
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VERINA: BENCHMARKING VERIFIABLE CODE GENER-
ATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly integrated in software develop-
ment, but ensuring correctness in LLM-generated code remains challenging and
often requires costly manual review. Verifiable code generation—jointly generating
code, specifications, and proofs of code-specification alignment—offers a promis-
ing path to address this limitation and further unleash LLMs’ benefits in coding.
Yet, there exists a significant gap in evaluation: current benchmarks often focus on
only individual components rather than providing a holistic evaluation framework
of all tasks. In this paper, we introduce VERINA (Verifiable Code Generation
Arena), a high-quality benchmark enabling a comprehensive and modular evalu-
ation of code, specification, and proof generation as well as their compositions.
VERINA consists of 189 manually curated coding tasks in Lean, with detailed prob-
lem descriptions, reference implementations, formal specifications, and extensive
test suites. Our extensive evaluation of state-of-the-art LLMs reveals significant
challenges in verifiable code generation, especially in proof generation, underscor-
ing the need for improving LLM-based theorem provers in verification domains.
The best model, OpenAI o4-mini, achieves a 61.4% code correctness rate, 51.0%
for specification soundness and completeness, and a mere 3.6% proof success rate
(based on one trial per task). We hope VERINA will catalyze progress in verifiable
code generation by providing a rigorous and comprehensive benchmark.

1 INTRODUCTION

Large language models (LLMs) have shown strong performance in programming (Jain et al., 2025;
Jimenez et al., 2024; Chen et al., 2021) and are widely adopted in tools like Cursor and GitHub
Copilot to boost developer productivity (Kalliamvakou). LLM-generated code is becoming prevalent
in commercial software (Peters, 2024) and may eventually form a substantial portion of the world’s
code. However, due to their probabilistic nature, LLMs alone cannot provide formal guarantees
for the generated code. As a result, the generated code often contains bugs, such as functional
errors (Wang et al., 2025) and security vulnerabilities (Pearce et al., 2022). When LLM-based
code generation is increasingly adopted, these issues can become a productivity bottleneck, as they
typically require human review to be resolved (Finley). Formal verification presents a promising
path to establish correctness guarantees in LLM-generated code but has traditionally been limited to
safety-critical applications due to high cost (Gu et al., 2016; Leroy et al., 2016; Bhargavan et al., 2013).
Similarly to how they scale up code generation, LLMs have the potential to significantly lower the
barrier of formal verification. By jointly generating code, formal specifications, and formal proofs of
alignment between code and specifications, LLMs can offer higher levels of correctness assurance and
automation in software development. This approach represents an emerging programming paradigm
known as verifiable code generation (Sun et al., 2024; Yang et al., 2024).

Given the transformative potential of verifiable code generation, it is crucial to develop suitable
benchmarks to track progress and guide future development. This is challenging because verifiable
code generation involves three interconnected tasks: code, specification, and proof generation. We
need to curate high-quality samples and establish robust evaluation metrics for each individual
task, while also composing individual tasks to reflect real-world end-to-end usage scenarios where
LLMs automate the creation of verified software directly from high-level requirements. Existing
benchmarks, as discussed in Section 2, fall short as they lack comprehensive support for all three

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: A comparison of VERINA with related prior works on LLMs for code generation and
verification. We characterize whether each work supports the three foundational tasks for end-to-end
verifiable code generation: CodeGen, SpecGen, ProofGen (Section 4.1). means fully supported, G#
means partially supported, # means unsupported. If ProofGen is supported, we specify the proving
style: automated theorem proving (ATP) or interactive theorem proving (ITP). For works supporting
multiple tasks, we annotate if these tasks are supported in a modular and composable manner. Overall,
VERINA offers more comprehensive and high-quality benchmarking compared to prior works.

CodeGen SpecGen ProofGen Proving Style Compositionality Language

B
en

ch
m

ar
ks HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021) # # – – Python

Dafny-Synthesis (Misu et al., 2024) G# ATP ✗ Dafny
DafnyBench (Loughridge et al., 2025) # # ATP – Dafny
miniCodeProps (Lohn & Welleck, 2024) # # ITP – Lean
FVAPPS (Dougherty & Mehta, 2025) # ITP ✗ Lean

Te
ch

ni
qu

es

nl2postcond (Endres et al., 2024) # # – – Python, Java
Clover (Sun et al., 2024) ATP ✗ Dafny
AlphaVerus (Aggarwal et al., 2024) # ATP ✗ Rust
AutoSpec (Wen et al., 2024) # ATP ✗ C/C++
SpecGen (Ma et al., 2025) # ATP ✗ Java
SAFE (Chen et al., 2024) # # ATP ✗ Rust
AutoVerus (Yang et al., 2025) # # ATP – Rust
Laurel (Mugnier et al., 2025) # # ATP – Dafny
Pei et al. (2023) # # ATP – Java
Baldur (First et al., 2023), Selene (Zhang et al., 2024) # # ITP – Isabelle
Rango (Thompson et al., 2025), PALM (Lu et al., 2024) # # ITP – Coq

VERINA ITP ✓ Lean

tasks (Loughridge et al., 2025; Aggarwal et al., 2024; Chen et al., 2024), quality control (Dougherty
& Mehta, 2025), robust metrics (Misu et al., 2024), or a modular design (Sun et al., 2024).

To bridge this gap, we introduce VERINA (Verifiable Code Generation Arena), a high-quality bench-
mark to comprehensively evaluate verifiable code generation. It consists of 189 programming
challenges with detailed problem descriptions, code, specifications, proofs, and comprehensive test
suites. We format these problems in Lean (Moura & Ullrich, 2021), a general-purpose programming
language with a rapidly growing ecosystem and applications in both formal mathematics (Mathlib
community, 2020; Mathlib Community, 2022) and verification (de Medeiros et al., 2025; Hietala &
Torlak, 2024). Lean has become the one of the most popular platform for LLM-assisted theorem-
proving and verification, demonstrated by breakthrough results like AlphaProof (Google DeepMind,
2024) and production adoption at organizations like AWS (de Moura), with ongoing efforts to verify
mainstream languages like Rust (Ho & Protzenko, 2022).

VERINA is constructed with careful quality control. It draws problems from various sources, including
MBPP (Misu et al., 2024; Austin et al., 2021), LiveCodeBench (Jain et al., 2025), and LeetCode,
offering a diverse range of difficulty levels. All samples in the benchmark are manually inspected and
revised to ensure clear text descriptions and accurate formal specifications and code implementations.
Moreover, each sample also includes a comprehensive test suite with both positive and negative cases,
which achieves 100% code coverage and passes the ground truth specification.

VERINA facilitates the evaluation of code, specification, and proof generation, along with flexible
combinations of these individual tasks. We utilize the standard pass@k metric (Fan et al., 2024)
with our comprehensive test suites to evaluate code generation. For proof generation, we use
the Lean compiler to automatically verify their correctness. Furthermore, we develop a multi-stage
evaluation pipeline that systematically assesses model-generated specifications by combining theorem
proving and comprehensive testing, providing a practical and robust way to score their soundness and
completeness against our ground truth specifications.

The high-quality samples and robust metrics of VERINA establish it as a rigorous platform for
evaluating verifiable code generation. On VERINA, we conduct a thorough experimental evaluation
of eight state-of-the-art general-purpose LLMs and three LLMs or agentic frameworks specialized in
theorem proving. Our results reveal that even the top-performing general-purpose LLM, OpenAI
o4-mini (OpenAI), struggles with verifiable code generation, producing only 61.4% correct code
solutions, 51.0% sound and complete specifications, and 3.6% successful proof in one trial. Among
theorem-proving LLMs, the best model, Goedel Prover V2 32B (Lin et al., 2025), achieved an 11.2%
proof success rate in one trial. Interestingly, iterative refinement using Lean compiler feedback
can increase the proof success rate to 20.1% with 64 refinement steps. However, this approach
significantly raises costs and the success rate remains low. These findings underscore the challenges
of verifiable code generation and highlight the critical role of VERINA in advancing the field.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND AND RELATED WORK

We present works closely related to ours in Table 1 and discuss them in detail below.

Task support for verifiable code generation. Writing code, specifications, and proofs for a
verified software component is time-consuming when done manually. Although various studies have
explored using LLMs to automate these tasks, they primarily focus on individual aspects, failing
to capture the full spectrum of verifiable code generation. Benchmarks like HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021) have sparked impressive progress on LLM-based code
generation but do not handle formal specifications or proofs. Many verification-focused efforts target
only one or two tasks, while assuming the other elements are provided by the human user. For
example, DafnyBench (Loughridge et al., 2025) and miniCodeProps (Lohn & Welleck, 2024) are two
benchmarks designed exclusively for proof generation. Moreover, AutoSpec (Wen et al., 2024) and
SpecGen (Ma et al., 2025) infer specifications and proofs from human-written code.

To the best of our knowledge, Dafny-Synthesis (Misu et al., 2024) and Clover (Sun et al., 2024) are
the only two works that cover all three tasks, like VERINA. However, they target automated theorem
proving using Dafny (Leino, 2010), while VERINA leverages interactive theorem proving in Lean.
Moreover, they have relatively small numbers of human-written samples (50 and 62 respectively).
In contrast, VERINA provides 189 high-quality samples that are manually validated and undergo
rigorous quality assurance (Section 3.2).

Automated and interactive theorem proving. A major challenge in formal verification and verifi-
able code generation lies in tooling. Verification-oriented languages like Dafny (Leino, 2010) and
Verus (Lattuada et al., 2023) leverage SMT solvers for automated theorem proving (De Moura &
Bjørner, 2008; Barrett & Tinelli, 2018) and consume only proof hints, such as loop invariants (Pei
et al., 2023) and assertions (Mugnier et al., 2025). However, SMT solvers handle only limited proof
domains and behave as black boxes, which can make proofs brittle and hard to debug (Zhou et al.,
2023). Interactive theorem proving (ITP) systems like Lean provide a promising target for verifiable
code generation with LLMs. ITPs support constructing proofs with explicit intermediate steps. This
visibility enables LLMs to diagnose errors, learn from unsuccessful steps, and iteratively refine
their proofs.Recent work shows that LLMs can generate proofs at human level in math competi-
tions (Google DeepMind, 2024). Prior verification benchmarks in Lean include miniCodeProps (Lohn
& Welleck, 2024) and FVAPPS (Dougherty & Mehta, 2025). miniCodeProps translates 201 Haskell
programs and their specifications into Lean but is designed for proof generation only. FVAPPS con-
tains 4,715 Lean programs with LLM-generated specifications from a fully automated pipeline that
lacks human validation and quality control. In contrast, VERINA provides human-verified samples
and captures all three foundational tasks in verifiable code generation.

Task compositionality. A key strength of VERINA is its modular design, which enables flexible
evaluation of not only individual tasks but also their combinations (Section 4.2). This compositionality
captures diverse real-world scenarios—from specification-guided code generation to end-to-end
verifiable code generation—enabling a comprehensive assessment of different aspects of verifiable
code generation. This modularity also facilitates targeted research on specific weaknesses, such as
improving proof generation. On the contrary, all other prior works lack full compositionality. For
example, Dafny-Synthesis (Misu et al., 2024) and Clover (Sun et al., 2024) mix specification and
proof generation into a single task, lacking support for separate evaluation of each.

3 VERINA: DATA FORMAT, CONSTRUCTION, AND QUALITY ASSURANCE

We describe the VERINA benchmark, its data construction pipeline, and quality assurance measures.

