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ABSTRACT

While emerging multi-modal large language models (MLLM) have demonstrated
impressive advances, the quadratic complexity of their Transformer-based LLMs
(3B or larger) inevitably leads to considerable computational overhead. On the
other hand, the recently proposed selective state space model (i.e., Mamba) enjoys
both model capacity and computational efficiency, making it an ideal component
to enhance MLLM’s efficiency and performance. However, recent attempts to
introduce Mamba into MLLMs simply replace their LLMs with Mamba, ignoring
the unique characteristics of either side. We argue that such a naive combination
cannot exhibit the potential of Mamba in MLLMs. In this paper, we delve into
harnessing Mamba’s unique properties, and propose tailored designs from both
multi-modal input and architectural perspectives to unleash its true power. First,
we fully utilize Mamba’s linear complexity to construct visual long sequences
for a thorough perception at a minor efficiency burden. To integrate the scanning
mechanism with the built visual long sequence, we devise a novel cross-stitch scan-
ning approach to capture and fuse spatial and semantic properties simultaneously,
enhancing the interaction of visual information and the vision-language alignment.
Built upon these designs, we propose MambaVLM, a simple yet effective MLLM
framework that exhibits highly competitive results across multiple benchmarks.
Moreover, our framework is also compatible with Transformer-based LLMs (e.g.,
Vicuna), demonstrating remarkable training and inference efficiency. Notably, with
only 0.66M data and 14 hours training on a single A800 node, our MambaVLM
outperforms LLaVA-1.5 by significant margins and performs on par or even better
than the 1.4B data trained Qwen-VL. The appealing results from both effectiveness

and efficiency aspects indicate the promising prospects of Mamba in MLLMs.

1 INTRODUCTION

The emergence of large language mod-
els (LLM) (Brown et al., |2020; [Tou-
vron et al.l|2023ab; |Gao et al., 2023}
Chiang et al., 2023) has exhibited
strong linguistic capabilities and log-
ical reasoning abilities. However,
LLMs are limited to processing lin-
guistic tasks only, whereas visual ca-
pabilities play a crucial role in hu-
man perception and real-world appli-
cations. Therefore, multimodal large
language models (MLLM) (Alayrac
et al.l 2022; L1 et al.l 20225 2023a;
Bai et al.| 2023} [Liu et al., [2024a;
2023ct Dai et al.l 20245 [Zhu et al.|
2023} [Karamcheti et al., |2024)) that
integrate vision and text have received
widespread attention in recent times.
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Figure 1: Comparison with LLaVA-1.5. Our method
outperforms LLaVA-1.5 consistently across 7 benchmarks,
while saving more than 40% the training compute.

Typically, MLLMs leverage a vision encoder (ViT) to perceive input images, and project visual tokens
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into language embedding space. The projected visual tokens, together with tokenized input language
data, are sent to an LLM for output response generation that is related to visual content. Bringing
LLMs into the vision and language (VL) domain advances a series of multi-modal applications such
as visual question answering (VQA) (Antol et al.,[2015; Schwenk et al.,|2022b), captioning (Karpathy
& Fei-Fei, [2015; [Vinyals et al., |2015)), and referring expression comprehension (REC) (Qiao et al.,
20205 [Yu et al., [2018)).

Current MLLMs typically employ Transformer (Vaswani et al.l 2017) as their LLMs. Despite Trans-
former’s excellent ability to model long-range dependencies and numerous successes (Dosovitskiy:
et al., 2020; Touvron et al.,[2021; [Liu et al., 2021} Wang et al., [2021)), it suffers from a critical issue:
the expensive computational cost arising from self-attention’s quadratic complexity. Particularly,
considering that the transformers utilized in MLLMs are typically large size LLMs with a parameter
count of 3B or more (Liu et al.}2023c)), using Transformer inevitably incurs significant computational
and training overheads. On the other hand, state space models (SSM) (Gu et al.||2021afic; |Smith et al.|
2022;|Gu et al., [2022) have demonstrated tremendous potential as linear-complexity models in NLP
tasks. A representative work is the recently proposed Selective State-Space Model (i.e., Mamba) (Gu
& Dao, 2023)), which designs an input-dependent selection mechanism to enable the model to choose
relevant information flexibly and devises a hardware-friendly algorithm for efficient training and
inference. Mamba is shown to outperform Transformer on large-scale datasets and more importantly,
its linear complexity endows it with the ability to handle long sequences effectively and superior
scaling properties. The success of Mamba naturally leads to a question: Can Mamba perform well in
MLLMs, and more importantly, how to unleash the true power of Mamba in MLLM

