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4Université Paris-Saclay,

5 Laboratoire signaux et systèmes,
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Abstract

Out-of-distribution (OOD) detection is a rapidly growing field
due to new robustness and security requirements driven by
an increased number of AI-based systems. Existing OOD tex-
tual detectors often rely on anomaly scores (e.g., Mahalanobis
distance) computed on the embedding output of the last layer
of the encoder. In this work, we observe that OOD detection
performance varies greatly depending on the task and layer
output. More importantly, we show that the usual choice (the
last layer) is rarely the best one for OOD detection and that far
better results can be achieved, provided that an oracle selects
the best layer. We propose a data-driven, unsupervised method
to leverage this observation to combine layer-wise anomaly
scores. In addition, we extend classical textual OOD bench-
marks by including classification tasks with a more significant
number of classes (up to 150), which reflects more realistic
settings. On this augmented benchmark, we show that the pro-
posed post-aggregation methods achieve robust and consistent
results comparable to using the best layer according to an
oracle while removing manual feature selection altogether.

Introduction
With the increasing deployment of ML tools and systems, the
issue of their safety and robustness is becoming more and
more critical. Out-of-distribution robustness and detection
have emerged as an important research direction. These OOD
samples can cause the deployed AI system to fail as neural
models rely heavily on previously seen concepts or patterns
and tend to struggle with anomalous samples (Berend et al.
2020) or new concepts. These failures affect users’ trust or
even rule out the adoption of AI in critical applications.

Distinguishing OOD samples (OUT) from in-distribution
(IN) samples is a challenge when working on complex data
structures (e.g., text or image) due to their high dimensional-
ity. Although OOD detection has attracted much attention in
computer vision, few studies focused on textual data. Further-
more, distortion and perturbation methods used in computer
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vision are not suitable due to the discrete nature of text.
A fruitful line of research (Lee et al. 2018; Liang, Li, and

Srikant 2018) focuses on adding simple filtering methods on
top of pre-trained models without requiring retraining the
model. They include plug-in detectors that rely on softmax-
based- or hidden-layer-based- confidence scores (Lee et al.
2018; Liang, Li, and Srikant 2018). Softmax-based detec-
tors (Liu et al. 2020; Pearce, Brintrup, and Zhu 2021; Techa-
panurak, Suganuma, and Okatani 2019) rely on the predicted
probabilities to decide whether a sample is OOD. In contrast,
hidden-layer-based scores (e.g., cosine similarity, data-depth
(Colombo et al. 2022), or Mahalanobis distance (Lee et al.
2018)) rely on input embedding of the model encoder. In com-
puter vision and more recently in natural language processing,
these methods arbitrarily rely on either the embedding gen-
erated by the last layer of encoder or on the logits (Wang
et al. 2022a; Khalid et al. 2022) to compute anomaly scores.
While Softmax-based detectors can be applied in black-box
scenarios, where one can only access the model’s output, they
have a very narrow view of the model’s behaviour. In con-
trast, hidden-layer-based methods enable one to get deeper
insights.

We argue that the choice of the penultimate layers (i.e.,
the last layer, or the logits) ignores the multi-layer nature of
the encoder and should be questioned. We give evidence that
these representations are (i) not always the best choices (see
Fig. 1) and (ii) that leveraging information from all layers
can be beneficial. We introduce a data-driven procedure to
exploit the information extracted from existing OOD scores
across all the different layers of the encoder.

Our contribution can be summarized as follows:
1.We introduce a new paradigm. Previous methods rely

on a manual selection of the layer to be used, which ignores
the information in the other layers of the encoder. We pro-
pose an automatic approach to aggregate information from
all hidden layers without human (supervised) intervention.
Our method does not require access to OOD samples and
harnesses information available in all model layers by lever-
aging principled anomaly detection tools.
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2.We conduct extensive experiments on our newly pro-
posed benchmark: We introduce MILTOOD-C A MultI
Lingual Text OOD detection benchmark for Classification
tasks. MILTOOD-C alleviates two main limitations of previ-
ous works: (i) contrary to previous work that relies on datasets
involving a limited number of classes (up to 5), MILTOOD-C
includes datasets with a higher number of classes (up to 150
classes); (ii) MILTOOD-C goes beyond the English-centric
setting and includes French, Spanish, and German datasets.
Our experiments involve four models and over 186 pairs of
IN and OUT datasets, which show that our new aggrega-
tion procedures achieve high performance. Previous methods
tend to suffer a drop in performance in these more realistic
scenarios.

