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ABSTRACT

Pipeline parallelism (PP) has become a standard technique for scaling large lan-
guage model (LLM) training across multiple devices. However, despite recent
progress in reducing memory consumption through activation offloading, exist-
ing approaches remain largely heuristic and coarse-grained, often overlooking the
fine-grained trade-offs between memory, computation, and scheduling latency.
In this work, we revisit the pipeline scheduling problem from a principled op-
timization perspective. We observe that prevailing strategies either rely on static
rules or aggressively offload activations without fully leveraging the interaction
between memory constraints and scheduling efficiency. To address this, we for-
mulate scheduling as a constrained optimization problem that jointly accounts for
memory capacity, activation reuse, and pipeline bubble minimization. Solving
this model yields fine-grained schedules that reduce pipeline bubbles while ad-
hering to strict memory budgets. Our approach complements existing offloading
techniques: whereas prior approaches trade memory for time in a fixed pattern,
we dynamically optimize the tradeoff with respect to model structure and hard-
ware configuration. Experimental results demonstrate that our method consis-
tently improves both throughput and memory utilization. In particular, we reduce
idle pipeline time by up to 50% under the same per-device memory limit, and in
some cases, enable the training of larger models within limited memory budgets.
Our code is available1.

1 INTRODUCTION

As large language models (LLMs) continue to grow in size and complexity, traditional data paral-
lelism (Goyal et al., 2017) is no longer sufficient, as a single device cannot store the entire model.
To address this limitation, model parallelism (Harlap et al., 2018; Huang et al., 2019; Shoeybi et al.,
2019; Zheng et al., 2022) partitions the model across multiple devices, making efficient multi-device
training a central challenge. Among model parallelism techniques, pipeline parallelism (PP) (Huang
et al., 2019; Harlap et al., 2018) is widely adopted: it divides the model into stages, allowing devices
to process different segments concurrently. Compared with approaches such as ZeRO (Rajbhandari
et al., 2021) and tensor parallelism (Shoeybi et al., 2019), PP generally incurs lower communication
overhead. However, PP also introduces new scalability challenges, particularly the trade-off between
activation memory consumption and device utilization lost to pipeline bubbles. As the number of
pipeline stages increases, the memory required to store intermediate activations can quickly become
a bottleneck.

One line of work that improves the PP is to improve the efficiency by reducing the pipeline bubbles.
A notable scheduling strategy to address the limitation is one-forward-one-backward (1F1B) (Fan
et al., 2021; Narayanan et al., 2021), which provides faster memory clearance by early schedul-
ing backward passes. Based on 1F1B, Interleaved 1F1B(Fan et al., 2021) further reduces pipeline
bubbles while increasing peak memory usage and communication overhead. Then, Zero Bubble
(Qi et al., 2023) and Interleaved Zero Bubble (Qi et al., 2024) further improve the efficiency of
PP by splitting the backward pass into two parts, backward pass for weight and backward pass for
activation, which obtains a zero bubble ratio by flexibly scheduling the backward pass for weight.

1https://anonymous.4open.science/r/OptPipe-BF38
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However, these methods require a large amount of memory to store the activations, which is not
suitable for training models with a large number of PP stages.

Activation offloading (Wu et al., 2024; Chen et al., 2025; Wan et al., 2025) represents another line
of work aimed at reducing the memory footprint of pipeline parallelism (PP). The key idea is to of-
fload intermediate activations from device memory to host memory, which is typically large enough
to store all activations. While this enables training larger models with fewer devices, it also intro-
duces nontrivial scheduling challenges and may increase pipeline bubbles if not carefully managed.
PipeOffload (Wan et al., 2025) addresses this issue by selectively offloading activations with long
lifespans and low transfer cost, thereby reducing peak memory usage while largely preserving PP
efficiency. However, PipeOffload cannot further reduce bubbles through backward-pass splitting
due to scheduling complexity, and it relies on simple heuristics for offloading decisions, which can
be far from optimal in practice.

In this work, we propose OptPipe, a new pipeline scheduling approach that integrates activation
offloading with fine-grained scheduling and backward-pass splitting. We formulate the scheduling
problem, with or without activation offloading, as a Mixed-Integer Linear Programming (MILP)
model and solve it using both commercial solvers and specialized heuristics designed for this setting.
In addition, by parallelizing the solving process, we hide solver overhead and significantly improve
the practical efficiency of our method.

Our contributions can be summarized as follows:

• We formulate the pipeline parallelism scheduling problem, both with and without activation of-
floading, as an MILP model, which yields the optimal scheduling strategy.

• We propose a new PP approach, OptPipe, which integrates specialized heuristics for solving the
MILP formulation and additional strategies that enhance its practical implementation.

• We conduct extensive experiments on diverse models and datasets, demonstrating that OptPipe
significantly improves training efficiency while maintaining memory usage within device limits.

Figure 1: The framework of OptPipe. The framework consists of three main phases: (1) Initialize:
Generate an initial scheduling strategy that ensures peak memory usage remains within device limits;
(2) Profile: Run a few warm-up iterations to profile computation time and memory usage, and use
the collected statistics to construct the MILP model; (3) Schedule & Train: Implement an initial
schedule using a heuristic strategy (e.g., PipeOffload or a cached schedule), and employ an MILP
solver to refine the schedule. Training proceeds in parallel, with updates applied whenever the solver
discovers an improved solution.