To answer the questions above, we delve into introducing Mamba into MLLM coupled with its
unique properties instead of merely using it as the LLM. Facilitated by the linear complexity of
Mamba, we can increase the token sequence length at a minor cost. Therefore, we first construct
visual long sequences with multiple vision encoders, which not only enrich visual representations
but also leverage the advantages of Mamba in handling long sequences (Gu & Dao, |2023)). Notably,
this design will not undermine the efficiency obviously which is in stark contrast with the common
cognition of Transformer-based MLLMs. Then, we also introduce Mamba as a projector to map
visual tokens into the language embedding space. Since now we have multiple visual embeddings
from the built visual long sequence, existing 1D or 2D token scanning mechanisms can not be applied
directly. To solve, we develop a novel 3D token scanning method named cross-stitch scan. By going
through multiple visual embeddings with continuous back-and-forth interlace, this design can capture
and fuse spatial and semantic properties simultaneously, promoting the comprehensive integration of
visual information, thus are well fused for language embedding projection.

Built upon the above designs, we propose a concise and effective MLLM framework termed
MambaVLM. Our approach demonstrates strong performance across various multi-modal bench-
marks (Singh et al.,2019; |Goyal et al.|[2017; (Gurari et al., 2018} |Li et al., | 2023b; |Hudson & Manning,
2019; |Liu et al} [2023a; [Acharya et al., [2019)), validating the effectiveness of our design. Further-
more, our framework is also compatible with other LLMs (e.g., Vicuna (Chiang et al.,|[2023)) and
demonstrates remarkable training and data efficiency. For instance, with only 0.66M data and 14
hours training on a single A800 node, our MambaVLM performs on par with or even better than the
1.4B data trained Qwen-VL (Bai et al., [2023)) (which requires hundreds or thousands of GPU hours).

2 RELATED WORK

2.1 STATE SPACE MODELS

The concept of state-space model (SSM) (Gu et al.l [2021ajc; |[Smith et al.| 2022; |Gu et al.| 2022)
can be traced back to the 1960s (Kalman, [1960). LSSL (Gu et al., 2021b) leverages the advantages
of continuous-time models (CTMs), RNNs, and CNNs to enable deep SSMs to solve long-range
dependencies, but it suffers from large computational and memory requirements imposed by the state
representation. Structured State Space (S4) (Gu et al., 2021al) proposes parameterization catering
to continuous-time, recurrent and convolutional view of the state space model, which alleviates the
computational bottleneck and effectively model long-range dependencies. Mamba (Gu & Daol [2023)

'In this paper, we do not differentiate MLLM and VLM by assuming both of them process vision-language
data for generative LLM outputs.
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proposes a novel selection mechanism to build selective structured state space model, which extends
S4 to select relevant information flexibly. Mamba also devises a hardware-friendly algorithm for
efficient training and inferencem and is shown to outperform Transformer on large-scale datasets and
more importantly, its linear complexity endows it with the ability to handle long sequences effectively
and superior scaling properties. Given the success of Mamba in NLP, many efforts have been made to
expand its application to other domains. For instances, Vim (Zhu et al.| |2024)) combines bidirectional
SSM and positional embedding for location-aware visual understanding, extending Mamba to vision
tasks. Vmamba (Liu et al., 2024b) devises a cross-scan mechansim to enable effective 2D scanning
and demonstrate effective improvements. In this paper, we delve into the potential of Mamba in the
context of MLLMs, a more challenging scenario that better demonstrates its advantages as a linear
complexity LLM. Very recently, concurrent works VL-Mamba (Qiao et al.,2024) and Cobra (Zhao
et al.,[2024) also adopt the idea of introducing Mamba into MLLMs. However, these works merely
replace the LLM within existing frameworks (LLaVA-1.5 (Liu et al.,[2023c)) and Prism (Karamcheti
et al.l 2024)) respectively) while we explore Mamba from architectural perspective and propose
elaborate designs to build a strong framework that unleash the power of Mamba in MLLM.

