
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTPIPE: MEMORY- AND SCHEDULING-OPTIMIZED
PIPELINE PARALLELISM FOR LLM TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Pipeline parallelism (PP) has become a standard technique for scaling large lan-
guage model (LLM) training across multiple devices. However, despite recent
progress in reducing memory consumption through activation offloading, exist-
ing approaches remain largely heuristic and coarse-grained, often overlooking the
fine-grained trade-offs between memory, computation, and scheduling latency.
In this work, we revisit the pipeline scheduling problem from a principled op-
timization perspective. We observe that prevailing strategies either rely on static
rules or aggressively offload activations without fully leveraging the interaction
between memory constraints and scheduling efficiency. To address this, we for-
mulate scheduling as a constrained optimization problem that jointly accounts for
memory capacity, activation reuse, and pipeline bubble minimization. Solving
this model yields fine-grained schedules that reduce pipeline bubbles while ad-
hering to strict memory budgets. Our approach complements existing offloading
techniques: whereas prior approaches trade memory for time in a fixed pattern,
we dynamically optimize the tradeoff with respect to model structure and hard-
ware configuration. Experimental results demonstrate that our method consis-
tently improves both throughput and memory utilization. In particular, we reduce
idle pipeline time by up to 50% under the same per-device memory limit, and in
some cases, enable the training of larger models within limited memory budgets.
Our code is available1.

1 INTRODUCTION

As large language models (LLMs) continue to grow in size and complexity, traditional data paral-
lelism (Goyal et al., 2017) is no longer sufficient, as a single device cannot store the entire model.
To address this limitation, model parallelism (Harlap et al., 2018; Huang et al., 2019; Shoeybi et al.,
2019; Zheng et al., 2022) partitions the model across multiple devices, making efficient multi-device
training a central challenge. Among model parallelism techniques, pipeline parallelism (PP) (Huang
et al., 2019; Harlap et al., 2018) is widely adopted: it divides the model into stages, allowing devices
to process different segments concurrently. Compared with approaches such as ZeRO (Rajbhandari
et al., 2021) and tensor parallelism (Shoeybi et al., 2019), PP generally incurs lower communication
overhead. However, PP also introduces new scalability challenges, particularly the trade-off between
activation memory consumption and device utilization lost to pipeline bubbles. As the number of
pipeline stages increases, the memory required to store intermediate activations can quickly become
a bottleneck.

One line of work that improves the PP is to improve the efficiency by reducing the pipeline bubbles.
A notable scheduling strategy to address the limitation is one-forward-one-backward (1F1B) (Fan
et al., 2021; Narayanan et al., 2021), which provides faster memory clearance by early schedul-
ing backward passes. Based on 1F1B, Interleaved 1F1B(Fan et al., 2021) further reduces pipeline
bubbles while increasing peak memory usage and communication overhead. Then, Zero Bubble
(Qi et al., 2023) and Interleaved Zero Bubble (Qi et al., 2024) further improve the efficiency of
PP by splitting the backward pass into two parts, backward pass for weight and backward pass for
activation, which obtains a zero bubble ratio by flexibly scheduling the backward pass for weight.

1https://anonymous.4open.science/r/OptPipe-BF38

1

https://anonymous.4open.science/r/OptPipe-BF38


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, these methods require a large amount of memory to store the activations, which is not
suitable for training models with a large number of PP stages.

Activation offloading (Wu et al., 2024; Chen et al., 2025; Wan et al., 2025) represents another line
of work aimed at reducing the memory footprint of pipeline parallelism (PP). The key idea is to of-
fload intermediate activations from device memory to host memory, which is typically large enough
to store all activations. While this enables training larger models with fewer devices, it also intro-
duces nontrivial scheduling challenges and may increase pipeline bubbles if not carefully managed.
PipeOffload (Wan et al., 2025) addresses this issue by selectively offloading activations with long
lifespans and low transfer cost, thereby reducing peak memory usage while largely preserving PP
efficiency. However, PipeOffload cannot further reduce bubbles through backward-pass splitting
due to scheduling complexity, and it relies on simple heuristics for offloading decisions, which can
be far from optimal in practice.

In this work, we propose OptPipe, a new pipeline scheduling approach that integrates activation
offloading with fine-grained scheduling and backward-pass splitting. We formulate the scheduling
problem, with or without activation offloading, as a Mixed-Integer Linear Programming (MILP)
model and solve it using both commercial solvers and specialized heuristics designed for this setting.
In addition, by parallelizing the solving process, we hide solver overhead and significantly improve
the practical efficiency of our method.

Our contributions can be summarized as follows:

• We formulate the pipeline parallelism scheduling problem, both with and without activation of-
floading, as an MILP model, which yields the optimal scheduling strategy.

• We propose a new PP approach, OptPipe, which integrates specialized heuristics for solving the
MILP formulation and additional strategies that enhance its practical implementation.

• We conduct extensive experiments on diverse models and datasets, demonstrating that OptPipe
significantly improves training efficiency while maintaining memory usage within device limits.

Figure 1: The framework of OptPipe. The framework consists of three main phases: (1) Initialize:
Generate an initial scheduling strategy that ensures peak memory usage remains within device limits;
(2) Profile: Run a few warm-up iterations to profile computation time and memory usage, and use
the collected statistics to construct the MILP model; (3) Schedule & Train: Implement an initial
schedule using a heuristic strategy (e.g., PipeOffload or a cached schedule), and employ an MILP
solver to refine the schedule. Training proceeds in parallel, with updates applied whenever the solver
discovers an improved solution.

