. This approach contrasts with161

methods like Memorizing Transformers and Un-162

limiformer, particularly in terms of computational163

efficiency and cache size management.164

Neurocache’s notable features include storing165

compressed states to reduce cache size and perform-166

ing a single retrieval operation per token, which ac-167

celerates inference speed. Additionally, it expands168

the retrieval window to include neighboring states,169

enhancing language modeling and downstream task170

performance.171

Crucially, Neurocache shows adaptability with172

established pre-trained models like Llama2-7B173

and Mistral-7B, extending their maximum context174

length capabilities to 128K tokens. This adapt-175

ability demonstrates Neurocache’s potential in im-176

proving long-document processing capabilities of177

current LLMs.178

In this context, Neurocache presents a balanced179

approach to vector retrieval, combining efficiency180

and adaptability to enhance long-context process-181

ing in natural language processing models.182

3 Method183

3.1 Neurocache Overview184

Neurocache addresses the challenge of process-185

ing long documents using Transformer decoders,186

leveraging a k-nearest-neighbor (kNN) search for187

efficient retrieval and integration of relevant past188

states. The process begins by segmenting the long189

text sequences into smaller segments, each contain-190

ing n tokens, fitting the model’s attention window191

size.192

State Compression: Text segments are sequen-193

tially processed via a Transformer decoder stack194

(Vaswani et al., 2017). At the rth layer of the195

decoder, hidden states Hr ∈ Rn×h are acquired196

and subsequently projected into a compressed form197

C ∈ Rn×d using a learned projection matrix Wp.198

This compression step enhances the efficiency for199

the subsequent kNN retrieval.200

State Retrieval: For each compressed state c ∈201

Rd within C, we identify the top-k most simi-202

lar states Cret ∈ Rk×d from the cache Ccache ∈203

Rm×d. This selection is based on the L2-distance204

between each state in C and the states in the cache.205

Cache Updating: The cache Ccache is updated206

with the compressed states C, maintaining a fixed207

size of m entries. This is achieved by discarding208

the oldest n states, adhering to a First-In-First-Out 209

strategy. The update occurs post-retrieval, reinforc- 210

ing the commitment to retrieving only relevant past 211

states. 212

Cache Augmented Layers: Using the states Cret 213

retrieved in the previous step. Starting from the (r+ 214

1)th layer, the cache-augmented layers Lj , where 215

j > r, integrate a specialized attention mechanism. 216

Each layer uses unique projection matrices W j
k , 217

W j
v , and W j

q to generate keys Kj
ret and values V j

ret 218

from Cret, and queries Qj from the hidden states 219

Hj . The cache attention mechanism is defined as: 220

CA(Q,Kret, Vret) = softmax

(
QKT

ret√
dkey

)
Vret 221

In this formula, Q are the queries derived from 222

Hj , while Kj
ret and V j

ret are keys and values de- 223

rived from Cret, with dkey serving as a normaliza- 224

tion factor. The output of cache attention is pro- 225

cessed by an output matrix W j
o before being com- 226

bined with self-attention outputs through a residual 227

connection. 228

Contextual Retrieval Window: When retrieving 229

the top-k similar cached states, Neurocache also 230

considers additional states surrounding these top-k 231

states within a defined Retrieval Window. This ex- 232

panded retrieval captures not only the most similar 233

states but also their immediate neighbors, provid- 234

ing a richer context for the model’s processing. 235

Consider the cached states Ccache = 236

[c1, c2, . . . , cm], and a query q for which the 237

cached states ci and cj are identified as the top-2. 238

With an even Retrieval Window size w, the 239

retrieved set would include not just ci and cj , but 240

also the cached states [ci−(w/2)−1, . . . , ci+w/2] 241

and [cj−(w/2)−1, . . . , cj+w/2], truncated at the 242

boundaries of the cache. 243

Extended Cache-Attention: We enhance the con- 244

textual awareness of each token during the cache- 245