2.2 MULTIMODAL LARGE LANGUAGE MODEL

Researchers have shown keen interest in visual-language models for years (Su et al.| [2019; |Chen
et al., [2020; |Li et al.| [2020; Zhang et al., |2021; |Kim et al., [2021). However, despite the progress
made, these models still possess several limitations such as weak instruction-following capabilities,
poor generalization abilities, and lack of in-context understanding (Bai et al., [2023)). Recently, aided
by the rapid gains of large language models (LLM) (Brown et al., [2020; [Touvron et al., 2023aib;
Chiang et al.||2023)), many researchers are now devoting their efforts to building powerful multimodal
large language models (MLLM) (Alayrac et al.,[2022; |Li et al., [2023a; [Liu et al.| [2024a}; |Dai et al.,
2024; [Zhu et al., 2023} |Karamcheti et al., [2024) that leverage the strong capabilities of LLMs.
Flamingo (Alayrac et al.l [2022) utilizes a gated cross-attention module to align the frozen vision
foundation models and LL.Ms. BLIP-2 (Li et al.,2023a) proposes a Q-Former to bridge the modality
gap, demonstrating strong performances. LLaVA (Liu et al.,2024a)), MiniGPT-4 (Zhu et al.||2023) and
InstructBLIP (Dai et al.,[2024) focus on the instruction-following ability of MLLMs, and introduce
visual instruction tuning. VILA (Lin et al., |2023)) and Prism (Karamcheti et al.l [2024) dive into
the component ablation of MLLMs. LISA (Lai et al., 2023) and Lenna (Wei et al., |2023) explore
the reasoning segmentation and detection of MLLMs respectively, exhibiting expressive capacities.
Previous works primarily focus on the data and task dimensions, with little exploration into the
architectural framework of MLLMs. It is a common practice for MLLMs to utilize Transformer-
based LLMs, whose self-attention can incur expensive computational cost due to the quadratic
complexity. Furthermore, current MLLM frameworks typically use CLIP (Radford et al., 2021)
to extract visual features and then use a simple MLP layer for aligning visual and textual features,
which may not fully leverage the potential of the vision model and LLM. Different from previous
arts, our paper explores the potential of Mamba in MLLMs and to better unleash the capabilities of
Mamba, we propose a concise and effective framework from the perspective of structural design,
demonstrating strong performances across multiple benchmarks.

3 METHOD

In this section, we first introduce the preliminaries of state space models in Section[3.1] Then, we
elaborate on the specific components of the proposed MambaVLM in Section which comprises
visual long sequence, Mamba projector, and the Mamba LLM.

3.1 PRELIMINARIES

State space models (SSM) (Gu et al.} 202 1ajc; |[Smith et al.,|2022; |Gu et al., 2022) can be regarded
as linear time-invariant systems that maps a 1-D function or sequence x(t) € R to the out response
y(t) € R through a hidden state h(t) € RN. This system can be formulated as linear ordinary
differential equations (ODEs), using A € RN*N ag the evolution parameter and B € RN*1,
C < R'*Nas the projection parameters.

h'(t) = Ah(t) + Bx(t),

v(t) = Ch(t). M
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Figure 2: Overview of MambaVLM framework. It contains a visual long sequence (built with
DINOV2 and SigLIP), a Mamba projector, and a LLM. We utilize the pre-trained Mamba-2.8B and
Vicuna-7B as its language models.

Continuous-time SSMs need to be discretized to be integrated into deep models, and the discretization
includes a timescale parameter A to transform the continuous parameters A, B to discrete parameters

A, B. Typically, this transformation is achieved with zero-order hold (ZOH) method as follows:
A =exp(AA),

_ - 2)
B=(AA) (exp(AA)-T).
After the discretization, Eq.[|can be reformulated with the step size A as:
hy = Ahy_1 + Bxg, 3)
Yt = Cht
Then, the models compute output through a global convolution:
K- (CE, CAB, ..., CXM’lﬁ) , “

y =xx K.
where M is the length of the input sequence x, and K € RM is a structured convolutional kernel.