3.1 OVERVIEW AND DATA FORMAT

VERINA consists of 189 standalone programs, annotated with natural language descriptions, code,
specifications, proofs, and test cases. The code, specification, and proof are all written in Lean. An
example is illustrated in Figure 1, consisting of:

• Natural language description (Line 1–4): informal description of the programming problem,
capturing the intent of the human developer.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1 -- Description of the coding problem in natural language
2 -- Remove an element from a given array of integers at a specified index. The resulting array should
3 -- contain all the original elements except for the one at the given index. Elements before the
4 -- removed element remain unchanged, and elements after it are shifted one position to the left.
5 -- Code implementation
6 def removeElement (s : Array Int) (k : Nat) (h_precond : removeElement_pre s k) : Array Int :=
7 s.eraseIdx! k
8 -- Pre-condition
9 def removeElement_pre (s : Array Int) (k : Nat) : Prop :=
10 k < s.size -- the index must be smaller than the array size
11 -- Post-condition
12 def removeElement_post (s : Array Int) (k : Nat) (res: Array Int) (h_precond : removeElement_pre s k)
13 : Prop :=
14 res.size = s.size - 1 ∧ -- Only one element is removed
15 (∀ i, i < k → res[i]! = s[i]!) ∧ -- The elements before index k remain unchanged
16 -- The elements after index k are shifted by one position
17 (∀ i, i < res.size → i ≥ k → res[i]! = s[i + 1]!)
18 -- Proof (proof body omitted for brevity)
19 theorem removeElement_spec (s: Array Int) (k: Nat) (h_precond : removeElement_pre s k) :
20 removeElement_post s k (removeElement s k h_precond) h_precond := by sorry
21 -- Test cases
22 (s : #[1, 2, 3, 4, 5]) (k : 2) (res : #[1, 2, 4, 5]) -- Positive test with valid inputs and output
23 -- Negative test cases
24 (s : #[1, 2, 3, 4, 5]) (k : 5) -- Inputs violate the pre-condition at Line 12
25 (s : #[1, 2, 3, 4, 5]) (k : 2) (res : #[1, 2, 4]) -- Output violates the post-condition at Line 16
26 (s : #[1, 2, 3, 4, 5]) (k : 2) (res : #[2, 2, 4, 5]) -- Output violates the post-condition at Line 17
27 (s : #[1, 2, 3, 4, 5]) (k : 2) (res : #[1, 2, 4, 4]) -- Output violates the post-condition at Line 18

Figure 1: An example instance of VERINA, consisting of a problem description, code implementation,
specifications (pre-condition and post-condition), a proof (optional), and comprehensive test cases.
Note that we select this instance for presentation purposes and VERINA contains more difficult ones.

• Code (Line 5–7): ground truth code implementation that solves the programming problem.

• Specification (Line 8–17): ground truth formal specification for the programming problem. It
consists of a pre-condition, which states properties the inputs must satisfy, and a post-condition,
which states desired relationship between inputs and outputs.

• Proof (Optional, Line 18–20): formal proof establishing that the code satisfies the specification.
Ground truth proofs are optional in VERINA, as they are not required for evaluation. Model-
generated proofs can be checked by Lean directly. Nevertheless, we invest significant manual effort
in writing proofs for 46 out of 189 examples as they help quality assurance (Section 3.2).

• Test suite (Line 21–27): a comprehensive suite of both positive and negative test cases. Positive
tests are valid input-output pairs that meet both the pre-condition and the post-condition. Negative
tests are invalid inputs-output pairs, which means either the inputs violate the pre-condition or the
output violates the post-condition. These test cases are useful for evaluating model-generated code
and specifications, as detailed in Section 4.1. They are formatted in Lean during evaluation.

Table 2: Statistics of VERINA.

Metric Median Max

Words in Description 110 296
LoC for Code 9 38
LoC for Spec. 4 62
Positive Tests 5 13
Negative Tests 12 27

Benchmark statistics. Table 2 presents key statistics of
VERINA. Natural language descriptions have a median
length of 110 words, ensuring they are both informative and
detailed. Code ranges up to 38 lines and specifications up
to 62 lines, demonstrating that VERINA captures complex
tasks. With a median of 5 positive tests and 12 negative
tests per instance, the constructed test suites provide strong
evidence for the high quality and correctness of VERINA.

3.2 BENCHMARK CONSTRUCTION AND QUALITY ASSURANCE

VERINA consists of 189 problems sourced from different origins. We employ a meticulous data cura-
tion process that combines careful translation, thorough manual review, and automated mechanisms,
leading to a rigorous and high-quality benchmark for verifiable code generation.

To construct VERINA, we first consider MBPP-DFY-50 (Misu et al., 2024) as our data source. It
consists of MBPP (Austin et al., 2021) coding problems paired with human-verified solutions in Dafny.
Each instance contains a natural language problem description, code implementation, specifications,
proof, and test cases. We manually translated 49 problems into Lean, refining and verifying each
translation. To extend the benchmark, we added 59 more human-authored Dafny instances from
CloverBench (Sun et al., 2024). These were translated into Lean using OpenAI o3-mini with few-shot
prompting based on our manual translations, followed by manual inspection and correction.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Additionally, VERINA incorporates problems adapted from student submissions to a lab assignment
in a course on theorem proving and program verification. Students, both undergraduate and graduate,
were encouraged to source problems from platforms like LeetCode or more challenging datasets such
as LiveCodeBench (Jain et al., 2025). They formalized and solved these problems in Lean, providing
all necessary elements in VERINA’s format (Section 3.1). We carefully selected the most suitable and
high-quality submissions, resulting in 81 benchmark instances. In addition, we manually reviewed
and edited the submissions to ensure their correctness.

During our evaluation, we observe problems adapted from student submissions are generally more
difficult than problems translated from Dafny datasets on all models, with detailed analysis provided
in Appendix B.

Quality assurance. During the data collection process, we consistently enforce various manual and
automatic mechanisms to ensure the high quality of VERINA:

• Detailed problem descriptions: The original problem descriptions, such as those from MBPP-DFY-
50, can be short and ambiguous, making them inadequate for specification generation. To resolve
this, we manually enhanced the descriptions by clearly outlining the high-level intent, specifying
input parameters with explicit type information, and detailing output specifications.

• Full code coverage with positive tests: Beyond the original test cases, we expanded the set of
positive tests to ensure that they achieve full line coverage on the ground truth code. We created
these additional tests both manually and with LLMs. We leveraged the standard coverage.py
tool to verify complete line coverage, since Lean lacks a robust coverage tool. For Python reference
implementations, we either used the original MBPP code or generated an implementation from the
enhanced problem description via OpenAI’s o4-mini with manual validation.

• Full test pass rate on ground truth specifications: We evaluated the ground truth specifications
against our comprehensive test suites. All ground truth specifications successfully pass their
respective positive tests, confirming the quality of the specifications in VERINA.

• Necessary negative tests: We mutated each positive test case to construct at least three different
negative tests that violate either the pre- or the post-condition, except when the function’s output
has boolean type, in which case only a single negative test can be created. We made sure that our
ground truth code and specifications do not pass these negative tests.

• Preventing trivial code generation: VERINA allows providing ground truth specifications as an
optional input for the code generation task (discussed in Section 4.1). We crafted all ground truth
specifications such that they cannot be directly used to solve the coding problem. This prevents
LLMs from generating an implementation trivially equivalent to the specification. As a result, the
model must genuinely demonstrate semantic comprehension of the reference specification and
non-trivial reasoning to generate the corresponding implementation.

• Manual review and edits: Each benchmark instance was manually reviewed by at least two authors,
carefully inspecting and editing them to ensure correctness and high quality.

4 EVALUATING VERIFIABLE CODE GENERATION USING VERINA

VERINA enables comprehensive evaluation of verifiable code generation, covering foundational
tasks—code, specification, and proof generation—and their combinations to form an end-to-end
pipeline from natural language descriptions to verifiable code. We also introduce a novel framework
for a reliable automatic evaluation of model-generated specifications.

4.1 FOUNDATIONAL TASKS AND METRICS

As shown in Figure 2, all three foundational tasks include natural language descriptions and function
signatures (Lines 7, 11, and 15 in Figure 1) as model inputs, which captures human intent and
enforces consistent output formats, facilitating streamlined evaluation.

SpecGen

Description
Signature

Code
Spec. CodeGen

Description
Signature

Spec.
Code ProofGen

Description
Signature

Code Proof

Spec.

Figure 2: VERINA’s three foundational tasks. Dashed arrows represent optional inputs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Specification generation (SpecGen). Given a description, signature, and optionally code imple-
mentation, the model generates a formal specification. Next, we formally define the soundness and
completeness relationships between the generated specification and the ground truth specification.
Then, we describe our multi-stage evaluation pipeline to assess whether these relationships hold.

Let ϕ denote the set of programs that satisfy the ground truth specification and ϕ̂ the set that align with
the generated specification. An ideal generated specification should achieve ϕ̂ = ϕ, which entails
two properties—(i) soundness (ϕ̂ ⊆ ϕ): it is “small enough” to cover only correct programs, and (ii)
completeness (ϕ ⊆ ϕ̂): it is “large enough” to cover all correct programs. Since specifications consist
of pre-conditions and post-conditions, let P and P̂ denote the ground truth and model-generated
pre-conditions, respectively, and Q and Q̂ the corresponding post-conditions. In VERINA, we define
the soundness and completeness of P̂ and Q̂ as follows:

• P̂ is sound iff ∀x.P (x) ⇒ P̂ (x), where x are the program’s input values. Given the same post-
condition (e.g., Q), it is more difficult for a program to satisfy P̂ than P . This is because P̂ allows
more inputs, which the program must handle to meet the post-condition. As a result, the set of
programs accepted by P̂ a subset of those accepted by P .

• P̂ is complete iff ∀x.P̂ (x) ⇒ P (x). Given the same post-condition, the set of programs accepted
by P̂ is now a superset of those accepted by P , since P̂ is more restrictive than P .

• Q̂ is sound iff ∀x, y.P (x) ∧ Q̂(x, y) ⇒ Q(x, y), where y is the output value. For any valid inputs
w.r.t. P , the set of output accepted by Q̂ is a subset of those accepted by Q, establishing soundness.

• Symmetrically, Q̂ is complete iff ∀x, y.P (x) ∧ Q(x, y) ⇒ Q̂(x, y).

Simplify R to
R’ using tests

Property-based
Testing for R’

Counterexample?

Decides if R’ holds

NoYes

R does
not hold

R might
hold

Cannot
decide

Cannot
test

No Yes

R might
hold

R does
not holdUnknown

Prove R
using LLM

Proves if R holds

Yes

R holds

Cannot
prove

Figure 3: Our evaluator for
specification generation.

To practically and reliably assess whether the above relationships hold,
we develop a multi-stage evaluator based on theorem proving and com-
prehensive testing, as shown in Figure 3. We denote a given soundness
or completeness relationship by R. The evaluator first attempts to
prove R using LLM-based theorem provers. When the prover is in-
conclusive, e.g. due to complex quantifier structures or incapability
of current LLM-based provers (as detailed in Appendix A.5), the eval-
uator proceeds with a practical testing-based framework using our
comprehensive test suites. In this testing-based process, we check R
against concrete values in test cases.

For example, to evaluate Q̂’s soundness, we check if P (x) ∧
Q̂(x, y) ⇒ Q(x, y) holds for all test cases (x, y) in our test suite.
We denote this simplified version of R as R′. For many cases, e.g.,
the specification in Figure 1, Lean can automatically determine if R′

holds (Selsam et al., 2020) and we return the corresponding result.
Otherwise, we employ property-based testing with the plausible
tactic in Lean (Lean Prover Community, 2024). It generates diverse
inputs specifically targeting the remaining universally and existentially
quantified variables in R′, systematically exploring the space of possible values to test R′. In
Appendix A.5, we provide a detailed description of how we implement these metrics in Lean.

Since our evaluator integrates proof and testing, it can certify R holds when a formal proof of R
succeeds, and it can certify R does not hold by producing counterexamples. When only testing
passes without a proof, the evaluator returns R might hold, reflecting strong empirical evidence that
R holds. While it cannot formally establish R holds, it remains highly robust in this regard, due to
our comprehensive test suite with both positive and negative tests, which achieve full coverage on
ground truth code implementations. Lean’s property-based testing cannot handle a small number of
complicated relationships on some testcases, for which our evaluator returns unknown. To further
enhance the accuracy of our metric, we repeat our evaluation framework in Figure 3 to check ¬R. We
compare the evaluator outcomes on R and ¬R, and select the more accurate result as the final output.