attention operation by granting access to the re- 246

trievals of preceding tokens. Similar to the con- 247

textual retrieval window, this feature broadens the 248

current token’s context. 249

Specifically, for a token positioned at i in a se- 250

quence, denoted as ti, and with a predefined con- 251

text size c, the cache-attention mechanism includes 252

not only its own retrieved states Ci
ret but also the 253

states retrieved for the preceding c− 1 tokens. For 254

example, if c = 4, the cache-attention for ti would 255

3



Figure 2: Documents are segmented into sequences of n tokens and processed sequentially through a Transformer
decoder stack. For each text segment, mid-layer hidden states H ∈ Rn×h are projected into a compact representation
C ∈ Rn×d using a learned weight matrix Wp ∈ Rd×h. This projection enhances the efficiency of kNN retrieval of
the most relevant past states Cret ∈ Rn×k×d from the cache Ccache. These states Cret are used by cache-augmented
layers to generate keys/values for cache attention. The output of cache attention is added to the self-attention
output before being fed to the feed-forward network (FFN). Finally, the cache Ccache is updated to include C while
maintaining a constant size of m entries.

integrate the keys Ki−3:i
ret and values V i−3:i

ret from256

tokens ti−3:i.257

Please refer to Appendix C for more detailed258

description on Neurocache.259

3.2 Neurocache Adaptation260

Adapting pre-trained decoder language models for261

Neurocache use is a straightforward process that262

significantly enhances their capability to efficiently263

process long documents. For the layers augmented264

with Neurocache, denoted as Lj where j > r,265

the adaptation involves initializing cache-attention266

weight matrices (W j
k ,W

j
v ,W

j
q ,W

j
o ) by duplicat-267

ing weights from the corresponding self-attention268

layers of the pre-trained models. Simultaneously,269

the projection matrix Wp is randomly initialized to270

transform hidden states into compact forms suitable271

for Neurocache retrieval.272

Furthermore, we integrate Low-Rank Adapters273

(LoRA) (Hu et al., 2022) into the feed-forward274

networks of the cache augmented layers. LoRA,275

introducing a minimal number of parameters, plays276

a key role in adapting the models to cache attention277

without compromising their original strengths.278

During training, we freeze the original parame-279

ters of the pre-trained model and focus solely on280

training the newly added weights, specifically the 281

LoRA weights, and the cache-attention weight ma- 282

trices (W j
k ,W

j
v ,W

j
q ,W

j
o ), along with the projec- 283

tion matrix Wp. This training, using a causal lan- 284

guage modeling objective on a corpus of long doc- 285

uments, enables the models to efficiently utilize the 286

Neurocache system. 287

3.3 Retrieval Overhead 288

When analyzed per token, the computational over- 289

head of retrieval in our method stems from the fol- 290

lowing components, which underline the primary 291

computational efforts in the kNN retrieval. 292

Distance Computation: For each token, the rele- 293

vance is assessed by calculating the L2-distance be- 294

tween the token’s compressed hidden state c ∈ Rd 295

and each of the m cached states, resulting in a 296

complexity of O(d×m) per token, where d is the 297

dimension of the compressed hidden state c and m 298

is the total number of cached entries. 299

Top-k Search Over Distances: Identifying the 300

top-k closest states from these distances involves a 301

complexity of O(m+ k) for every token2. 302

2We assume an algorithm with quicksort-style partitioning
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We include more detailed comparative analysis303

in Appendix A.304

Method Retrieval Entry
Frequency Size

Neurocache (Ours) 1 d
Memorizing Transformer a 2a× f
Unlimiformer l × h e

Table 1: Space and time complexity of methods based
on cache queries per token (Retrieval Frequency) and
cache entry dimensions per token (Entry Size). Here,
d is the compressed dimension in Neurocache, a the
number of attention heads, f head size, e hidden size,
and l layers with cache attention.

