

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 OPTPIPE: MEMORY- AND SCHEDULING-OPTIMIZED PIPELINE PARALLELISM FOR LLM TRAINING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Pipeline parallelism (PP) has become a standard technique for scaling large lan-
012 guage model (LLM) training across multiple devices. However, despite recent
013 progress in reducing memory consumption through activation offloading, exist-
014 ing approaches remain largely heuristic and coarse-grained, often overlooking the
015 fine-grained trade-offs between memory, computation, and scheduling latency.
016 In this work, we revisit the pipeline scheduling problem from a principled op-
017 timization perspective. We observe that prevailing strategies either rely on static
018 rules or aggressively offload activations without fully leveraging the interaction
019 between memory constraints and scheduling efficiency. To address this, we for-
020 mulate scheduling as a constrained optimization problem that jointly accounts for
021 memory capacity, activation reuse, and pipeline bubble minimization. Solving
022 this model yields fine-grained schedules that reduce pipeline bubbles while ad-
023 hering to strict memory budgets. Our approach complements existing offloading
024 techniques: whereas prior approaches trade memory for time in a fixed pattern,
025 we dynamically optimize the tradeoff with respect to model structure and hard-
026 ware configuration. Experimental results demonstrate that our method consis-
027 tently improves both throughput and memory utilization. In particular, we reduce
028 idle pipeline time by up to 50% under the same per-device memory limit, and in
029 some cases, enable the training of larger models within limited memory budgets.
030 Our code is available¹.

1 INTRODUCTION

034 As large language models (LLMs) continue to grow in size and complexity, traditional data par-
035 allelism (Goyal et al., 2017) is no longer sufficient, as a single device cannot store the entire model.
036 To address this limitation, model parallelism (Harlap et al., 2018; Huang et al., 2019; Shoeybi et al.,
037 2019; Zheng et al., 2022) partitions the model across multiple devices, making efficient multi-device
038 training a central challenge. Among model parallelism techniques, pipeline parallelism (PP) (Huang
039 et al., 2019; Harlap et al., 2018) is widely adopted: it divides the model into stages, allowing devices
040 to process different segments concurrently. Compared with approaches such as ZeRO (Rajbhandari
041 et al., 2021) and tensor parallelism (Shoeybi et al., 2019), PP generally incurs lower communication
042 overhead. However, PP also introduces new scalability challenges, particularly the trade-off between
043 activation memory consumption and device utilization lost to pipeline bubbles. As the number of
044 pipeline stages increases, the memory required to store intermediate activations can quickly become
a bottleneck.

045 One line of work that improves the PP is to improve the efficiency by reducing the pipeline bubbles.
046 A notable scheduling strategy to address the limitation is *one-forward-one-backward* (1F1B) (Fan
047 et al., 2021; Narayanan et al., 2021), which provides faster memory clearance by early schedul-
048 ing backward passes. Based on 1F1B, *Interleaved* 1F1B (Fan et al., 2021) further reduces pipeline
049 bubbles while increasing peak memory usage and communication overhead. Then, Zero Bubble
050 (Qi et al., 2023) and Interleaved Zero Bubble (Qi et al., 2024) further improve the efficiency of
051 PP by splitting the backward pass into two parts, backward pass for weight and backward pass for
052 activation, which obtains a zero bubble ratio by flexibly scheduling the backward pass for weight.

053 ¹<https://anonymous.4open.science/r/OptPipe-BF38>

However, these methods require a large amount of memory to store the activations, which is not suitable for training models with a large number of PP stages.

Activation offloading (Wu et al., 2024; Chen et al., 2025; Wan et al., 2025) represents another line of work aimed at reducing the memory footprint of pipeline parallelism (PP). The key idea is to offload intermediate activations from device memory to host memory, which is typically large enough to store all activations. While this enables training larger models with fewer devices, it also introduces nontrivial scheduling challenges and may increase pipeline bubbles if not carefully managed. PipeOffload (Wan et al., 2025) addresses this issue by selectively offloading activations with long lifespans and low transfer cost, thereby reducing peak memory usage while largely preserving PP efficiency. However, PipeOffload cannot further reduce bubbles through backward-pass splitting due to scheduling complexity, and it relies on simple heuristics for offloading decisions, which can be far from optimal in practice.

In this work, we propose OptPipe, a new pipeline scheduling approach that integrates activation offloading with fine-grained scheduling and backward-pass splitting. We formulate the scheduling problem, with or without activation offloading, as a Mixed-Integer Linear Programming (MILP) model and solve it using both commercial solvers and specialized heuristics designed for this setting. In addition, by parallelizing the solving process, we hide solver overhead and significantly improve the practical efficiency of our method.

Our contributions can be summarized as follows:

- We formulate the pipeline parallelism scheduling problem, both with and without activation offloading, as an MILP model, which yields the optimal scheduling strategy.
- We propose a new PP approach, OptPipe, which integrates specialized heuristics for solving the MILP formulation and additional strategies that enhance its practical implementation.
- We conduct extensive experiments on diverse models and datasets, demonstrating that OptPipe significantly improves training efficiency while maintaining memory usage within device limits.

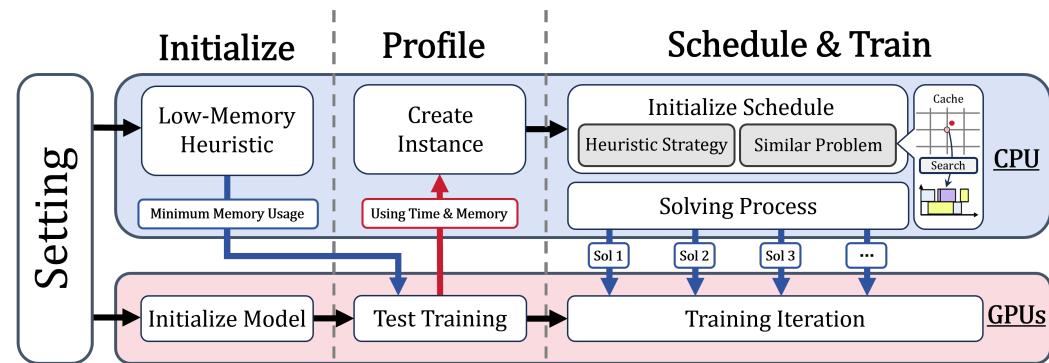


Figure 1: The framework of OptPipe. The framework consists of three main phases: (1) **Initialize**: Generate an initial scheduling strategy that ensures peak memory usage remains within device limits; (2) **Profile**: Run a few warm-up iterations to profile computation time and memory usage, and use the collected statistics to construct the MILP model; (3) **Schedule & Train**: Implement an initial schedule using a heuristic strategy (e.g., PipeOffload or a cached schedule), and employ an MILP solver to refine the schedule. Training proceeds in parallel, with updates applied whenever the solver discovers an improved solution.

2 PRELIMINARY

2.1 PIPELINE PARALLELISM

Pipeline parallelism (PP) is a form of model parallelism designed to overcome the memory constraints of training large-scale models, particularly those with tens of billions of parameters. When

108 the size of a model’s weights exceeds the aggregate memory of GPUs on a single server, neither data
 109 parallelism nor tensor parallelism provides an efficient solution. For example, tensor parallelism often
 110 suffers from bottlenecks due to low-bandwidth inter-node communication. PP mitigates this
 111 by partitioning a model’s layers vertically across multiple GPUs, often spanning several nodes. In
 112 this setup, each GPU stores and processes only a subset of the model’s layers, thereby reducing the
 113 per-device memory footprint.