MILTOOD-C: A More Realistic Benchmark
Background and Notations
We adopt a text classification setting and rely on the en-
coder section* of a model. Let Ω be a vocabulary and Ω∗

its Kleene closure1. We consider (X,Y ) a random variable
with values in X × Y such that X ⊆ Ω∗ is the textual input
space, and PXY is its joint probability distribution. The set
Y = {1, . . . , C} represents the classes of a classification task
and P(Y) =

{
p ∈ [0, 1]|Y| :

∑|Y|
i=1 pi = 1

}
the probability

simplex over the classes. It is assumed that we have access to
a training set DN = {(xi, yi)}Ni=1 composed of independent
and identically distributed (i.i.d) realizations of PXY . The
Out-Of-Distribution (OOD) detection problem consists of
deciding whether a new, previously unseen sample comes
(or not) from the IN distribution PXY . The goal is to build
a binary function g : X → {0, 1} based on the thresholding
of an anomaly score s : X → R+ that separates IN samples
from OOD samples. Namely, for a threshold γ ∈ R+, we
have:

g(x, γ) =

{
1 if s (x) > γ,
0 if s (x) ⩽ γ.

Building an OOD Detector
We assume that we have given a classifier fθ : X → P(Y):

fθ = softmax ◦ h ◦ fθ
L ◦ fθ

L−1 ◦ · · · ◦ fθ
1 , (1)

with L > 1 layers2, where fℓ : Rdℓ−1 → Rdℓ is the ℓ-th layer
of the encoder with dℓ being the dimension of the latent space
after the ℓ-th layer (d0 = d). It is worth noting that in the case
of transformers (Vaswani et al. 2017), all latent spaces have
the same dimension. Finally, h represents the logit function
of the classifier.

To compute the anomaly score s from fθ, OOD ap-
proaches rely on the hidden representations of the (multi-
layer) encoder. For x ∈ X an input sequence, we denote
zℓ = (fℓ ◦ · · · ◦f1)(x) its latent representation at layer ℓ. The

1The Kleene closure corresponds to sequences of arbitrary size

written with words in Ω. Formally: Ω∗ =
∞⋃
i=0

Ωi.
2For the sake of brevity, we omit the parameters θ in the follow-

ing.

latent representation obtained after the ℓ-th layer of the train-
ing set is denoted as Dℓ

N = {(zℓ,i, yi)}Ni=1. Furthermore, we
denote by Dℓ,y

N the restriction of Dℓ
N to the samples with label

y, i.e., Dℓ,y
N = {(zℓ,i, yi) ∈ Dℓ

N : yi = y} with Ny = |Dℓ,y
N |

indicates the cardinal of this set.
Feature-based OOD detectors usually rely on three key

elements:
(i) Selecting features: the layer ℓ whose representation is
considered to be the input of the anomaly score.
(ii) A notion of an anomaly (or novelty) score built on the
mapping Dℓ

N of the training set on the chosen feature space.
We can build such a score s(·,Dℓ

N ) defined on Rd ×
(
Rd

)N
for any notion of abnormality.
(iii) Setting a threshold to build the final decision function.
Remark 1. Choice of the threshold. To select γ, we follow
previous work (Colombo et al. 2022; Picot et al. 2023a) by
choosing a number of training samples (i.e., “outliers”) the
detector can wrongfully detect. A classical choice is to set
this proportion to 95%.

Popular Anomaly Scores
In what follows, we present three common anomaly scores
for step (ii) of the previously mentioned procedure.