4 Language Modeling305

We assess Neurocache’s effectiveness via two ex-306

perimental approaches: pre-training language mod-307

els from scratch and adapting established pre-308

trained models. For pre-training, TransformerXL309

(Dai et al., 2019) serves as our baseline, against310

which we compare Neurocache and Memorizing311

Transformer (Wu et al., 2022). In terms of adap-312

tation, we focus on pre-trained models including313

OPT-1.3B, Llama2-7B, and Mistral-7B (Zhang314

et al., 2022; Touvron et al., 2023b; Jiang et al.,315

2023).316

4.1 Datasets317

Our experiments employ two distinct raw text cor-318

pora: PG-19, a well-established benchmark for319

long-form language modeling, and LongPile, a di-320

verse dataset derived from the Pile.321

PG-19: This corpus comprises a collection of322

books written in English and published before323

1919, sourced from Project Gutenberg. It is rec-324

ognized as a standard benchmark for evaluating325

models on long-form text (Rae et al., 2020; Wu326

et al., 2022; Hutchins et al., 2022).327

LongPile: Extracted from the Pile corpus (Gao328

et al., 2020), LongPile features extensive docu-329

ments from varied sources including "Books3,"330

"Gutenberg (PG-19)," "OpenWebText2," "Pile-331

CC," and "Wikipedia (en)." The selection criterion332

ensures that each document surpasses 20K tokens,333

making it suitable for testing models’ performance334

on longer texts.335

is used.

4.2 Pre-training 336

Our baseline for pre-training is the TransformerXL 337

model (Dai et al., 2019), which we compare against 338

Neurocache and the Memorizing Transformer (Wu 339

et al., 2022). In these experiments, both Neuro- 340

cache and the Memorizing Transformer are config- 341

ured with a fixed storage size of 16K during train- 342

ing, expanding to 128K for evaluation to assess 343

their ability to generalize to larger storage sizes. 344

In Neurocache, we set the augmented layer 345

threshold r at 3 ∗ nlayers/4, leading to the com- 346

pression of outputs from the 9th layer of a 12-layer 347

model. The hidden states H , originally of size 348

h = 1024, are compressed by a factor of 4, result- 349

ing in a reduced size of d = 256. We use a retrieval 350

window w = 2 to fetch the top-k cached states and 351

their right neighbors for cache-attention in layers 352

10 to 12. Extending cache-attention to include pre- 353

vious tokens’ retrievals with c = 2, we set k = 16, 354

resulting in 64 neighbors in total. This setup was 355

determined through hyperparameter optimization 356

(details in Appendix B). 357

The Memorizing Transformer, adhering to its 358

original design (Wu et al., 2022), caches key-value 359

pairs from its 9th layer. We align its retrieval setting 360

with Neurocache by setting k = 64, thus retrieving 361

the top-64 key-value pairs for each attention head 362

per token. 363

The pre-training involves 100,000 steps with 364

a batch size of 128 and a context size of 1,024. 365

Adafactor (Shazeer and Stern, 2018) is used for 366

optimization, with a learning rate warming up over 367

the first 1,000 steps, peaking at 2× 10−2, and then 368

decaying to 1× 10−3. 369

Neurocache’s performance on the PG-19 and 370

LongPile datasets surpasses that of the Memoriz- 371

ing Transformer, as evidenced by its lower token 372

perplexities, detailed in Table 2. Additionally, we 373

assess the scalability of Neurocache in compari- 374

son to Memorizing Transformers across various 375

cache sizes. The results, illustrated in Figure 1, 376

demonstrate Neurocache’s computational advan- 377

tage, maintaining its superior performance across 378

different cache sizes. 379

4.3 Adaptation 380

We extend our adaptation strategy to pre-trained 381

models such as OPT-1.3B, Llama2-7B, and Mistral- 382

7B (Zhang et al., 2022; Touvron et al., 2023b; Jiang 383

et al., 2023). The adaptation process is identical to 384

that described in Section 3.2, ensuring a smooth in- 385
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Model Params PG-19 LongPile
16K 128K 16K 128K

Training from scratch
TRANSFORMERXL 184M 14.442 14.442 15.857 15.857
MEMORIZING TRANSFORMER 184M 13.636 13.494 14.966 14.818
NEUROCACHE 192M 13.426 13.257 14.340 14.023

Neurocache adaptation
OPT-1.3B 1.3B 12.199 12.199 19.446 19.446

+NEUROCACHE 1.4B 11.306 11.227 17.626 17.377

LLAMA2-7B 6.7B 7.359 7.359 9.075 9.075
+NEUROCACHE 7.1B 7.117 7.078 8.435 8.347

MISTRAL-7B 7.2B 7.863 7.863 9.380 9.380
+NEUROCACHE 7.5B 7.684 7.636 8.581 8.493

Table 2: Comparison of token perplexity for different models and cache sizes on PG-19 and LongPile datasets.
Neurocache outperforms Memorizing Transformer, and presents a significant reduction in perplexity across both
pre-training and adaptation experiments, underscoring the adaptability to larger cache sizes.