114 Formally, consider a model with N layers partitioned into P stages, where each stage contains N/P
 115 consecutive layers. In this work, we focus on the case where each stage is assigned continuous
 116 layers. For instance, in a four-GPU system with a 32-layer model, GPU 1 may hold layers 1–8,
 117 GPU 2 layers 9–16, GPU 3 layers 17–24, and GPU 4 layers 25–32.

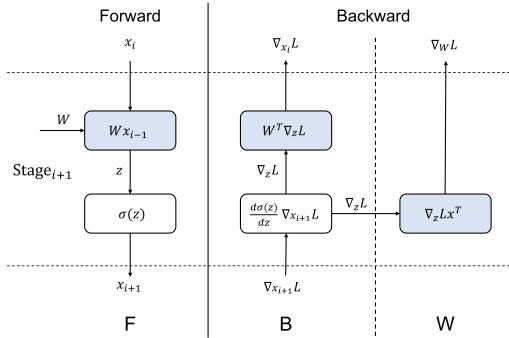
119 2.2 COMPUTATION GRAPH IN PIPELINE PARALLELISM

120
 121 Following the simplified computation model
 122 commonly used to analyze efficiency in prior
 123 work (Shoeybi et al., 2019; Qi et al., 2023),
 124 pipeline parallelism involves scheduling two
 125 main components: the forward pass and the
 126 backward pass, as illustrated in Figure 2.2.

127 During the forward pass, the activations from
 128 the previous stage, denoted as x_i , are passed as
 129 input to the next stage (Stage $_{i+1}$). At this stage,
 130 the input is first transformed linearly, $z = Wx_i$,
 131 where W is the weight matrix of Stage $_{i+1}$. The
 132 result z is then processed by a non-linear activa-
 133 tion function $\sigma(\cdot)$, producing the stage output
 134 $x_{i+1} = \sigma(z)$, which is forwarded to the sub-
 135 sequent stage.

136 The backward pass propagates gradients in the reverse direction. Each stage begins by receiving
 137 the gradient of the loss with respect to its output, $\nabla_{x_{i+1}} L$ where L denotes the loss function, from
 138 the subsequent stage. Applying the chain rule through the activation function yields the gradient
 139 with respect to z : $\nabla_z L = \frac{d\sigma(z)}{dz} \nabla_{x_{i+1}} L$. This intermediate gradient serves two purposes. First,
 140 to continue backpropagation, the gradient with respect to the stage input is computed as $\nabla_{x_i} L =$
 141 $W^\top \nabla_z L$, and passed to the previous stage. Second, the gradient with respect to the stage weights
 142 is obtained as $\nabla_W L = \nabla_z L x_i^\top$, which is subsequently used by the optimizer to update the model
 143 parameters.

Figure 2: The computation graph of each stage in
 pipeline parallelism.



144 3 SCHEDULING VIA MIXED-INTEGER LINEAR PROGRAMMING

145 To identify the optimal schedule that minimizes total training time, we formulate the pipeline
 146 scheduling problem as an MILP model. The objective of the model is to determine the exact timing
 147 of all computational and data-transfer operations, while simultaneously making strategic decisions
 148 on whether to offload activation memory for each operation. These decisions are subject to hard-
 149 ware limitations and data-dependency constraints. This section presents a high-level overview of the
 150 model, with the complete formulation provided in Appendix C.

153 3.1 MODELING FRAMEWORK

154 Our model considers a pipeline-parallel training setup in which a neural network is partitioned into
 155 multiple stages, each stage i assigned to a dedicated GPU. The training data is further divided into
 156 a sequence of micro-batches, indexed by j . For each micro-batch, every stage must perform three
 157 distinct **computational operations** (c): a **Forward pass (F)**, a **Backward pass for activations (B)**,
 158 and a **Backward pass for weights (W)**.

159 To manage GPU memory efficiently, we incorporate two additional data-transfer operations: **Off-
 160 load (O)**, which transfers activation memory from GPU to CPU, and **Reload (R)**, which restores it

162 when needed. The core objective of our model is to schedule these five types of events, F, B, W, O,
 163 and R, in order to minimize the overall makespan.
 164

165 **3.2 DECISION VARIABLES AND OBJECTIVE**
 166

167 Our formulation is built around a set of decision variables that together define a complete schedule.
 168 The timing of the schedule is captured by continuous variables: $E_{(i,j,c)}$ denotes the end time of
 169 a computational operation, while $O_{(i,j,c)}$ and $R_{(i,j,c)}$ represent the start times of activation offload
 170 and reload operations, respectively. The key strategic decision is modeled by the binary variable
 171 $W_{(i,j,c)}$, which indicates whether the activation from operation (i, j, c) is offloaded ($W_{(i,j,c)} = 1$)
 172 or retained in GPU memory ($W_{(i,j,c)} = 0$).
 173

174 To ensure the schedule is physically realizable, we introduce auxiliary binary variables that enforce
 175 ordering constraints and resolve resource conflicts. On the GPU’s computational core, the variable
 176 $P_{(i,j,c) \rightarrow (i,j',c')}$ serializes any two computational operations: $P_{(i,j,c) \rightarrow (i,j',c')} = 1$ indicates that
 177 operation (i, j, c) must be completed before (i, j', c') , and $P_{(i,j,c) \rightarrow (i,j',c')} = 0$ otherwise. For
 178 communication between GPU and CPU, $K_{(i,j,c) \rightarrow (i,j',c')}$ and $L_{(i,j,c) \rightarrow (i,j',c')}$ sequence pairs of
 179 offload and reload operations, respectively, while $H_{(i,j,c) \rightarrow (i,j',c')}$ establishes the order between
 offload and reload events that share the same communication channel.
 180

181 Dependencies between computation and data transfers are enforced via $M_{(i,j,c) \rightarrow (i,j',c')}$ and
 182 $N_{(i,j,c) \rightarrow (i,j',c')}$, which guarantee that computations begin only after the required data has been
 183 produced or reloaded. A value of 1 for any precedence variable indicates that the first event in the
 subscript must complete before the second begins.
 184

185 The objective of the MILP is to minimize the makespan of pipeline execution across all stages,
 186 represented by the continuous variable C . When using post-validation, as suggested in (Qi et al.,
 187 2023), the value is determined by the maximum elapsed time from the start of the first operation
 188 to the completion of the final operation in each stage. If post-validation is not used, the value is
 189 calculated from the start of the first operation in the entire process to the completion of the final
 operation. (Eq. 3, 4).
 190

191 **3.3 KEY CONSTRAINTS**
 192

193 The model is governed by a set of constraints that guarantee the resulting schedule is both valid
 194 and physically realizable. We summarize these constraints below, while the complete mathematical
 195 formulations are deferred to Appendix C.1 due to space limitations.
 196