Our final metrics for SpecGen include individual pass@k scores (Chen et al., 2021) for soundness and
completeness of all generated pre-conditions and post-conditions, as well as aggregated scores that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

CodeGen
Ground Truth
Specification ProofGen

Generated
Proof

Generated
Code

SpecGen
Ground Truth

Code ProofGen

Generated
Spec.

SpecGen ProofGen
Generated
Proof

Generated
Spec.Ground Truth

Code

Generated
Code

ProofGen

Generated
Spec.

CodeGen

SpecGen

Generated
Proof

Figure 4: Combinations of VERINA’s foundational tasks: specification-guided code generation (top
left), specification inference from code (bottom left), and end-to-end verifiable code generation (right).
Natural language descriptions and function signatures are omitted in the figure for brevity.

soundness and completeness hold simultaneously for pre-condition, post-condition, and the complete
specification. Since our specification evalutor may return unknown, we plot error bars indicating the
lower bound (treating unknown as R does not hold) and upper bound (treating as R holds).

To illustrate our metric, consider the ground truth pre-condition k < s.size at Line 12 of Figure 1,
and model-generated pre-condition k < s.size - 1 and k < s.size + 1. k < s.size - 1
can be determined as unsound using the positive test (s : #[1, 2, 3, 4, 5]) (k : 4), while
k < s.size + 1 is incomplete based on the negative test (s : #[1, 2, 3, 4, 5]) (k : 5).
We provide more examples of our metrics for specification generation in Appendix C.

Code generation (CodeGen). Given a natural language description, function signature, and op-
tionally specification, the model generates code implementing the desired functionality. Following
standard practice, we evaluate the generated code by running it against positive test cases in VERINA
and reporting the pass@k metric defined by Chen et al. (2021). In Section 4.2, we will explore
evaluating the code by proving its correctness with respect to the formal specification.

Proof generation (ProofGen). Given a description, signature, code, and specification, the model
generates a formal proof in Lean to establish that the code satisfies the specification. This task
evaluates the model’s ability to reason about code behavior and construct logically valid arguments
for correctness. We use Lean to automatically check the validity of generated proofs, and proofs
containing placeholders (e.g., the sorry tactic) are marked as incorrect.

4.2 TASK COMBINATIONS

VERINA enables combining the three foundational tasks to evaluate various capabilities in verifiable
code generation. These combined tasks reflect real-world scenarios where developers utilize the
model to automatically create verified software in an end-to-end manner. Such modularity and
compositionality highlight the generality of VERINA, which encompasses various tasks studied in
previous work (Table 1). Three examples of combined tasks are (Figure 4):

• Specification-Guided Code Generation: Given a natural language description, function signature,
and the ground truth specification, the model first generates the code and then proves that the code
satisfies the specification. This aligns with tasks explored in FVAPPS (Dougherty & Mehta, 2025)
and AlphaVerus (Aggarwal et al., 2024).

• Specification Inference from Code: Developers may have the code implementation and want the
model to annotate it with a formal specification and prove their alignment. This corresponds to the
setting in AutoSpec (Wen et al., 2024), SpecGen (Ma et al., 2025), and SAFE (Chen et al., 2024).

• End-to-End Verifiable Code Generation: For an even higher degree of automation, developers
might start with only a high-level problem description in natural language and instruct the model
to generate code and specification independently, and then generate the proof. This captures the
scenario in Dafny-Synthesis (Misu et al., 2024) and Clover (Sun et al., 2024).

In these task combinations, a crucial design consideration is the dependency between code and
specification. For example, in specification-guided code generation, it is important to assess how
beneficial the ground truth specification is beyond the natural language description, which already
captures the developer’s intent. Additionally, for end-to-end verifiable code generation, it is essential
to decide the order of the CodeGen and SpecGen modules—whether to make SpecGen dependent on
the output of CodeGen, place SpecGen before CodeGen, or run them independently (as in Figure 4).
We experimentally explore these design choices using VERINA in Section 5. Concurrent with our

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

work, CLEVER (Thakur et al., 2025) introduces 161 manually crafted problems sourced from
HumanEval (Chen et al., 2021) with ground truth specifications. However, CLEVER only supports
the SpecGen task and the specification-guided code generation setting and cannot capture the full
spectrum of workflows that VERINA enables through both individual and compositional tasks. We
provide detailed comparison in Appendix A.4.

5 EXPERIMENTAL EVALUATION

Experimental setup. We evaluate a diverse set of eight state-of-the-art general-purpose LLMs and
three LLMs or agentic frameworks specialized in theorem proving. We leverage 2-shot prompting
to enhance output format adherence, with the 2-shot examples excluded from the final benchmark.
For each task, we primarily report the pass@1 metric (Chen et al., 2021). We provide detailed input
prompts, output formats, and LLM setups in Appendix A.

0

20

40

60

80

100

28.6

45.7

61.4
56.4

44.2
36.0

20.0

36.5

Code Score

0

20

40

60

80

100

22.4

36.5

51.0
42.6 45.6

34.7

15.9

45.0

Spec Sound&Complete Score
Error bars

0

20

40

60

80

100

0.6 1.2 3.6 2.7 1.9 0.7 0.0 2.4

Proof Score

GPT 4o-mini
DeepSeek V3

GPT 4o
Qwen 3 235B-A22B-fp8

o4-mini
Gemini 2.5 flash

GPT 4.1 Claude sonnet 3.7

Figure 5: pass@1 performance of LLMs on VERINA’s three foundational tasks.

All foundational tasks are challenging, especially ProofGen. As shown in Figure 5, code generation
generally achieves the highest success rates across models, followed by specification generation,
while proof generation remains the most challenging with pass@1 rates below 3.6% for all models.
All three tasks pose significant challenges for current general purpose LLMs, with constructing
Lean proofs that the implementation satisfies the specification being particularly hard and requiring
specialized theorem proving capabilities. This also means that for any combined task involving
ProofGen, e.g., the ones in Section 4.2, LLMs’ performance will be heavily bottlenecked by the
ProofGen subtask. Among the evaluated models, o4-mini, GPT 4.1, Claude Sonnet 3.7, and Gemini
2.5 Flash demonstrate relatively stronger performance across tasks. We report detailed results on
pre-condition and post-condition soundness and completeness in Appendix B, where we observe that
generating sound and complete post-conditions is generally more difficult than pre-conditions.

0

20

40

60

80

100

3.6 2.7 2.4
11.1 11.2 7.9

Proof Score

o4-mini
Gemini 2.5 flash
Goedel Prover V2 32B

GPT 4.1
DeepSeek Prover V2 7B
Copra (o4-mini)

Figure 6: pass@1 for ProofGen
across models and proving agent.

1 6 11 16 21 26 31 36 41 46 51 56 61
k

0

5

10

15

20

25

pa
ss

@
k

Iterative Refinements

1 6 11 16 21 26 31 36 41 46 51 56 61
k

0

5

10

15

20

25

pa
ss

@
k

Direct Generation

o4-mini
Gemini 2.5 flash

GPT 4.1
Goedel Prover V2 32B

Claude Sonnet 3.7
DeepSeek Prover V2 7B

Figure 7: pass@k performance of selective LLMs on ProofGen
using proof refinement (left) and direct generation (right).

Specialized provers and agentic methods improve proof success rate. Given the limitations of
general-purpose LLMs, we extend our evaluation to specialized theorem-proving models and agentic
approaches. As shown in Figure 6, Goedel Prover V2 32B (Lin et al., 2025) and DeepSeek Prover
V2 7B (Ren et al., 2025) achieve higher proof success rates compared to general-purpose models.
We further evaluate Copra (Thakur et al., 2023), an agentic theorem-proving framework based on
tree-search. We use o4-mini as the backbone model and allow at most 64 LLM queries for each
sample. Copra demonstrates clear improvements over direct single-pass generation.

Iterative proof refinement shows meaningful improvements. For ProofGen task, besides pass@1,
we also extend the evaluation of the four strongest general-purpose models (o4-mini, GPT 4.1, Claude

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Sonnet 3.7, Gemini 2.5 Flash) alongside two specialized LLM-provers (Goedel Prover V2 32B (Lin
et al., 2025) and DeepSeek Prover V2 7B (Ren et al., 2025)). We evaluate them with iterative proof
refinement, where the evaluated model receives Lean verifier error messages and is prompted to revise
its proof, and with direct generation, where the evaluated model generates responses independently
without Lean feedback in each iteration. For all methods, we report pass@k, the success rate after k
rounds of iterations, for k up 64. This metric investigates how much additional interaction helps repair
the proof that a single-pass generation would miss, and whether providing Lean verifier feedback
improves success rates compared to independent generation attempts.

As shown in Figure 7, iterative proof refinement reliably outperforms direct generation at matched
query budgets on both general purpose and proof-specific models, underscoring the value of Lean
verifier feedback. A detailed breakdown by problem difficulty is provided in Appendix B.

0

20

40

60

80

100

28.6
37.033.3

45.7
51.4

44.3

61.4
65.9

58.5 56.458.4

45.9 44.246.4
40.2

36.0
43.2

36.0

20.0
24.8

10.1

36.5

52.1
44.2

Code Score
Without reference
Use ground truth Spec as reference
Use generated Spec as reference

0

20

40

60

80

100

22.418.5
23.6

36.537.435.5

51.050.650.7
42.643.941.6

45.645.342.9

34.732.836.7

15.915.5
8.6

45.043.345.8

Spec Sound&Complete Score
Without reference
Use ground truth Code as reference
Use generated Code as reference

GPT 4o-mini
DeepSeek V3

GPT 4o
Qwen 3 235B-A22B-fp8

o4-mini
Gemini 2.5 flash

GPT 4.1 Claude sonnet 3.7

Figure 8: Impact of contextual information on CodeGen and SpecGen performance.

Providing ground truth specification benefits CodeGen. Providing ground truth specifications
as context consistently improves CodeGen performance across models. Since the ground truth
specifications cannot be used directly as code (as explained in 3.2), all CodeGen improvements
rely on semantic understanding of the reference specification. On the contrary, providing ground
truth code as context shows minimal or negative improvement for SpecGen. While it is possible for
LLMs to directly use the ground truth code in the specification, manual inspection of our evaluation
results reveals no evidence of such behaviors. This is likely because using code as specification
is uncommon in standard development practices, and our prompts A.3 ask LLMs to focus on
constraining code behavior rather than replicating implementation details. The asymmetry in using
ground truth information for CodeGen versus SpecGen suggests that formal specifications effectively
constrain and guide code synthesis, while verbose code implementations may introduce noise to or
over-constrain specification generation rather than providing helpful guidance. Moreover, replacing
ground truth with LLM-generated artifacts generally degrades performance, indicating that combined
tasks are more challenging than individual tasks.

Qualitative case studies. We present detailed qualitative case studies with analysis of failure modes
and success patterns across different tasks in Appendix C.

6 CONCLUSION AND DISCUSSION

We have introduced VERINA, a comprehensive benchmark comprising 189 carefully curated examples
with detailed task descriptions, high-quality codes and specifications in Lean, and extensive test suites
with full line coverage. This benchmark enables systematic assessment of various verifiable code
generation capabilities, and our extensive evaluation result presents substantial challenges that expose
limitations of state-of-the-art language models on verifiable code generation tasks. We hope that
VERINA will serve as a valuable resource by providing both a rigorous evaluation framework and
clear directions towards more reliable and formally verified automated programming systems.