tegration of Neurocache with the pre-trained model386

weights.387

We set the rank parameter r to 16, the scale pa-388

rameter α to 32, and turn off bias in LoRA. Added389

weight matrices and adapter weights are trained on390

the PG-19 and LongPile datasets’ training splits391

for 25,000 steps, employing the Adam optimizer392

(Kingma and Ba, 2015) with a decaying learning393

rate of 1× 10−4. We configured Neurocache using394

the same settings as the pre-training experiments.395

This adaptation process consumes approximately396

200 Nvidia A100 GPU Hours per model.397

The successful adaptation is evident in the sig-398

nificant improvement in token perplexity on both399

datasets, as detailed in Table 2. The subsequent sec-400

tion discusses the impact of these improvements on401

zero-shot performance in downstream tasks.402

5 Downstream Evaluation403

We assess the performance of models augmented404

with Neurocache, particularly Llama2-7B and405

Mistral-7B adapted on LongPile, using seven dis-406

tinct downstream tasks from the LongBench suite407

(Bai et al., 2023). These tasks cover a range408

of scenarios, including single-document question-409

answering (QA), multi-document QA, and few-410

shot learning. We utilize a zero-shot evalua-411

tion approach for the single-document and multi-412

document QA tasks. Conversely, in the few-shot413

learning tasks, a small set of examples is provided414

to the models, serving as part of the extended con-415

text.416

5.1 Datasets 417

The datasets in this evaluation present unique chal- 418

lenges, with average token lengths ranging from 419

5K to 35K, underscoring the need to process long 420

texts effectively. 421

5.1.1 Single-document QA 422

NarrativeQA (NQA) is a question-answering 423

dataset consisting of books from Project Gutenberg 424

and movie scripts. It includes about 30 question- 425

answer pairs per document, providing a robust test 426

for QA systems (Kočiský et al., 2018). 427

Qasper (QSP) contains questions and answers 428

extracted from NLP papers. This dataset offers 429

diverse question types, such as abstractive, extrac- 430

tive, yes/no, and unanswerable questions, making 431

it a comprehensive testbed for QA models (Dasigi 432

et al., 2021). 433

MultiFieldQA (MQA) is designed to test a 434

model’s ability to understand long contexts across 435

various fields, including legal documents, govern- 436

ment reports, and academic papers. It poses a 437

challenge with its questions dispersed throughout 438

lengthy documents (Bai et al., 2023). 439

5.1.2 Multi-document QA 440

HotpotQA (HQA) is a multi-document, 441

Wikipedia-based QA dataset. It requires reading 442

and reasoning across multiple documents and 443

includes questions necessitating sentence-level 444

supporting facts for complex reasoning (Yang 445

et al., 2018). 446
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Method
Single-doc QA Multi-doc QA Few-shot Learn.

NQA QSP MQA HQA MSQ TREC SAMS
F1 F1 F1 F1 F1 Acc. R-L

Input avg. length 35.4K 5.3K 8.1K 17K 19K 7.8K 11.3K

LLAMA2-7B
TRUNCATION 22.19 28.17 33.39 33.66 12.30 67.00 33.00
LONGLORA 21.92 27.58 30.10 29.17 11.05 69.50 30.29
TEXT RETRIEVAL 23.57 26.71 39.46 38.51 18.89 66.50 29.38
NEUROCACHE (Ours) 23.62 28.32 41.23 33.30 13.84 72.00 42.77

MISTRAL-7B
TRUNCATION 15.64 27.58 40.21 35.22 13.17 68.00 26.47
TEXT RETRIEVAL 14.24 28.67 41.87 40.92 21.17 66.00 18.06
NEUROCACHE (Ours) 20.08 31.01 44.15 35.49 14.00 70.00 35.86

Table 3: Zero-shot performance comparison of LLAMA2-7B and MISTRAL-7B using various long document
processing methods on the LONGBENCH benchmark tasks. Metrics include F1, Accuracy (Acc.), and Rouge-L
(R-L). NEUROCACHE excels in Single-doc QA and Few-shot Learning but faces challenges in Multi-doc QA
compared to text retrieval. Document lengths are provided for reference.