- 197 **Data-Dependency Constraints:** These constraints enforce the fundamental dataflow of pipeline
 198 parallelism. The forward pass of micro-batch j on stage i can only begin after the forward pass on
 199 stage $i-1$ is completed (Eq. 5). Similarly, the backward pass of stage i depends on the completion
 200 of the backward pass on stage $i+1$ (Eq. 6). Within a single stage, each micro-batch must follow
 the strict sequence Forward \rightarrow Backward-activation \rightarrow Backward-weight (Eq. 8).
 201
- 202 **Resource Exclusivity Constraints:** A GPU can execute only one computational operation at
 203 a time, and the communication channel between GPU and CPU can handle only one offload
 204 or reload at a time. We enforce exclusivity using the standard Big-M method (Trespalacios &
 205 Grossmann, 2015) with binary precedence variables (e.g., $P_{(i,j,c) \rightarrow (i,j',c')}$), ensuring that no two
 206 operations assigned to the same resource overlap in time (Eq. 7, 10–13).
 207
- 208 **Memory Capacity Constraints:** To respect the GPU’s physical capacity M_i^{limit} , we track dy-
 209 namic memory usage at each stage. Memory consumption evolves as computations complete
 210 (contributing $\Delta_{(i,j,c)}$) and as activations are offloaded or reloaded (contributing $\Gamma_{(i,j,c)}$). Con-
 211 straint (Eq. 9) directly couples the operational schedule with memory feasibility, ensuring that no
 212 GPU exceeds its memory limit at any point in time.
 213
- 214 **Synchronization Constraints:** These constraints coordinate the interaction between computation
 215 and data transfers. A reload operation $R_{(i,j,c)}$ must complete before the computation that con-
 216 sumes the corresponding activation can begin. Conversely, an offload operation $O_{(i,j,c)}$ can only
 217 start after the associated forward pass has finished and produced the activation data (Eq. 14–17).
 218
- 219 **Topology-Aware Offload Constraints:** As observed in (Wan et al., 2025), offloading efficiency
 220 depends on the interconnect topology between GPUs and CPUs. For example, on A100 systems,
 221

216 two GPUs may share a PCIe switch, preventing simultaneous independent offloads. By contrast,
 217 H100 GPUs are directly linked to the CPU via independent PCIe connections, enabling concurrent
 218 offloads without interference. We use constraints (Eq 18) to control this in the MILP model.
 219

220 By solving this MILP, we obtain a globally optimal schedule that balances computation, communica-
 221 tion, and memory pressure to minimize training time. To reduce complexity for practical solvers,
 222 we introduce simplifications such as fixing the processing order of symmetric micro-batches, which
 223 significantly prunes the search space without affecting optimality.

225 4 OPTPIPE: AN EFFICIENT IMPLEMENTATION OF MILP-BASED 226 SCHEDULING

228 In this section, we present OptPipe, an efficient implementatoin MILP-based scheduling approach
 229 for real-world training systems.

231 4.1 PRACTICAL OPTIMIZATIONS FOR MILP SOLVING

233 To make our MILP formulation practical for large-scale pipeline parallelism, we incorporate a set
 234 of solver-level optimizations. These include variable fixing, cut generation, redundancy elimination,
 235 cached schedule strategy, and warm-starting with initial solutions. Together, these strategies signif-
 236 icantly reduce solving overhead without compromising solution quality. Throughout this section,
 237 we illustrate the techniques using the precedence variables $P_{(i,j,c)}$ as examples, though the same
 238 principles apply equally to the other types of ordering variables.

239 4.1.1 REDUNDANCY ELIMINATION

241 **Fixed Micro-batch Order and Symmetry Breaking** Since micro-batches are symmetric, we can
 242 fix their processing order to eliminate redundant scheduling possibilities. For pairs of precedence
 243 variables like P , we only define variables for one direction and derive the other logically. Then, we
 244 have following equations:

$$\begin{aligned} P_{(i,j,c) \rightarrow (i,j',c)} &= 1, \quad \forall i, j' > j, c \\ P_{(i,j',c') \rightarrow (i,j,c)} &= 1 - P_{(i,j,c) \rightarrow (i,j',c')}, \forall i \end{aligned} \quad (1)$$

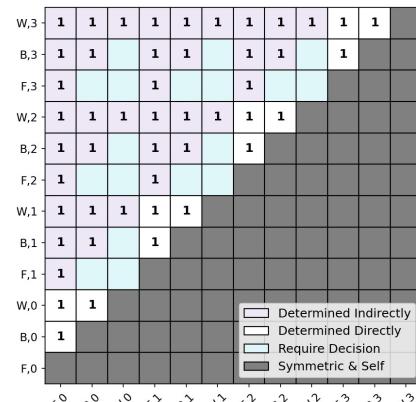
247 **Remove Indirectly Determined Binary Variables** To
 248 reduce model size and improve solver efficiency, we ex-
 249 ploit structural properties of the binary variables that en-
 250 code ordering relationships. These variables exhibit both
 251 symmetry and transitivity, which can be leveraged to
 252 eliminate redundancy.

253 As illustrated in Figure 3, we retain only the upper-
 254 triangular portion of the precedence matrix. By sym-
 255 metry, each ordering variable has a complementary counter-
 256 part: if $P_{(i,j,c) \rightarrow (i,j',c')}$ indicates that operation (i, j, c)
 257 precedes (i, j', c') , then $P_{(i,j',c') \rightarrow (i,j,c)}$ is its negation.
 258 Thus, variables in the lower-triangular region (shown in
 259 gray) are unnecessary and can be inferred directly.

260 In addition, some orderings are fixed by problem con-
 261 straints (white cells), while others can be deduced via
 262 transitivity (light purple cells). For example, if $P_{(i,j,c) \rightarrow (i,j',c')} = 1$ and $P_{(i,j',c') \rightarrow (i,j'',c'')} = 1$,
 263 then $P_{(i,j,c) \rightarrow (i,j'',c'')} = 1$ must also hold. Such indirectly determined variables need not be in-
 264 troduced into the model explicitly. Consequently, only the blue cells in Figure 3 correspond to
 265 precedence variables that require explicit solver decisions.

267 4.1.2 TRIANGLE INEQUALITY CUTS

268 We introduce a cutting-plane strategy to further accelerate MILP solving. The goal is to narrow
 269 the gap between the MILP and its Linear Programming (LP) relaxation by leveraging the transitive



267 Figure 3: Determined and Undeter-
 268 mined Variables

270 property of sequencing variables. This yields a family of valid inequalities, commonly referred to as
 271 triangle inequality cuts, that are widely used in scheduling problems (Fleming et al., 2013; Ascheuer
 272 et al., 1993; Oliveira & Pessoa, 2020). We apply these cuts systematically across all precedence
 273 variables.

274 Formally, let the binary variable $P_{(i,j,c) \rightarrow (i_1,j_1,c_1)}$ equal 1 if task (i, j, c) precedes task (i_1, j_1, c_1) ,
 275 and 0 otherwise. By transitivity, if task A precedes B and B precedes C, then A must precede C.
 276 This logical relationship can be encoded as the linear inequality
 277

$$P_{(i,j,c) \rightarrow (i_2,j_2,c_2)} \geq P_{(i,j,c) \rightarrow (i_1,j_1,c_1)} + P_{(i_1,j_1,c_1) \rightarrow (i_2,j_2,c_2)} - 1,$$

280 for any three distinct tasks (i, j, c) , (i_1, j_1, c_1) , and (i_2, j_2, c_2) . This constraint enforces consistency
 281 in the solution space: if (i, j, c) precedes (i_1, j_1, c_1) and (i_1, j_1, c_1) precedes (i_2, j_2, c_2) , then (i, j, c)
 282 must precede (i_2, j_2, c_2) . By systematically generating such cuts for all relevant task triplets, we
 283 tighten the LP relaxation without excluding any integer-feasible schedules, thereby improving the
 284 efficiency of the branch-and-cut algorithm.