Based on the above structured SSM, the recent work Mamba (Gu & Daol 2023) explored integrating
a selective scan technique. Specifically, the matrices B, C, and A are derived from the input data and
thus input-dependent. This change empowers the model with the capability to selectively propagate
or discard information based on the sequential input tokens.

3.2 MAMBAVLM

As illustrated in Fig. 2] our framework MambaVLM mainly comprises three components: a visual
long sequence constructed by dual vision encoders, a Mamba projector, and a Mamba LLM. We
elaborate on the implementation details for each component below.

Visual long sequence. Following Cobra (Zhao et al.| 2024)), we utilize pretrained DINOv2 (Oquab
et al., |2023)) and SigLIP (Zhai et al.| 2023) as our vision encoders to capture low-level spatial
properties and the semantic properties simultaneously. However, different from Cobra that fuse the
features of dual encoders along the channel dimension, we argue that this would greatly reduce the
effective visual information and waste the rich representation of dual encoders. This is because the
projector maps visual features to the dimensions of LLM’s text features, so regardless of how many
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Figure 3: Cross-Stitch scanning of MambaVLM. Firstly, we employ four cross-scan orders to
scan each of the two feature maps independently. Then, for each scanning order, we intermittently
stitch-scan different feature maps to form an interpolated scanning sequence.

channels the visual tokens have, they are compressed to a fixed number of channels. Merely using a
lightweight projector to conduct this mapping will inevitably result in the loss of visual information.
Moreover, channel collapse (Woo et al., 2023)) and redundancy (Yu et al., 2023} |Chen et al., [2024)
phenomena are common in neural networks, thus the effectiveness of fusing features in the channel
dimension can be further undermined.

Considering the advantages of Mamba in handling long sequences and to alleviate the above issues,
we propose to construct a visual long sequence to better utilize visual representations. Specifically,
we concatenate the features of the two encoders along the sequence dimension, turning them into a
longer sequence, thereby mitigating the visual information loss caused by feature collapse. Formally,
given an image X, as input, the vision encoder splits the image into N, same-size patches. Both two
vision encoders take the same patchified image as the input token sequence and we concat the output
of two encoders along sequence dimension to get the visual representations R,, € R2Nv*Dv:

R, = Concat [fpinova (Xy); fsigrLip (Xv)] ©)

Mamba projector. Current mainstream MLLM frameworks (e.g., LLaVA (Liu et al.l 2023c))
typically utilize a single MLP layer for vision-language alignment. Nevertheless, given that we
have constructed visual long sequences to preserve richer visual information, we argue that a simple
MLP layer may not be able to accomplish sufficient vision-language alignment and interaction of
different visual features. Therefore, we devise a lightweight mamba projector to effectively promote
feature interaction within visual long sequence and enhance vision-language alignment. The specific
structure of the proposed mamba projector is illustrated in Fig.

The core of our Mamba projector lies in its scanning mechanism. While scanning mechanism has
been introduced into 2D images (Liu et al., 2024b; Zhu et al.} 2024), the presence of multiple feature
maps in visual long sequence renders previous scanning approaches inapplicable. To solve, we
propose a cross-stitch scanning mechanism as shown in Fig.[3] Specifically, we first employ four
cross-scan orders to scan each of the two feature maps independently. Then, for each scanning order,
we devise two ways to intermittently scan different feature maps to form an interpolated scanning
sequence. We refer to this two-stage scanning method as cross-cat scan and cross-stitch scan,
respectively. We conduct ablations of these two scanning ways in Section and use cross-stitch by
default. After scanning, we get four interleaved sequences:

H, = DWConv(W; * Ry)

6
Hy1,Hyo, Hyg, Hyy = Cross Stitch(Hy) ©)

Then, all four sequences are fed into the mamba block separately and reshaped back into the original
image patch order:
H,; = SSM(H,;),fori=1,2,3,4 o
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At last, all four sequences are merged to get a comprehensive representation H:

H, = Merge(Hy1,Hyo, Hys, Hya)

H, =R, + W3 x (Hy * (W2 xRy)) ®

Here W1, Wq, W3 are three independent linear layers, we omit layer norm for brevity.