Limitations and future work. Despite advancing the state-of-the-art in benchmarking verifiable
code generation, VERINA has several limitations. First, its size (189 examples) is modest, scaling
to a larger dataset suitable for finetuning likely requires automated annotation with LLM assistance.
Second, it emphasizes simple, standalone coding problems, which is well-suited for benchmarking
but not fully representative of complex real-world verification projects (Klein et al., 2009; Leroy et al.,
2016). Third, while our current evaluation pipeline overcomes the limitation of current LLM theorem
provers using comprehensive testing, the future advances in LLM theorem prover capabilities can
enable stronger formal guarantees. Finally, while Lean programs in VERINA are newly written, the
underlying task topics are drawn from widely used sources, posing a risk of data contamination.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics and ensure compliance with all relevant dataset licenses, as
detailed in Appendix A.1. All data used in this work are publicly available and collected strictly for
academic research purposes with proper citation and attribution.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All code, benchmark datasets, and
evaluation pipelines introduced in this paper are included in the supplementary materials, accompanied
by detailed instructions for setup and usage. The dataset construction processes are described in
Section 3.2. The evaluation metrics are described in Section 4. Additional implementation details
and experimental settings are described in the appendix.

REFERENCES

Pranjal Aggarwal, Bryan Parno, and Sean Welleck. AlphaVerus: Bootstrapping formally verified code
generation through self-improving translation and treefinement. arXiv preprint arXiv:2412.06176,
2024. 2, 7

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021. 2, 3, 4

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Handbook of model checking, 2018.
3

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-Yves Strub.
Implementing TLS with verified cryptographic security. In Symposium on Security and Privacy,
2013. 1

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021. 1, 2, 3, 6, 7, 8, 14

Tianyu Chen, Shuai Lu, Shan Lu, Yeyun Gong, Chenyuan Yang, Xuheng Li, Md Rakib Hossain
Misu, Hao Yu, Nan Duan, Peng Cheng, et al. Automated proof generation for Rust code via
self-evolution. In International Conference on Learning Representations (ICLR), 2024. 2, 7

Markus de Medeiros, Muhammad Naveed, Tancrede Lepoint, Temesghen Kahsai, Tristan Ravitch,
Stefan Zetzsche, Anjali Joshi, Joseph Tassarotti, Aws Albarghouthi, and Jean-Baptiste Tristan.
Verified foundations for differential privacy. In Programming Language Design and Implementation
(PLDI), 2025. 2

Leo de Moura. How the Lean language brings math to coding and coding to math.
https://www.amazon.science/blog/how-the-lean-language-brings-
math-to-coding-and-coding-to-math. Accessed: 2025-09-24. 2

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, 2008. 3

Quinn Dougherty and Ronak Mehta. Proving the coding interview: A benchmark for formally verified
code generation. arXiv preprint arXiv:2502.05714, 2025. 2, 3, 7

Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K Lahiri. Can large language
models transform natural language intent into formal method postconditions? Proceedings of the
ACM on Software Engineering, 2024. 2

Wen Fan, Marilyn Rego, Xin Hu, Sanya Dod, Zhaorui Ni, Danning Xie, Jenna DiVincenzo, and Lin
Tan. Evaluating the ability of large language models to generate verifiable specifications in verifast.
arXiv preprint arXiv:2411.02318, 2024. 2

10

https://www.amazon.science/blog/how-the-lean-language-brings-math-to-coding-and-coding-to-math
https://www.amazon.science/blog/how-the-lean-language-brings-math-to-coding-and-coding-to-math

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Klint Finley. How developers spend the time they save thanks to AI coding
tools. https://github.blog/ai-and-ml/generative-ai/how-developers-
spend-the-time-they-save-thanks-to-ai-coding-tools/. Accessed: 2025-
05-10. 1

Emily First, Markus N Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. In ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2023. 2

Google DeepMind. AI achieves silver-medal standard solving international mathematical
olympiad problems. https://deepmind.google/discover/blog/ai-solves-
imo-problems-at-silver-medal-level/, 2024. 2, 3

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu, Jieung Kim, Vilhelm Sjöberg, and
David Costanzo. CertiKOS: An extensible architecture for building certified concurrent OS kernels.
In Symposium on Operating Systems Design and Implementation (OSDI), 2016. 1

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In Neural
Information Processing Systems (NeurIPS), Datasets and Benchmarks Track, 2021. 14

Kesha Hietala and Emina Torlak. Lean into verified software development. https:
//aws.amazon.com/blogs/opensource/lean-into-verified-software-
development/, 2024. 2

Son Ho and Jonathan Protzenko. Aeneas: Rust verification by functional translation. Proceedings of
the ACM on Programming Languages, 6(ICFP):711–741, 2022. 2

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and contamination free eval-
uation of large language models for code. In International Conference on Learning Representations
(ICLR), 2025. 1, 2, 5, 14

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world GitHub issues? In International
Conference on Learning Representations (ICLR), 2024. 1

Eirini Kalliamvakou. Research: Quantifying GitHub Copilot’s Impact on Developer Productivity
and Happiness. https://github.blog/2022-09-07-research-quantifying-
github-copilots-impact-on-developer-productivity-and-happiness.
Accessed: 2025-05-10. 1

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei
Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into self-
improving pipelines. In International Conference on Learning Representations (ICLR), 2024.
14

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel. In Symposium on Operating
systems principles (SOSP), 2009. 9

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon
Howell, Bryan Parno, and Chris Hawblitzel. Verus: Verifying rust programs using linear ghost
types. Proceedings of the ACM on Programming Languages, 2023. 3

Lean Prover Community. Plausible: A property testing framework for Lean 4 that integrates into
the tactic framework. https://github.com/leanprover-community/plausible,
2024. 6

K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In International
Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR), 2010. 3

11

https://github.blog/ai-and-ml/generative-ai/how-developers-spend-the-time-they-save-thanks-to-ai-coding-tools/
https://github.blog/ai-and-ml/generative-ai/how-developers-spend-the-time-they-save-thanks-to-ai-coding-tools/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/
https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/
https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness
https://github.com/leanprover-community/plausible

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and Christian
Ferdinand. CompCert-a formally verified optimizing compiler. In Embedded Real Time Software
and Systems (ERTS), 2016. 1, 9

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng,
Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with scaffolded
data synthesis and self-correction. arXiv preprint arXiv:2508.03613, 2025. 2, 8, 9

Evan Lohn and Sean Welleck. miniCodeProps: a minimal benchmark for proving code properties.
arXiv preprint arXiv:2406.11915, 2024. 2, 3

Chloe Loughridge, Qinyi Sun, Seth Ahrenbach, Federico Cassano, Chuyue Sun, Ying Sheng, Anish
Mudide, Md Rakib Hossain Misu, Nada Amin, and Max Tegmark. DafnyBench: A benchmark for
formal software verification. Transactions on Machine Learning Research, 2025. 2, 3

Minghai Lu, Benjamin Delaware, and Tianyi Zhang. Proof automation with large language models.
In International Conference on Automated Software Engineering (ASE), 2024. 2

Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. SpecGen: Automated generation of
formal program specifications via large language models. In International Conference on Software
Engineering (ICSE), 2025. 2, 3, 7

Mathlib community. The Lean mathematical library. In Certified Programs and Proofs (CPP), 2020.
2

Mathlib Community. Completion of the liquid tensor experiment. https://leanprover-
community.github.io/blog/posts/lte-final/, 2022. 2

Md Rakib Hossain Misu, Cristina V Lopes, Iris Ma, and James Noble. Towards AI-assisted synthesis
of verified Dafny methods. Proceedings of the ACM on Software Engineering, 2024. 2, 3, 4, 7, 14

Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language.
In International Conference on Automated Deduction (CADE), 2021. 2

Eric Mugnier, Emmanuel Anaya Gonzalez, Nadia Polikarpova, Ranjit Jhala, and Zhou Yuanyuan.
Laurel: Unblocking automated verification with large language models. Proceedings of the ACM
on Programming Languages, 2025. 2, 3

OpenAI. Introducing OpenAI o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/. Accessed: 2025-09-24. 2

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. Asleep
at the keyboard? assessing the security of Github Copilot’s code contributions. In Symposium on
Security and Privacy, 2022. 1

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language models
reason about program invariants? In International Conference on Machine Learning (ICML), 2023.
2, 3

Jay Peters. More than a quarter of new code at Google is generated by AI.
https://www.theverge.com/2024/10/29/24282757/google-new-code-
generated-ai-q3-2024, 2024. 1

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. DeepSeek-Prover-V2: Advancing formal mathematical
reasoning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025. 8, 9

Daniel Selsam, Sebastian Ullrich, and Leonardo de Moura. Tabled typeclass resolution. arXiv
preprint arXiv:2001.04301, 2020. 6

Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. Clover: Closed-loop verifiable code
generation. In International Symposium on AI Verification, 2024. 1, 2, 3, 4, 7, 14, 31

12

https://leanprover-community.github.io/blog/posts/lte-final/
https://leanprover-community.github.io/blog/posts/lte-final/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://www.theverge.com/2024/10/29/24282757/google-new-code-generated-ai-q3-2024
https://www.theverge.com/2024/10/29/24282757/google-new-code-generated-ai-q3-2024

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An
in-context learning agent for formal theorem-proving. arXiv preprint arXiv:2310.04353, 2023. 8

Amitayush Thakur, Jasper Lee, George Tsoukalas, Meghana Sistla, Matthew Zhao, Stefan Zetzsche,
Greg Durrett, Yisong Yue, and Swarat Chaudhuri. Clever: A curated benchmark for formally
verified code generation. arXiv preprint arXiv:2505.13938, 2025. 8, 19

Kyle Thompson, Nuno Saavedra, Pedro Carrott, Kevin Fisher, Alex Sanchez-Stern, Yuriy Brun,
João F Ferreira, Sorin Lerner, and Emily First. Rango: Adaptive retrieval-augmented proving for
automated software verification. In International Conference on Software Engineering (ICSE),
2025. 2

Zhijie Wang, Zijie Zhou, Da Song, Yuheng Huang, Shengmai Chen, Lei Ma, and Tianyi Zhang.
Towards Understanding the Characteristics of Code Generation Errors Made by Large Language
Models . In International Conference on Software Engineering (ICSE), 2025. 1

Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He, Haokun Li, Shing-Chi
Cheung, and Cong Tian. Enchanting program specification synthesis by large language models
using static analysis and program verification. In International Conference on Computer Aided
Verification (CAV), 2024. 2, 3, 7

Chenyuan Yang, Xuheng Li, Md Rakib Hossain Misu, Jianan Yao, Weidong Cui, Yeyun Gong,
Chris Hawblitzel, Shuvendu Lahiri, Jacob R Lorch, Shuai Lu, et al. AutoVerus: Automated proof
generation for Rust code. In International Conference on Learning Representations (ICLR), 2025.
2

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in AI. arXiv preprint arXiv:2412.16075,
2024. 1

Lichen Zhang, Shuai Lu, and Nan Duan. Selene: Pioneering automated proof in software verification.
In Annual Meeting of the Association for Computational Linguistics (ACL), 2024. 2

Yi Zhou, Jay Bosamiya, Yoshiki Takashima, Jessica Li, Marijn Heule, and Bryan Parno. Mariposa:
Measuring SMT instability in automated program verification. In International Conference on
Formal Methods in Computer-Aided Design (FMCAD), 2023. 3

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATASETS AND DETAILED EXPERIMENTAL SETUP

A.1 LICENSE

We ensure compliance with all relevant licenses: MBPP-DFY-50 (Misu et al., 2024) is licensed under
GPL-3.0, while both CloverBench (Sun et al., 2024) and LiveCodeBench (Jain et al., 2025) use MIT
licenses. Our datasets VERINA will be licensed under GPL-3.0. Consistent with established research
practices (Hendrycks et al., 2021; Jain et al., 2025), we only use publicly available materials from
competitive programming platforms such as LeetCode. Our collection and use of these problems
is strictly for academic research purposes, and VERINA involves no model training or fine-tuning
processes.

A.2 MODEL CONFIGURATIONS AND COMPUTE

Table 3 presents the configuration details and total experiment costs for all ten evaluated LLMs. For
all LLMs, we use a temperature of 1.0 and a maximum output token budget of 10,000. For reasoning
models, we use default settings of reasoning efforts or budgets. We host DeepSeek Prover V2 7B,
Goedel Prover V2 32B, and Qwen 3 235B-A22B locally using 8 NVIDIA H100 80GB GPUs. We
run other LLMs through APIs, for which we provide the total cost and cost per million tokens. The
costs marked with asterisks include the additional expenses incurred during iterative proof refinement
experiments, which required up to 64 refinement attempts per datapoint.