285 4.1.3 INITIAL SOLUTION STRATEGIES

288 Finding a good initial solution is crucial for improving the efficiency of MILP solving. Even though
 289 the problem of finding a feasible solution itself is NP-hard, in our specific context, a trivial feasible
 290 schedule can be obtained by running pure pipeline parallelism with a single micro-batch, which com-
 291 pletely eliminates memory pressure. However, this naive approach results in an excessively large
 292 makespan and significant idle time (“bubbles”) due to the lack of overlap between computations.
 293 More advanced schemes such as 1F1B (Fan et al., 2021) and Zero Bubble (Qi et al., 2023) often
 294 become infeasible under strict memory budgets, since they do not explicitly account for memory
 295 constraints.

296 PipeOffload (Wan et al., 2025) provides a more suitable baseline for memory-limited scenarios by
 297 offloading all forward (F) chunks and combining backward-activation (B) and backward-weight (W)
 298 chunks. This strategy guarantees the minimum possible memory usage, but it does not exploit the
 299 actual memory limit of the device. In particular, it only schedules a small number of forward chunks
 300 before starting the first backward chunk, which leads to suboptimal utilization. Our observations
 301 suggest that scheduling more forward chunks in the fill phase can produce higher-quality solutions.

302 To this end, we propose AdaOffload, an initialization strategy that generates schedules with a denser
 303 fill phase. AdaOffload determines the maximize number of forward chunks to place before the first
 304 backward chunk at each stage, subject to memory constraints, while following PipeOffload’s strat-
 305 egy for the remaining schedule. A detailed description of AdaOffload is provided in Appendix D.
 306 While the makespan produced by AdaOffload can outperform PipeOffload, it significantly enhances
 307 the solving efficiency of the MILP. In Figure 4, we present a toy example comparing different of-
 308 floaded pipeline parallelism strategies, including the optimal strategy. The example assumes that
 309 all processing times are equal, and that the memory can hold up to three activations at once. This
 310 simplified setup enables a direct comparison of the strategies under ideal conditions, as illustrated
 311 in the figure: AdaOffload achieves a lower makespan while maintaining a similar module during the
 312 fill phase, thereby providing a better warm start for solving MILP problems.

313 4.2 CACHED SCHEDULE STRATEGY

315 Since solving the MILP can be time-consuming, it is desirable to reuse previously solved schedules
 316 that can be quickly adapted to new settings. A major challenge, however, is that the estimated
 317 parameters in the MILP, such as computation time, communication latency, and memory usage, can
 318 vary stochastically across runs or hardware environments.

319 To address this, we introduce a crude schedule strategy based on discretization. Specifically, we
 320 discretize the estimated parameters for computation, communication, and memory into proportional
 321 values. When solving a new instance, we search for the most similar crude schedule in this dis-
 322 cretized space and use it to initialize the solver. This warm-start procedure improves the quality of
 323 initial strategies while ensuring reusability across different problem instances. If no cached schedule
 is sufficiently similar, we fall back to the default initialization strategy described earlier.

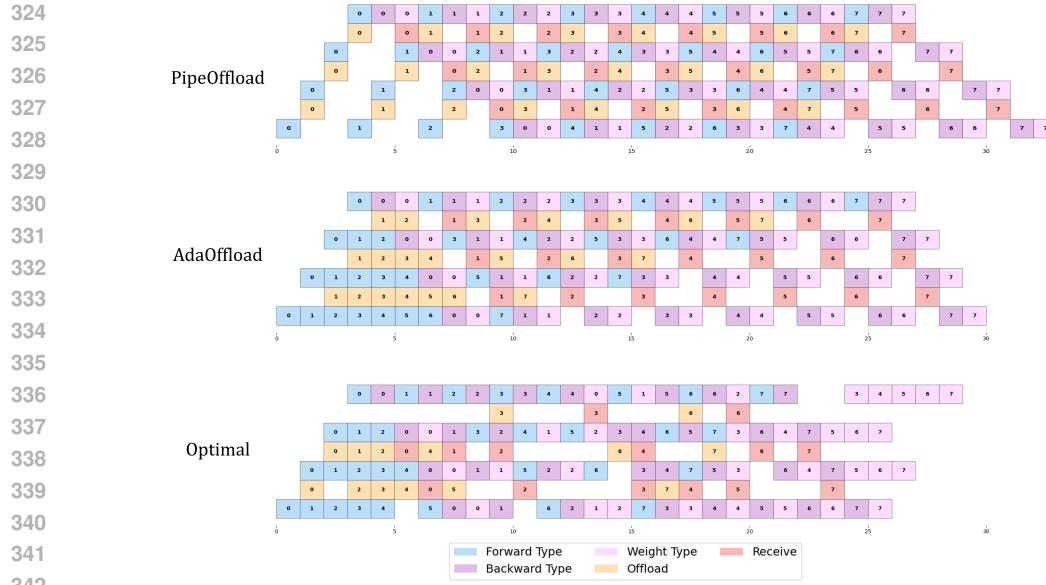


Figure 4: A toy example for illustration. Each block in the figure represents a distinct operation type, with the colors indicating different stages. The x-axis represents time, and the y-axis shows different stages in the pipeline parallelism.

4.3 ONLINE SCHEDULING

The time required to find an optimal schedule grows rapidly with the number of training stages, due to the NP-hard nature of the scheduling problem. To mitigate this drawback, we propose solving the scheduling problem dynamically during the training phase of the LLM. This is feasible because the solver runs on CPUs, while training primarily utilizes GPUs.

By leveraging the solver’s callback functionality, which can detect improved solutions and customize the workflow, we can continuously update the schedule during training. As the solver discovers better schedules, the system can adopt them without interrupting training. An additional advantage of this framework is adaptability: when estimated parameters (e.g., computation or communication times) change significantly, the scheduler can adjust accordingly, preventing the application of outdated or suboptimal schedules.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Implementation Details We implemented our method on top of the open-source Megatron-LM framework (Narayanan et al., 2021), incorporating the implementations of Zero Bubble (ZB) pipeline parallelism and PipeOffload (Qi et al., 2023; Wan et al., 2025). Following ZB, we perform a few warm-up iterations to estimate key pipeline parameters, including T_F , T_B , T_{comm} , and T_{offload} . For these estimation runs, we adopt PipeOffload due to its minimal memory footprint. The resulting Mixed-Integer Linear Programming (MILP) problem is then solved using Gurobi (Gurobi Optimization, 2020) as the backend solver.

Infrastructure and Configuration Our experiments are conducted on a cluster with up to 16 NVIDIA H100 GPUs. We evaluate models with architectures analogous to GPT-3, ensuring a representative setting for large-scale LLM training. Detailed model configurations are provided in Appendix B.

Baseline We compare our approach against 5 pipeline parallelism baselines: 1F1B (Fan et al., 2021), 1F1B-Interleaved (1F1B-I) (Narayanan et al., 2021), Zero Bubble (ZB) (Qi et al., 2023), Zero Bubble-V (ZB-V) (Qi et al., 2024), and PipeOffload (Wan et al., 2025).