Mamba LLM. We use the pre-trained Mamba LLM (Gu & Daol 2023)) fyramba as the language
model, which is a stack of 64 identical Mamba blocks. For a given text query H;, we first use
the tokenizer and embedding module f1 to map the text input into the embedding space. Then we
concatenate the output of mamba projector and text embedding, feeding it into the Mamba LLM to
get the final response R = {r;}\* | in an auto-regressive manner:

R = fMamba (HVa fT (Ht)) )

- ©)
p (RIHy, fr (1)) = [[p (ui[Hy, fr (Ho) i) -

i=1
Finally, the output tokens R will be decoded to the response answer in natural language.

Note that our designs are highly coupled. Firstly, our framework constructs visual long sequences
to preserve richer visual features. Then, in order to leverage the rich visual features we propose the
Mamba projector to effectively promote the interaction of visual information and vision-language
alignment, thus providing high-quality representations for the Mamba LLM to unleash its true power.
We give thorough ablations in section

4 EXPERIMENTS

In this section, we first introduce the settings and training recipe of MambaVLM in Section[d.1} Then
to evaluate MambaVLM, we conduct experiments with other methods on four open-ended visual
question answering (VQA) datasets and three challenge datasets in Section d.2)& [4.3] In section .4}
we conduct detailed ablation studies to validate the effectiveness of our proposed designs. Finally, we
give a efficiency comparison in Section[4.5]and present some qualitative results to demonstrate the
superiority of our approach in Section[4.6]

4.1 SETTINGS

We ensemble DINOv2 and SigLIP features to construct visual long sequence, the input resolution
for both encoders is 384 x 384. The Mamba projector is always randomly initialized. For the LLM
backbone, we use the official Mamba-2.8B-SlimPj, and we also experiment with Vicuna-7B to further
demonstrate our framework’s effectiveness. We employ AdamW with a momentum of 0.9, a total
batch size of 128, and a weight decay of 0.05 to optimize models. We train the MambaVLM-2.8B
for 2 epochs and MambaVLM-7B for 1 epoch respectively, the initial learning rate is 2 x 10° with a
warmup ratio 0.03. Experiments are conducted on 8 A800 GPUs. We use the Pytorch Fully Sharded
Data Parallel (Zhao et al.,2023) framework to accelerate training. Training details can be found in
Appendix

For MambaVLM-Mamba-2.8B, we use a combination of three datasets to train it: The 665K multi-
modal instruct tuning dataset in LLaVA-1.5 (Liu et al.,[2023c), the LVIS-Instruct-4V (Wang et al.|
2023)) dataset and the LRV-Instruct (L1u et al., | 2023b) dataset. This combination results in a 1231K
dataset, which is the same as that in Cobra. For MambaVLM-Vicuna-7B, We only use the 665K
dataset to train it since we empirically find 665K is enough for MambaVLM to have competitive
performances. A detailed pretraining dataset composition is provided in Appendix

4.2 EVALUATION ON OPEN-ENDED VQA

For open-ended visual question answering, we evaluate MambaVLM on four datasets:
TextVQA (Singh et al, 2019), GQA (Hudson & Manning} 2019), VQA-v2 (Goyal et al., |2017)
and VizWiz (Gurari et al.| [2018)). Specifically, TextVQA evaluates the optical character recognition
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Figure 4: Overview of evaluation benchmarks. We evaluate MambaVLM across four open-ended
VQA datasets and three challenge sets, giving us fine-grained assessment of our design choices.

(OCR) and the reasoning around text capacities; GQA assesses multi-step reasoning in real-world
images; VQA-v2 and VizWiz both evaluate the general visual reasoning capacity while VizWiz has
additional unanswerable questions. An overview of datasets is illustrated in Fig. 4]

As shown in Table[T} our MambaVLM has consistently strong performances across these benchmarks.
For instance, our method outperforms Cobra by large margins: +4.2 gains on TextVQA, +0.4 gains on
VQA-v2, +0.5 gains on VizWiz and +1.0 gains on GQA. Moreover, when scaling to larger LLM (i.e.,
Vicuna-7B), our framework still exhibits exceptional performance and data efficiency. In particular,
trained with only 665K data, MambaVLM performs on par with 1.4B trained Qwen-VL and surpasses
LLaVA-1.5 by significant margins (+4.4 gains on TextVQA, +2.1 gains on VQA-v2, and +1.1 gains
on VizWiz), further demonstrating our framework’s effectiveness.