MuSiQue (MSQ) focuses on multihop reason-447

ing in QA. It constructs multi-hop questions from448

simpler, single-hop ones, demanding a systematic449

approach and detailed control over the question450

formation process (Trivedi et al., 2022).451

5.1.3 Few-shot Learning452

SAMSum (SAMS) presents a dialogue summa-453

rization challenge with its dataset of messenger-like454

conversations and human-annotated summaries3. It455

tests a model’s ability to condense conversational456

data into coherent summaries (Gliwa et al., 2019).457

TREC serves as a dataset for few-shot learning458

tasks in question type classification. Models are459

tasked with categorizing questions into predefined460

categories, providing a test of their classification461

abilities (Li and Roth, 2002).462

5.2 Models463

In addition to Neurocache, our evaluation includes464

three distinct approaches for extending the input465

length of pre-trained language models. These ap-466

proaches are Input Truncation, Text Retrieval, and467

Position Interpolation (PI).468

Truncation: This approach employs the original469

Llama2-7B and Mistral-7B models without long-470

context-specific modifications. Here, inputs ex-471

ceeding the maximum size of 4,096 tokens are472

truncated from the middle following (Bai et al.,473

2023). This baseline serves as a reference to evalu-474

3We use the rouge package: https://github.com/
pltrdy/rouge

ate the effectiveness of other methods in processing 475

extended documents. 476

Text Retrieval: Contrasting with Neurocache, this 477

approach involves selecting the most relevant text 478

segments to include in the input, keeping the total 479

length within the model’s maximum input size. We 480

divide the context into 200-word chunks, retrieving 481

the top-7 chunks using Contriever (Izacard et al., 482

2022). These chunks, along with the input, are then 483

processed by the model. Using the top-7 chunks 484

balances performance and the 4K token limit. This 485

method, used in previous work (Bai et al., 2023; 486

Xu et al., 2023), differs from Neurocache, which 487

dynamically integrates relevant information from 488

the entire document via cache-augmented layers. 489

Position Interpolation (PI): PI (Chen et al., 490

2023a) linearly down-scales input position indices 491

to fit the original context window size, avoiding 492

high attention scores that could disrupt the self- 493

attention mechanism. LongLoRA (Chen et al., 494

2023b), leveraging PI, offers an efficient fine- 495

tuning method to expand the context size of pre- 496

trained models. It uses a sparse local attention 497

mechanism, enabling computation savings while 498

retaining performance. The fully fine-tuned Lon- 499

gLoRA model4, based on Llama2-7B, extends the 500

maximum input length to 16K tokens, aiming to 501

assess the effectiveness of efficient full-attention 502

methods for longer documents. 503

Neurocache: We utilize the Neurocache-adapted 504

4https://huggingface.co/Yukang/
Llama-2-7b-longlora-16k-ft
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Llama2-7B and Mistral-7B models in our evalua-505