378
379

5.2 EVALUATION

380

To evaluate the quality of scheduling strategies, we ran 120 iterations for each configuration and used the average elapsed time of the last 100 iterations as the primary performance metric. The complete results are presented in Table 1, covering a comprehensive range of GPU counts, model parameter sizes, micro-batch numbers, and micro-batch sizes. In each experiment, we use AdaOffload to provide a initial solution to Gurobi, which can significant improve solving efficiency.

385

As shown in Table 1, in memory-rich scenarios, OptPipe achieves performance comparable to 1F1B, 1F1B-I, ZB, and ZB-V, while being more than 30% faster than PipeOffload. In contrast, under memory-limited settings, such as the 1.5B model with a micro-batch size of 32, where all baselines except PipeOffload encounter out-of-memory (OOM) errors, OptPipe still outperforms PipeOffload by more than 20%. These results demonstrate that OptPipe delivers both superior performance and robustness across a wide range of scenarios.

391

Params	Number	Size	1F1B	1F1B-I	ZB	ZB-V	PipeOffload	OptPipe (ours)
GPU NUMBER: 4								
1.5B	8	4	1423.24	2193.50	1254.61	1363.93	1651.83	<u>1283.00</u>
		8	1475.22	2218.30	<u>1312.17</u>	1375.72	2025.03	1302.40
		16	<u>1579.51</u>	OOM	OOM	1517.89	4184.03	1674.37
		24	OOM	OOM	OOM	OOM	<u>5402.70</u>	2517.53
		32	OOM	OOM	OOM	OOM	<u>7176.87</u>	4361.82
	16	4	1949.70	2034.90	1851.26	2098.33	4028.40	2389.93
		8	1883.20	1996.70	<u>1962.40</u>	2112.65	4006.87	2350.43
		16	2689.30	OOM	OOM	OOM	6911.27	<u>2951.70</u>
		32	OOM	OOM	OOM	OOM	<u>10321.45</u>	7135.41
3.6B	8	4	1157.43	<u>1146.40</u>	1106.40	1189.70	1938.73	1358.53
		8	1540.00	2791.40	<u>1507.40</u>	1368.70	2994.23	1588.50
		16	OOM	OOM	OOM	OOM	<u>5123.34</u>	2144.76
		4	1632.40	1612.45	1493.45	<u>1579.43</u>	2609.03	1828.23
	16	8	1977.22	2011.13	OOM	<u>1994.32</u>	4029.46	2137.71
		16	OOM	OOM	OOM	OOM	<u>6894.68</u>	2886.29
		GPU NUMBER: 8						
7.1B	16	1	1983.40	2192.00	1927.50	2826.40	3033.87	<u>1929.87</u>
		2	<u>2147.00</u>	2526.10	2029.50	2974.30	3741.43	<u>2369.13</u>
		4	2198.30	2608.60	<u>2305.80</u>	2997.30	5345.13	2767.60
		8	OOM	OOM	OOM	OOM	<u>7131.31</u>	3913.10
		16	OOM	OOM	OOM	OOM	<u>15152.12</u>	11747.92
		1	<u>3709.30</u>	4007.45	3662.90	4808.90	5796.67	4470.33
	32	2	<u>3836.60</u>	4235.90	3730.20	4909.10	5878.30	4639.87
		4	<u>3843.10</u>	4543.70	3723.70	5053.50	10012.23	4666.33
		8	OOM	OOM	OOM	OOM	<u>20981.80</u>	15793.80
		16	OOM	OOM	OOM	OOM	<u>41254.60</u>	31445.20
		GPU NUMBER: 16						
14.2B	32	1	2744.34	3054.29	2591.14	3676.36	3971.16	<u>2602.56</u>
		2	2857.77	3506.94	2785.44	4108.14	4983.86	<u>2812.45</u>
		4	3047.62	3412.21	<u>3058.63</u>	4115.23	7446.86	3124.42
		8	OOM	OOM	OOM	OOM	<u>34134.23</u>	20140.23
		16	OOM	OOM	OOM	OOM	<u>42156.53</u>	35175.32
	64	1	5020.38	5352.19	4845.31	6322.89	8047.44	5031.53
		2	<u>5160.82</u>	5885.96	5187.24	6684.25	8145.83	5123.43
		4	5034.34	6131.95	5130.98	6972.76	13281.90	<u>5082.24</u>
		8	OOM	OOM	OOM	OOM	<u>41589.35</u>	31593.20
		16	OOM	OOM	OOM	OOM	<u>50124.41</u>	41679.20

428

429

430

431

Table 1: Performance Comparison of Pipeline Parallelism Methods. This table reports the average iteration time (ms). For each row, the **best** result is shown in bold, and the second-best is underlined. The columns indicate: **Params** (model parameter size), **Number** (micro-batch number), **Size** (micro-batch size), and the performance of different pipeline parallelism methods. Rows labeled GPU Number K correspond to experiments using K GPUs. "OOM" means Out of Memory.

432 **Solving Time** We set the time limits of solving MILP for each scenario (300s for 4/8 GPUs and
 433 1000s for 16 GPUs) and select the best feasible solution within the limit. For small cases (e.g., 4
 434 GPUs), the commercial solver typically finds the optimal solution, while for larger cases (e.g., 16
 435 GPUs), it often only reaches the time limit. Thanks to our heuristics, however, we can always obtain
 436 high-quality solutions within the limit, even if they are not optimal. Moreover, these MILP problems
 437 can be solved offline and cached, or updated online during training, ensuring that runtime does not
 438 become a bottleneck in practice.

439

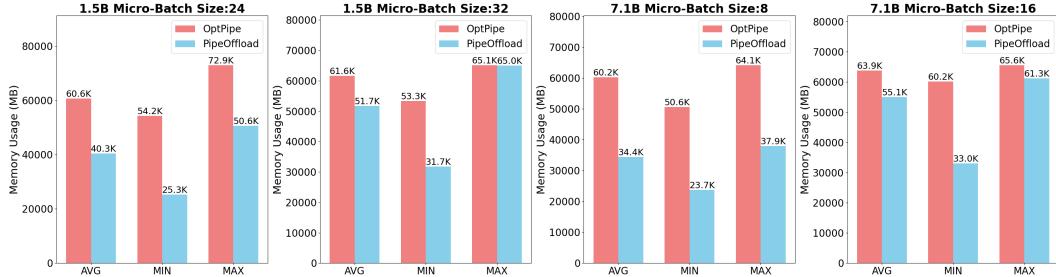
440 5.3 IN-DEPTH ANALYSIS

441

442 This section analyzes the performance differences between OptPipe and PipeOffload, as both meth-
 443 ods are specifically designed to operate under memory constraints.