Mahalanobis distance. Authors of Lee et al. (2018) pro-
pose to compute the Mahalanobis distance on the abstract
representations of each layer and each class. Precisely, this
distance is given by:

sM (zℓ,Dℓ,y
N ) = (zℓ − µℓ,y)

⊤
Σ−1

ℓ,y (zℓ − µℓ,y)

on each layer ℓ and each class y where µℓ,y and Σℓ,y are
the estimated class-conditional mean and covariance matrix
computed on Dℓ,y

N , respectively. The final score from Lee
et al. (2018) is obtained by choosing the minimum of these
scores over the classes on the penultimate encoder layer.

Integrated Rank-Weighted depth. Colombo et al. (2022)
propose to leverage the Integrated Rank-Weighted (IRW)
depth (Ramsay, Durocher, and Leblanc 2019). Similar to
the Mahalanobis distance, the IRW data depth measures the
centrality/distance of a point to a point cloud. For the ℓ-th
layer, a Monte-Carlo approximation of the IRW depth can be
defined as:

sIRW(zℓ,Dℓ,y
N ) =

1

nproj

nproj∑
k=1

min

{
1

n

Ny∑
i=1

1 {gk,i(zℓ) ⩽ 0} ,

1

n

Ny∑
i=1

1 {gk,i(zℓ) > 0}

}
,

where gk,i(zℓ) = ⟨uk, zℓ,i − zℓ⟩, uk ∈ Sd−1, zℓ,i ∈ Dℓ,y
N

where Sd−1 = {x ∈ Rd : ||x|| = 1} is the unit hypersphere
and nproj is the number of directions sampled on the sphere.

Cosine similarity. Zhou, Liu, and Chen (2021) propose to
compute the maximum cosine similarity between the embed-
ded sample zℓ and the training set Dℓ

N at layer ℓ:

sC(zℓ,Dℓ
N ) = − max

zℓ,i∈Dℓ
N

⟨zℓ, zℓ,i⟩
||zℓ|| ||zℓ,i||

,
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Figure 1: OOD detection performance in terms of AUROC ↑ for each features-based OOD score (Mahalanobis distance (sM ),
Maximum cosine similarity (sC) and IRW (sIRW )) computed at each layer of the encoder for different OOD datasets for a
model fine-tuned on SST2. We observe that the performance of each metric on each layer varies significantly with the OOD task
and that OOD detection based on the last layer (dark dotted line) rarely yields the best results.

where ⟨·, ·⟩ and ||·|| denote the Euclidean inner product and
norm, respectively. They also choose the penultimate layer.
It is worth noting they do not rely on a per-class decision.

Related Works and Limitations
We claim that the choice of layer is crucial in textual OOD
detection; we report in Fig. 1 the OOD performance of pop-
ular detectors described in Sec. , applied at each layer of
the encoder. We observe a high variability across different
layers. The last layer is rarely the best-performing layer, and
there is room for improvement if we could choose the best
possible layer or gather useful information from all of them.
This observation is consistent with the literature, as neural
networks are known to extract different information and con-
struct different abstractions at each layer (Ilin, Watson, and
Kozma 2017).

Works relying on a manually selected layer. The choice
of layer for step (i) in Sec. is not usually a question. Most
work arbitrarily relies on the logits (Liang, Li, and Srikant
2018; Liu et al. 2020) or the last layer of the encoder (Yang
et al. 2021; Hendrycks and Gimpel 2016; Wang et al. 2022a).
We argue that these choices are unjustified and that previous
work gives up on important information in the other layers.

Works that feature layer aggregation. Besides Colombo
et al., which proposes to aggregate the features instead of
aggregating the OOD scores as we do, we are unaware of
any other work suggesting layer aggregation for textual OOD
detection. There, however, exist several adjacent works in
computer vision. Abdelzad et al. proposes a method which
starts by finding the best layer for OOD detection for a valida-
tion set and uses that layer afterwards. Still, there is no adap-
tation for different datasets. Other works such as Lin, Roy,
and Li focus on training models with specific architectures
(for computer vision) to leverage early-stage exit or different
information from different layers to detect OOD samples or
improve generalization on OOD samples. In addition, these
works rely on image-specific properties that do not translate
well in text (lossy compression for example). More closely
related work are Wang et al.; Lee et al.. The first proposes
to compute OOD scores at each layer (1-SVM), and they
select the layer that yields the highest confidence in terms of

margin. However, their work features a single OOD score and
a single aggregation method in computer vision. In contrast,
we propose a more general framework and systematically
evaluate different OOD scores and aggregation procedures.
The second proposes to learn a linear combination of Maha-
lanobis scores but does not explore OOD score aggregation
or layer selection systematically. In addition, both of these
works have been proposed in computer vision and show that
aggregation does not lead to significant improvements. This
dramatically contrasts with our findings in textual models,
consistent with the literature (Picot et al. 2023a; Raghuram
et al. 2021).