tion. These adaptations follow the configuration506

detailed in Section 4 for pre-training. The mod-507

els operate with a fixed cache size of 16K, ac-508

commodating the length of most datasets in our509

study. We split the documents into 2,048-token510

segments, processing them sequentially to popu-511

late the cache. Subsequently, the input, embedded512

within the prompt, is fed to the model, which then513

generates the corresponding answer.514

5.3 Evaluation Setting515

All evaluated models in this study are only pre-516

trained and not fine-tuned on the downstream tasks.517

They are assessed in a zero-shot setting, employing518

greedy decoding for output generation.519

As outlined by LongBench (Bai et al., 2023), the520

model’s task is to produce an answer given input521

and context sequences. In single-doc QA tasks,522

the input is a question paired with the document523

as context. For multi-doc QA, the input consists524

of multiple concatenated documents. In few-shot525

learning tasks, such as TREC and SAMSum, the526

context includes a set of examples, and the input527

is a question or dialogue, respectively. The input528

and answer are typically concise, while the context529

can be a long sequence extending to thousands of530

tokens.531

If the combined length of input and context ex-532

ceeds the model’s maximum input capacity, only533

the context is truncated. This truncation is done534

from the middle of the context sequence, follow-535

ing the approach in (Bai et al., 2023). We utilize536

prompt templates provided by LongBench for con-537

sistency. Neurocache and LongLoRA operate with538

a maximum length of 16K tokens, truncating con-539

texts longer than this limit. In contrast, the Text540

Retrieval method processes the entire context, re-541

gardless of length. To ensure comparability, all542

models are evaluated on identical hardware with a543

batch size of 1.544

5.4 Results545

The zero-shot evaluation results across various546

downstream tasks are summarized in Table 3.547

We compare the performance of Llama2-7B and548

Mistral-7B, in their original and Neurocache-549

adapted forms, against other long document pro-550

cessing methods.551

Single-document QA: In tasks like NarrativeQA,552

Qasper, and MultiFieldQA, Neurocache-adapted553

models show superior performance, demonstrat- 554

ing their effectiveness in processing long contexts 555

within single documents. 556

Multi-document QA: Performance in multi-doc 557

QA tasks, such as HotpotQA, reveals a varied pic- 558

ture. While Neurocache-adapted models are com- 559

petitive, they fall short of Text Retrieval methods. 560

For instance, in HotpotQA, Text Retrieval with the 561

Mistral-7B model achieves the highest F1 score 562

of 40.92. This finding suggests that, despite Neu- 563

rocache’s effectiveness in single-doc scenarios, it 564

may be less effective in multi-doc contexts com- 565

pared to text retrieval approaches. 566

Few-shot Learning: In few-shot learning tasks 567

like SAMSum and TREC, Neurocache shows 568

strong performance, particularly indicated by im- 569

proved Rouge-L scores in SAMSum. This under- 570

scores its capability to leverage few-shot examples 571

for generating accurate summaries. 572

These findings illustrate the strengths and chal- 573

lenges of different methods in handling long doc- 574

uments in language models. Neurocache excels 575

in single-document and few-shot learning scenar- 576

ios, while Text Retrieval methods have an edge in 577

multi-document tasks. 578

6 Conclusion 579

This paper introduced Neurocache, an approach 580

designed to improve long document processing in 581

language models. Neurocache employs a k-nearest- 582

neighbor (kNN) strategy for integrating relevant 583

past states from compressed hidden representations, 584

thus extending the context window of Transformer 585

decoders. Notably, Neurocache enhances the maxi- 586

mum context length of models like Llama2-7B and 587

Mistral-7B to 128K tokens. 588

Our findings indicate that Neurocache offers im- 589

provements in inference speed and language model- 590

ing accuracy. It demonstrates proficiency in single- 591

document question-answering and few-shot learn- 592

ing, though it faces challenges in multi-document 593

scenarios. Neurocache’s competitive performance 594

and adaptability highlight its potential utility in 595

various applications. 596

In summary, Neurocache contributes to the field 597

by enabling more efficient handling of extended 598

contexts in existing language models. Future 599

work may explore further optimizations for multi- 600

document tasks and the extension of Neurocache 601

to different model architectures and domains. 602
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7 Limitations603

While Neurocache demonstrates progress in long604

document processing with language models, sev-605

eral limitations should be noted. Our evaluation is606

confined to datasets like PG-19 and LongPile, and607

tasks from the LongBench suite. These datasets,608

despite their diversity, might not fully represent all609

long-context scenarios. Performance may vary in610

specialized domains like technical documents or611

source code, which have distinct content character-612

istics.613

A notable limitation is Neurocache’s perfor-614

mance in multi-document scenarios, suggesting615

potential challenges in contexts that require inte-616

gration of information from multiple sources. This617

aspect is crucial for applications involving compre-618

hensive data synthesis from various documents.619

In terms of bias, Neurocache depends on the un-620

derlying language models and datasets for training621

and evaluation. Consequently, any inherent biases622

in these components could influence Neurocache’s623

outputs. An explicit analysis of model biases was624

not conducted in this study, highlighting an area625

for future exploration.626

Another critical point is our reliance on a zero-627

shot setting for evaluation. The performance of628

Neurocache might differ if fine-tuning on down-629

stream tasks or instruction datasets was employed.630

This limitation suggests that our current findings631

may not fully capture the model’s adaptability and632

efficiency in diverse application scenarios.633

In conclusion, while Neurocache presents a step634

forward in handling long documents in natural lan-635

guage processing, its effectiveness is influenced636

by the nature of the data, model architecture, and637

specific task requirements. Understanding these638

limitations is vital for assessing its practical appli-639

cability and guiding future improvements.640
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A Comparative Analysis 899