2 PRELIMINARY

2.1 PIPELINE PARALLELISM

Pipeline parallelism (PP) is a form of model parallelism designed to overcome the memory con-
straints of training large-scale models, particularly those with tens of billions of parameters. When
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the size of a model’s weights exceeds the aggregate memory of GPUs on a single server, neither data
parallelism nor tensor parallelism provides an efficient solution. For example, tensor parallelism of-
ten suffers from bottlenecks due to low-bandwidth inter-node communication. PP mitigates this
by partitioning a model’s layers vertically across multiple GPUs, often spanning several nodes. In
this setup, each GPU stores and processes only a subset of the model’s layers, thereby reducing the
per-device memory footprint.

Formally, consider a model with N layers partitioned into P stages, where each stage contains N/P
consecutive layers. In this work, we focus on the case where each stage is assigned continuous
layers. For instance, in a four-GPU system with a 32-layer model, GPU 1 may hold layers 1–8,
GPU 2 layers 9–16, GPU 3 layers 17–24, and GPU 4 layers 25–32.

2.2 COMPUTATION GRAPH IN PIPELINE PARALLELISM

Figure 2: The computation graph of each stage in
pipeline parallelism.

Following the simplified computation model
commonly used to analyze efficiency in prior
work (Shoeybi et al., 2019; Qi et al., 2023),
pipeline parallelism involves scheduling two
main components: the forward pass and the
backward pass, as illustrated in Figure 2.2.

During the forward pass, the activations from
the previous stage, denoted as xi, are passed as
input to the next stage (Stagei+1). At this stage,
the input is first transformed linearly, z = Wxi,
where W is the weight matrix of Stagei+1. The
result z is then processed by a non-linear acti-
vation function σ(·), producing the stage output
xi+1 = σ(z), which is forwarded to the subse-
quent stage.

The backward pass propagates gradients in the reverse direction. Each stage begins by receiving
the gradient of the loss with respect to its output, ∇xi+1L where L denotes the loss function, from
the subsequent stage. Applying the chain rule through the activation function yields the gradient
with respect to z: ∇zL = dσ(z)

dz ∇xi+1
L. This intermediate gradient serves two purposes. First,

to continue backpropagation, the gradient with respect to the stage input is computed as ∇xi
L =

W⊤∇zL, and passed to the previous stage. Second, the gradient with respect to the stage weights
is obtained as ∇WL = ∇zLx

⊤
i , which is subsequently used by the optimizer to update the model

parameters.

3 SCHEDULING VIA MIXED-INTEGER LINEAR PROGRAMMING

To identify the optimal schedule that minimizes total training time, we formulate the pipeline
scheduling problem as an MILP model. The objective of the model is to determine the exact timing
of all computational and data-transfer operations, while simultaneously making strategic decisions
on whether to offload activation memory for each operation. These decisions are subject to hard-
ware limitations and data-dependency constraints. This section presents a high-level overview of the
model, with the complete formulation provided in Appendix C.

3.1 MODELING FRAMEWORK

Our model considers a pipeline-parallel training setup in which a neural network is partitioned into
multiple stages, each stage i assigned to a dedicated GPU. The training data is further divided into
a sequence of micro-batches, indexed by j. For each micro-batch, every stage must perform three
distinct computational operations (c): a Forward pass (F), a Backward pass for activations (B),
and a Backward pass for weights (W).

To manage GPU memory efficiently, we incorporate two additional data-transfer operations: Of-
fload (O), which transfers activation memory from GPU to CPU, and Reload (R), which restores it
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when needed. The core objective of our model is to schedule these five types of events,F, B, W, O,
and R, in order to minimize the overall makespan.

3.2 DECISION VARIABLES AND OBJECTIVE

Our formulation is built around a set of decision variables that together define a complete schedule.
The timing of the schedule is captured by continuous variables: E(i,j,c) denotes the end time of
a computational operation, while O(i,j,c) and R(i,j,c) represent the start times of activation offload
and reload operations, respectively. The key strategic decision is modeled by the binary variable
W(i,j,c), which indicates whether the activation from operation (i, j, c) is offloaded (W(i,j,c) = 1)
or retained in GPU memory (W(i,j,c) = 0).

To ensure the schedule is physically realizable, we introduce auxiliary binary variables that enforce
ordering constraints and resolve resource conflicts. On the GPU’s computational core, the variable
P(i,j,c)→(i,j′,c′) serializes any two computational operations: P(i,j,c)→(i,j′,c′) = 1 indicates that
operation (i, j, c) must be completed before (i, j′, c′), and P(i,j,c)→(i,j′,c′) = 0 otherwise. For
communication between GPU and CPU, K(i,j,c)→(i,j′,c′) and L(i,j,c)→(i,j′,c′) sequence pairs of
offload and reload operations, respectively, while H(i,j,c)→(i,j′,c′) establishes the order between
offload and reload events that share the same communication channel.