Table 3: Detailed configurations and costs for evaluated LLMs.

Vendor Model Name Checkpoint Type
Price ($/1M tokens)

Cost
(Input / Output)

OpenAI

GPT 4o-mini gpt-4o-mini-2024-07-18 API $0.15 / $0.60 $10.94
GPT 4o gpt-4o-2024-08-06 API $2.50 / $10.0 $153.01
GPT 4.1 gpt-4.1-2025-04-14 API $2.00 / $8.00 $453.72*

o4 mini o4-mini-2025-04-16 API $1.10 / $4.40 $894.38*

Anthropic Claude Sonnet 3.7 claude-3-7-sonnet-20250219 API $3.00 / $15.0 $777.60*

Google Gemini 2.5 Flash gemini-2.5-flash-preview-04-17 API $0.15 / $0.60 $295.20*

DeepSeek
DeepSeek V3 DeepSeek-V3-0324 API $1.25 / $1.25 $51.15
DeepSeek Prover V2 7B DeepSeek-Prover-V2-7B GPU - -

Qwen Qwen 3 235B-A22B Qwen3-235B-A22B-FP8 GPU - -
Goedel-LM Goedel Prover V2 32B Goedel-Prover-V2-32B GPU - -

* Including costs for iterative proof refinement experiments.

A.3 PROMPTS

We employ a consistent 2-shot prompting approach across all models and tasks to enhance output
format adherence and task understanding. The 2-shot examples are excluded from the final benchmark
evaluation. For each problem instance, we sample 5 responses from each model and calculate pass@1
metrics (Chen et al., 2021) using these 5 samples to ensure robust evaluation statistics. We utilize
DSPy (Khattab et al., 2024) for structural prompting. We provide the detailed prompts in the
following: Prompt 1 for CodeGen, Prompt 2 for SpecGen, Prompt 3 for ProofGen, and Prompt 4 for
ProofGen with iterative refinement. For DeepSeek Prover V2 7B and Goedel Prover V2 32B, we
used their own prompt templates for ProofGen to achieve optimal performance.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Prompt 1 (CodeGen)

Instructions
You are an expert in Lean 4 programming and theorem proving.
Please generate a Lean 4 program that finishes the task described

↪→ in
‘task_description‘ using the template provided in ‘task_template‘.
The ‘task_template‘ is a Lean 4 code snippet that contains

↪→ placeholders
(warpped with {{}}) for the code to be generated.
The program should:
- Be well-documented with comments if necessary
- Follow Lean 4 best practices and use appropriate Lean 4 syntax

↪→ and features
- DO NOT use Lean 3 syntax or features
- DO NOT import Std or Init
Hint:
- Use a[i]! instead of a[i] when a is an array or a list when

↪→ necessary

Input Fields
• task description
Description of the Lean 4 programming task to be solved.

• task template
Lean 4 template with placeholders for code generation and optional
reference specification.

Output Fields
• imports
Imports needed for ‘code‘. Keep it empty if not needed.

• code aux
Auxiliary definitions for ‘code‘. Keep it empty if not needed.

• code
Generated Lean 4 code following the template signature and complete
the task.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt 2 (SpecGen)

Instructions
You are an expert in Lean 4 programming and theorem proving.
Please generate a Lean 4 specification that constrains the program
implementation using the template provided in ‘task_template‘.
The ‘task_template‘ is a Lean 4 code snippet that contains

↪→ placeholders
(warpped with {{}}) for the spec to be generated.
The precondition should be as permissive as possible, and the

↪→ postcondition
should model a sound an complete relationship between input and

↪→ output of the
program based on the ‘task_description‘.
The generated specification should:
- Be well-documented with comments if necessary
- Follow Lean 4 best practices and use appropriate Lean 4 syntax

↪→ and features
- DO NOT use Lean 3 syntax or features
- DO NOT import Std or Init
- Only use ‘precond_aux‘ or ‘postcond_aux‘ when you cannot express
the precondition or postcondition in the main body of the

↪→ specification
- add @[reducible, simp] attribute to the definitions in ‘

↪→ precond_aux‘ or
‘postcond_aux‘
Hint:
- Use a[i]! instead of a[i] when a is an array or a list when

↪→ necessary

Input Fields
• task description
Description of the Lean 4 programming task to be solved.

• task template
Lean 4 template with placeholders for specfication generation and
optional reference code.

Output Fields
• imports
Imports needed for ‘precond‘ and ‘postcond‘. Keep it empty if not
needed.

• precond aux
Auxiliary definitions for ‘precond‘. Keep it empty if not needed.

• precond
Generated Lean 4 code specifying the precondition.

• postcond aux
Auxiliary definitions for ‘postcond‘. Keep it empty if not needed.

• postcond
Generated Lean 4 code specifying the postcondition.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Prompt 3 (ProofGen)

Instructions
You are an expert in Lean 4 programming and theorem proving.
Please generate a Lean 4 proof that the program satisfies the

↪→ specification
using the template provided in ‘task_template‘.
The ‘task_template‘ is a Lean 4 code snippet that contains

↪→ placeholders
(warpped with {{}}) for the proof to be generated.
The proof should:
- Be well-documented with comments if necessary
- Follow Lean 4 best practices and use appropriate Lean 4 syntax

↪→ and features
- DO NOT use Lean 3 syntax or features
- DO NOT import Std or Init
- DO NOT use cheat codes like ‘sorry‘
Hint:
- Unfold the implementation and specification definitions when

↪→ necessary
- Unfold the precondition definitions at h_precond when necessary

Input Fields
• task description
Description of the Lean 4 programming task to be solved.

• task template
Lean 4 template with code and specification to be proved, and
placeholders for proof generation.

Output Fields
• imports
Imports needed for ‘proof‘. Keep it empty if not needed.

• proof aux
Auxiliary definitions and lemma for ‘proof‘. Keep it empty if not
needed.

• proof
Generated Lean 4 proof that the program satisfies the specification.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt 4 (ProofGen with Iterative Refinement)

Instructions
You are an expert in Lean 4 programming and theorem proving.
Please generate a Lean 4 proof that the program satisfies the

↪→ specification
using the template provided in ‘task_template‘.
The ‘task_template‘ is a Lean 4 code snippet that contains

↪→ placeholders
(warpped with {{}}) for the proof to be generated.
The proof should:
- Be well-documented with comments if necessary
- Follow Lean 4 best practices and use appropriate Lean 4 syntax

↪→ and features
- DO NOT use Lean 3 syntax or features
- DO NOT import Std or Init
- DO NOT use cheat codes like ‘sorry‘
Hint:
- Unfold the implementation and specification definitions when

↪→ necessary
- Unfold the precondition definitions at h_precond when necessary

Furthermore, ‘prev_error‘ is the error message from the previous
↪→ proving

attempt.
Please use the ‘prev_imports‘, ‘prev_proof_aux‘, and ‘prev_proof‘

↪→ as
references to improve the generated proof.
- You can ignore unused variable warnings in the error message.

Input Fields
• task description
Description of the Lean 4 programming task to be solved.

• task template
Lean 4 template with code and specification to be proved, and
placeholders for proof generation.

• prev imports
Previously generated imports for reference.

• prev proof aux
Previously generated proof auxiliary for reference.

• prev proof
Previously generated proof for reference.

• prev error
Error message from the previous proving attempt.

Output Fields
• imports
Imports needed for ‘proof‘. Keep it empty if not needed.

• proof aux
Auxiliary definitions and lemma for ‘proof‘. Keep it empty if not
needed.

• proof
Generated Lean 4 proof that the program satisfies the specification.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.4 COMPARISON WITH CLEVER

As summarized in Table 4, CLEVER (Thakur et al., 2025) only supports evaluation of specification
generation and specification-guided code generation. It lacks evaluation support for code generation,
proof generation, specification inference from code, and fully end-to-end verifiable code generation.
In contrast, VERINA fully covers all three foundational tasks and their flexible combinations, enabling
a more comprehensive assessment of realistic verification workflows.

Moreover, CLEVER’s SpecGen evaluation assumes access to a sound and complete ground truth
specification for certification. However, if such ground truth specification is already available, there
is little practical value in generating another, as developers would simply use the existing one. This
reliance on ground truth specifications therefore limits CLEVER’s applicability and prevents it from
reflecting real-world scenarios. In contrast, VERINA employs a combined evaluation framework for
specification (Section 4.1) leveraging both formal proving and comprehensive testing, which can
reliably assess specification quality even when formal proofs are inconclusive.

Table 4: A detailed comparison of VERINA with the concurrent work CLEVER (Thakur et al., 2025)
on supported tasks in verifiable code generation. means fully supported, # means unsupported.

Foundational Tasks (Section 4.1) Task Combinations (Section 4.2)

CodeGen SpecGen ProofGen Specification-Guided Specification Inference End-to-End
Code Generation From Code Verifiable Code Generation

(Desc → Code) (Desc → Spec) (Code+Spec → Proof) (Desc + Spec → Code + Proof) (Desc + Code → Spec + Proof) (Desc → Code + Spec + Proof)

CLEVER (Thakur et al., 2025) # # # #

VERINA

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.5 IMPLEMENTATION OF EVALUATION METRICS IN LEAN

In Section 4.1, we provide a high-level description of our evaluation metrics for the three foundational
tasks of verifiable code generation. Now we describe how we implement these metrics in Lean 4.

Proof evaluation. We directly evaluate generated proofs using the Lean compiler and filter out any
proofs containing placeholders, as described in Section 4.1.

Code evaluation. We evaluate generated code on unit tests using #guard statements in Lean 4,
ensuring the implementation produces correct outputs for given inputs. The evaluation harness for
generated codes is illustrated in Figure 9.

1 import Mathlib
2 import Plausible
3
4 -- Definitions for code (removeElement) omitted for brevity
5
6 -- Evaluate code correctness using positive test cases
7 #guard removeElement (#[1, 2, 3, 4, 5]) (2) (by sorry) == (#[1, 2, 4, 5]) -- Should pass

Figure 9: Example (verina basic 29): Evaluating the correctness of LLM-generated code using
unit tests in Lean 4.

Specification evaluation. Recall in Section 4.1, we define the soundness and completeness of
model-generated pre-condition P̂ and post-condition Q̂ in relation to their ground truth counterparts
P and Q: (i) P̂ is sound iff ∀x.P (x) ⇒ P̂ (x); (ii) P̂ is complete iff ∀x.P̂ (x) ⇒ P (x); (iii) Q̂ is
sound iff ∀x, y.P (x) ∧ Q̂(x, y) ⇒ Q(x, y); (iv) Q̂ is complete iff ∀x, y.P (x) ∧ Q(x, y) ⇒ Q̂(x, y).

Our specification evaluation pipeline first attempts to establish the soundness and completeness of
generated specifications against the ground truth using LLM-based provers. When the proving step is
inconclusive, the evaluator proceeds to testing, where we only require that x and y are from our test
suite. Our quality assurance process in Section 3.2 ensures that all ground truth pre-conditions and
post-conditions pass our positive tests and do not pass our negative tests. Therefore, we can simplify
the soundness and completeness metrics as follows:

• Deciding the soundness of P̂ is equivalent to verifying whether P̂ (x) holds for all positive tests x
in our test suite. This is because for all negative tests x, P (x) does not hold, making P (x) ⇒ P̂ (x)

true by default. For all positive tests x, P (x) holds, and P (x) ⇒ P̂ (x) is true iff P̂ (x) is true.

• Similarly, deciding the completeness of P̂ is equivalent to verifying whether P̂ (x) does not hold
for all negative tests x in our test suite.

• The soundness of Q̂ can be evaluated using our negative test cases.

• The completeness of Q̂ can be evaluated using our positive test cases.

For each test case evaluation, we employ the two-step approach described in Section 4.1. First, we
check if the relationship (with the specific test case incorporated) is directly decidable in Lean 4 on
the test case via decide. If not, we proceed to property-based testing using plausible tactic. The
evaluation implementation in Lean 4 is illustrated in Figures 10 and 11.