We propose to compute standard OOD scores on each layer
of the encoder (and not only on the logits or the representation
generated by the last layer) and to aggregate this score in an
unsupervised fashion to select and combine the most relevant
following the task at hand.

Leveraging Information from All Layers
In this section*, we describe our aggregation methods that
use the information available in the different layers of the
encoder.

Problem Statement

For an input x ∈ X and a training dataset DN , we ob-
tain their set of embedding representation sets: {zℓ}Lℓ=1 and
{Dℓ

N}Lℓ=1, respectively. Given an anomaly score function
s : Rd ×

(
Rd

)N → R (e.g., those described in Sec. ), we
define the OOD score set of an input x as Ss(x;DN ) =

{{s(zℓ;Dℓ,y
N )}Lℓ=1}Cy=1 ∈ RL×C . Similarly, it is possible to

obtain a reference set of R(DN ) = {Ss(x;DN ), ∀ (x, y) ∈
DN} from the training data3. In what follows, we aim to
answer the following question.

Can we leverage all the information available in
Ss(x;DN ) and/or R(DN ) to build an OOD detector?

3When using the cosine similarity, which does not rely on a
per-class decision, Ss(x;DN ) is reduced to {s(zℓ;Dℓ

N )}Lℓ=1.
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Proposed Framework
Our framework aims at comparing the set of scores of a sam-
ple to the sets of scores of a reference relying on principled
anomaly detection algorithms.

The goal of this work is to propose a data-driven aggrega-
tion method of OOD scores4, Agg. Agg is defined as:

Agg : RL×C ×
(
RL×C

)N → R

(Ss(x;DN ),R(DN )) → Agg(Ss,R),

where x denotes the input sample.
Intuition. This framework allows us to consider the whole

trace of a sample through the model. This formulation has two
main advantages: it avoids manual layer selection and enables
us to leverage information from all the encoder layers.

We propose two families of approaches: (i) one solely
relies on the score set Ss(x;DN ) (corresponding to a no-
reference scenario and denoted as Agg∅) and (ii) the second
one (named reference scenario) leverages the reference set
R(DN ).

Remark 2. It is worth noting that our framework through
Agg∅set or Agg naturally includes previous approaches (Lee
et al. 2018; Colombo et al. 2022). For example, the detector
of Lee et al. (2018) can be obtained by defining Agg∅ as the
minimum of the penultimate line of the matrix Ss(x,DN ).

Detailed Aggregation Procedures
Intuition. Our framework through Agg and Agg∅ requires
two types of operations to extract a single score from
Ss(x,DN ) and Rs(DN ): one aggregation operation over
the layers and one aggregation operation over the classes,
where necessary.

Our framework in a nutshell. We assume we are given an
anomaly score, s, that we want to enhance by leveraging all
the layers of the encoder. For a given input x, our framework
follows 4 steps (see Fig. 2 for a depiction of the procedure):
1. Compute the embeddings {zl}Ll=1 for x and every element
of DN .
2. Form Ss(x;DN ) and R(DN ) using the score s.
3. Perform Agg∅ or Agg:

(a) (per layer) Aggregate score information over the layers to
obtain a vector composed of C scores.

(b) (per class) Take the minimum value of this vector.
4. Apply a threshold γ on that value.

Step (3.b). is inspired by the OOD literature (Lee et al.
2018; Colombo et al. 2022). It relies on the observation that
if the input sample is IN-distribution, it is expected to have
at least one low score in the class vector, whereas an OOD
sample should only have high scores equivalent to a high
minimum score.