Dependencies between computation and data transfers are enforced via M(i,j,c)→(i,j′,c′) and
N(i,j,c)→(i,j′,c′), which guarantee that computations begin only after the required data has been
produced or reloaded. A value of 1 for any precedence variable indicates that the first event in the
subscript must complete before the second begins.

The objective of the MILP is to minimize the makespan of pipeline execution across all stages,
represented by the continuous variable C. When using post-validation, as suggested in (Qi et al.,
2023), the value is determined by the maximum elapsed time from the start of the first operation
to the completion of the final operation in each stage. If post-validation is not used, the value is
calculated from the start of the first operation in the entire process to the completion of the final
operation. (Eq. 3, 4).

3.3 KEY CONSTRAINTS

The model is governed by a set of constraints that guarantee the resulting schedule is both valid
and physically realizable. We summarize these constraints below, while the complete mathematical
formulations are deferred to Appendix C.1 due to space limitations.

• Data-Dependency Constraints: These constraints enforce the fundamental dataflow of pipeline
parallelism. The forward pass of micro-batch j on stage i can only begin after the forward pass on
stage i−1 is completed (Eq. 5). Similarly, the backward pass of stage i depends on the completion
of the backward pass on stage i+ 1 (Eq. 6). Within a single stage, each micro-batch must follow
the strict sequence Forward→ Backward-activation→ Backward-weight (Eq. 8).

• Resource Exclusivity Constraints: A GPU can execute only one computational operation at
a time, and the communication channel between GPU and CPU can handle only one offload
or reload at a time. We enforce exclusivity using the standard Big-M method (Trespalacios &
Grossmann, 2015) with binary precedence variables (e.g., P(i,j,c)→(i,j′,c′)), ensuring that no two
operations assigned to the same resource overlap in time (Eq. 7, 10–13).

• Memory Capacity Constraints: To respect the GPU’s physical capacity M limit
i , we track dy-

namic memory usage at each stage. Memory consumption evolves as computations complete
(contributing ∆(i,j,c)) and as activations are offloaded or reloaded (contributing Γ(i,j,c)). Con-
straint (Eq. 9) directly couples the operational schedule with memory feasibility, ensuring that no
GPU exceeds its memory limit at any point in time.

• Synchronization Constraints: These constraints coordinate the interaction between computation
and data transfers. A reload operation R(i,j,c) must complete before the computation that con-
sumes the corresponding activation can begin. Conversely, an offload operation O(i,j,c) can only
start after the associated forward pass has finished and produced the activation data (Eq. 14–17).

• Topology-Aware Offload Constraints: As observed in (Wan et al., 2025), offloading efficiency
depends on the interconnect topology between GPUs and CPUs. For example, on A100 systems,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

two GPUs may share a PCIe switch, preventing simultaneous independent offloads. By contrast,
H100 GPUs are directly linked to the CPU via independent PCIe connections, enabling concurrent
offloads without interference. We use constraints (Eq 18) to control this in the MILP model.

By solving this MILP, we obtain a globally optimal schedule that balances computation, communi-
cation, and memory pressure to minimize training time. To reduce complexity for practical solvers,
we introduce simplifications such as fixing the processing order of symmetric micro-batches, which
significantly prunes the search space without affecting optimality.

4 OPTPIPE: AN EFFICIENT IMPLEMENTATION OF MILP-BASED
SCHEDULING

In this section, we present OptPipe, an efficient implementatoin MILP-based scheduling approach
for real-world training systems.

4.1 PRACTICAL OPTIMIZATIONS FOR MILP SOLVING

To make our MILP formulation practical for large-scale pipeline parallelism, we incorporate a set
of solver-level optimizations. These include variable fixing, cut generation, redundancy elimination,
cached schedule strategy, and warm-starting with initial solutions. Together, these strategies signif-
icantly reduce solving overhead without compromising solution quality. Throughout this section,
we illustrate the techniques using the precedence variables P(i,j,c) as examples, though the same
principles apply equally to the other types of ordering variables.

4.1.1 REDUNDANCY ELIMINATION

Fixed Micro-batch Order and Symmetry Breaking Since micro-batches are symmetric, we can
fix their processing order to eliminate redundant scheduling possibilities. For pairs of precedence
variables like P , we only define variables for one direction and derive the other logically. Then, we
have following equations:

P(i,j,c)→(i,j′,c) = 1, ∀i, j′ > j, c

P(i,j′,c′)→(i,j,c) = 1− P(i,j,c)→(i,j′,c′),∀i
(1)

Figure 3: Determined and Undeter-
mined Variables

Remove Indirectly Determined Binary Variables To
reduce model size and improve solver efficiency, we ex-
ploit structural properties of the binary variables that en-
code ordering relationships. These variables exhibit both
symmetry and transitivity, which can be leveraged to
eliminate redundancy.

As illustrated in Figure 3, we retain only the upper-
triangular portion of the precedence matrix. By symme-
try, each ordering variable has a complementary counter-
part: if P(i,j,c)→(i,j′,c′) indicates that operation (i, j, c)
precedes (i, j′, c′), then P(i,j′,c′)→(i,j,c) is its negation.
Thus, variables in the lower-triangular region (shown in
gray) are unnecessary and can be inferred directly.