To further examine the role of proofs within our evaluation pipeline, we analyze how often LLM-
based provers succeed in establishing the soundness and completeness of generated specifications
against the ground truth. In this setup, we use o4-mini and Claude Sonnet 3.7 to construct Lean
proofs for the required logical relationships and compare the results with the testing-based evaluation
results. Table 5 summarizes the outcomes. Proof success rates are very low, below 4% across all
cases, while testing recognizes more than 40% of generated specifications as sound and complete. We
have examined all specifications marked as sound and complete by formal proofs. We observe that
whenever proofs succeed they always agree with testing, confirming their validity. However, when
proofs fail but testing reports correctness, manual inspection of 20 randomly selected disagreements
shows that the testing outcome is always correct.

These results indicate that while proofs provide the formal guarantees of the evaluation results when
they succeed, current LLM provers are incapable of serving as a reliable metric with high inconclusive

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

rates. Testing-based evaluation methods achieve high empirical accuracy and reliably identify sound
and complete specifications even when proofs are inconclusive and therefore play an important role
in ensuring robust and comprehensive specification evaluation when the proving-based evaluation is
inconclusive.

Table 5: Evaluation of generated specifications for soundness and completeness. Rows indicate the
model that generated the specification, while columns indicate the prover used to check correctness.
The last column shows results from our testing-based evaluation.

Spec generated by Proved sound and complete by (%) Sound and complete by testing (%)
o4-mini Claude Sonnet 3.7

o4-mini 3.7 1.6 51.0
Claude Sonnet 3.7 3.7 2.6 41.6

1 import Mathlib
2 import Plausible
3
4 -- Definitions for pre-condition (removeElement_precond) omitted for brevity
5
6 -- Evaluate precond soundness with positive test cases
7 #guard decide (removeElement_precond (#[1, 2, 3, 4, 5]) (2))
8 example : (removeElement_precond (#[1, 2, 3, 4, 5]) (2)) := by -- Should pass
9 unfold removeElement_precond
10 simp_all! (config := { failIfUnchanged := false })
11 simp (config := { failIfUnchanged := false }) [*]
12 plausible (config := { numInst := 1000, maxSize := 100, numRetries := 20, randomSeed := some 42})
13 example : ¬(removeElement_precond (#[1, 2, 3, 4, 5]) (2)) := by -- Should fail
14 unfold removeElement_precond
15 simp_all! (config := { failIfUnchanged := false })
16 simp (config := { failIfUnchanged := false }) [*]
17 plausible (config := { numInst := 1000, maxSize := 100, numRetries := 20, randomSeed := some 42})
18
19 -- Evaluate precond completeness with negative test cases
20 #guard decide (¬ (removeElement_precond (#[1]) (2)))
21 example : ¬(removeElement_precond (#[1]) (2)) := by -- Should pass
22 unfold removeElement_precond
23 simp_all! (config := { failIfUnchanged := false })
24 simp (config := { failIfUnchanged := false }) [*]
25 plausible (config := { numInst := 1000, maxSize := 100, numRetries := 20, randomSeed := some 42})
26 example : (removeElement_precond (#[1]) (2)) := by -- Should fail
27 unfold removeElement_precond
28 simp_all! (config := { failIfUnchanged := false })
29 simp (config := { failIfUnchanged := false }) [*]
30 plausible (config := { numInst := 1000, maxSize := 100, numRetries := 20, randomSeed := some 42})

Figure 10: Example (verina basic 29): Evaluating pre-condition soundness and completeness
using unit tests in Lean 4.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1 import Mathlib
2 import Plausible
3
4 -- Definitions for post-condition (removeElement_postcond) omitted for brevity
5
6 -- Evaluate postcond completeness with positive test cases
7 #guard decide (removeElement_postcond (#[1, 2, 3, 4, 5]) (2) (#[1, 2, 4, 5]) (by sorry))
8 example : (removeElement_postcond (#[1, 2, 3, 4, 5]) (2) (#[1, 2, 4, 5]) (by sorry)) := by -- Should pass
9 unfold removeElement_postcond
10 simp_all! (config := { failIfUnchanged := false })
11 simp (config := { failIfUnchanged := false }) [*]
12 plausible (config := { numInst := 1000, maxSize := 100, numRetries := 20, randomSeed := some 42})
13 example : ¬(removeElement_postcond (#[1, 2, 3, 4, 5]) (2) (#[1, 2, 4, 5]) (by sorry)) := by -- Should fail
14 unfold removeElement_postcond
15 simp_all! (config := { failIfUnchanged := false })
16 simp (config := { failIfUnchanged := false }) [*]
17 plausible (config := { numInst := 1000, maxSize := 100, numRetries := 20, randomSeed := some 42})
18
19 -- Evaluate postcond soundness with negative test cases
20 #guard decide (¬ (removeElement_postcond (#[1, 2, 3, 4, 5]) (2) (#[1, 2, 3, 5]) (by sorry)))
21 example : ¬(removeElement_postcond (#[1, 2, 3, 4, 5]) (2) (#[1, 2, 3, 5]) (by sorry)) := by -- Should pass
22 unfold removeElement_postcond
23 simp_all! (config := { failIfUnchanged := false })
24 simp (config := { failIfUnchanged := false }) [*]
25 plausible (config := { numInst := 1000, maxSize := 100, numRetries := 20, randomSeed := some 42})
26 example : (removeElement_postcond (#[1, 2, 3, 4, 5]) (2) (#[1, 2, 3, 5]) (by sorry)) := by -- Should fail
27 unfold removeElement_postcond
28 simp_all! (config := { failIfUnchanged := false })
29 simp (config := { failIfUnchanged := false }) [*]
30 plausible (config := { numInst := 1000, maxSize := 100, numRetries := 20, randomSeed := some 42})

Figure 11: Example (verina basic 29): Evaluating post-condition soundness and completeness
using unit tests in Lean 4.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENTAL EVALUATION RESULTS

Based on the construction methodology of VERINA datasets in Section 3.2, we categorize the
problems translated from human-written Dafny datasets as VERINA-A and the problems written from
scratch as VERINA-B.

VERINA-B is much more challenging than VERINA-A. The comparison between VERINA-A and
VERINA-B in Figure 12 reveals substantial difficulty gaps on all three tasks. This demonstrates that
problem complexity significantly impacts all aspects of verifiable code generation, and VERINA-B
provides a valuable challenge for advancing future research in this domain.

0

20

40

60

80

100

44.0

61.7
68.7 69.8

54.0 49.8

32.8

50.2

Code Score (VERINA-A)

0

20

40

60

80

100

36.0

55.1
65.8

59.2 61.1

49.7

25.5

62.2

Spec Sound&Complete Score (VERINA-A)
Error bars

0

20

40

60

80

100

1.1 2.1 6.4 4.7 3.4 1.3 0.0 4.2

Proof Score (VERINA-A)

0

20

40

60

80

100

8.4

24.7

51.9

38.8
31.4

18.0

3.2

18.5

Code Score (VERINA-B)

0

20

40

60

80

100

4.4
12.1

31.5
21.0

25.2

15.1

3.5

22.6

Spec Sound&Complete Score (VERINA-B)
Error bars

0

20

40

60

80

100

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Proof Score (VERINA-B)

GPT 4o-mini
DeepSeek V3

GPT 4o
Qwen 3 235B-A22B-fp8

o4-mini
Gemini 2.5 flash

GPT 4.1 Claude sonnet 3.7

Figure 12: pass@1 performance on three foundational tasks for VERINA-A and VERINA-B.

Achieving simultaneous soundness and completeness poses great challenge, particularly for
post-conditions. As shown in Figure 13, the substantial performance gap between preconditions
and postconditions confirms that generating complex input-output relationships remains signifi-
cantly more challenging than input validation constraints. Furthermore, the drop in performance
when requiring both soundness and completeness simultaneously—compared to achieving either
individually—demonstrates that partial correctness is insufficient and justifies our comprehensive
evaluation framework for specification quality.

0

20

40

60

80

100

58.2

77.8

91.6

71.6

86.5

54.5

19.6

82.0

Precond Sound Score
Error bars

0

20

40

60

80

100

47.5

71.1
82.2

69.1

84.5

52.1

18.8

79.4

Precond Complete Score
Error bars

0

20

40

60

80

100

46.4

69.3

80.5

67.2

81.4

51.2

18.8

76.7

Precond Sound&Complete Score
Error bars

0

20

40

60

80

100

27.2

43.2

62.5

51.3
58.0

41.1

16.4

52.7

Postcond Sound Score
Error bars

0

20

40

60

80

100

28.6

44.0

60.4

47.4
54.5

39.4

17.0

51.0

Postcond Complete Score
Error bars

0

20

40

60

80

100

25.5

40.5

58.4

46.0
52.2

37.8

16.4

49.9

Postcond Sound&Complete Score
Error bars

GPT 4o-mini
DeepSeek V3

GPT 4o
Qwen 3 235B-A22B-fp8

o4-mini
Gemini 2.5 flash

GPT 4.1
Error bars

Claude sonnet 3.7

Figure 13: Detailed performance of LLMs on VERINA’s SpecGen task.

Naive proof refinement gains diminish when problem is difficult. As shown in Figure 14, iterative
proof refinement yields substantial improvements on simpler problems but only modest gains on
more complex ones. For example, o4-mini improves from 7.41% to 22.22% on VERINA-A after 64
iterations, while on VERINA-B the success rate rises only from 1.23% to 6.17%. Specialized provers

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

like Goedel Prover V2 and DeepSeek Prover V2 generally outperform general-purpose models, yet o4-
mini remains surprisingly competitive on difficult instances, achieving stronger iterative refinement
gains on VERINA-B. This suggests that while verifier feedback is crucial, naive refinement strategies
struggle to overcome the inherent complexity of challenging proofs, and that general-purpose LLMs
can still contribute meaningfully in difficult settings.

1 6 11 16 21 26 31 36 41 46 51 56 61
k

0

5

10

15

20

25

30

35

pa
ss

@
k

Iterative Refinements (VERINA-FULL)

1 6 11 16 21 26 31 36 41 46 51 56 61
k

0

5

10

15

20

25

30

35

pa
ss

@
k

Iterative Refinements (VERINA-A)

1 6 11 16 21 26 31 36 41 46 51 56 61
k

0

5

10

15

20

25

30

35

pa
ss

@
k

Iterative Refinements (VERINA-B)

1 6 11 16 21 26 31 36 41 46 51 56 61
k

0

5

10

15

20

25

30

35

pa
ss

@
k

Direct Generation (VERINA-FULL)

1 6 11 16 21 26 31 36 41 46 51 56 61
k

0

5

10

15

20

25

30

35
pa

ss
@

k
Direct Generation (VERINA-A)

1 6 11 16 21 26 31 36 41 46 51 56 61
k

0

5

10

15

20

25

30

35

pa
ss

@
k

Direct Generation (VERINA-B)

o4-mini
Gemini 2.5 flash

GPT 4.1
Goedel Prover V2 32B

Claude Sonnet 3.7
DeepSeek Prover V2 7B

Figure 14: Breakdown of iterative refinement versus direct generation across different subsets.
Refinement yields large gains on VERINA-A but limited improvements on VERINA-B.

Detailed performance breakdown. Tables 6 to 8 provide detailed breakdowns of model performance
across the three foundational tasks. They reveal that syntax incorrectness and use of non-existent
library functions (as demonstrated in Appendix C) represent the major problems, especially for
less capable models. Specifically, after manual inspection of the evaluation result, Qwen 3 235B-
A22B-FP8 suffers from instruction following ability, failing to output the desired format specified in
our prompts (cf. Appendix A.3). The relatively low unknown percentages across most evaluations
demonstrate that our specification evaluation metric is reliable. Pre-conditions are generally simpler
than post-conditions, resulting in lower unknown rates during evaluation. More capable models
often generate specifications with more complicated logical structures, leading to higher unknown
percentages in post-condition evaluation. We present a case study in Appendix C on the challenge of
automatically evaluating LLM-generated specifications. In our main results, we report the uncertainty
from unknown cases using error bars, where the lower bound represents the Pass% in the table and
the upper bound represents Pass%+Unknown% in the table.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 6: Detailed performance of CodeGen.