2 PRELIMINARY

2.1 PIPELINE PARALLELISM

Pipeline parallelism (PP) is a form of model parallelism designed to overcome the memory con-
straints of training large-scale models, particularly those with tens of billions of parameters. When

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the size of a model’s weights exceeds the aggregate memory of GPUs on a single server, neither data
parallelism nor tensor parallelism provides an efficient solution. For example, tensor parallelism of-
ten suffers from bottlenecks due to low-bandwidth inter-node communication. PP mitigates this
by partitioning a model’s layers vertically across multiple GPUs, often spanning several nodes. In
this setup, each GPU stores and processes only a subset of the model’s layers, thereby reducing the
per-device memory footprint.

Formally, consider a model with N layers partitioned into P stages, where each stage contains N/P
consecutive layers. In this work, we focus on the case where each stage is assigned continuous
layers. For instance, in a four-GPU system with a 32-layer model, GPU 1 may hold layers 1–8,
GPU 2 layers 9–16, GPU 3 layers 17–24, and GPU 4 layers 25–32.

2.2 COMPUTATION GRAPH IN PIPELINE PARALLELISM

Figure 2: The computation graph of each stage in
pipeline parallelism.

Following the simplified computation model
commonly used to analyze efficiency in prior
work (Shoeybi et al., 2019; Qi et al., 2023),
pipeline parallelism involves scheduling two
main components: the forward pass and the
backward pass, as illustrated in Figure 2.2.

During the forward pass, the activations from
the previous stage, denoted as xi, are passed as
input to the next stage (Stagei+1). At this stage,
the input is first transformed linearly, z = Wxi,
where W is the weight matrix of Stagei+1. The
result z is then processed by a non-linear acti-
vation function σ(·), producing the stage output
xi+1 = σ(z), which is forwarded to the subse-
quent stage.

The backward pass propagates gradients in the reverse direction. Each stage begins by receiving
the gradient of the loss with respect to its output, ∇xi+1L where L denotes the loss function, from
the subsequent stage. Applying the chain rule through the activation function yields the gradient
with respect to z: ∇zL = dσ(z)

dz ∇xi+1
L. This intermediate gradient serves two purposes. First,

to continue backpropagation, the gradient with respect to the stage input is computed as ∇xi
L =

W⊤∇zL, and passed to the previous stage. Second, the gradient with respect to the stage weights
is obtained as ∇WL = ∇zLx

⊤
i , which is subsequently used by the optimizer to update the model

parameters.

3 SCHEDULING VIA MIXED-INTEGER LINEAR PROGRAMMING

To identify the optimal schedule that minimizes total training time, we formulate the pipeline
scheduling problem as an MILP model. The objective of the model is to determine the exact timing
of all computational and data-transfer operations, while simultaneously making strategic decisions
on whether to offload activation memory for each operation. These decisions are subject to hard-
ware limitations and data-dependency constraints. This section presents a high-level overview of the
model, with the complete formulation provided in Appendix C.

3.1 MODELING FRAMEWORK

Our model considers a pipeline-parallel training setup in which a neural network is partitioned into
multiple stages, each stage i assigned to a dedicated GPU. The training data is further divided into
a sequence of micro-batches, indexed by j. For each micro-batch, every stage must perform three
distinct computational operations (c): a Forward pass (F), a Backward pass for activations (B),
and a Backward pass for weights (W).

To manage GPU memory efficiently, we incorporate two additional data-transfer operations: Of-
fload (O), which transfers activation memory from GPU to CPU, and Reload (R), which restores it

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

when needed. The core objective of our model is to schedule these five types of events,F, B, W, O,
and R, in order to minimize the overall makespan.

3.2 DECISION VARIABLES AND OBJECTIVE

Our formulation is built around a set of decision variables that together define a complete schedule.
The timing of the schedule is captured by continuous variables: E(i,j,c) denotes the end time of
a computational operation, while O(i,j,c) and R(i,j,c) represent the start times of activation offload
and reload operations, respectively. The key strategic decision is modeled by the binary variable
W(i,j,c), which indicates whether the activation from operation (i, j, c) is offloaded (W(i,j,c) = 1)
or retained in GPU memory (W(i,j,c) = 0).

To ensure the schedule is physically realizable, we introduce auxiliary binary variables that enforce
ordering constraints and resolve resource conflicts. On the GPU’s computational core, the variable
P(i,j,c)→(i,j′,c′) serializes any two computational operations: P(i,j,c)→(i,j′,c′) = 1 indicates that
operation (i, j, c) must be completed before (i, j′, c′), and P(i,j,c)→(i,j′,c′) = 0 otherwise. For
communication between GPU and CPU, K(i,j,c)→(i,j′,c′) and L(i,j,c)→(i,j′,c′) sequence pairs of
offload and reload operations, respectively, while H(i,j,c)→(i,j′,c′) establishes the order between
offload and reload events that share the same communication channel.

Dependencies between computation and data transfers are enforced via M(i,j,c)→(i,j′,c′) and
N(i,j,c)→(i,j′,c′), which guarantee that computations begin only after the required data has been
produced or reloaded. A value of 1 for any precedence variable indicates that the first event in the
subscript must complete before the second begins.

The objective of the MILP is to minimize the makespan of pipeline execution across all stages,
represented by the continuous variable C. When using post-validation, as suggested in (Qi et al.,
2023), the value is determined by the maximum elapsed time from the start of the first operation
to the completion of the final operation in each stage. If post-validation is not used, the value is
calculated from the start of the first operation in the entire process to the completion of the final
operation. (Eq. 3, 4).

3.3 KEY CONSTRAINTS

The model is governed by a set of constraints that guarantee the resulting schedule is both valid
and physically realizable. We summarize these constraints below, while the complete mathematical
formulations are deferred to Appendix C.1 due to space limitations.