In addition, some orderings are fixed by problem con-
straints (white cells), while others can be deduced via
transitivity (light purple cells). For example, if P(i,j,c)→(i,j′,c′) = 1 and P(i,j′,c′)→(i,j′′,c′′) = 1,
then P(i,j,c)→(i,j′′,c′′) = 1 must also hold. Such indirectly determined variables need not be in-
troduced into the model explicitly. Consequently, only the blue cells in Figure 3 correspond to
precedence variables that require explicit solver decisions.

4.1.2 TRIANGLE INEQUALITY CUTS

We introduce a cutting-plane strategy to further accelerate MILP solving. The goal is to narrow
the gap between the MILP and its Linear Programming (LP) relaxation by leveraging the transitive
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property of sequencing variables. This yields a family of valid inequalities, commonly referred to as
triangle inequality cuts, that are widely used in scheduling problems (Fleming et al., 2013; Ascheuer
et al., 1993; Oliveira & Pessoa, 2020). We apply these cuts systematically across all precedence
variables.

Formally, let the binary variable P(i,j,c)→(i1,j1,c1) equal 1 if task (i, j, c) precedes task (i1, j1, c1),
and 0 otherwise. By transitivity, if task A precedes B and B precedes C, then A must precede C.
This logical relationship can be encoded as the linear inequality

P(i,j,c)→(i2,j2,c2) ≥ P(i,j,c)→(i1,j1,c1) + P(i1,j1,c1)→(i2,j2,c2) − 1,

for any three distinct tasks (i, j, c), (i1, j1, c1), and (i2, j2, c2). This constraint enforces consistency
in the solution space: if (i, j, c) precedes (i1, j1, c1) and (i1, j1, c1) precedes (i2, j2, c2), then (i, j, c)
must precede (i2, j2, c2). By systematically generating such cuts for all relevant task triplets, we
tighten the LP relaxation without excluding any integer-feasible schedules, thereby improving the
efficiency of the branch-and-cut algorithm.

4.1.3 INITIAL SOLUTION STRATEGIES

Finding a good initial solution is crucial for improving the efficiency of MILP solving. Even though
the problem of finding a feasible solution itself is NP-hard, in our specific context, a trivial feasible
schedule can be obtained by running pure pipeline parallelism with a single micro-batch, which com-
pletely eliminates memory pressure. However, this naive approach results in an excessively large
makespan and significant idle time (“bubbles”) due to the lack of overlap between computations.
More advanced schemes such as 1F1B (Fan et al., 2021) and Zero Bubble (Qi et al., 2023) often
become infeasible under strict memory budgets, since they do not explicitly account for memory
constraints.

PipeOffload (Wan et al., 2025) provides a more suitable baseline for memory-limited scenarios by
offloading all forward (F) chunks and combining backward-activation (B) and backward-weight (W)
chunks. This strategy guarantees the minimum possible memory usage, but it does not exploit the
actual memory limit of the device. In particular, it only schedules a small number of forward chunks
before starting the first backward chunk, which leads to suboptimal utilization. Our observations
suggest that scheduling more forward chunks in the fill phase can produce higher-quality solutions.

To this end, we propose AdaOffload, an initialization strategy that generates schedules with a denser
fill phase. AdaOffload determines the maximize number of forward chunks to place before the first
backward chunk at each stage, subject to memory constraints, while following PipeOffload’s strat-
egy for the remaining schedule. A detailed description of AdaOffload is provided in Appendix D.
While the makespan produced by AdaOffload can outperform PipeOffload, it significantly enhances
the solving efficiency of the MILP. In Figure 4, we present a toy example comparing different of-
floaded pipeline parallelism strategies, including the optimal strategy. The example assumes that
all processing times are equal, and that the memory can hold up to three activations at once. This
simplified setup enables a direct comparison of the strategies under ideal conditions, as illustrated
in the figure: AdaOffload achieves a lower makespan while maintaining a similar module during the
fill phase, thereby providing a better warm start for solving MILP problems.

4.2 CACHED SCHEDULE STRATEGY

Since solving the MILP can be time-consuming, it is desirable to reuse previously solved schedules
that can be quickly adapted to new settings. A major challenge, however, is that the estimated
parameters in the MILP, such as computation time, communication latency, and memory usage, can
vary stochastically across runs or hardware environments.

To address this, we introduce a crude schedule strategy based on discretization. Specifically, we
discretize the estimated parameters for computation, communication, and memory into proportional
values. When solving a new instance, we search for the most similar crude schedule in this dis-
cretized space and use it to initialize the solver. This warm-start procedure improves the quality of
initial strategies while ensuring reusability across different problem instances. If no cached schedule
is sufficiently similar, we fall back to the default initialization strategy described earlier.
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Figure 4: A toy example for illustration. Each block in the figure represents a distinct operation
type, with the colors indicating different stages. The x-axis represents time, and the y-axis shows
different stages in the pipeline parallelism.

4.3 ONLINE SCHEDULING

The time required to find an optimal schedule grows rapidly with the number of training stages, due
to the NP-hard nature of the scheduling problem. To mitigate this drawback, we propose solving the
scheduling problem dynamically during the training phase of the LLM. This is feasible because the
solver runs on CPUs, while training primarily utilizes GPUs.