No-reference scenario (Agg∅) In the no-reference sce-
nario, we have access to a limited amount of information.
We thus propose to rely on simple statistics to aggregate
the OOD scores available in Ss(x;DN ) to compute step (3).

4We do not assume that we have access to OOD samples as they
are often not available.

of the proposed procedure. Precisely, we use the average,
the minimum (min), the median (med), and coordinate (see
Remark 2) operators on the column of the matrix Ss(x;DN ).

Data-driven scenario (Agg) In the data-driven scenario,
Agg also has access to the set of reference OOD scores (i.e.,
Rs(DN )) for the given OOD score s. The goal, then, is
to compare the score set Ss(x;DN ) of the input with this
reference set Rs(DN ) to obtain a score vector of size C. In
the following, we propose an original solution for the layer
operation.

For the per layer operation we rely on an anomaly detec-
tion algorithm for each class Ay defined as:

Ay : RL × (RL)Ny → R

sy ×Ry 7→ Ay(sy,Ry), (2)

where sy = {s(zℓ;Dℓ,y
N )}Lℓ=1 and Ry = R(Dy

N ).

Remark 3. Ay is trained on the reference set Ry for each
class and thus does not involve any OOD samples. The score
returned for a vector sy is the prediction score associated
with the trained algorithm.

Remark 4. We define a per-class decision for Agg since
it has been shown to be significantly more effective than
global scores (Huang and Li 2021). It is the approach cho-
sen by most state-of-the-art-methods. We have validated this
approach by conducting extensive experiments.

We propose several popular anomaly detection algorithms.
First, we offer to reuse common OOD scores (sM , sC , sIRW)
as aggregation methods: they are now trained on the reference
set of sets of OOD scores Rs(DN ) and provide a notion of
anomaly for the trace of a sample through the model. We also
compute the median and average score as natural baselines
for the aggregation setting. In addition, we propose more
elaborate anomaly detection algorithms such as Isolation For-
est (IF) (Liu, Ting, and Zhou 2008) and the Local Outlier
Factor (LOF) (Breunig et al. 2000). Below, we briefly recall
the general insights of each of these algorithms. It is impor-
tant to emphasize that our framework can accommodate any
anomaly detection algorithms.

Local Outlier Factor. This method compares a sample’s
density with its neighbours’ density. Any sample with a lower
density than its neighbours is regarded as an outlier.

Isolation Forest. This popular algorithm is built on the
idea that anomalous instances should be easily distinguished
from normal instances. It leads to a score that measures the
complexity of separating a sample from others based on the
number of necessary decision trees required to isolate a data
point. It is computationally efficient, benefits from stable
hyper-parameters, and is well suited to the unsupervised set-
ting.

Comparison to Baseline Methods
Current State-of-the-art methods for OOD detection on tex-
tual data have been recently provided in Colombo et al. (2022)
(PW). They aggregate the hidden layers using Power means
and then apply an OOD score on this aggregated representa-
tion. They achieved previous SOTA performance by coupling
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Input x
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1 ...  L
Compute per layer embeddings1 Compute scores per class and layer2 Perform score aggregation3 Apply threshold4

Figure 2: Schema of our aggregation procedure. (1) We extract the embeddings at each layer of the encoder for every sample.
(2) We compute the per-class scores for a reference set and the new sample to be evaluated for each layer embedding. (3) We
aggregate the scores over every layer to get an aggregated per-class score before taking the min score over the classes. (4) Finally,
we apply the threshold on this minimum.

it with the IRW depth and proposed a comparison with Ma-
halanobis and Cosine versions. We reproduce these results as
it is a natural baseline for aggregation algorithms.

Last Layer. Considering that the model’s last layer or
logits should output the most abstract representation of an
input, it has been the primary focus of attention for OOD
detection. It is a natural choice for any architecture or model
and therefore removes the hurdle of selecting features for
different tasks and architectures. For this heuristic, we obtain
OOD scores using the Mahanalobis distance (as in (Lee et al.
2018)), the IRW score (as in (Colombo et al. 2022)), and the
cosine similarity.

