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ABSTRACT

For a given ground cost, approximating the Monge optimal transport map that
pushes forward a given probability measure onto another has become a staple
in several modern machine learning algorithms. The fourth-order Ma-Trudinger-
Wang (MTW) tensor associated with this ground cost function provides a notion
of curvature in optimal transport. The non-negativity of this tensor plays a crucial
role for establishing continuity for the Monge optimal transport map. It is, how-
ever, generally difficult to analytically verify this condition for any given ground
cost. To expand the class of cost functions for which MTW non-negativity can be
verified, we propose a provably correct computational approach which provides
certificates of non-negativity for the MTW tensor using Sum-of-Squares (SOS)
programming. We further show that our SOS technique can also be used to com-
pute an inner approximation of the region where MTW non-negativity holds. We
apply our proposed SOS programming method to several practical ground cost
functions to approximate the regions of regularity of their corresponding optimal
transport maps.

1 INTRODUCTION

Optimal transport (OT) (Villani, 2021; 2009; Santambrogio, 2015), originally considered by Gaspard
Monge in 1781 (Monge, 1781), has become a key tool in modern machine learning with applications
in generative modeling (Montavon et al., 2016; Bousquet et al., 2017; Balaji et al., 2020; Rout et al.,
2021; Lipman et al., 2022; Houdard et al., 2023), adversarial training (Sanjabi et al., 2018; Bhagoji
et al., 2019), control (Chen et al., 2016b; 2021; Teter et al., 2024), and data science (Peyré et al.,
2019; Flamary et al., 2021). In many applications, it is of interest (Seguy et al., 2018; Makkuva et al.,
2020; Bunne et al., 2022; Pooladian et al., 2023; Manole et al., 2024) to numerically approximate
the Monge OT map τ : X → Y where X ,Y ⊆ M, and M is a smooth, compact, connected
n-dimensional manifold.

The Monge OT formulation is as follows: given two probability measures µ, ν supported on X and
Y , respectively, let c : X ×Y → R≥0 be a C4 smooth function that encodes the cost of transporting
unit amount of mass from x ∈ X to y ∈ Y . The function c is referred to as the ground cost. The
problem seeks to find the Borel map τopt, referred to as the Monge OT map, which minimizes the
total transportation cost, namely the functional

∫
X c(x, τ(x))dµ(x), subject to the constraint that for

all Borel sets U ⊆ Y , µ
(
τ−1(U)

)
= ν(U), or equivalently that the pushforward τ#µ = ν. So,

τopt = arg inf
τ :X→Y

∫
X
c(x, τ(x))dµ(x)

subject to τ#µ = ν.

For a general class of costs and measures, the existence-uniqueness of the Monge OT map τopt was
established by (Brenier, 1991) and (Gangbo & McCann, 1996). Building on these results, it is natural
to study the regularity (e.g., continuity, injectivity) of τopt. For the Euclidean squared-distance cost
function, this was studied by (Caffarelli, 1992; Delanoë, 1991; Urbas, 1997), but for more general
cost functions this remained an open problem for some time. Eventually, (Ma et al., 2005) discovered
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an biquadratic form inequality–the so-called Ma-Trudinger-Wang (MTW) condition–which plays a
crucial role in the regularity theory of τopt (Trudinger & Wang, 2009). See Sec. 2.1 for details.

However, analytic verification of this tensor non-negativity condition is tedious in practice. Conse-
quently, existing verification results (Ma et al., 2005; Lee & McCann, 2011; Lee & Li, 2012; Figalli
et al., 2012; Khan & Zhang, 2020) are tailored for specific OT problems, and the analytic approaches
therein do not generalize.

Contributions. We propose, for the first time, a provably correct computational framework that can
certify or falsify the non-negativity of the MTW tensor associated with a given ground cost c under
the assumption

A1. c is a rational function in (x, y) ∈ X × Y semialgebraic (Definition 4).