• Data-Dependency Constraints: These constraints enforce the fundamental dataflow of pipeline
parallelism. The forward pass of micro-batch j on stage i can only begin after the forward pass on
stage i−1 is completed (Eq. 5). Similarly, the backward pass of stage i depends on the completion
of the backward pass on stage i+ 1 (Eq. 6). Within a single stage, each micro-batch must follow
the strict sequence Forward→ Backward-activation→ Backward-weight (Eq. 8).

• Resource Exclusivity Constraints: A GPU can execute only one computational operation at
a time, and the communication channel between GPU and CPU can handle only one offload
or reload at a time. We enforce exclusivity using the standard Big-M method (Trespalacios &
Grossmann, 2015) with binary precedence variables (e.g., P(i,j,c)→(i,j′,c′)), ensuring that no two
operations assigned to the same resource overlap in time (Eq. 7, 10–13).

• Memory Capacity Constraints: To respect the GPU’s physical capacity M limit
i , we track dy-

namic memory usage at each stage. Memory consumption evolves as computations complete
(contributing ∆(i,j,c)) and as activations are offloaded or reloaded (contributing Γ(i,j,c)). Con-
straint (Eq. 9) directly couples the operational schedule with memory feasibility, ensuring that no
GPU exceeds its memory limit at any point in time.

• Synchronization Constraints: These constraints coordinate the interaction between computation
and data transfers. A reload operation R(i,j,c) must complete before the computation that con-
sumes the corresponding activation can begin. Conversely, an offload operation O(i,j,c) can only
start after the associated forward pass has finished and produced the activation data (Eq. 14–17).

• Topology-Aware Offload Constraints: As observed in (Wan et al., 2025), offloading efficiency
depends on the interconnect topology between GPUs and CPUs. For example, on A100 systems,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

two GPUs may share a PCIe switch, preventing simultaneous independent offloads. By contrast,
H100 GPUs are directly linked to the CPU via independent PCIe connections, enabling concurrent
offloads without interference. We use constraints (Eq 18) to control this in the MILP model.

By solving this MILP, we obtain a globally optimal schedule that balances computation, communi-
cation, and memory pressure to minimize training time. To reduce complexity for practical solvers,
we introduce simplifications such as fixing the processing order of symmetric micro-batches, which
significantly prunes the search space without affecting optimality.

4 OPTPIPE: AN EFFICIENT IMPLEMENTATION OF MILP-BASED
SCHEDULING

In this section, we present OptPipe, an efficient implementatoin MILP-based scheduling approach
for real-world training systems.

4.1 PRACTICAL OPTIMIZATIONS FOR MILP SOLVING

To make our MILP formulation practical for large-scale pipeline parallelism, we incorporate a set
of solver-level optimizations. These include variable fixing, cut generation, redundancy elimination,
cached schedule strategy, and warm-starting with initial solutions. Together, these strategies signif-
icantly reduce solving overhead without compromising solution quality. Throughout this section,
we illustrate the techniques using the precedence variables P(i,j,c) as examples, though the same
principles apply equally to the other types of ordering variables.

4.1.1 REDUNDANCY ELIMINATION

Fixed Micro-batch Order and Symmetry Breaking Since micro-batches are symmetric, we can
fix their processing order to eliminate redundant scheduling possibilities. For pairs of precedence
variables like P , we only define variables for one direction and derive the other logically. Then, we
have following equations:

P(i,j,c)→(i,j′,c) = 1, ∀i, j′ > j, c

P(i,j′,c′)→(i,j,c) = 1− P(i,j,c)→(i,j′,c′),∀i
(1)

Figure 3: Determined and Undeter-
mined Variables

Remove Indirectly Determined Binary Variables To
reduce model size and improve solver efficiency, we ex-
ploit structural properties of the binary variables that en-
code ordering relationships. These variables exhibit both
symmetry and transitivity, which can be leveraged to
eliminate redundancy.

As illustrated in Figure 3, we retain only the upper-
triangular portion of the precedence matrix. By symme-
try, each ordering variable has a complementary counter-
part: if P(i,j,c)→(i,j′,c′) indicates that operation (i, j, c)
precedes (i, j′, c′), then P(i,j′,c′)→(i,j,c) is its negation.
Thus, variables in the lower-triangular region (shown in
gray) are unnecessary and can be inferred directly.

In addition, some orderings are fixed by problem con-
straints (white cells), while others can be deduced via
transitivity (light purple cells). For example, if P(i,j,c)→(i,j′,c′) = 1 and P(i,j′,c′)→(i,j′′,c′′) = 1,
then P(i,j,c)→(i,j′′,c′′) = 1 must also hold. Such indirectly determined variables need not be in-
troduced into the model explicitly. Consequently, only the blue cells in Figure 3 correspond to
precedence variables that require explicit solver decisions.

4.1.2 TRIANGLE INEQUALITY CUTS

We introduce a cutting-plane strategy to further accelerate MILP solving. The goal is to narrow
the gap between the MILP and its Linear Programming (LP) relaxation by leveraging the transitive

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

property of sequencing variables. This yields a family of valid inequalities, commonly referred to as
triangle inequality cuts, that are widely used in scheduling problems (Fleming et al., 2013; Ascheuer
et al., 1993; Oliveira & Pessoa, 2020). We apply these cuts systematically across all precedence
variables.