Table 1: Comparison with open-source VLM models on four open-ended VQA benchmarks.
Our MambaVLM has consistently strong performances across these benchmarks, surpassing strong
baselines by large margins. *denotes using Mamba-2.8B-Zephyr, which is finetuned based on
Mamba-2.8B thus a stronger LLM.

Method LLM Data TextVQA VQAY?  VizWiz GQA
OpenFlamingo MPT-7B 2B 33.6 52.7 27.5 N/A
IDEFICS LLaMA-7B 353M+1M 25.9 50.9 355 38.4
BLIP-2 Vicuna-13B 129M 42.5 41.0 N/A 41.0
MiniGPT-4 Vicuna-7B SM+5K N/A N/A N/A 322
Shikra Vicuna-13B 600K+5.5M N/A 77.4 N/A N/A
Instruct-BLIP Vicuna-7B 129M+1.2M 50.1 76.1 32.0 49.2
Qwen-VL Qwen-7B 1.4B+50M 63.8 78.8 352 59.3
LLaVA-1.5 Vicuna-7B 558K+665K 58.2 76.5 54.2 61.6
MambaVLM Vicuna-7B 665K 62.6 78.6 55.3 61.8
LLaVA-Phi Phi-2.7B 558K+665K 48.6 71.4 359 N/A
MobileVLM MobileLLaMA-2.7B  558K+665K 47.5 N/A N/A 59.0
VL-Mamba Mamba-2.8B 558K+665K 48.9 76.6 N/A 56.2
Cobra Mamba-2.8B* 1231K 46.0 75.9 52.0 58.5
MambaVLM Mamba-2.8B 1231K 50.2 76.3 52.5 59.5
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Table 2: Comparison with open-source VLM models on three challenge set benchmarks. Our
MambaVLM has consistently strong performances.

Method LLM Data TallyQA POPE VSR
BLIP-2 Vicuna-13B 129M N/A 85.3 N/A
Instruct-BLIP Vicuna-7B 129M+1.2M N/A 84.3 58.9
LLaVA-1.5 Vicuna-7B 558K+665K 62.1 86.6 59.6
MambaVLM Vicuna-7B 665K 66.6 87.9 68.1
LLaVA-Phi Phi-2.7B 558K+665K N/A 85.0 N/A
MobileVLM MobileLLaMA-2.7B  558K+665K N/A 849 N/A
VL-Mamba Mamba-2.8B 558K+665K N/A 84.4  N/A
Cobra Mamba-2.8B* 1231K 58.2 88.0 63.6
MambaVLM Mamba-2.8B 1231K 59.1 87.7 66.7

4.3 EVALUATION ON CHALLENGE SETS

To comprehensively assess MambaVLM’s capabilities, we further evaluate it on three challenge sets:
TallyQA (Acharya et al., 2019), POPE (Li et al.,2023b) and Visual Spatial Reasoning (VSR) (Liu
et al.l|2023a). These three datasets are all closed-set prediction tasks. In particular, TallyQA comprises
questions that test MLLM'’s ability to count objects described in language with varying levels of
complexity; POPE aims at evaluating object hallucinations, which is a binary classification task that
prompts the model to answer whether an object exists or not; VSR provides a thorough assessment of
the models to see if they can understand individual spatial relationships between diverse scenes.

The experimental results in Table 2| demonstrate that our MambaVLM has consistently powerful
performance on these three datasets, which is not only applicable to Mamba LLM, but also can
be extended to larger LLM. Specifically, we outperform two strong frameworks (i.e., Cobra and
LLaVA-1.5 respectively) when equipped with different LLMs. We omit some of the methods that
appear in Table [T|because they did not report results on these datasets in their papers.

4.4 ABLATION STUDY

We conduct ablation experiments on the two core designs of our framework in Table 3} visual long
sequence and mamba projector. We start by introducing the baseline. Our baseline’s vision encoder is
DINOV2 and SigLIP, concating their features in the channel dimension, which is the same as Cobra.
It’s projector is a simple MLP layer and LLM is the same Mamba-2.8B. The training data and recipe
keep the same as that in Section[d.1]

Next, we extend the baseline to MambaVLM step by step. Firstly, we build the visual long sequence,
then we replace the MLP with our mamba projector, and finally we ablate the scanning mechanism.
Experiments demonstrate that our proposed cross-stitch scan results in the best performance. Note that
all model variants in TableE]use both DINOv2 and SigLIP as the vision encoders, so the effectiveness
of our designs does not come from using more vision encoders. These ablations effectively backups
the validity of our proposed designs.