We will see later that necessary condition for the proposed computational framework is that the
elements of the MTW tensor are rational. For this to hold, A1 is sufficient but not necessary. In
fact, the development of OT regularity theory was motivated by the engineering problem of reflector
antenna design (Loeper, 2009) cast as an OT problem with non-rational cost c(x, y) = − log ∥x−y∥,
which our proposed framework can handle. Furthermore, many cost functions in practice are either
already polynomials/rationals, or smooth enough to be well-approximated by polynomials/rationals.
This is another reason why the assumption A1 is benign.

The proposed approach is based on Sum-of-Squares (SOS) programming (Prajna et al., 2002; Par-
rilo, 2003; Prajna et al., 2005; Laurent, 2009) well-known in optimization and control literature. As
such, ours is the first work on computational certification of OT regularity, and should be of interest
to the broader SOS programming research community.

We also demonstrate that our proposed computational framework

• can be applied to non-rational c provided the elements of the MTW tensor are rational (see
Examples 2 and 4 in Sec. 4),

• can be used to solve the inverse problem, namely to compute a semialgebraic inner approx-
imation of the region where MTW non-negativity holds (see Sec. 4.2).

Our results open the door for computational verification of OT regularity for a general class of non-
Euclidean ground cost c.

Organization. The remaining of this paper is structured as follows. Sec. 2 provides the background
on OT regularity and SOS programming. Sec. 3 details the SOS formulation for the forward prob-
lem, i.e., certification/falsification of the non-negativity of the MTW tensor (Sec. 3.1), and for the
inverse problem, i.e., semialgebraic inner approximation of the region where MTW non-negativity
holds. In Sec. 4, we illustrate the proposed SOS computational framework for both the forward
(Examples 1 and 2) and the inverse (Examples 3 and 4) problems. Sec. 5 concludes the paper.

2 NOTATIONS AND BACKGROUND

Notations. A summary of notations is listed in Table 1. Except in the case of ground cost functions
c(x, y), we use the subscripts to denote components. For example, xi denotes the ith component of
the vector x, and [F ]i,j denotes the (i, j)th component of the matrix F .

In the case of cost functions, subscripts such as cij,kl(x, y) denote the corresponding partial deriva-
tive: ∂4

∂xi∂xj∂yk∂yl
c(x, y). In this case, the comma in the subscript ij, kl, is used to separate

indices corresponding to components of variable x and components of variable y. The super-
scripts such as ci,j(x, y) stand for (i, j)th element of the inverse of the mixed-Hessian of c, i.e.,
ci,j(x, y) = [H(x, y)]i,j where

H := ((∇x ⊗∇y)c)
−1

. (1)

A basic assumption in the regularity theory of OT is that the matrix (∇x ⊗ ∇y)c is non-singular
(Villani, 2009), and thus its inverse, i.e., the matrix H , is well-defined.
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Table 1: Symbols and notations used throughout this work

SYMBOL DESCRIPTION

JnK finite set {1, · · · , n} for n ∈ N
xi the ith component of vector x
[A]i,j the (i, j)th component of matrix A
xd monomial vector in components of x ∈ Rn of degree d,

i.e., (xα1
1 · · ·xαn

n ) for all valid permutations of 0 ≤ αi ≤ d such that
∑

i αi = d
Rd[x, y] set of polynomials in x, y with real coefficients of degree ≤ d ∈ N,

i.e.,
∑

i aix
α(i)yβ(i) where α(i), β(i) ∈ Nn and α(i) + β(i) ≤ d ∀i

Rc,d[x] set of rational functions with numerator polynomial of degree c and
denominator polynomial of degree d, i.e.,

{
f
g | f ∈ Rc[x], g ∈ Rd[x], c, d ∈ N

}
n∑
sos

[x, y] set of n× n matrix-valued SOS polynomials in x, y;
∑
sos

[x, y] :=
1∑
sos

[x, y]

Sm (Sm+ ) set of symmetric (positive semidefinite) matrices of size m×m
cij,kl ∂xi