Formally, let the binary variable P(i,j,c)→(i1,j1,c1) equal 1 if task (i, j, c) precedes task (i1, j1, c1),
and 0 otherwise. By transitivity, if task A precedes B and B precedes C, then A must precede C.
This logical relationship can be encoded as the linear inequality

P(i,j,c)→(i2,j2,c2) ≥ P(i,j,c)→(i1,j1,c1) + P(i1,j1,c1)→(i2,j2,c2) − 1,

for any three distinct tasks (i, j, c), (i1, j1, c1), and (i2, j2, c2). This constraint enforces consistency
in the solution space: if (i, j, c) precedes (i1, j1, c1) and (i1, j1, c1) precedes (i2, j2, c2), then (i, j, c)
must precede (i2, j2, c2). By systematically generating such cuts for all relevant task triplets, we
tighten the LP relaxation without excluding any integer-feasible schedules, thereby improving the
efficiency of the branch-and-cut algorithm.

4.1.3 INITIAL SOLUTION STRATEGIES

Finding a good initial solution is crucial for improving the efficiency of MILP solving. Even though
the problem of finding a feasible solution itself is NP-hard, in our specific context, a trivial feasible
schedule can be obtained by running pure pipeline parallelism with a single micro-batch, which com-
pletely eliminates memory pressure. However, this naive approach results in an excessively large
makespan and significant idle time (“bubbles”) due to the lack of overlap between computations.
More advanced schemes such as 1F1B (Fan et al., 2021) and Zero Bubble (Qi et al., 2023) often
become infeasible under strict memory budgets, since they do not explicitly account for memory
constraints.

PipeOffload (Wan et al., 2025) provides a more suitable baseline for memory-limited scenarios by
offloading all forward (F) chunks and combining backward-activation (B) and backward-weight (W)
chunks. This strategy guarantees the minimum possible memory usage, but it does not exploit the
actual memory limit of the device. In particular, it only schedules a small number of forward chunks
before starting the first backward chunk, which leads to suboptimal utilization. Our observations
suggest that scheduling more forward chunks in the fill phase can produce higher-quality solutions.

To this end, we propose AdaOffload, an initialization strategy that generates schedules with a denser
fill phase. AdaOffload determines the maximize number of forward chunks to place before the first
backward chunk at each stage, subject to memory constraints, while following PipeOffload’s strat-
egy for the remaining schedule. A detailed description of AdaOffload is provided in Appendix D.
While the makespan produced by AdaOffload can outperform PipeOffload, it significantly enhances
the solving efficiency of the MILP. In Figure 4, we present a toy example comparing different of-
floaded pipeline parallelism strategies, including the optimal strategy. The example assumes that
all processing times are equal, and that the memory can hold up to three activations at once. This
simplified setup enables a direct comparison of the strategies under ideal conditions, as illustrated
in the figure: AdaOffload achieves a lower makespan while maintaining a similar module during the
fill phase, thereby providing a better warm start for solving MILP problems.

4.2 CACHED SCHEDULE STRATEGY

Since solving the MILP can be time-consuming, it is desirable to reuse previously solved schedules
that can be quickly adapted to new settings. A major challenge, however, is that the estimated
parameters in the MILP, such as computation time, communication latency, and memory usage, can
vary stochastically across runs or hardware environments.

To address this, we introduce a crude schedule strategy based on discretization. Specifically, we
discretize the estimated parameters for computation, communication, and memory into proportional
values. When solving a new instance, we search for the most similar crude schedule in this dis-
cretized space and use it to initialize the solver. This warm-start procedure improves the quality of
initial strategies while ensuring reusability across different problem instances. If no cached schedule
is sufficiently similar, we fall back to the default initialization strategy described earlier.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: A toy example for illustration. Each block in the figure represents a distinct operation
type, with the colors indicating different stages. The x-axis represents time, and the y-axis shows
different stages in the pipeline parallelism.

4.3 ONLINE SCHEDULING

The time required to find an optimal schedule grows rapidly with the number of training stages, due
to the NP-hard nature of the scheduling problem. To mitigate this drawback, we propose solving the
scheduling problem dynamically during the training phase of the LLM. This is feasible because the
solver runs on CPUs, while training primarily utilizes GPUs.

By leveraging the solver’s callback functionality, which can detect improved solutions and customize
the workflow, we can continuously update the schedule during training. As the solver discovers bet-
ter schedules, the system can adopt them without interrupting training. An additional advantage
of this framework is adaptability: when estimated parameters (e.g., computation or communica-
tion times) change significantly, the scheduler can adjust accordingly, preventing the application of
outdated or suboptimal schedules.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Implementation Details We implemented our method on top of the open-source Megatron-
LM framework (Narayanan et al., 2021), incorporating the implementations of Zero Bubble (ZB)
pipeline parallelism and PipeOffload (Qi et al., 2023; Wan et al., 2025). Following ZB, we per-
form a few warm-up iterations to estimate key pipeline parameters, including TF , TB , Tcomm, and
Toffload. For these estimation runs, we adopt PipeOffload due to its minimal memory footprint. The
resulting Mixed-Integer Linear Programming (MILP) problem is then solved using Gurobi (Gurobi
Optimization, 2020) as the backend solver.

Infrastructure and Configuration Our experiments are conducted on a cluster with up to 16
NVIDIA H100 GPUs. We evaluate models with architectures analogous to GPT-3, ensuring a rep-
resentative setting for large-scale LLM training. Detailed model configurations are provided in
Appendix B.