By leveraging the solver’s callback functionality, which can detect improved solutions and customize
the workflow, we can continuously update the schedule during training. As the solver discovers bet-
ter schedules, the system can adopt them without interrupting training. An additional advantage
of this framework is adaptability: when estimated parameters (e.g., computation or communica-
tion times) change significantly, the scheduler can adjust accordingly, preventing the application of
outdated or suboptimal schedules.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Implementation Details We implemented our method on top of the open-source Megatron-
LM framework (Narayanan et al., 2021), incorporating the implementations of Zero Bubble (ZB)
pipeline parallelism and PipeOffload (Qi et al., 2023; Wan et al., 2025). Following ZB, we per-
form a few warm-up iterations to estimate key pipeline parameters, including TF , TB , Tcomm, and
Toffload. For these estimation runs, we adopt PipeOffload due to its minimal memory footprint. The
resulting Mixed-Integer Linear Programming (MILP) problem is then solved using Gurobi (Gurobi
Optimization, 2020) as the backend solver.

Infrastructure and Configuration Our experiments are conducted on a cluster with up to 16
NVIDIA H100 GPUs. We evaluate models with architectures analogous to GPT-3, ensuring a rep-
resentative setting for large-scale LLM training. Detailed model configurations are provided in
Appendix B.

Baseline We compare our approach against 5 pipeline parallelism baselines: 1F1B (Fan et al.,
2021), 1F1B-Interleaved (1F1B-I) (Narayanan et al., 2021), Zero Bubble (ZB) (Qi et al., 2023),
Zero Bubble-V (ZB-V) (Qi et al., 2024), and PipeOffload (Wan et al., 2025).
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5.2 EVALUATION

To evaluate the quality of scheduling strategies, we ran 120 iterations for each configuration and used
the average elapsed time of the last 100 iterations as the primary performance metric. The complete
results are presented in Table 1, covering a comprehensive range of GPU counts, model parameter
sizes, micro-batch numbers, and micro-batch sizes. In each experiment, we use AdaOffload to
provide a initial solution to Gurobi, which can significant improve solving efficiency.

As shown in Table 1, in memory-rich scenarios, OptPipe achieves performance comparable to 1F1B,
1F1B-I, ZB, and ZB-V, while being more than 30% faster than PipeOffload. In contrast, under
memory-limited settings, such as the 1.5B model with a micro-batch size of 32, where all baselines
except PipeOffload encounter out-of-memory (OOM) errors, OptPipe still outperforms PipeOffload
by more than 20%. These results demonstrate that OptPipe delivers both superior performance and
robustness across a wide range of scenarios.

Params Number Size 1F1B 1F1B-I ZB ZB-V PipeOffload OptPipe (ours)

GPU NUMBER: 4

1.5B

8

4 1423.24 2193.50 1254.61 1363.93 1651.83 1283.00
8 1475.22 2218.30 1312.17 1375.72 2025.03 1302.40

16 1579.51 OOM OOM 1517.89 4184.03 1674.37
24 OOM OOM OOM OOM 5402.70 2517.53
32 OOM OOM OOM OOM 7176.87 4361.82

16

4 1949.70 2034.90 1851.26 2098.33 4028.40 2389.93
8 1883.20 1996.70 1962.40 2112.65 4006.87 2350.43

16 2689.30 OOM OOM OOM 6911.27 2951.70
32 OOM OOM OOM OOM 10321.45 7135.41

3.6B

8
4 1157.43 1146.40 1106.40 1189.70 1938.73 1358.53
8 1540.00 2791.40 1507.40 1368.70 2994.23 1588.50

16 OOM OOM OOM OOM 5123.34 2144.76

16
4 1632.40 1612.45 1493.45 1579.43 2609.03 1828.23
8 1977.22 2011.13 OOM 1994.32 4029.46 2137.71

16 OOM OOM OOM OOM 6894.68 2886.29

GPU NUMBER: 8

7.1B

16

1 1983.40 2192.00 1927.50 2826.40 3033.87 1929.87
2 2147.00 2526.10 2029.50 2974.30 3741.43 2369.13
4 2198.30 2608.60 2305.80 2997.30 5345.13 2767.60
8 OOM OOM OOM OOM 7131.31 3913.10

16 OOM OOM OOM OOM 15152.12 11747.92

32

1 3709.30 4007.45 3662.90 4808.90 5796.67 4470.33
2 3836.60 4235.90 3730.20 4909.10 5878.30 4639.87
4 3843.10 4543.70 3723.70 5053.50 10012.23 4666.33
8 OOM OOM OOM OOM 20981.80 15793.80

16 OOM OOM OOM OOM 41254.60 31445.20

GPU NUMBER: 16

14.2B

32

1 2744.34 3054.29 2591.14 3676.36 3971.16 2602.56
2 2857.77 3506.94 2785.44 4108.14 4983.86 2812.45
4 3047.62 3412.21 3058.63 4115.23 7446.86 3124.42
8 OOM OOM OOM OOM 34134.23 20140.23