Table 3: Ablation studies on our framework. We extend the baseline to MambaVLM step by step.
Note that all variants use both DINOv2 and SigLIP as vision encoders. Thus our gains do not come
from using two vision encoders but from our tailored designs.

Method Long Scan TextVQA VizWiz VSR  Average
baseline x N/A 471 51.4 62.6 53.7
+ long sequence v N/A 48.0 513 65.3 54.9
++ mamba projector ¥ Cross-Cat 49.7 50.7 66.4 55.6
MambaVLM ¢ Cross-Stitch 50.2 52.5 66.7 56.5
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Table 4: Inference speed comparison. We compare with two transformer-based MLLMs of the
same parameter scale (3B). Note that increasing the number of input visual tokens typically result in
greater inference burden. However, our method still holds significant speed advantage, indicating that
our design tailored for Mamba does not vanish Mamba’s speed merits.

Method LLM Visual Tokens Output Tokens Speed (tokens/s)
TinyLLaVA Phi2-2.7B 576 256 39.64
MobileVLMv2 MobileLLaMA-2.7B 144 256 49.50
MambaVLM Mamba-2.8B 1458 256 131.07

4.5 EFFICIENCY COMPARISON

Our MambaVLM framework enjoys exceptional data and training efficiencies. Specifically, we
measure the training time of MambaVLM and LLaVA-1.5 on the same machine (i.e., 8 NVIDIA
A800 GPUs) and find that MambaVLM can save more than 40% of the training time as shown in
Fig.|1] This is remarkable considering it outperforms LLaVA-1.5 consistently across seven evaluation
benchmarks, further demonstrating the superiority of our framework.

We further evaluate the inference speed of MambaVLM. Specifically, we compare it with two
transformer-based MLLMs of the same parameter scale ("3B). We evaluate them under the same
setting (i.e., the same input image and the same text prompt). We set the number of output tokens
to 256 for all models. The differences are the input visual token length and the LLM type (Mamba
v.s. Transformer). As shown in Table 4 although MambaVLM has much more visual tokens, it
still holds significant speed advantage over transformer-based MLLMs. This phenomenon is due to
Mamba’s linear complexity to token sequence length, so that constructing visual long sequence will
not vanish Mamba’s inference speed merits. Therefore, this experiment indicates that our visual long
sequence design is tailored for Mamba-based MLLMSs, which can effectively improve performance
while incurring only minor side effects on speed.

4.6 QUALITATIVE RESULT

In this section, we elaborately design some questions as case studies to exhibit the qualitative results
of MambaVLM. As shown in Fig. [5] our method demonstrates exceptional and comprehensive
performances in reasoning, hallucinations, counting and spatial perceptions.

* As shown in the first image, our method can not only accurately get how many plates of
cake there are, but also reasonably deduce that the single piece of cake could have been
served to himself by the person who prepared the cake.

* For the second image, we construct a common hallucination problem and then proceed to
provide instruction to test whether the model overfits the training data. Cobra clearly overfits
to the hallucination, while MambaVLM exhibits stronger instruction following ability.

* For the third image, we design a more complex counting problem. The model not only
requires to count, but also needs to distinguish the size of elephants, and our method
successfully address this problem.

* For the last image, there is a mixed problem of hallucination and spatial perception. Cobra
fails at the basic hallucination level while our method not only identifies hallucination, but
also provides accurate spatial positional relationships.

5 CONCLUSION

In this paper, we explore unleashing the true power of Mamba in MLLMs instead of merely using
it as the LLM. We construct visual long sequences to provide stronger representation, and devise
a novel cross-stitch scanning mechanism to facilitate visual information interaction and vision-
language alignment. Built upon these designs, we propose a simple yet strong MLLM framework
termed MambaVLM. Extensive experiments across multiple benchmarks demonstrate our method’s
effectiveness, suggesting the significant potential and promising prospects of Mamba in MLLM:s.
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In What might happened recently with the cake?