The Neurocache model demonstrates computa- 900

tional advantage over alternatives like the Memo- 901

rizing Transformer (Wu et al., 2022) and the Unlim- 902

iformer (Bertsch et al., 2023) by performing only 903

one cache query per token. This approach signifi- 904

cantly reduces the computational burden. In con- 905

trast, the Memorizing Transformer requires multi- 906

ple cache queries for each token, specifically one 907

for every attention head. Consequently, this leads 908

to an a-fold increase in complexity per token, both 909

for distance computation, O(a×d×m), and top-k 910

retrieval, O(a× (m+ k)), where a is the number 911

of attention heads, and m is the cache size. 912

The Unlimiformer, needing l × a queries per 913

token, further increases retrieval complexity. For 914

instance, a Transformer with 24 layers and 12 at- 915

tention heads in the Memorizing Transformer con- 916

figuration would need 12 cache accesses per to- 917

ken. If the Unlimiformer uses half of its layers 918

for augmentation, as per (Bertsch et al., 2023), the 919

requirement rises to 12× 12 = 144 cache accesses 920

per token. Neurocache’s strategy of one query per 921

token significantly streamlines this process without 922

compromising accuracy. 923

Table 1 outlines these models’ retrieval fre- 924

quency and cache entry size, emphasizing Neuro- 925

cache’s efficiency. The table compares the number 926

of cache queries per token and each cache entry’s 927

size across the different methods. 928

B Optimizing Neurocache 929

Hyperparameters 930

Effective processing of long documents in Neuro- 931

cache depends on the optimal tuning of various 932

retrieval hyperparameters. To this end, we conduct 933

a comprehensive hyperparameter search focused on 934
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language modeling performance using the Project935

Gutenberg-19 (PG) dataset.936

Our exploration encompasses a range of val-937

ues for key hyperparameters: the number of938

retrieved neighbors (k) with values in the set939

[None, 8, 16, 32, 64, 128, 256], the retrieval win-940

dow size (w) tested with [1, 2, 4], the cache-941

attention context size (c) evaluated at [1, 2, 4], and942

the encoding dimension of hidden states (d) ex-943

plored across [1024, 512, 256, 128, 64]. This sys-944

tematic investigation aims to identify the opti-945

mal configurations that enhance Neurocache’s ef-946

ficiency and effectiveness in handling large-scale947

textual data.948

Number of Retrieved Neighbors (k): The influ-949

ence of k, the number of retrieved neighbors, on950

model performance is examined. Table 4 shows951

that increasing k generally leads to a decrease in952

perplexity, indicating improved performance. How-953

ever, the computational cost also increases propor-954

tionally with k. We pick k = 64 due to the di-955

minishing returns and the increasing cost of larger956

values.957

k PG (16K) PG (64K)

None 14.739 14.739
8 14.362 14.398
16 14.242 14.259
32 14.186 14.190
64 14.117 14.118
128 14.069 14.037
256 14.052 13.988

Table 4: Perplexity for varying number of neighbors k.

Retrieval Window Size (w): Adjusting w while958

fixing the total number of neighbors at 64, we find959

that a window size of w = 2 is optimal, as per960

Table 5. This setting likely benefits the model’s961

causal processing by including both the top-k entry962

and the subsequent one. We fix w = 2 for the963

subsequent experiments.964

k w PG (16K) PG (64K)

64 1 14.117 14.118
32 2 13.720 13.578
16 4 13.745 13.596

Table 5: Perplexity for varying retrieval window size w.