16 OOM OOM OOM OOM 42156.53 35175.32

64

1 5020.38 5352.19 4845.31 6322.89 8047.44 5031.53
2 5160.82 5885.96 5187.24 6684.25 8145.83 5123.43
4 5034.34 6131.95 5130.98 6972.76 13281.90 5082.24
8 OOM OOM OOM OOM 41589.35 31593.20

16 OOM OOM OOM OOM 50124.41 41679.20

Table 1: Performance Comparison of Pipeline Parallelism Methods. This table reports the average
iteration time (ms). For each row, the best result is shown in bold, and the second-best is under-
lined. The columns indicate: Params (model parameter size), Number (micro-batch number), Size
(micro-batch size), and the performance of different pipeline parallelism methods. Rows labeled
GPU Number K correspond to experiments using K GPUs. ”OOM” means Out of Memory.
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Solving Time We set the time limits of solving MILP for each scenario (300s for 4/8 GPUs and
1000s for 16 GPUs) and select the best feasible solution within the limit. For small cases (e.g., 4
GPUs), the commercial solver typically finds the optimal solution, while for larger cases (e.g., 16
GPUs), it often only reaches the time limit. Thanks to our heuristics, however, we can always obtain
high-quality solutions within the limit, even if they are not optimal. Moreover, these MILP problems
can be solved offline and cached, or updated online during training, ensuring that runtime does not
become a bottleneck in practice.

5.3 IN-DEPTH ANALYSIS

This section analyzes the performance differences between OptPipe and PipeOffload, as both meth-
ods are specifically designed to operate under memory constraints.

Memory Usage Analysis Figure 5 illustrates the key mechanism underlying OptPipe’s superior
performance: a more effective trade-off between memory usage and efficiency. It consistently main-
tains higher average (AVG) and maximum (MAX) memory utilization, leveraging available capac-
ity to improve throughput under strict limits. In contrast, PipeOffload is more conservative, leaving
memory underutilized and thereby reducing efficiency. OptPipe effectively converts idle memory
into performance gains, demonstrating more efficient time–memory trade-off management.

Figure 5: Memory Usage Comparison between PipeOffload and OptPipe. Average, minimum, and
maximum device memory usage across different model sizes and micro-batch sizes.

Analysis of Performance with Varying Micro-Batch Numbers Figure 6 compares elapsed time
under varying micro-batch counts (16–256). OptPipe consistently outperforms PipeOffload across
all settings, with efficiency gains growing as workload increases. In the most demanding case
(micro-batch size 8, 256 micro-batches), OptPipe reduces training time by about 17%, demonstrat-
ing its effectiveness in large-scale scenarios where minimizing device idle time is critical.

Figure 6: Elapsed time comparison between PipeOffload and OptPipe under varying micro-batch
numbers for an 8-GPU setup and a 7.1B LLM model.

6 CONCLUSION

In this work, we presented OptPipe, a framework for optimizing pipeline parallelism with activation
offloading. We modeled scheduling as a MILP problem and introduced practical techniques to make
the approach feasible in large-scale training. OptPipe significantly improves the efficiency of LLM
training, underscoring the importance of refined scheduling for pipeline parallelism. Future work
will explore further accelerating the solver and enhancing model robustness, as well as extending
OptPipe to scenarios that combine pipeline parallelism with other parallelization schemes through
communication–computation overlap.
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A LLM USAGE DECLARATION

In this submission, we used a Large Language Model (LLM) solely for language refinement and text
polishing. The LLM was employed to enhance the clarity, flow, and readability of the manuscript,
but it did not contribute to the ideation, analysis, or generation of scientific content. All ideas,
interpretations, and results presented in the paper are solely the work of the authors. No content
generated by the LLM was used to fabricate facts or contribute to the research findings.

B CONFIGURATION

Model Configuration We present the model configuration for different model sizes. The con-
figurations are summarized in the Table B. These configurations represent the key hyperparameter
that define the architecture and performance of the models with varying sizes: 1.5B, 3.6B, 7.1B, and
14.2B parameters. Each size corresponds to a different number of layers, hidden units, and other
model-specific settings. For each setting, we set sequence length as 1024 and post validation is used
to further improve efficiency.

Parameter Model Sizes
1.5B 3.6B 7.1B 14.2B

num-layers 128 128 256 256
hidden-size 2048 2048 128 128
ffn-hidden-size 4096 4096 4096 4096
num-attention-heads 16 16 16 16
num-query-groups 8 8 8 8

Table 2: Model Configuration for Different Sizes

C MATHEMATICAL MODELS

C.1 MIXED INTEGER LINEAR PROGRAMMING FORMULATION

Notation We define the following indices, decision variables, and parameters for the model.

• Indices:
– i: Index for the i-th stage (i.e., the i-th GPU).
– j: Index for the j-th micro-batch. We assume each micro-batch has identical parameters.
– c: Index for the type of operation, where c ∈ {F,B,W} represents Forward, Backward for

activation, and Backward for weights, respectively.
• Terminology:

– Offload: Transferring activation memory from a GPU to the CPU.
– Reload: Transferring activation memory from the CPU back to a GPU.
– Operation: A computation step, which can be Forward (F), Backward for activation (B), or

Backward for weights (W).