Additional methods. It is common on OOD detection
methods to report the Maximum Softmax Prediction (MSP)
(Hendrycks and Gimpel 2016) as well as the Energy Score
(E) (Liu et al. 2020).

MILTOOD-C: A More Realistic Benchmark
In this section*, we highlight the limitations of existing bench-
marks and introduce our own: MILTOOD-CA MultI Lingual
Text OOD for classification tasks.

Limitation of Existing Benchmarks
Number of classes. Text classification benchmarks for OOD
detection often consist of sentiment analysis tasks involving
a small number of classes (Fang and Zhan 2015; Kharde,
Sonawane et al. 2016). Those tasks with a larger number of
classes have been mostly ignored in previous OOD detection
benchmarks (Colombo et al. 2022; Li et al. 2021; Zhou, Liu,
and Chen 2021). However, real-world problems do involve
vastly multi-class classification tasks (Casanueva et al. 2020).
Previous work in computer vision found that these problems
require newer and carefully tuned methods to enable OOD
detection in this more realistic setting (Deng et al. 2009; Le
and Yang 2015).

Monolingual datasets. Most methods have been tested
on architectures tailored for the English language (Colombo
et al. 2022; Li et al. 2021; Arora, Huang, and He 2021). With
inclusivity and diversity in mind (Ruder 2022; van Esch et al.
2022), it is necessary to assess the performance of old and
new OOD detection methods on a variety of languages (Srini-
vasan et al. 2021; de Vries, van Cranenburgh, and Nissim
2020; Baheti et al. 2021; Zhang et al. 2022).

A More Realistic Benchmark
We now present MILTOOD-C, which addresses the afore-
mentioned limitations. It consists of more than 25 datasets
involving up to 150 classes and 4 languages.

Dataset selection. We gathered a large and diverse bench-
mark encompassing many shift typologies, tasks, and lan-
guages. It covers 27 datasets in 4 different languages (i.e.,
English, German, Spanish, and French) and classifications
tasks involving 2 to 150 classes. Following standard pro-
tocol (Hendrycks et al. 2020), we train a classifier for
each in-distribution dataset (IN-DS) while the OOD dataset
(OUT-DS) is coming from a different dataset. We provide a
comprehensive list of the 180 pairs. It is an order of magni-
tude larger than recent concurrent work from (Colombo et al.
2022).

English benchmark. We relied on the benchmark proposed
by Zhou, Liu, and Chen (2021); Hendrycks et al. (2020). It
features three types of IN-DS: sentiment analysis (i.e., SST2
(Socher et al. 2013), IMDB (Maas et al. 2011)), topic classi-
fication (i.e., 20Newsgroup (Joachims 1996)) and question
answering (i.e., TREC-10 and TREC-50 (Li and Roth 2002)).
We also included the Massive (FitzGerald et al. 2022) dataset
and the Banking (Casanueva et al. 2020) for a larger num-
ber of classes and NLI datasets (i.e., RTE (Burger and Ferro
2005; Hickl et al. 2006) and MNLI (Williams, Nangia, and
Bowman 2018)) following. To go one step further in terms of
number of classes, we considered HINT3(Arora et al. 2020)
and clink (Larson et al. 2019). We form IN and OOD pairs
between the aforementioned tasks.

Beyond English-centric tasks.5 For language-specific
datasets, we added the same tasks as for English when avail-
able and extended it with language-specific datasets such
as the PAWS-S datasets (Yang et al. 2019), film reviews
in French and Spanish (Blard 2019). For French and Ger-
man, we also added the Swiss judgments datasets (Niklaus,
Stürmer, and Chalkidis 2022). Finally, we added different
tweet classification tasks for each language (English, Ger-
man, Spanish and French) (Zotova et al. 2020; Barbieri, Es-
pinosa Anke, and Camacho-Collados 2022).

5We did not work on language changes because they were easily
detected with all the methods considered. Instead, we focus on
intra-language drifts.
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Model selection. To ensure that our results are consis-
tent not only across tasks and shifts, but also across model
architectures, we train classifiers based on 6 different Trans-
former decoders: BERT (Devlin et al. 2018) (base, large and
multilingual versions), DISTILBERT (Sanh et al. 2019) and
RoBERTa (Liu et al. 2019) (base and large versions) fine-
tuned on each task.