Attention Context Size (c): Table 6 shows that 965

the cache-attention context size c = 2 achieves the 966

lowest perplexity, indicating optimal performance 967

when extending cache-attention to both the current 968

and previous tokens’ retrievals. We fix c = 2 for 969

the subsequent experiments. 970

k c PG (16K) PG (64K)

32 1 13.720 13.578
16 2 13.704 13.564
8 4 13.791 13.661

Table 6: Perplexity for varying context size c.

Encoding hidden states (d): Finally, we assess 971

the impact of encoding hidden states into smaller di- 972

mensions d, as compared to the original h = 1, 024. 973

Table 7 demonstrate performance degradation as 974

smaller sizes of compression are used. 975

d PG (16K) PG (64K)

1024 13.704 13.564
512 13.740 13.594
256 13.779 13.641
128 13.853 13.730
64 13.983 13.891

Table 7: Perplexity for varying d.

C Neurocache Algorithm 976

• The cache Ccache is initialized to store com- 977

pact representations, with a maximum capac- 978

ity of m entries. 979

• The long document D is segmented into se- 980

quences of n tokens each. 981

• Each segment si undergoes sequential pro- 982

cessing through the transformer decoder lay- 983

ers. 984

• At the middle rth layer, the hidden states Hr 985

are converted into a compact representation 986

C. 987

• The nearest cached states Cret to C are re- 988

trieved from C using a k-nearest-neighbor 989

(kNN) method. 990

• In each augmented layer j > r, cache atten- 991

tion is calculated using the generated queries 992

Qj , keys Kj
ret, and values V j

ret. 993
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Algorithm 1 Neurocache Processing
Require: Long document D, Segment size n, Number of transformer layers L, Number of lower layers r, Cache memory size

m, Projection dimensions h to d, Number of nearest states k
Ensure: Updated cache Ccache after processing each segment
1: Initialize cache Ccache with size m× d
2: Divide document D into segments S = (s1, s2, . . .)
3: for each segment s ∈ S do
4: Hr ← Process s through lower r standard decoder layers
5: C ←Wp ·Hr ▷ Project hidden states to compact representation
6: Cret ← Retrieve top-k nearest states from Ccache based on L2-distance to C
7: for j ← r + 1 to L do
8: Qj ←W j

q ·Hj ▷ Generate queries for cache attention
9: Kj

ret ←W j
k · Cret ▷ Generate keys for cache attention

10: V j
ret ←W j

v · Cret ▷ Generate values for cache attention
11: CA← Apply cache attention using Qj ,Kj

ret, V
j
ret

12: CA← CA ·W j
o ▷ Apply output projection for cache attention

13: Hj ← Combine CA with self-attention outputs and Hj

14: end for
15: Update cache Ccache with C, discard oldest if cache exceeds m
16: end for

• The output of cache attention CA is merged994

with the self-attention outputs and subse-995

quently processed through a feed-forward net-996

work (FFN).997

• After processing each segment, the cache C998

is updated with the new compact representa-999

tion C, and the oldest entries are discarded as1000

needed to maintain the cache size.1001

The cache-attention mechanism in the aug-1002

mented layers is designed to focus on the most1003

relevant information retrieved from the cache, akin1004

to the approach in Memorizing Transformers (Wu1005

et al., 2022). Cache-attention implementation is1006

given in Figure 3.1007
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def cache_attention(
ret_keys ,
ret_vals ,
queries

):
# Attention computation over states retrieved from the cache.
# ret_keys: Retrieved keys (bsz , n_queries , n_heads , n_neighbors , head_dim)
# ret_vals: Retrieved values (bsz , n_queries , n_heads , n_neighbors , head_dim)
# queries: Queries (bsz , n_queries , n_heads , head_dim)

# Calculate attention weights.
ret_attn = einsum("...qhd ,...khd ->...qk", queries , ret_keys)
ret_attn = softmax(ret_attn , dim=-1)

# Compute the weighted sum of extended values.
attn_output = einsum("...qk ,...khd ->...qhd", ret_attn , ret_vals)
return attn_output

Figure 3: This implementation showcases the cache-attention computation in the model. It calculates the attention
weights through a dot product between the queries and keys, applies a softmax to obtain probabilities, and then
computes the weighted sum of the extended values to generate the final attention output.
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