Model Cannot Compile% Fail Unit Test% Pass%

GPT 4o-mini 70.1 1.4 28.6
GPT 4o 51.6 2.8 45.7
GPT 4.1 40.5 3.1 56.4
o4-mini 34.1 4.5 61.4
Claude Sonnet 3.7 54.1 1.7 44.2
Gemini 2.5 Flash 62.9 0.6 36.5
DeepSeek V3 62.3 1.7 36.0
Qwen 3 235B-A22B-fp8 80.0 0.0 20.0

Table 7: Detailed performance of SpecGen for pre-condition.

Model Cannot Compile%
Soundness Completeness

Pass% Fail% Unknown% Pass% Fail% Unknown%

GPT 4o-mini 40.8 58.2 1.1 0.0 47.5 11.8 0.0
GPT 4o 19.8 77.7 1.8 0.8 71.1 8.7 0.4
GPT 4.1 24.3 70.7 1.1 4.0 69.1 3.5 3.1
o4-mini 5.4 91.0 0.6 3.0 82.1 10.7 1.8
Claude Sonnet 3.7 4.9 84.4 2.3 8.5 84.5 3.7 6.8
Gemini 2.5 Flash 14.7 81.4 1.5 2.5 79.4 5.0 1.0
DeepSeek V3 43.7 54.3 0.8 1.2 52.1 3.1 1.1
Qwen 3 235B-A22B-fp8 80.4 19.6 0.0 0.0 18.8 0.8 0.0

Table 8: Detailed performance of SpecGen for post-condition.

Model Cannot Compile%
Soundness Completeness

Pass% Fail% Unknown% Pass% Fail% Unknown%

GPT 4o-mini 68.3 27.1 4.2 0.4 28.2 2.6 0.9
GPT 4o 49.1 41.7 4.6 4.6 41.0 1.8 8.1
GPT 4.1 41.8 49.2 1.8 7.2 43.1 0.8 14.3
o4-mini 22.7 58.5 3.1 15.7 55.6 2.7 19.0
Claude Sonnet 3.7 30.6 53.9 3.2 12.3 48.2 1.6 19.6
Gemini 2.5 Flash 40.6 50.4 1.5 7.5 47.5 1.0 10.9
DeepSeek V3 53.9 39.9 2.6 3.6 37.5 3.6 4.9
Qwen 3 235B-A22B-fp8 83.0 16.4 0.6 0.0 17.0 0.0 0.0

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C CASE STUDIES OF MODEL FAILURES AND EVALUATION METRICS

In this appendix section, we provide a detailed qualitative analysis of common model failure patterns
across the three foundational tasks and illustrate how LLMs struggle with different aspects of
verifiable code generation through concrete examples. We also discuss how our evaluation metrics
flag these failures, highlighting both their effectiveness and limitations.

Code generation failure: hallucinated method usage. Figure 15 demonstrates a common LLM
failure mode where o4-mini generates code that appears syntactically correct but contains non-existent
methods. While the model correctly identifies the XOR-based algorithmic approach and provides
accurate comments, it hallucinates the Int.xor method that does not exist in Lean 4’s standard
library. This shows that current LLMs fall short in understanding Lean 4’s language features.

1 def FindSingleNumber (nums : List Int) (h_precond : FindSingleNumber_precond (nums)) : Int :=
2 -- !benchmark @start code
3 -- XOR all elements: duplicates cancel out, leaving the unique number
4 nums.foldl (fun acc x => Int.xor acc x) 0
5 -- !benchmark @end code

Figure 15: Example (verina b 1): o4-mini generates code with hallucinated Int.xor method
that does not exist in Lean 4.

Code generation failures: unit test rejections. Figure 16 illustrates how subtle logical errors
in LLM-generated code can lead to unit test failures. The task requires implementing a function
that finds the next greater element for each number in nums1 within the array nums2, or outputs
-1 if there is none. o4-mini generates a nextGreaterOne helper function with a bug in the state
management logic. After finding the target element, the function incorrectly calls aux tl false
instead of aux tl true in Line 22, causing it to lose track of having found the target and fail
to identify subsequent greater elements. This results in incorrect outputs for the test case where
nums1 = [1, 2, 3] and nums2 = [3, 2, 1, 4] should return [4, 4, 4].

1
2 -- !benchmark @start code_aux
3 /-
4 Helper function to find the next greater element of ‘target‘ in ‘nums2‘.
5 We traverse the list, first locating ‘target‘, then searching for the first element > ‘target‘.
6 If not found, returns -1.
7 -/
8 def nextGreaterOne (nums2 : List Int) (target : Int) : Int :=
9 let rec aux (l : List Int) (foundTarget : Bool) : Int :=
10 match l with
11 | [] => -1
12 | hd::tl =>
13 if !foundTarget then
14 if hd == target then
15 aux tl true
16 else
17 aux tl false
18 else
19 if hd > target then
20 hd
21 else
22 aux tl false
23 aux nums2 false
24 -- !benchmark @end code_aux
25
26 def nextGreaterElement (nums1 : List Int) (nums2 : List Int)
27 (h_precond : nextGreaterElement_precond (nums1) (nums2)) : List Int :=
28 -- !benchmark @start code
29 -- For each element in ‘nums1‘, compute its next greater in ‘nums2‘
30 nums1.map fun x => nextGreaterOne nums2 x
31 -- !benchmark @end code

Figure 16: Example (verina b 57): o4-mini generates code with logical error in state management,
causing unit test failure.

Specification generation failures: unsound pre-conditions. Figure 17 demonstrates how LLMs can
generate specifications that are too restrictive, leading to unsound pre-conditions. The task description
states “Assuming k ≤ number of distinct elements in nums”. The ground truth pre-condition correctly
uses k ≤ nums.eraseDups.length to allow k to equal the number of distinct elements. However,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

the LLM-generated version uses strict inequality k < (distinct nums).length, which incor-
rectly excludes valid cases where k equals the total number of distinct elements. This makes the
pre-condition unsound as it rejects legitimate inputs that should be accepted by the specification. In
our test suites, we have a positive test case with nums = [5] and k = 1. Since the LLM-generated
pre-condition rejects this test case, our evaluation metric determines that it is unsound.

1 @[reducible, simp]
2 def topKFrequent_precond (nums : List Int) (k : Nat) : Prop :=
3 -- !benchmark @start precond
4 k ≤ nums.eraseDups.length
5 -- !benchmark @end precond

(a) Ground truth pre-condition.

1 -- !benchmark @start precond_aux
2 @[reducible, simp]
3 def contains (xs : List Int) (x : Int) : Bool :=
4 xs.foldl (fun b y => b || y == x) false
5 @[reducible, simp]
6 def distinct (xs : List Int) : List Int :=
7 xs.foldl (fun acc y => if contains acc y then acc else acc ++ [y]) []
8 -- !benchmark @end precond_aux
9 @[reducible, simp]
10 def topKFrequent_precond (nums : List Int) (k : Nat) : Prop :=
11 -- !benchmark @start precond
12 k < (distinct nums).length
13 -- !benchmark @end precond

(b) Unsound pre-condition generated by o4-mini.

Figure 17: Example (verina b 76): o4-mini generates unsound pre-condition using strict inequal-
ity instead of allowing k to equal the number of distinct elements.

Specification generation failures: incomplete pre-conditions. Figure 18 demonstrates how LLMs
can generate overly permissive preconditions that fail to capture essential constraints. The task
description specifies that “All integers in both arrays are unique” and that ”nums1: A list of integers,
which is a subset of nums2”. The ground truth precondition correctly enforces three critical require-
ments: List.Nodup nums1 ensures uniqueness in the first array, List.Nodup nums2 ensures
uniqueness in the second array, and nums1.all (fun x => x ∈ nums2) verifies that nums1 is
indeed a subset of nums2. However, the LLM-generated precondition simply uses True, completely
ignoring all stated constraints. This makes the precondition incomplete as it accepts invalid inputs
that violate the problem’s fundamental assumptions, potentially leading to incorrect behavior in
the implementation and proof generation phases. In our test suites, we have a negative test case
with nums1 = [1, 1] and nums2 = [1, 2]. Since the LLM-generated pre-condition accepts
this negative test case, our evaluation metric determines that the LLM-generated pre-condition is
incomplete.

1 -- Ground truth pre-condition
2 @[reducible, simp]
3 def nextGreaterElement_precond (nums1 : List Int) (nums2 : List Int) : Prop :=
4 -- !benchmark @start precond
5 List.Nodup nums1 ∧
6 List.Nodup nums2 ∧
7 nums1.all (fun x => x ∈ nums2)
8 -- !benchmark @end precond

(a) Ground truth pre-condition.

1 @[reducible, simp]
2 def nextGreaterElement_precond (nums1 : List Int) (nums2 : List Int) : Prop :=
3 -- !benchmark @start precond
4 True
5 -- !benchmark @end precond

(b) Incomplete pre-condition generated by o4-mini.

Figure 18: Example (verina advanced 57): o4-mini generates incomplete pre-condition using
True instead of enforcing uniqueness and subset constraints.

Specification generation failures: unsound post-conditions. Figure 19 illustrates how LLMs
can generate post-conditions that miss critical constraints, leading to unsound specifications. The

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

task involves adding two numbers represented as digit lists in reverse order. The ground truth post-
condition correctly enforces three essential properties: arithmetic correctness, digit validity (all digits
should be less than 10), and prohibition of leading zeros except for the special case where the result
is zero. However, the LLM-generated post-condition omits the leading zero constraint entirely, only
checking that the result is non-empty and digits are valid. This unsound specification would accept
invalid outputs like [2, 1, 0] representing 012 (which is one of the negative test case), which
should be rejected in favor of [2, 1]. The missing constraint demonstrates how LLMs may capture
the primary functional requirements while overlooking more subtle constraints that are crucial for
correctness.

1 -- !benchmark @start postcond_aux
2 def listToNat : List Nat → Nat
3 | [] => 0
4 | d :: ds => d + 10 * listToNat ds
5 -- !benchmark @end postcond_aux
6 @[reducible, simp]
7 def addTwoNumbers_postcond (l1 : List Nat) (l2 : List Nat) (result: List Nat) (h_precond :

↪→ addTwoNumbers_precond (l1) (l2)) : Prop :=
8 -- !benchmark @start postcond
9 listToNat result = listToNat l1 + listToNat l2 ∧
10 (∀ d ∈ result, d < 10) ∧
11 -- No leading zeros unless the result is zero
12 (result.getLast! ̸= 0 ∨ (l1 = [0] ∧ l2 = [0] ∧ result = [0]))
13 -- !benchmark @end postcond

(a) Ground truth post-condition.

1 -- LLM generated post-condition
2 -- !benchmark @start postcond_aux
3 @[reducible, simp]
4 def listToNatRev : List Nat → Nat
5 | [] => 0
6 | d :: ds => d + 10 * listToNatRev ds
7 -- !benchmark @end postcond_aux
8 @[reducible, simp]
9 def addTwoNumbers_postcond (l1 : List Nat) (l2 : List Nat) (result: List Nat) (h_precond :

↪→ addTwoNumbers_precond (l1) (l2)) : Prop :=
10 -- !benchmark @start postcond
11 result ̸= [] ∧
12 listToNatRev result = listToNatRev l1 + listToNatRev l2 ∧
13 ∀ d, d ∈ result → d < 10
14 -- !benchmark @end postcond

(b) Unsound post-condition generated by o4-mini.

Figure 19: Example (verina b 5): o4-mini generates unsound postcondition that fails to rule out
leading zeros in the result.