444

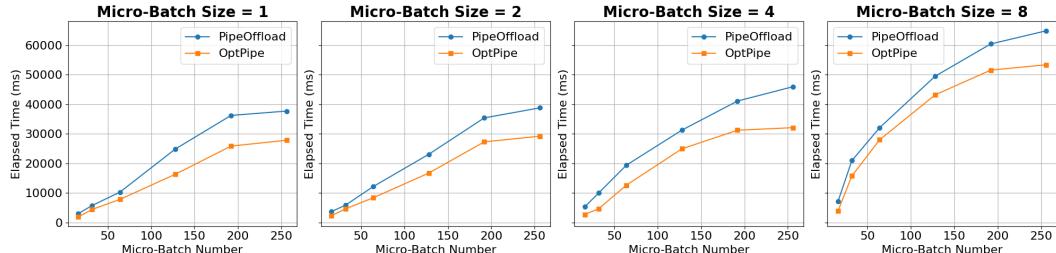
445 **Memory Usage Analysis** Figure 5 illustrates the key mechanism underlying OptPipe’s superior
 446 performance: a more effective trade-off between memory usage and efficiency. It consistently main-
 447 tains higher average (AVG) and maximum (MAX) memory utilization, leveraging available capacity
 448 to improve throughput under strict limits. In contrast, PipeOffload is more conservative, leaving
 449 memory underutilized and thereby reducing efficiency. OptPipe effectively converts idle memory
 450 into performance gains, demonstrating more efficient time–memory trade-off management.



451
 452
 453
 454
 455
 456
 457
 458
 459 Figure 5: Memory Usage Comparison between PipeOffload and OptPipe. Average, minimum, and
 460 maximum device memory usage across different model sizes and micro-batch sizes.

461

462 **Analysis of Performance with Varying Micro-Batch Numbers** Figure 6 compares elapsed time
 463 under varying micro-batch counts (16–256). OptPipe consistently outperforms PipeOffload across
 464 all settings, with efficiency gains growing as workload increases. In the most demanding case
 465 (micro-batch size 8, 256 micro-batches), OptPipe reduces training time by about 17%, demon-
 466 strating its effectiveness in large-scale scenarios where minimizing device idle time is critical.



475

476
 477 Figure 6: Elapsed time comparison between PipeOffload and OptPipe under varying micro-batch
 478 numbers for an 8-GPU setup and a 7.1B LLM model.

479

6 CONCLUSION

480

481 In this work, we presented OptPipe, a framework for optimizing pipeline parallelism with activation
 482 offloading. We modeled scheduling as a MILP problem and introduced practical techniques to make
 483 the approach feasible in large-scale training. OptPipe significantly improves the efficiency of LLM
 484 training, underscoring the importance of refined scheduling for pipeline parallelism. Future work
 485 will explore further accelerating the solver and enhancing model robustness, as well as extending
 486 OptPipe to scenarios that combine pipeline parallelism with other parallelization schemes through
 487 communication–computation overlap.

486 REFERENCES
487

488 Norbert Ascheuer, Laureano F Escudero, Martin Grötschel, and Mechthild Stoer. A cutting plane ap-
489 proach to the sequential ordering problem (with applications to job scheduling in manufacturing).
490 *SIAM Journal on Optimization*, 3(1):25–42, 1993.

491 Qiaoling Chen, Shenggui Li, Wei Gao, Peng Sun, Yonggang Wen, and Tianwei Zhang. Sppo:
492 Efficient long-sequence lilm training via adaptive sequence pipeline parallel offloading. *arXiv*
493 preprint [arXiv:2503.10377](https://arxiv.org/abs/2503.10377), 2025.

494 Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping
495 Long, Jun Yang, Lixue Xia, et al. Dapple: A pipelined data parallel approach for training large
496 models. In *Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of*
497 *Parallel Programming*, pp. 431–445, 2021.

498 Christopher L. Fleming, Stanley E. Griffis, and John E. Bell. The effects of triangle inequality
499 on the vehicle routing problem. *European Journal of Operational Research*, 224(1):1–
500 7, 2013. ISSN 0377-2217. doi: <https://doi.org/10.1016/j.ejor.2012.07.005>. URL <https://www.sciencedirect.com/science/article/pii/S0377221712005267>.

501 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
502 drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
503 in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

504 Gurobi Optimization. Gurobi optimizer reference manual. <http://www.gurobi.com>, 2020.

505 Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg
506 Ganger, and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. *arXiv*
507 preprint [arXiv:1806.03377](https://arxiv.org/abs/1806.03377), 2018.

508 Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
509 Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
510 networks using pipeline parallelism. *Advances in neural information processing systems*, 32,
511 2019.

512 Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
513 jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
514 Efficient large-scale language model training on gpu clusters using megatron-lm. In *Proceed-
515 ings of the International Conference for High Performance Computing, Networking, Storage and
516 Analysis*, pp. 1–15, 2021.

517 Daniel Oliveira and Artur Pessoa. An improved branch-cut-and-price algorithm for parallel machine
518 scheduling problems. *INFORMS Journal on Computing*, 32(1):90–100, 2020.

519 Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. Zero bubble pipeline parallelism. In *The*
520 *Twelfth International Conference on Learning Representations*, 2023.

521 Penghui Qi, Xinyi Wan, Nyamdavaa Amar, and Min Lin. Pipeline parallelism with controllable
522 memory. *arXiv preprint arXiv:2405.15362*, 2024.

523 Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
524 Breaking the gpu memory wall for extreme scale deep learning. In *Proceedings of the interna-
525 tional conference for high performance computing, networking, storage and analysis*, pp. 1–14,
526 2021.

527 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
528 Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
529 allelism. *arXiv preprint arXiv:1909.08053*, 2019.

530 Francisco Trespalacios and Ignacio E Grossmann. Improved big-m reformulation for generalized
531 disjunctive programs. *Computers & Chemical Engineering*, 76:98–103, 2015.

532 Xinyi Wan, Penghui Qi, Guangxing Huang, Jialin Li, and Min Lin. Pipeoffload: Improving scal-
533 ability of pipeline parallelism with memory optimization, 2025. URL <https://arxiv.org/abs/2503.01328>.

540 Kun Wu, Jeongmin Brian Park, Xiaofan Zhang, Mert Hidayetoğlu, Vikram Sharma Mailthody, Sitao
541 Huang, Steven Sam Lumetta, and Wen-mei Hwu. Ssdtrain: An activation offloading framework
542 to ssds for faster large language model training. *arXiv preprint arXiv:2408.10013*, 2024.

543

544 Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
545 Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa: Automating inter-and {Intra-
546 Operator} parallelism for distributed deep learning. In *16th USENIX Symposium on Operating
547 Systems Design and Implementation (OSDI 22)*, pp. 559–578, 2022.

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A LLM USAGE DECLARATION**
 595

596 In this submission, we used a Large Language Model (LLM) solely for language refinement and text
 597 polishing. The LLM was employed to enhance the clarity, flow, and readability of the manuscript,
 598 but it did not contribute to the ideation, analysis, or generation of scientific content. All ideas,
 599 interpretations, and results presented in the paper are solely the work of the authors. No content
 600 generated by the LLM was used to fabricate facts or contribute to the research findings.

601
 602 **B CONFIGURATION**
 603

604 **Model Configuration** We present the model configuration for different model sizes. The con-
 605 figurations are summarized in the Table B. These configurations represent the key hyperparameter
 606 that define the architecture and performance of the models with varying sizes: 1.5B, 3.6B, 7.1B, and
 607 14.2B parameters. Each size corresponds to a different number of layers, hidden units, and other
 608 model-specific settings. For each setting, we set sequence length as 1024 and post validation is used
 609 to further improve efficiency.

Parameter	Model Sizes			
	1.5B	3.6B	7.1B	14.2B
num-layers	128	128	256	256
hidden-size	2048	2048	128	128
ffn-hidden-size	4096	4096	4096	4096
num-attention-heads	16	16	16	16
num-query-groups	8	8	8	8

610
 611 Table 2: Model Configuration for Different Sizes
 612
 613
 614
 615
 616
 617

618
 619 **C MATHEMATICAL MODELS**
 620

621 **C.1 MIXED INTEGER LINEAR PROGRAMMING FORMULATION**
 622

623 **Notation** We define the following indices, decision variables, and parameters for the model.