Evaluation metrics. The OOD detection problem is a
binary classification problem where the positive class is
OUT. We follow concurrent work (Colombo et al. 2022;
Darrin, Piantanida, and Colombo 2022) and evaluate our
detector using threshold-free metrics such as AUROC ↑,
AUPR-IN/AUPR-OUT and threshold based metrics such as
FPR ↓ at 95% and Err.

Experimental Results

Quantifying Aggregation Gains

Overall results. Data driven aggregation methods (i.e.,
with reference) consistently outperform any other base-
lines or tested methods by a significant margin (see Ta-
ble 1) on our extensive MILTOOD-C benchmark. According
to our experiments, the best combination of hidden feature-
based OOD score and aggregation function is to use the Max-
imum cosine similarity as the underlying OOD score and to
aggregate these scores using the IRW data depth (sIRW). A
first time to get the abnormality of the representations of the
input and a second time to assess the abnormality of the set
of layer-wise scores through the model. It reaches an average
AUROC ↑ of 0.99 and a FPR ↓ of 0.02. It is a gain of more
than 6% compared to the previous state-of-the-art methods
in terms of AUROC ↑ and more than 90% in FPR ↓ .

Most versatile aggregation method. While the sC and
sIRW used as aggregation methods achieve excellent per-
formance when paired with sC as the underlying OOD
score, they fail to aggregate as well other underlying scores.
Whereas the isolation forest algorithm is a more versatile and
consistent data-driven aggregation method: it yields perfor-
mance gain for every underlying OOD score.

Performance of common baselines. We show that, on
average, using the last layer or the logits as features to per-
form OOD detection leads to poorer results than almost every
other method. It is interesting to point out that this is not
the case in computer vision (Yang et al. 2021; Raghuram
et al. 2021; Picot et al. 2023a; Lee et al. 2018). This find-
ing further motivates the development of OOD detection
methods tailored for text.

Impact of data-driven aggregation. In almost all sce-
narios, aggregating the score using a data-driven anomaly
detection method leads to a significant gain in performance
compared to baseline methods. This supports our claim that
useful information is scattered across the layers currently ig-
nored by most methods. We show that this information can
be retrieved and effectively leveraged to improve OOD
detection.

AUROC ↑ FPR ↓
Ours Agg.

E Bas. E 0.83 ±0.18 0.39 ±0.31

sM

Agg

sM 0.90 ±0.14 0.27 ±0.33
sC 0.88 ±0.17 0.32 ±0.40
sIRW 0.81 ±0.20 0.44 ±0.42
IF 0.94 ±0.10 0.19 ±0.25
LOF 0.87 ±0.15 0.39 ±0.37

Agg∅

Mean 0.74 ±0.18 0.59 ±0.39
Median 0.75 ±0.17 0.61 ±0.35
PW 0.80 ±0.17 0.61 ±0.38

Bas. Last layer 0.92 ±0.11 0.25 ±0.31
Logits 0.71 ±0.14 0.65 ±0.27

sC

Agg

sM 0.93 ±0.11 0.20 ±0.27
sC 0.98 ±0.10 0.04 ±0.19
sIRW 0.99 ±0.07 0.02 ±0.15
IF 0.94 ±0.14 0.12 ±0.29
LOF 0.93 ±0.11 0.20 ±0.26

Agg∅

Mean 0.93 ±0.12 0.25 ±0.33
Median 0.92 ±0.12 0.27 ±0.34
PW 0.93 ±0.11 0.19 ±0.27

Bas. Last layer 0.92 ±0.11 0.22 ±0.26
Logits 0.81 ±0.17 0.52 ±0.42

sIRW

Agg

sM 0.81 ±0.18 0.50 ±0.38
sC 0.89 ±0.17 0.28 ±0.36
sIRW 0.82 ±0.19 0.43 ±0.39
IF 0.89 ±0.15 0.34 ±0.36
LOF 0.82 ±0.15 0.54 ±0.35