Baseline We compare our approach against 5 pipeline parallelism baselines: 1F1B (Fan et al.,
2021), 1F1B-Interleaved (1F1B-I) (Narayanan et al., 2021), Zero Bubble (ZB) (Qi et al., 2023),
Zero Bubble-V (ZB-V) (Qi et al., 2024), and PipeOffload (Wan et al., 2025).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 EVALUATION

To evaluate the quality of scheduling strategies, we ran 120 iterations for each configuration and used
the average elapsed time of the last 100 iterations as the primary performance metric. The complete
results are presented in Table 1, covering a comprehensive range of GPU counts, model parameter
sizes, micro-batch numbers, and micro-batch sizes. In each experiment, we use AdaOffload to
provide a initial solution to Gurobi, which can significant improve solving efficiency.

As shown in Table 1, in memory-rich scenarios, OptPipe achieves performance comparable to 1F1B,
1F1B-I, ZB, and ZB-V, while being more than 30% faster than PipeOffload. In contrast, under
memory-limited settings, such as the 1.5B model with a micro-batch size of 32, where all baselines
except PipeOffload encounter out-of-memory (OOM) errors, OptPipe still outperforms PipeOffload
by more than 20%. These results demonstrate that OptPipe delivers both superior performance and
robustness across a wide range of scenarios.

Params Number Size 1F1B 1F1B-I ZB ZB-V PipeOffload OptPipe (ours)

GPU NUMBER: 4

1.5B

8

4 1423.24 2193.50 1254.61 1363.93 1651.83 1283.00
8 1475.22 2218.30 1312.17 1375.72 2025.03 1302.40

16 1579.51 OOM OOM 1517.89 4184.03 1674.37
24 OOM OOM OOM OOM 5402.70 2517.53
32 OOM OOM OOM OOM 7176.87 4361.82

16

4 1949.70 2034.90 1851.26 2098.33 4028.40 2389.93
8 1883.20 1996.70 1962.40 2112.65 4006.87 2350.43

16 2689.30 OOM OOM OOM 6911.27 2951.70
32 OOM OOM OOM OOM 10321.45 7135.41

3.6B

8
4 1157.43 1146.40 1106.40 1189.70 1938.73 1358.53
8 1540.00 2791.40 1507.40 1368.70 2994.23 1588.50

16 OOM OOM OOM OOM 5123.34 2144.76

16
4 1632.40 1612.45 1493.45 1579.43 2609.03 1828.23
8 1977.22 2011.13 OOM 1994.32 4029.46 2137.71

16 OOM OOM OOM OOM 6894.68 2886.29

GPU NUMBER: 8

7.1B

16

1 1983.40 2192.00 1927.50 2826.40 3033.87 1929.87
2 2147.00 2526.10 2029.50 2974.30 3741.43 2369.13
4 2198.30 2608.60 2305.80 2997.30 5345.13 2767.60
8 OOM OOM OOM OOM 7131.31 3913.10

16 OOM OOM OOM OOM 15152.12 11747.92

32

1 3709.30 4007.45 3662.90 4808.90 5796.67 4470.33
2 3836.60 4235.90 3730.20 4909.10 5878.30 4639.87
4 3843.10 4543.70 3723.70 5053.50 10012.23 4666.33
8 OOM OOM OOM OOM 20981.80 15793.80

16 OOM OOM OOM OOM 41254.60 31445.20

GPU NUMBER: 16

14.2B

32

1 2744.34 3054.29 2591.14 3676.36 3971.16 2602.56
2 2857.77 3506.94 2785.44 4108.14 4983.86 2812.45
4 3047.62 3412.21 3058.63 4115.23 7446.86 3124.42
8 OOM OOM OOM OOM 34134.23 20140.23

16 OOM OOM OOM OOM 42156.53 35175.32

64

1 5020.38 5352.19 4845.31 6322.89 8047.44 5031.53
2 5160.82 5885.96 5187.24 6684.25 8145.83 5123.43
4 5034.34 6131.95 5130.98 6972.76 13281.90 5082.24
8 OOM OOM OOM OOM 41589.35 31593.20

16 OOM OOM OOM OOM 50124.41 41679.20

Table 1: Performance Comparison of Pipeline Parallelism Methods. This table reports the average
iteration time (ms). For each row, the best result is shown in bold, and the second-best is under-
lined. The columns indicate: Params (model parameter size), Number (micro-batch number), Size
(micro-batch size), and the performance of different pipeline parallelism methods. Rows labeled
GPU Number K correspond to experiments using K GPUs. ”OOM” means Out of Memory.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Solving Time We set the time limits of solving MILP for each scenario (300s for 4/8 GPUs and
1000s for 16 GPUs) and select the best feasible solution within the limit. For small cases (e.g., 4
GPUs), the commercial solver typically finds the optimal solution, while for larger cases (e.g., 16
GPUs), it often only reaches the time limit. Thanks to our heuristics, however, we can always obtain
high-quality solutions within the limit, even if they are not optimal. Moreover, these MILP problems
can be solved offline and cached, or updated online during training, ensuring that runtime does not
become a bottleneck in practice.

5.3 IN-DEPTH ANALYSIS

This section analyzes the performance differences between OptPipe and PipeOffload, as both meth-
ods are specifically designed to operate under memory constraints.

Memory Usage Analysis Figure 5 illustrates the key mechanism underlying OptPipe’s superior
performance: a more effective trade-off between memory usage and efficiency. It consistently main-
tains higher average (AVG) and maximum (MAX) memory utilization, leveraging available capac-
ity to improve throughput under strict limits. In contrast, PipeOffload is more conservative, leaving
memory underutilized and thereby reducing efficiency. OptPipe effectively converts idle memory
into performance gains, demonstrating more efficient time–memory trade-off management.

Figure 5: Memory Usage Comparison between PipeOffload and OptPipe. Average, minimum, and
maximum device memory usage across different model sizes and micro-batch sizes.