624 • **Indices:**

625 – i : Index for the i -th stage (i.e., the i -th GPU).
 626 – j : Index for the j -th micro-batch. We assume each micro-batch has identical parameters.
 627 – c : Index for the type of operation, where $c \in \{F, B, W\}$ represents Forward, Backward for
 628 activation, and Backward for weights, respectively.

629 • **Terminology:**

630 – **Offload:** Transferring activation memory from a GPU to the CPU.
 631 – **Reload:** Transferring activation memory from the CPU back to a GPU.
 632 – **Operation:** A computation step, which can be Forward (F), Backward for activation (B), or
 633 Backward for weights (W).

634 **Decision Variables**
 635

636 $P_{(i,j,c) \rightarrow (i,j',c')}$: A binary variable that is 1 if the operation (i, j, c) is processed before operation
 637 (i, j', c') , and 0 otherwise.

638 $K_{(i,j,c) \rightarrow (i,j',c')}$: A binary variable that is 1 if the offloading for (i, j, c) starts before the offloading
 639 for (i, j', c') , and 0 otherwise.

640 $L_{(i,j,c) \rightarrow (i,j',c')}$: A binary variable that is 1 if the reloading for (i, j, c) starts before the reloading
 641 for (i, j', c') , and 0 otherwise.

642 $M_{(i,j,c) \rightarrow (i,j',c')}$: A binary variable that is 1 if the offloading for (i, j, c) starts before the processing
 643 of (i, j', c') , and 0 otherwise.

648 $N_{(i,j,c) \rightarrow (i,j',c')}$: A binary variable that is 1 if the reloading for (i, j, c) starts before the processing
 649 of (i, j', c') , and 0 otherwise.
 650
 651 $H_{(i,j,c) \rightarrow (i,j',c')}$: A binary variable that is 1 if the offloading for (i, j, c) starts before the reloading
 652 for (i, j', c') , and 0 otherwise.
 653
 $E_{(i,j,c)}$: A continuous variable representing the end time of the operation (i, j, c) .
 654
 $O_{(i,j,c)}$: A continuous variable representing the start time of the activation offload for (i, j, c) .
 655
 $R_{(i,j,c)}$: A continuous variable representing the start time of the activation reload for (i, j, c) .
 656
 $W_{(i,j,c)}$: A binary variable that is 1 if the activation for (i, j, c) is offloaded, and 0 otherwise.
 657
 C : A continuous variable representing the total time cost (makespan).
 658
 659

Parameters

660
 661 $\Delta_{(i,j,c)}$: The amount of memory change after completing operation (i, j, c) . This satisfies:
 662 $\Delta_{(i,j,F)} + \Delta_{(i,j,B)} + \Delta_{(i,j,W)} = 0$, with $\Delta_{(i,j,F)} > 0$, $\Delta_{(i,j,B)} < 0$, and $\Delta_{(i,j,W)} < 0$.
 663
 $\Gamma_{(i,j,c)}$: The amount of memory occupied by the activations of (i, j, c) .
 664
 $T_{(i,j,c)}$: The processing time for operation (i, j, c) .
 665
 T_{comm} : The communication time for transferring activations between adjacent GPUs.
 666
 T_{offload} : The time required to offload or reload the activations of a single operation between a GPU
 667 and the CPU.
 668
 M_i^{limit} : The memory capacity of the i -th GPU.
 669
 670

671 **Model Formulation** The objective is to minimize the total pipeline execution time, C .
 672

$$\min C \quad (2)$$

673 This is subject to the following constraints:
 674

- **Makespan Definition:** When using Post Validation, the total cost C is the maximum time span from the start of the first operation to the end of the last operation on any stage in Pipeline Parallelism.

$$C \geq E_{(i,m,W)} - (E_{(i,1,F)} - T_{(i,1,F)}), \quad \forall i \quad (3)$$

675 where m is the last micro-batch. Instead, we define C is the maximum time span from the first
 676 operation to the end operation over whole schedule.
 677

$$C \geq E_{(i,j,W)} - (E_{(1,1,F)} - T_{(1,1,F)}), \quad \forall i, j \quad (4)$$

- **Pipeline Data Dependencies:** The Forward pass on GPU i must wait for the Forward pass on GPU $i - 1$. The Backward pass on GPU i must wait for the Backward pass on GPU $i + 1$.

$$E_{(i,j,F)} \geq E_{(i-1,j,F)} + T_{\text{comm}} + T_{(i,j,F)}, \quad \forall i, j \quad (5)$$

$$E_{(i,j,B)} \geq E_{(i+1,j,B)} + T_{\text{comm}} + T_{(i,j,B)}, \quad \forall i, j \quad (6)$$

- **Intra-GPU Operation Sequencing:** Only one operation can be active on a single GPU at any time. A large constant \mathcal{M} is used for the Big-M method.

$$E_{(i,j,c)} \geq E_{(i,j',c')} + T_{(i,j,c)} - P_{(i,j,c) \rightarrow (i,j',c')} \cdot \mathcal{M}, \quad \forall i, j, j' \neq j, c, c' \neq c \quad (7)$$

- **F-B-W Order:** For a given micro-batch on a given GPU, the Forward, Backward-activation, and Backward-weight operations must be executed in order.

$$P_{(i,j,F) \rightarrow (i,j,B)} = 1, P_{(i,j,B) \rightarrow (i,j,W)} = 1, \quad \forall i, j \quad (8)$$

- **Memory Capacity Constraint:** The total memory used during any operation (i, j', c') must not exceed the GPU's memory limit.

$$M_i^{\text{limit}} \geq \Delta_{(i,j',c')} + \sum_{j,c} \Delta_{(i,j,c)} P_{(i,j,c) \rightarrow (i,j',c')} - \Gamma_{(i,j,c)} M_{(i,j,c) \rightarrow (i,j',c')} + \Gamma_{(i,j,c)} N_{(i,j,c) \rightarrow (i,j',c')}, \quad \forall i, j', c' \quad (9)$$

702 • **Offload/Reload Sequencing:** If an operation (i, j', c') is chosen for offloading, its offload and
703 reload phases must be sequenced with respect to other offloads and reloads on the same GPU.
704

$$O_{(i,j,c)} \geq O_{(i,j',c')} + T_{\text{offload}} - K_{(i,j,c) \rightarrow (i,j',c')} \cdot \mathcal{M} - (1 - W_{(i,j',c')}) \cdot \mathcal{M} \quad (10)$$

$$R_{(i,j,c)} \geq R_{(i,j',c')} + T_{\text{offload}} - L_{(i,j,c) \rightarrow (i,j',c')} \cdot \mathcal{M} - (1 - W_{(i,j',c')}) \cdot \mathcal{M} \quad (11)$$

$$R_{(i,j,c)} \geq O_{(i,j',c')} + T_{\text{offload}} - (1 - H_{(i,j',c') \rightarrow (i,j,c)}) \cdot \mathcal{M} - (1 - W_{(i,j',c')}) \cdot \mathcal{M} \quad (12)$$

$$O_{(i,j,c)} \geq R_{(i,j',c')} + T_{\text{offload}} - H_{(i,j,c) \rightarrow (i,j',c')} \cdot \mathcal{M} - (1 - W_{(i,j',c')}) \cdot \mathcal{M} \quad (13)$$