Decision Variables

P(i,j,c)→(i,j′,c′): A binary variable that is 1 if the operation (i, j, c) is processed before operation
(i, j′, c′), and 0 otherwise.

K(i,j,c)→(i,j′,c′): A binary variable that is 1 if the offloading for (i, j, c) starts before the offloading
for (i, j′, c′), and 0 otherwise.

L(i,j,c)→(i,j′,c′): A binary variable that is 1 if the reloading for (i, j, c) starts before the reloading
for (i, j′, c′), and 0 otherwise.

M(i,j,c)→(i,j′,c′): A binary variable that is 1 if the offloading for (i, j, c) starts before the processing
of (i, j′, c′), and 0 otherwise.

12
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N(i,j,c)→(i,j′,c′): A binary variable that is 1 if the reloading for (i, j, c) starts before the processing
of (i, j′, c′), and 0 otherwise.

H(i,j,c)→(i,j′,c′): A binary variable that is 1 if the offloading for (i, j, c) starts before the reloading
for (i, j′, c′), and 0 otherwise.

E(i,j,c): A continuous variable representing the end time of the operation (i, j, c).

O(i,j,c): A continuous variable representing the start time of the activation offload for (i, j, c).

R(i,j,c): A continuous variable representing the start time of the activation reload for (i, j, c).

W(i,j,c): A binary variable that is 1 if the activation for (i, j, c) is offloaded, and 0 otherwise.
C: A continuous variable representing the total time cost (makespan).

Parameters

∆(i,j,c): The amount of memory change after completing operation (i, j, c). This satisfies:
∆(i,j,F ) +∆(i,j,B) +∆(i,j,W ) = 0, with ∆(i,j,F ) > 0, ∆(i,j,B) < 0, and ∆(i,j,W ) < 0.

Γ(i,j,c): The amount of memory occupied by the activations of (i, j, c).

T(i,j,c): The processing time for operation (i, j, c).
Tcomm: The communication time for transferring activations between adjacent GPUs.
Toffload: The time required to offload or reload the activations of a single operation between a GPU

and the CPU.
M limit

i : The memory capacity of the i-th GPU.

Model Formulation The objective is to minimize the total pipeline execution time, C.

min C (2)

This is subject to the following constraints:

• Makespan Definition: When using Post Validation, he total cost C is the maximum time span
from the start of the first operation to the end of the last operation on any stage in Pipeline Paral-
lelism.

C ≥ E(i,m,W ) − (E(i,1,F ) − T(i,1,F )), ∀i (3)

where m is the last micro-batch.Instead, we define C is the maximum time span from the first
operation to the end operation over whole schedule.

C ≥ E(i,j,W ) − (E(1,1,F ) − T(1,1,F )), ∀i, j (4)

• Pipeline Data Dependencies: The Forward pass on GPU i must wait for the Forward pass on
GPU i− 1. The Backward pass on GPU i must wait for the Backward pass on GPU i+ 1.

E(i,j,F ) ≥ E(i−1,j,F ) + Tcomm + T(i,j,F ), ∀i, j (5)

E(i,j,B) ≥ E(i+1,j,B) + Tcomm + T(i,j,B), ∀i, j (6)

• Intra-GPU Operation Sequencing: Only one operation can be active on a single GPU at any
time. A large constantM is used for the Big-M method.

E(i,j,c) ≥ E(i,j′,c′) + T(i,j,c) − P(i,j,c)→(i,j′,c′) · M, ∀i, j, j′ ̸= j, c, c′ ̸= c (7)

• F-B-W Order: For a given micro-batch on a given GPU, the Forward, Backward-activation, and
Backward-weight operations must be executed in order.

P(i,j,F )→(i,j,B) = 1, P(i,j,B)→(i,j,W ) = 1, ∀i, j (8)

• Memory Capacity Constraint: The total memory used during any operation (i, j′, c′) must not
exceed the GPU’s memory limit.

M limit
i ≥ ∆(i,j′,c′) +

∑
j,c

∆(i,j,c)P(i,j,c)→(i,j′,c′)

− Γ(i,j,c)M(i,j,c)→(i,j′,c′) + Γ(i,j,c)N(i,j,c)→(i,j′,c′),

∀i, j′, c′ (9)
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• Offload/Reload Sequencing: If an operation (i, j′, c′) is chosen for offloading, its offload and
reload phases must be sequenced with respect to other offloads and reloads on the same GPU.

O(i,j,c) ≥ O(i,j′,c′) + Toffload −K(i,j,c)→(i,j′,c′) · M− (1−W(i,j′,c′)) · M (10)

R(i,j,c) ≥ R(i,j′,c′) + Toffload − L(i,j,c)→(i,j′,c′) · M− (1−W(i,j′,c′)) · M (11)

R(i,j,c) ≥ O(i,j′,c′) + Toffload − (1−H(i,j′,c′)→(i,j,c)) · M− (1−W(i,j′,c′)) · M (12)

O(i,j,c) ≥ R(i,j′,c′) + Toffload −H(i,j,c)→(i,j′,c′) · M− (1−W(i,j′,c′)) · M (13)

for all i, j, j′ ̸= j, c, c′ ̸= c.