Analysis of Performance with Varying Micro-Batch Numbers Figure 6 compares elapsed time
under varying micro-batch counts (16–256). OptPipe consistently outperforms PipeOffload across
all settings, with efficiency gains growing as workload increases. In the most demanding case
(micro-batch size 8, 256 micro-batches), OptPipe reduces training time by about 17%, demonstrat-
ing its effectiveness in large-scale scenarios where minimizing device idle time is critical.

Figure 6: Elapsed time comparison between PipeOffload and OptPipe under varying micro-batch
numbers for an 8-GPU setup and a 7.1B LLM model.

6 CONCLUSION

In this work, we presented OptPipe, a framework for optimizing pipeline parallelism with activation
offloading. We modeled scheduling as a MILP problem and introduced practical techniques to make
the approach feasible in large-scale training. OptPipe significantly improves the efficiency of LLM
training, underscoring the importance of refined scheduling for pipeline parallelism. Future work
will explore further accelerating the solver and enhancing model robustness, as well as extending
OptPipe to scenarios that combine pipeline parallelism with other parallelization schemes through
communication–computation overlap.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Norbert Ascheuer, Laureano F Escudero, Martin Grötschel, and Mechthild Stoer. A cutting plane ap-
proach to the sequential ordering problem (with applications to job scheduling in manufacturing).
SIAM Journal on Optimization, 3(1):25–42, 1993.

Qiaoling Chen, Shenggui Li, Wei Gao, Peng Sun, Yonggang Wen, and Tianwei Zhang. Sppo:
Efficient long-sequence llm training via adaptive sequence pipeline parallel offloading. arXiv
preprint arXiv:2503.10377, 2025.

Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping
Long, Jun Yang, Lixue Xia, et al. Dapple: A pipelined data parallel approach for training large
models. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 431–445, 2021.

Christopher L. Fleming, Stanley E. Griffis, and John E. Bell. The effects of triangle inequal-
ity on the vehicle routing problem. European Journal of Operational Research, 224(1):1–
7, 2013. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2012.07.005. URL https:
//www.sciencedirect.com/science/article/pii/S0377221712005267.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Gurobi Optimization. Gurobi optimizer reference manual. http://www.gurobi.com, 2020.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg
Ganger, and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv
preprint arXiv:1806.03377, 2018.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32,
2019.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–15, 2021.

Daniel Oliveira and Artur Pessoa. An improved branch-cut-and-price algorithm for parallel machine
scheduling problems. INFORMS Journal on Computing, 32(1):90–100, 2020.

Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. Zero bubble pipeline parallelism. In The
Twelfth International Conference on Learning Representations, 2023.

Penghui Qi, Xinyi Wan, Nyamdavaa Amar, and Min Lin. Pipeline parallelism with controllable
memory. arXiv preprint arXiv:2405.15362, 2024.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the interna-
tional conference for high performance computing, networking, storage and analysis, pp. 1–14,
2021.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Francisco Trespalacios and Ignacio E Grossmann. Improved big-m reformulation for generalized
disjunctive programs. Computers & Chemical Engineering, 76:98–103, 2015.

Xinyi Wan, Penghui Qi, Guangxing Huang, Jialin Li, and Min Lin. Pipeoffload: Improving scala-
bility of pipeline parallelism with memory optimization, 2025. URL https://arxiv.org/
abs/2503.01328.

10

https://www.sciencedirect.com/science/article/pii/S0377221712005267
https://www.sciencedirect.com/science/article/pii/S0377221712005267
http://www.gurobi.com
https://arxiv.org/abs/2503.01328
https://arxiv.org/abs/2503.01328


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kun Wu, Jeongmin Brian Park, Xiaofan Zhang, Mert Hidayetoğlu, Vikram Sharma Mailthody, Sitao
Huang, Steven Sam Lumetta, and Wen-mei Hwu. Ssdtrain: An activation offloading framework
to ssds for faster large language model training. arXiv preprint arXiv:2408.10013, 2024.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa: Automating inter-and {Intra-
Operator} parallelism for distributed deep learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pp. 559–578, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A LLM USAGE DECLARATION

In this submission, we used a Large Language Model (LLM) solely for language refinement and text
polishing. The LLM was employed to enhance the clarity, flow, and readability of the manuscript,
but it did not contribute to the ideation, analysis, or generation of scientific content. All ideas,
interpretations, and results presented in the paper are solely the work of the authors. No content
generated by the LLM was used to fabricate facts or contribute to the research findings.

B CONFIGURATION

Model Configuration We present the model configuration for different model sizes. The con-
figurations are summarized in the Table B. These configurations represent the key hyperparameter
that define the architecture and performance of the models with varying sizes: 1.5B, 3.6B, 7.1B, and
14.2B parameters. Each size corresponds to a different number of layers, hidden units, and other
model-specific settings. For each setting, we set sequence length as 1024 and post validation is used
to further improve efficiency.

Parameter Model Sizes
1.5B 3.6B 7.1B 14.2B

num-layers 128 128 256 256
hidden-size 2048 2048 128 128
ffn-hidden-size 4096 4096 4096 4096
num-attention-heads 16 16 16 16
num-query-groups 8 8 8 8

Table 2: Model Configuration for Different Sizes

C MATHEMATICAL MODELS

C.1 MIXED INTEGER LINEAR PROGRAMMING FORMULATION

Notation We define the following indices, decision variables, and parameters for the model.

• Indices:
– i: Index for the i-th stage (i.e., the i-th GPU).
– j: Index for the j-th micro-batch. We assume each micro-batch has identical parameters.
– c: Index for the type of operation, where c ∈ {F,B,W} represents Forward, Backward for

activation, and Backward for weights, respectively.
• Terminology:

– Offload: Transferring activation memory from a GPU to the CPU.
– Reload: Transferring activation memory from the CPU back to a GPU.
– Operation: A computation step, which can be Forward (F), Backward for activation (B), or

Backward for weights (W).