710 for all $i, j, j' \neq j, c, c' \neq c$.
711

712 • **Offload/Reload and Operation Synchronization:** If offloading is performed, the timing must
713 respect the dependencies with computational operations.

$$E_{(i,j,c)} - T_{\text{comm}} \geq O_{(i,j',c')} + T_{\text{offload}} - (1 - M_{(i,j',c') \rightarrow (i,j,c)}) \cdot \mathcal{M} - (1 - W_{(i,j',c')}) \cdot \mathcal{M} \quad (14)$$

$$E_{(i,j,c)} \geq R_{(i,j',c')} + T_{(i,j,c)} - (1 - N_{(i,j',c') \rightarrow (i,j,c)}) \cdot \mathcal{M} - (1 - W_{(i,j',c')}) \cdot \mathcal{M} \quad (15)$$

$$R_{(i,j',c')} \geq E_{(i,j,c)} - N_{(i,j',c') \rightarrow (i,j,c)} \cdot \mathcal{M} - (1 - W_{(i,j',c')}) \cdot \mathcal{M} \quad (16)$$

710 for all $i, j, j' \neq j, c, c' \neq c$.
711

722 • **Offload Choice Consistency:** An operation cannot have a precedence relationship with an off-
723 load/reload if it is not chosen to be offloaded.
724

$$M_{(i,j,c) \rightarrow (i,j',c')} \leq W_{(i,j,c)}, N_{(i,j,c) \rightarrow (i,j',c')} \leq W_{(i,j,c)}, \quad \forall i, j, c, j', c' \quad (17)$$

727 • **Topology-Aware Constraints:** If multiple GPUs are connected to the CPU through the same
728 PCIe switch, we require that the offload and reload processes do not occur simultaneously on
729 these GPUs in order to manage the offloading time effectively.

$$O_{(i_2,j,c)} \geq O_{(i_1,j,c)} + T_{\text{offload}} - L_{(i_2,j,c) \rightarrow (i_1,j,c)} \quad (18)$$

$$R_{(i_2,j,c)} \geq R_{(i_1,j,c)} + T_{\text{offload}} - L_{(i_2,j,c) \rightarrow (i_1,j,c)} \quad (19)$$

733 , where i_1, i_2 are devices connected to the CPU through same PCIe switch.
734

735 • **Fixed Micro-batch Order:** Since micro-batches are symmetric, we can fix their processing order
736 to eliminate redundant scheduling possibilities.

$$P_{(i,j,c) \rightarrow (i,j',c)} = 1, \quad \forall j' > j$$

739 • **Symmetry Breaking for Binary Variables:** For pairs of precedence variables like P and H , we
740 only define variables for one direction and derive the other logically.
741

$$P_{(i,j',c') \rightarrow (i,j,c)} = 1 - P_{(i,j,c) \rightarrow (i,j',c')}$$

$$H_{(i,j',c') \rightarrow (i,j,c)} = 1 - H_{(i,j,c) \rightarrow (i,j',c')}$$

D ADAOFFLOAD

748 This method is inspired by **PipeOffload**, but with a key difference: it considers the availability of
749 more memory compared to what PipeOffload typically requires. In cases where memory is less con-
750 strained, the approach strives to fill as many forward tasks (F) as possible before the first backward
751 task (B) begins. The objective is to make the fill phase more **dense**, bringing it closer to an optimal
752 distribution. This not only improves the pipeline’s efficiency but also aids in solving MILP problems
753 by making the scheduling more favorable for the solver.

754 When memory is limited, or the offloading time becomes excessively long, the method effectively
755 **falls back to the PipeOffload rules**. In such cases, it behaves similarly to the original PipeOffload
approach, where the focus is on reducing offload times and maintaining a balanced schedule.

756 **Algorithm 1** AdaOffload: An Denser Initial Pipeline Schedule

757 **Require:**

758 1: $G = (V, E)$ {Computational graph (F/B/W tasks, Offload (O) task and Reload (R) task.)}

759 2: $\text{cost}_{\text{comm}}$ {Inter-stage communication latency}

760 3: $n_{\text{stages}}, n_{\text{mb}}$ {Number of stages and micro-batches}

761 4: T {Tolerance of delaying the first B task in each stage}

762

763 5: /* Step 1: Compute the earliest start time for each backward task */

764 6: **for** $s = 0$ **to** $n_{\text{stages}} - 1$ **do**

765 7: $T_F^{\max} \leftarrow \max$ runtime of all forward tasks in stage s

766 8: $T_B^{\max} \leftarrow \max$ runtime of all backward tasks in stage s

767 9: $T_W^{\max} \leftarrow \max$ runtime of all weight-update tasks in stage s

768 10: $T_{\text{offload}}^{\max} \leftarrow \max$ runtime of all activation offloading tasks in stage s

769 11: Compute $\text{EstStart}(B_{s,0})$ as the earliest start time for backward tasks

770

771 12: /* Step 2: Schedule forward tasks and backward tasks for overlap */

772 13: **for** $s = 0$ **to** $n_{\text{stages}} - 1$ **do**

773 14: /* Fill forward tasks (F) as much as possible before backward tasks */

774 15: **for** $m = 0$ **to** $n_{\text{mb}} - 1$ **do**

775 16: **if** $\max(\text{complete_time}(F_{s,m-1}), \text{complete_time}(O_{s,m-1}) + T_{\text{offload}}^{\max}) \geq \text{EstStart}(B_{s,0}) + T$

776 **then**

777 17: **BREAK** {Schedule forward tasks as early as possible}

778 18: $\text{start}(F_{s,m}) \leftarrow \max(\text{complete_time}(F_{s,m-1}), \text{complete_time}(O_{s,m-1}), \text{complete_time}(F_{s-1,n_{\text{mb}}}) +$

779 $\text{cost}_{\text{comm}})$

780 19: $\text{complete_time}(O_{s,m}) \leftarrow \text{complete_time}(F_{s,m}) + T_{\text{offload}}^{\max}$

781 20: $\text{complete_time}(F_{s,m}) \leftarrow \text{start}(F_{s,m}) + \text{runtime}(F_{s,m})$

782 21: /* Slightly delay backward tasks to fit more forward tasks */

783 22: $\text{start}(B_{s,0}) \leftarrow \max(\text{complete_time}(F_{s,m}), \text{EstStart}(B_{s,0}), \text{complete_time}(O_{s,m}) + T_{\text{offload}}^{\max})$

784 23: $\text{complete_time}(B_{s,0}) \leftarrow \text{start}(B_{s,0}) + \text{runtime}(B_{s,0})$

785

786 24: /* Step 3: Finish scheduling using PipeOffload-style rules */

787 25: **for** $s = 0$ **to** $n_{\text{stages}} - 1$ **do**

788 26: Schedule the remaining backward and weight-update tasks based on PipeOffload strategy

789 27: Allow overlap between B and W tasks for better pipeline utilization

790 28: /* Compute makespan and task order */

791 29: $M \leftarrow \max_{v \in V} \{\text{complete_time}(v)\}$

792 30: Topological order \prec from non-decreasing $\text{start}(v)$

793 31: **Return** $M, \mathcal{S} = \{\text{start}(v), \prec\}$

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809