∂xj
∂yk

∂yl
c(x, y); cij,k := ∂xi

∂xj
∂yk

c(x, y), cj,kl := ∂xj
∂yk

∂yl
c(x, y)

TxM tangent space of the manifoldM at x
T ∗
xM cotangent space of the manifoldM at x

pminor(F ) the set of principal minors of matrix F
|·| absolute value for scalar argument, the cardinality for set argument
∥·∥ Euclidean norm
∇x standard Euclidean gradient w.r.t. vector x(
a
b

)
coefficient of xb term in the binomial expansion of (1 + x)a where a ≥ b, a, b ∈ N

Im Identity matrix of size m×m

2.1 THE REGULARITY PROBLEM OF OPTIMAL TRANSPORT

Kantorovich (1942) proved the existence of solution for a broad class of OT problems where the
optimal transport plan is given by a coupling of the measures µ and ν. This relaxation is known
as the Kantorovich problem of OT. However, the existence theory for the Monge OT problem is
considerably more subtle. The conditions for existence and µ-a.e. uniqueness of the Monge OT
map τopt were established by Brenier (1991) for c(x, y) = ∥x − y∥22 in Euclidean space, and by
Gangbo & McCann (1996) for more general ground costs c(x, y). Roughly speaking, these results
state that if the ground cost c is sufficiently smooth and non-degenerate and the measures µ, ν are
sufficiently regular (for instance, compactly supported and Lebesgue absolutely continuous), then
the solution to the Kantorovich problem will also be a solution to the Monge problem. Furthermore,
the measurable mapping τopt is then the c-subdifferential of a potential function ϕ, which is the
weak solution of the Jacobian equation

det
(
∇2ϕ−A(x,∇ϕ)

)
= f(x, ϕ,∇ϕ), x ∈ X . (2)

Here, A is a matrix-valued function derived from the ground cost c, and f is a positive function
which depends on c, µ, and ν. Since this equation involves the determinant of the Hessian ∇2, it is
a Monge-Ampére-type partial differential equation (Benamou et al., 2014).

Once the existence of the Monge OT has been established, it is natural to study the continuity or
smoothness of τopt, which is equivalent to understanding the qualitative behavior of solutions to (2).

The notion of weak solutions for Monge-Ampére type equations was established by Aleksandrov
(1958). Using this theory, it can be shown that the potential ϕ will be differentiable a.e., which
implies that the optimal transport is well-defined (see De Philippis & Figalli (2014) for a survey on
this topic). However, in order to establish the continuity of the map τopt (e.g., a Lipschitz estimate),
it is necessary to find an a priori C2 estimate for the potential. This problem is known as the
regularity problem of optimal transport, and provides the primary motivation for our work.

After Brenier (1991), several works (Caffarelli, 1992; Delanoë, 1991; Urbas, 1997) studied the reg-
ularity problem for the squared-distance cost in Euclidean space. They established that the transport
is smooth whenever the measures are sufficiently smooth and the support of the target measure is
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convex. In addition, Caffarelli showed that the non-convexity of the target space provides a global
obstruction1 to establishing smoothness for the transport. These works relied crucially on the classic
result from convex analysis that the sub-differential of a convex function is a convex set (Rockafellar,
1970, p. 215), which prevented their arguments from being extended to other cost functions.

In Ma et al. (2005); Trudinger & Wang (2009), the authors introduced a new condition on the ground
cost c, which is now known as the MTW condition. They showed that this condition was sufficient
to establish the continuity of τopt, so long as the measures µ, ν were sufficiently regular and the
target measure satisfied the appropriate notion of convexity. Later, Loeper (2009) discovered that
for sufficiently smooth costs, the MTW condition is equivalent to the sub-differential of a c-convex
function being connected, which establishes the necessity of this condition in the regularity theory.
As a result, we say that costs c which satisfy this condition are regular. In order to state this condition
precisely, we first introduce a quantity referred to as the MTW tensor or the MTW curvature.
Definition 1 (MTW tensor or curvature). Let c : X ×Y → R be a cost function where the open sets
X ,Y ⊆ M, andM is a smooth, compact, connected n dimensional manifold. For x ∈ X , y ∈ Y ,
ξ ∈ TxX , and η ∈ T ∗

yY , the MTW Curvature of c is defined as

S(x,y)(ξ, η) :=
∑

i,j,k,l,p,q,r,s

(cij,pc
p,qcq,rs − cij,rs)c

r,kcs,lξiξjηkηl. (3)