Specification generation failures: unsound and incomplete post-conditions. Figure 20 demon-
strates how LLMs can generate post-conditions that are both unsound and incomplete by failing
to handle edge cases properly. The task involves finding the smallest single-digit prime factor of
a natural number. The ground truth post-condition correctly handles all cases including the edge
case where n = 0, specifying that the result should be 0 when the input is 0 or when no single-digit
prime divides n. However, the LLM-generated post-condition fails to consider n = 0 entirely. When
n = 0, the condition n % p ̸= 0 is false for any prime p (since 0 % p = 0), making the first
disjunct impossible to satisfy. This renders the specification both unsound (accepts incorrect outputs)
and incomplete (rejects valid cases where n = 0). The missing edge case handling demonstrates how
LLMs may overlook corner cases that are crucial for specification completeness (and soundness). We
have a positive test case where n = 0 and result = 0 and a corresponding negative test case where
n = 0 and result = 2 that capture this edge case. The LLM-generated post-condition rejects the
positive test case and accepts the negative test case, therefore our evaluation metric determines that
this generated post-condition is both unsound and incomplete.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

1 -- Ground truth post-condition
2 @[reducible, simp]
3 def singleDigitPrimeFactor_postcond (n : Nat) (result: Nat) (h_precond : singleDigitPrimeFactor_precond (

↪→ n)) : Prop :=
4 -- !benchmark @start postcond
5 result ∈ [0, 2, 3, 5, 7] ∧
6 (result = 0 → (n = 0 ∨ [2, 3, 5, 7].all (n % · ̸= 0))) ∧
7 (result ̸= 0 → n ̸= 0 ∧ n % result == 0 ∧ (List.range result).all (fun x => x ∈ [2, 3, 5, 7] → n % x

↪→ ̸= 0))
8 -- !benchmark @end postcond

(a) Ground truth post-condition.

1 -- LLM generated post-condition
2 -- !benchmark @start postcond_aux
3 @[reducible, simp]
4 def isSingleDigitPrime (p : Nat) : Prop :=
5 p = 2 ∨ p = 3 ∨ p = 5 ∨ p = 7
6 -- !benchmark @end postcond_aux
7 @[reducible, simp]
8 def singleDigitPrimeFactor_postcond (n : Nat) (result: Nat) (h_precond : singleDigitPrimeFactor_precond (

↪→ n)) : Prop :=
9 -- !benchmark @start postcond
10 -- Either no small prime divides n, so we return 0
11 (result = 0 ∧ ∀ p, isSingleDigitPrime p → n % p ̸= 0)
12 ∨
13 -- Or result is the smallest -singledigit prime divisor of n
14 (isSingleDigitPrime result ∧ n % result = 0 ∧ ∀ q, isSingleDigitPrime q → n % q = 0 → result ≤ q)
15 -- !benchmark @end postcond

(b) Unsound and incomplete post-condition generated by o4-mini.

Figure 20: Example (verina b 72): o4-mini generates unsound and incomplete post-condition
that fails to handle the edge case n = 0.

Untestable post-conditions. Figure 21 demonstrates the limitations of our testing-based evaluation
framework when encountering specifications with quantifiers over complicated structures or infi-
nite domains. The LLM-generated post-condition for finding the length of the longest increasing
subsequence contains a universal quantifier ∀ s : List Int that ranges over all possible integer
lists, making it impossible to evaluate even with plausible testing. Our evaluation framework returns
unknown for such cases, as neither decidable testing nor plausible exploration can adequately handle
the unbounded quantification. This example highlights a fundamental challenge in automatically
evaluating LLM-generated formal specifications: while our framework successfully handles most
practical cases, very complicated specifications require more comprehensive approaches such as
automated theorem provers or LLM-based proof generation, which we leave to future work.

1 -- !benchmark @start postcond_aux
2 @[reducible, simp]
3 def IsSubsequence : List Int → List Int → Prop
4 | [], _ => True
5 | _ :: _, [] => False
6 | x :: xs, y :: ys =>
7 if x = y then IsSubsequence xs ys
8 else IsSubsequence (x :: xs) ys
9
10 @[reducible, simp]
11 def strictlyIncreasing : List Int → Prop
12 | [] => True
13 | [_] => True
14 | x :: y :: rest => x < y ∧ strictlyIncreasing (y :: rest)
15 -- !benchmark @end postcond_aux
16 @[reducible, simp]
17 def lengthOfLIS_postcond (nums : List Int) (result: Nat) (h_precond : lengthOfLIS_precond (nums)) : Prop :=
18 -- !benchmark @start postcond
19 (∀ s : List Int, IsSubsequence s nums ∧ strictlyIncreasing s → List.length s ≤ result)
20 ∧ ∃ s : List Int, IsSubsequence s nums ∧ strictlyIncreasing s ∧ List.length s = result
21 -- !benchmark @end postcond

Figure 21: Example (verina b 25): o4-mini generates post-condition with quantifiers over lists
that cannot be evaluated by plausible testing.

Proof generation success with iterative refinement. Figure 22, 23, 24, and 25 demonstrate o4-
mini’s iterative proof refinement process over 24 attempts. The task involves proving that a list
element removal function satisfies its specification. Initially, o4-mini generates an overly simple proof
using direct induction and simp tactics, which fails to handle the complex logical structure. After
23 failed refinement attempts, the model makes useful improvements based on Lean compiler error

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

messages, significantly restructuring its approach. The error message from the 23rd attempt reveals
that the proof got stuck on conditional expressions involving decide predicates. In the successful
24th attempt, o4-mini improves its strategy by introducing an auxiliary lemma helper_eq_filter
and using explicit case analysis with by_cases. This demonstrates how iterative refinement with
compiler feedback can guide LLMs toward substantially different and correct proof strategies, though
it may require many attempts to achieve success.

1 @[reducible, simp]
2 def removeElement_precond (lst : List Nat) (target : Nat) : Prop :=
3 -- !benchmark @start precond
4 True
5 -- !benchmark @end precond
6
7 def removeElement (lst : List Nat) (target : Nat) (h_precond : removeElement_precond (lst) (target)) :

↪→ List Nat :=
8 -- !benchmark @start code
9 let rec helper (lst : List Nat) (target : Nat) : List Nat :=
10 match lst with
11 | [] => []
12 | x :: xs =>
13 let rest := helper xs target
14 if x = target then rest else x :: rest
15 helper lst target
16 -- !benchmark @end code
17
18 @[reducible]
19 def removeElement_postcond (lst : List Nat) (target : Nat) (result: List Nat) (h_precond :

↪→ removeElement_precond (lst) (target)): Prop :=
20 -- !benchmark @start postcond
21 result = lst.filter (fun x => x ̸= target)
22 -- !benchmark @end postcond
23
24
25 -- !benchmark @start proof_aux
26 -- !benchmark @end proof_aux
27
28 theorem removeElement_spec_satisfied (lst: List Nat) (target: Nat) (h_precond : removeElement_precond (

↪→ lst) (target)):
29 removeElement_postcond (lst) (target) (removeElement (lst) (target) h_precond) h_precond := by
30 -- !benchmark @start proof
31 -- Unfold the definitions of removeElement and the postcondition
32 dsimp [removeElement, removeElement_postcond]
33 -- Proceed by induction on the input list
34 induction lst with
35 | nil =>
36 -- Base case: both sides reduce to []
37 simp
38 | cons x xs ih =>
39 -- Inductive step: use the induction hypothesis
40 simp [ih]
41 -- !benchmark @end proof

Figure 22: Example (verina b 64): o4-mini generates incorrect proof on the first attempt.

1 -- !benchmark @start proof_aux
2 -- Auxiliary lemma: the ‘helper‘ function produces exactly ‘lst.filter (fun x => x ̸= target)‘
3 theorem helper_eq_filter (lst : List Nat) (target : Nat) :
4 removeElement.helper lst target = lst.filter (fun x => x ̸= target) := by
5 induction lst with
6 | nil =>
7 -- both sides reduce to ‘[]‘
8 simp [removeElement.helper]
9 | cons x xs ih =>
10 -- unfold one step of ‘helper‘
11 dsimp [removeElement.helper]
12 -- solve the ‘if‘ statement using induction hypothesis
13 simp [ih]
14 -- !benchmark @end proof_aux
15
16 theorem removeElement_spec_satisfied (lst: List Nat) (target: Nat) (h_precond : removeElement_precond (

↪→ lst) (target)):
17 removeElement_postcond (lst) (target) (removeElement (lst) (target) h_precond) h_precond := by
18 -- !benchmark @start proof
19 -- unfold the postcondition and the definition of ‘removeElement‘
20 dsimp [removeElement_postcond, removeElement]
21 -- the precondition is trivial
22 clear h_precond
23 -- apply the auxiliary lemma to conclude
24 exact helper_eq_filter lst target
25 -- !benchmark @end proof

Figure 23: Example (verina b 64): o4-mini generates incorrect proof after 23 refinement attempts.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

1 unsolved goals
2 case cons
3 target x : Nat
4 xs : List Nat
5 ih : removeElement.helper xs target = List.filter (fun x => decide (x ̸= target)) xs
6 ⊢ (if x = target then List.filter (fun x => !decide (x = target)) xs
7 else x :: List.filter (fun x => !decide (x = target)) xs) =
8 List.filter (fun x => !decide (x = target)) (x :: xs)

Figure 24: Example (verina b 64): Lean 4 compiler error message from the 23rd refinement
attempt.

1 -- !benchmark @start proof_aux
2 -- Auxiliary lemma: the ‘helper‘ function produces exactly ‘lst.filter (fun x => x ̸= target)‘
3 theorem helper_eq_filter (lst : List Nat) (target : Nat) :
4 removeElement.helper lst target = lst.filter (fun x => x ̸= target) := by
5 induction lst with
6 | nil =>
7 -- both sides reduce to ‘[]‘
8 simp [removeElement.helper]
9 | cons x xs ih =>
10 -- unfold one step of ‘helper‘
11 dsimp [removeElement.helper]
12 -- case-split on whether ‘x = target‘
13 by_cases h : x = target
14 case pos =>
15 -- if ‘x = target‘, ‘helper‘ drops it, and ‘filter‘ also drops it
16 simp [h, ih]
17 case neg =>
18 -- if ‘x ̸= target‘, ‘helper‘ keeps it, and ‘filter‘ also keeps it
19 simp [h, ih]
20 -- !benchmark @end proof_aux
21
22 theorem removeElement_spec_satisfied (lst: List Nat) (target: Nat) (h_precond : removeElement_precond (

↪→ lst) (target)):
23 removeElement_postcond (lst) (target) (removeElement (lst) (target) h_precond) h_precond := by
24 -- !benchmark @start proof
25 -- unfold the postcondition and the definition of ‘removeElement‘
26 dsimp [removeElement_postcond, removeElement]
27 -- the precondition is trivial
28 clear h_precond
29 -- apply the auxiliary lemma to conclude
30 exact helper_eq_filter lst target
31 -- !benchmark @end proof

Figure 25: Example (verina b 64): o4-mini generates correct proof on the 24th attempt.

D USE OF LLM

LLMs were used in a limited and supervised manner during the construction of VERINA. Specifically,
we employed OpenAI o3-mini with few-shot prompting to assist in translating 59 Dafny instances
from CloverBench (Sun et al., 2024) into Lean, as discussed in Section 3.2. All such translations
were subsequently inspected, corrected, and verified by the authors to ensure accuracy. In addition,
LLMs were used as assistive tools for editing and polishing the presentation of the paper. LLMs were
not involved in research ideation, discovery of related work, experimental design, dataset selection,
or analysis.

31

	Introduction
	Background and Related Work
	Verina: Data Format, Construction, and Quality Assurance
	Overview and Data Format
	Benchmark Construction and Quality Assurance

	Evaluating Verifiable Code Generation Using Verina
	Foundational Tasks and Metrics
	Task Combinations

	Experimental Evaluation
	Conclusion and Discussion
	Datasets and Detailed Experimental Setup
	License
	Model Configurations and Compute
	Prompts
	Comparison with CLEVER
	Implementation of Evaluation Metrics in Lean

	Additional Experimental Evaluation Results
	Case Studies of Model Failures and Evaluation Metrics
	Use of LLM