Decision Variables

P(i,j,c)→(i,j′,c′): A binary variable that is 1 if the operation (i, j, c) is processed before operation
(i, j′, c′), and 0 otherwise.

K(i,j,c)→(i,j′,c′): A binary variable that is 1 if the offloading for (i, j, c) starts before the offloading
for (i, j′, c′), and 0 otherwise.

L(i,j,c)→(i,j′,c′): A binary variable that is 1 if the reloading for (i, j, c) starts before the reloading
for (i, j′, c′), and 0 otherwise.

M(i,j,c)→(i,j′,c′): A binary variable that is 1 if the offloading for (i, j, c) starts before the processing
of (i, j′, c′), and 0 otherwise.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

N(i,j,c)→(i,j′,c′): A binary variable that is 1 if the reloading for (i, j, c) starts before the processing
of (i, j′, c′), and 0 otherwise.

H(i,j,c)→(i,j′,c′): A binary variable that is 1 if the offloading for (i, j, c) starts before the reloading
for (i, j′, c′), and 0 otherwise.

E(i,j,c): A continuous variable representing the end time of the operation (i, j, c).

O(i,j,c): A continuous variable representing the start time of the activation offload for (i, j, c).

R(i,j,c): A continuous variable representing the start time of the activation reload for (i, j, c).

W(i,j,c): A binary variable that is 1 if the activation for (i, j, c) is offloaded, and 0 otherwise.
C: A continuous variable representing the total time cost (makespan).

Parameters

∆(i,j,c): The amount of memory change after completing operation (i, j, c). This satisfies:
∆(i,j,F ) +∆(i,j,B) +∆(i,j,W ) = 0, with ∆(i,j,F ) > 0, ∆(i,j,B) < 0, and ∆(i,j,W ) < 0.

Γ(i,j,c): The amount of memory occupied by the activations of (i, j, c).

T(i,j,c): The processing time for operation (i, j, c).
Tcomm: The communication time for transferring activations between adjacent GPUs.
Toffload: The time required to offload or reload the activations of a single operation between a GPU

and the CPU.
M limit

i : The memory capacity of the i-th GPU.

Model Formulation The objective is to minimize the total pipeline execution time, C.

min C (2)

This is subject to the following constraints:

• Makespan Definition: When using Post Validation, he total cost C is the maximum time span
from the start of the first operation to the end of the last operation on any stage in Pipeline Paral-
lelism.

C ≥ E(i,m,W ) − (E(i,1,F ) − T(i,1,F )), ∀i (3)

where m is the last micro-batch.Instead, we define C is the maximum time span from the first
operation to the end operation over whole schedule.

C ≥ E(i,j,W ) − (E(1,1,F ) − T(1,1,F )), ∀i, j (4)

• Pipeline Data Dependencies: The Forward pass on GPU i must wait for the Forward pass on
GPU i− 1. The Backward pass on GPU i must wait for the Backward pass on GPU i+ 1.

E(i,j,F ) ≥ E(i−1,j,F ) + Tcomm + T(i,j,F ), ∀i, j (5)

E(i,j,B) ≥ E(i+1,j,B) + Tcomm + T(i,j,B), ∀i, j (6)

• Intra-GPU Operation Sequencing: Only one operation can be active on a single GPU at any
time. A large constantM is used for the Big-M method.

E(i,j,c) ≥ E(i,j′,c′) + T(i,j,c) − P(i,j,c)→(i,j′,c′) · M, ∀i, j, j′ ̸= j, c, c′ ̸= c (7)

• F-B-W Order: For a given micro-batch on a given GPU, the Forward, Backward-activation, and
Backward-weight operations must be executed in order.

P(i,j,F )→(i,j,B) = 1, P(i,j,B)→(i,j,W ) = 1, ∀i, j (8)

• Memory Capacity Constraint: The total memory used during any operation (i, j′, c′) must not
exceed the GPU’s memory limit.

M limit
i ≥ ∆(i,j′,c′) +

∑
j,c

∆(i,j,c)P(i,j,c)→(i,j′,c′)

− Γ(i,j,c)M(i,j,c)→(i,j′,c′) + Γ(i,j,c)N(i,j,c)→(i,j′,c′),

∀i, j′, c′ (9)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

• Offload/Reload Sequencing: If an operation (i, j′, c′) is chosen for offloading, its offload and
reload phases must be sequenced with respect to other offloads and reloads on the same GPU.

O(i,j,c) ≥ O(i,j′,c′) + Toffload −K(i,j,c)→(i,j′,c′) · M− (1−W(i,j′,c′)) · M (10)

R(i,j,c) ≥ R(i,j′,c′) + Toffload − L(i,j,c)→(i,j′,c′) · M− (1−W(i,j′,c′)) · M (11)

R(i,j,c) ≥ O(i,j′,c′) + Toffload − (1−H(i,j′,c′)→(i,j,c)) · M− (1−W(i,j′,c′)) · M (12)

O(i,j,c) ≥ R(i,j′,c′) + Toffload −H(i,j,c)→(i,j′,c′) · M− (1−W(i,j′,c′)) · M (13)

for all i, j, j′ ̸= j, c, c′ ̸= c.

• Offload/Reload and Operation Synchronization: If offloading is performed, the timing must
respect the dependencies with computational operations.