Agg∅

Mean 0.84 ±0.18 0.47 ±0.40
Median 0.82 ±0.18 0.50 ±0.39
PW 0.74 ±0.17 0.64 ±0.34

Bas. Last layer 0.66 ±0.14 0.79 ±0.21
Logits 0.73 ±0.16 0.64 ±0.28

MSP Bas. MSP 0.83 ±0.17 0.39 ±0.28

Table 1: Average performance of each considered metric
over all the OOD pairs and model architectures in terms of
AUROC ↑, Err, and FPR ↓ . For each common OOD score,
we report the results obtained using every aggregation method
or choice of features to consider. The best method overall
is highlighted in bold and the best methods per underlying
metric and setting are underlined.

Figure 3: Average performance of OOD detectors in terms of
AUROC ↑ for tasks involving different numbers of classes.
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Figure 4: Stability and robustness comparison of the best-
performing aggregation methods and underlying OOD scores
with SC as underlying OOD score. Common baselines and
SOTA display significant deviations in performance with
the different languages, whereas score aggregation methods
induce more consistent and better performance.

Post Aggregation is More Stable Across Task,
Language, Model Architecture
Most OOD scores have been crafted and finetuned for specific
settings. In the case of NLP, they have usually been validated
only on datasets involving a small number of classes or on
English tasks. In this section*, we study the stability and
consistency of the performance of each score and aggregation
method in different settings.

Stability of performance across tasks. In Fig. 3, we plot
the average AUROC ↑ across our models and datasets per
number of classes of the IN dataset. It is, therefore, the num-
ber of classes output by the model. Our best post-aggregation
methods (i.e., Maximum cosine similarity and Integrated
Rank-Weigthed) produced more consistent results across all
settings. It can maintain excellent performance for all types
of datasets, whereas the performance of baselines and other
aggregation methods tends to fluctuate from one setting to
another. More generally, we observe that data-driven ag-
gregation methods tend to perform consistently on all tasks,
whereas previous baselines’ performance tends to vary.

Features aggregation vs. OOD scores aggregation. Inter-
estingly, we show that while Power Means pre-aggregation
of the features yields better results than single-layer scores,
they still follow the same trend, and the gain is more minor
and inconsistent.

Stability of results across languages. In Fig. 4 we present
the deviations in performance of the different OOD detection
methods and show that our methods are significantly more
robust across languages and tasks than baselines and previous
SOTA.

Comparison with the oracle. As shown in Fig. 1, there
often exists a layer that yields very high OOD detection
performance. An oracle that knows which layer to consider
would perform better than all of the baselines and SOTA, as
they know the best layer. In Fig. 5, we show that our aggre-
gation methods can outperform that oracle (Green bar, SC

scores aggregated with SIRW), whereas SOTA and baselines
yield significantly worse results.

Figure 5: Average performance difference in terms of AU-
ROC between aggregation methods and the oracle (best pos-
sible layer).

Results in Computer Vision
The proposed method can be applied to computer vision,
however, several works have shown that in that setting the
logits are the best layer to perform OOD detection on (Pi-
cot et al. 2023b; Lee et al. 2018), alleviating the need for
layer selection or aggregation. In Raghuram et al., they fail
to demonstrate any gain in OOD detection using score aggre-
gation.

Conclusions
We proposed aggregating OOD scores across all the layers
of the encoder of a text classifier instead of relying on scores
computed on a single hand-picked layer (logits) to improve
OOD detection. We confirmed that all the layers are not
equal regarding OOD detection and, more importantly, that
the common choices for OOD detection (logits) are often not
the best choice. We validated our methods on an extended text
OOD classification benchmark MILTOOD-C we introduced.
We showed that our aggregation methods are not only able
to outperform previous baselines and recent work, but they
were also able to outperform an oracle that would be able to
choose the best layer to perform OOD detection for a given
task. This leads us to conclude that valuable information
for OOD detection is scattered across all the encoder layers.
While this tool shows promising results, it should not be
trusted blindly. It relies on anomaly detection with respect to
the training set and thus can remove otherwise well-handled
samples. It is also not infallible and can miss OOD samples,
which can cause harm to the model’s performance.
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