• Offload/Reload and Operation Synchronization: If offloading is performed, the timing must
respect the dependencies with computational operations.

E(i,j,c) − Tcomm ≥ O(i,j′,c′) + Toffload − (1−M(i,j′,c′)→(i,j,c)) · M− (1−W(i,j′,c′)) · M
(14)

E(i,j,c) ≥ R(i,j′,c′) + T(i,j,c) − (1−N(i,j′,c′)→(i,j,c)) · M− (1−W(i,j′,c′)) · M
(15)

R(i,j′,c′) ≥ E(i,j,c) −N(i,j′,c′)→(i,j,c) · M− (1−W(i,j′,c′)) · M (16)

for all i, j, j′ ̸= j, c, c′ ̸= c.

• Offload Choice Consistency: An operation cannot have a precedence relationship with an of-
fload/reload if it is not chosen to be offloaded.

M(i,j,c)→(i,j′,c′) ≤W(i,j,c), N(i,j,c)→(i,j′,c′) ≤W(i,j,c), ∀i, j, c, j′, c′ (17)

• Topology-Aware Constraints: If multiple GPUs are connected to the CPU through the same
PCIe switch, we require that the offload and reload processes do not occur simultaneously on
these GPUs in order to manage the offloading time effectively.

O(i2,j,c) ≥ O(i1,j,c) + Toffload − L(i2,j,c)→(i1,j,c) (18)

R(i2,j,c) ≥ R(i1,j,c) + Toffload − L(i2,j,c)→(i1,j,c) (19)

, where i1, i2 are devices connected to the CPU through same PCIe switch.

• Fixed Micro-batch Order: Since micro-batches are symmetric, we can fix their processing order
to eliminate redundant scheduling possibilities.

P(i,j,c)→(i,j′,c) = 1, ∀j′ > j

• Symmetry Breaking for Binary Variables: For pairs of precedence variables like P and H , we
only define variables for one direction and derive the other logically.

P(i,j′,c′)→(i,j,c) = 1− P(i,j,c)→(i,j′,c′)

H(i,j′,c′)→(i,j,c) = 1−H(i,j,c)→(i,j′,c′)

D ADAOFFLOAD

This method is inspired by PipeOffload, but with a key difference: it considers the availability of
more memory compared to what PipeOffload typically requires. In cases where memory is less con-
strained, the approach strives to fill as many forward tasks (F) as possible before the first backward
task (B) begins. The objective is to make the fill phase more dense, bringing it closer to an optimal
distribution. This not only improves the pipeline’s efficiency but also aids in solving MILP problems
by making the scheduling more favorable for the solver.

When memory is limited, or the offloading time becomes excessively long, the method effectively
falls back to the PipeOffload rules. In such cases, it behaves similarly to the original PipeOffload
approach, where the focus is on reducing offload times and maintaining a balanced schedule.
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Algorithm 1 AdaOffload: An Denser Initial Pipeline Schedule
Require:

1: G = (V,E) {Computational graph (F/B/W tasks, Offload (O) task and Reload (R) task.}
2: costcomm {Inter-stage communication latency}
3: nstages, nmb {Number of stages and micro-batches}
4: T {Tolerance of delaying the first B task in each stage}

5: /* Step 1: Compute the earliest start time for each backward task */
6: for s = 0 to nstages − 1 do
7: Tmax

F ← max runtime of all forward tasks in stage s
8: Tmax

B ← max runtime of all backward tasks in stage s
9: Tmax

W ← max runtime of all weight-update tasks in stage s
10: Tmax

offload ← max runtime of all activation offloading tasks in stage s
11: Compute EstStart(Bs,0) as the earliest start time for backward tasks

12: /* Step 2: Schedule forward tasks and backward tasks for overlap */
13: for s = 0 to nstages − 1 do
14: /* Fill forward tasks (F) as much as possible before backward tasks */
15: for m = 0 to nmb − 1 do
16: if max(complete time(Fs,m−1), complete time(Os,m−1) + Tmax

offload) ≥ EstStart(Bs,0) + T
then

17: BREAK{Schedule forward tasks as early as possible}
18: start(Fs,m)← max(complete time(Fs,m−1), complete time(Os,m−1), complete time(Fs−1,nmb)+

costcomm)
19: complete time(Os,m)← complete time(Fs,m) + Tmax

offload
20: complete time(Fs,m)← start(Fs,m) + runtime(Fs,m)
21: /* Slightly delay backward tasks to fit more forward tasks */
22: start(Bs,0)← max(complete time(Fs,m),EstStart(Bs,0), complete time(Os,m)+Tmax

offload)
23: complete time(Bs,0)← start(Bs,0) + runtime(Bs,0)

24: /* Step 3: Finish scheduling using PipeOffload-style rules */
25: for s = 0 to nstages − 1 do
26: Schedule the remaining backward and weight-update tasks based on PipeOffload strategy
27: Allow overlap between B and W tasks for better pipeline utilization

28: /* Compute makespan and task order */
29: M ← maxv∈V {complete time(v)}
30: Topological order ≺ from non-decreasing start(v)
31: Return M , S = {start(v),≺}
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