E(i,j,c) − Tcomm ≥ O(i,j′,c′) + Toffload − (1−M(i,j′,c′)→(i,j,c)) · M− (1−W(i,j′,c′)) · M
(14)

E(i,j,c) ≥ R(i,j′,c′) + T(i,j,c) − (1−N(i,j′,c′)→(i,j,c)) · M− (1−W(i,j′,c′)) · M
(15)

R(i,j′,c′) ≥ E(i,j,c) −N(i,j′,c′)→(i,j,c) · M− (1−W(i,j′,c′)) · M (16)

for all i, j, j′ ̸= j, c, c′ ̸= c.

• Offload Choice Consistency: An operation cannot have a precedence relationship with an of-
fload/reload if it is not chosen to be offloaded.

M(i,j,c)→(i,j′,c′) ≤W(i,j,c), N(i,j,c)→(i,j′,c′) ≤W(i,j,c), ∀i, j, c, j′, c′ (17)

• Topology-Aware Constraints: If multiple GPUs are connected to the CPU through the same
PCIe switch, we require that the offload and reload processes do not occur simultaneously on
these GPUs in order to manage the offloading time effectively.

O(i2,j,c) ≥ O(i1,j,c) + Toffload − L(i2,j,c)→(i1,j,c) (18)

R(i2,j,c) ≥ R(i1,j,c) + Toffload − L(i2,j,c)→(i1,j,c) (19)

, where i1, i2 are devices connected to the CPU through same PCIe switch.

• Fixed Micro-batch Order: Since micro-batches are symmetric, we can fix their processing order
to eliminate redundant scheduling possibilities.

P(i,j,c)→(i,j′,c) = 1, ∀j′ > j

• Symmetry Breaking for Binary Variables: For pairs of precedence variables like P and H , we
only define variables for one direction and derive the other logically.

P(i,j′,c′)→(i,j,c) = 1− P(i,j,c)→(i,j′,c′)

H(i,j′,c′)→(i,j,c) = 1−H(i,j,c)→(i,j′,c′)

D ADAOFFLOAD

This method is inspired by PipeOffload, but with a key difference: it considers the availability of
more memory compared to what PipeOffload typically requires. In cases where memory is less con-
strained, the approach strives to fill as many forward tasks (F) as possible before the first backward
task (B) begins. The objective is to make the fill phase more dense, bringing it closer to an optimal
distribution. This not only improves the pipeline’s efficiency but also aids in solving MILP problems
by making the scheduling more favorable for the solver.

When memory is limited, or the offloading time becomes excessively long, the method effectively
falls back to the PipeOffload rules. In such cases, it behaves similarly to the original PipeOffload
approach, where the focus is on reducing offload times and maintaining a balanced schedule.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 1 AdaOffload: An Denser Initial Pipeline Schedule
Require:

1: G = (V,E) {Computational graph (F/B/W tasks, Offload (O) task and Reload (R) task.}
2: costcomm {Inter-stage communication latency}
3: nstages, nmb {Number of stages and micro-batches}
4: T {Tolerance of delaying the first B task in each stage}

5: /* Step 1: Compute the earliest start time for each backward task */
6: for s = 0 to nstages − 1 do
7: Tmax

F ← max runtime of all forward tasks in stage s
8: Tmax

B ← max runtime of all backward tasks in stage s
9: Tmax

W ← max runtime of all weight-update tasks in stage s
10: Tmax

offload ← max runtime of all activation offloading tasks in stage s
11: Compute EstStart(Bs,0) as the earliest start time for backward tasks

12: /* Step 2: Schedule forward tasks and backward tasks for overlap */
13: for s = 0 to nstages − 1 do
14: /* Fill forward tasks (F) as much as possible before backward tasks */
15: for m = 0 to nmb − 1 do
16: if max(complete time(Fs,m−1), complete time(Os,m−1) + Tmax

offload) ≥ EstStart(Bs,0) + T
then

17: BREAK{Schedule forward tasks as early as possible}
18: start(Fs,m)← max(complete time(Fs,m−1), complete time(Os,m−1), complete time(Fs−1,nmb)+

costcomm)
19: complete time(Os,m)← complete time(Fs,m) + Tmax

offload
20: complete time(Fs,m)← start(Fs,m) + runtime(Fs,m)
21: /* Slightly delay backward tasks to fit more forward tasks */
22: start(Bs,0)← max(complete time(Fs,m),EstStart(Bs,0), complete time(Os,m)+Tmax

offload)
23: complete time(Bs,0)← start(Bs,0) + runtime(Bs,0)

24: /* Step 3: Finish scheduling using PipeOffload-style rules */
25: for s = 0 to nstages − 1 do
26: Schedule the remaining backward and weight-update tasks based on PipeOffload strategy
27: Allow overlap between B and W tasks for better pipeline utilization

28: /* Compute makespan and task order */
29: M ← maxv∈V {complete time(v)}
30: Topological order ≺ from non-decreasing start(v)
31: Return M , S = {start(v),≺}

15


	Introduction
	Preliminary
	Pipeline Parallelism
	Computation Graph in Pipeline Parallelism

	Scheduling via Mixed-Integer Linear Programming
	Modeling Framework
	Decision Variables and Objective
	Key Constraints

	OptPipe: An Efficient Implementation of MILP-based Scheduling
	Practical Optimizations for MILP Solving
	Redundancy Elimination
	Triangle Inequality Cuts
	Initial Solution Strategies

	Cached Schedule Strategy
	Online Scheduling

	Experiments
	Experiment Settings
	Evaluation
	In-Depth Analysis

	Conclusion
	LLM Usage Declaration
	Configuration
	Mathematical Models
	Mixed Integer Linear Programming Formulation

	AdaOffload