Cobra Recently, someone might have sliced the cake and served it to the guests, as
there are three slices of cake on plates and a fork on the table. The cake appears to be a carrot cake
with orange icing, and it is placed on a wooden table. The presence of the fork suggests that the
guests are ready to enjoy the cake.

2 Ours Recently, someone might have sliced the cake and served it on plates, as there
-~ are two plates of cake and a fork present in the image. The cake appears to be a delicious, freshly
baked dessert, which is likely to be enjoyed by the people who are about to consume it. The presence
of the fork suggests that the cake is ready to be eaten, and the person who prepared it might has
already served that piece to himself.

In If there are factual errors in the questions, point it out and proceed to
answering the question. What’s happening in the desert? Describe the picture.

2= i1 g

Ours There are no deserts visible in the image. The image features a
city skyline with a beach on the water, and the ocean is visible in the
background. The city is lit up at night, and there are buildings and palm trees
in the foreground.

In How many adult elephants and how many baby
elephants are in the picture?
Cobra There are two adult elephants and one baby elephant in
the picture.
Ours There are three adult elephants and two baby elephants

in the picture.

Cobra The image has a bicycle parked at the left of the dog,
« not the right.

Ours The image has a boat, not a bicycle, and the dog is
sitting in the boat.

Figure 5: Qualitative Results. We elaborately design some questions as case studies to exhibit
the qualitative results of MambaVLM. Our method exhibits exceptional performances in reasoning,
hallucinations, counting and spatial perceptions.
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A TRAINING CONFIGURATION

We list the detailed training configuration and recipe for Cobra in Table[5] For MambaVLM-7B, since
there is no publicly available Mamba-7B model, we utilize the widely used Vicuna-7B to validate the
advantages of our framework when extended to larger LLMs. Note that in addition to the difference in
the LLM for MambaVLM-2.8B&MambaVLM-7B, the data used and the number of training epochs
is also different.

Table 5: Training configuration and recipe of MambaVLM.

Configuration | MambaVLM-2.8B | MambaVLM-7B
Vision Encoder DINOV2 + SigLIP

Projector init Random

Image resolution 384 x 384

Global batch size 128

Optimizer AdamW

LR schedule Cosine decay

Learning Rate 2e-5

Weight decay 0.1

Warmup ratio 0.3

LLM init Mamba-2.8B-Slimpj Vicuna-1.5-7B
Data 1231K 665K
Epochs 2 1

B PRETRAINING DATASET COMPOSITION

We use The 665K multi-modal instruct tuning dataset in LLaVA-1.5 |Liu et al|(2023c), the LVIS-
Instruct-4V [Wang et al.| (2023) dataset and the LRV-Instruct|Liu et al.[(2023b) dataset. We list the
detailed example sources of the 665K instrut-tuning dataset as follows:

LLaVa Synthetic Data (158K). This dataset is a conversation, fine-grained description, and question-
and-answer dataset synthesized by prompting GTP-4 |Achiam et al.| (2023), with image caption and
object bounding box from COCO [Lin et al.|(2014). This dataset is explicitly generated in instruction
form.

Standard VQA Data (224K). This dataset is a combination of visual question-answering datasets
including VQAv2 |Goyal et al|(2017)), GQA |[Hudson & Manning| (2019), OK-VQA Marino et al.
(2019), and OCR-VQA [Mishra et al.| (2019). The questions cover many aspects such as general
question answering, spatial and compositional reasoning, external knowledge-based and text-based
reasonings.

Multiple Choice VQA Data (50K). This dataset is an external knowledge-based multiple choice
QA task sourced from A-OKVQA [Schwenk et al.| (2022a). The model is required to output the
corresponding option letter.

Captioning Data (22K). This dataset is an image caption dataset sourced from TextCaps [Sidorov et al.
(2020).

Referring Expression Data (116K). This dataset comprises referring expression grounding (bounding
box prediction) and region captioning data sourced from RefCOCO |[Kazemzadeh et al.|(2014). For
bounding box prediction (localization), the model is asked to output normalized bounding box
coordinates in a natural language manner.

ShareGPT (Language-Only) (40K). This dataset consists of user-uploaded conversations generated by
ChatGPT from ShareGPT ShareGPT|(2023)). This dataset is also explicitly generated in instruction
form.
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