Since the pointwise tangent and cotangent spaces of X and Y as in Definition 1 are isomorphic to
Rn, we may equivalently write S in the quadratic form

S(x,y)(ξ, η) = (ξ ⊗ η)⊤F (x, y)(ξ ⊗ η). (4)

In (4), the symbol ⊗ denotes the Kronecker product, and F (x, y) ∈ Rn2×n2

has entries

[F (x, y)]i+n(j−1),k+n(l−1) =
∑

p,q,r,s

(cij,pc
p,qcq,rs − cij,rs)c

r,kcs,l . (5)

Definition 2 (MTW(0), MTW(κ)). Consider the notations as in Definition 1. If S(·,·)(ξ, η) ≥ 0
for every pair (ξ, η) satisfying η(ξ) = 0, we say that the cost function c satisfies the weak MTW
condition, or MTW(0). If the stronger condition S ≥ κ∥ξ∥2∥η∥2 holds for some κ > 0, then we
say that the ground cost c satisfies the strong MTW condition, or MTW(κ).

Naturally, MTW(0) holds if F (x, y) ⪰ 0 for all pairs (x, y). Note that these definitions are slightly
unusual in that η and ξ have different basepoints. This contraction is known as the pseudo-scalar
product (see Definition 2.1 of Figalli et al. (2012) for its formulation in Riemannian manifolds). In
this paper, we implicitly use the Euclidean background to evaluate the pseudo-scalar products and
refer the readers to Kim & McCann (2010) for details on its formalization for general costs, as well
as an interpretation of the MTW tensor in terms of the curvature of a pseudo-Riemannian geometry.
Definition 3 (Non-negative cost curvature (NNCC)). (Figalli et al., 2011) Consider the notations
as in Definition 2. If we drop the assumption that η(ξ) = 0 in Definition 2, then a ground cost c
satisfying S(·,·)(ξ, η) ≥ 0 for every pair ξ, η, is said to have non-negative cost curvature (NNCC).

Examples, where the MTW or NNCC conditions hold, can be found in Ma et al. (2005); Lee &
McCann (2011); Lee & Li (2012); Figalli et al. (2012); Khan & Zhang (2020). However, both the
MTW(0) and MTW(κ) conditions are often difficult to analytically verify for generic ground cost c.

Beyond regularity of the OT map, both the MTW condition and NNCC condition provide informa-
tion about the sub-differential structure of c-convex function (Loeper, 2009). In recent work, Jacobs
& Léger (2020) developed a method for rapidly solving unregularized OT problems using a back-
and-forth gradient descent. However, this algorithm requires efficiently computing the c-conjugate
of a function. For the squared-distance cost, fast computation of Legendre transforms depends cru-
cially on the convexity of the subdifferential of a convex function (Lucet, 1997). For cost functions
which satisfy NNCC or MTW, it should be possible to develop rapid algorithms for c-conjugation,
which remains the primary bottleneck for adapting this algorithm to other cost functions. This can
be a potential application for certifying NNCC or MTW condition beyond the regularity of OT map.

1The precise meaning of global obstruction here is somewhat technical, because the transport can be smooth
even in cases where the set Y is not convex. However, given any non-convex Y , it is possible to find smooth
measures µ and ν so that the transport has discontinuities. Therefore, non-convexity of Y prevents one from
being able to establish an a priori estimate for the transport.
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2.2 SUM-OF-SQUARES PROGRAMMING

The proposed computational framework for solving the forward and inverse problems related to OT
regularity, are built on SOS programming ideas outlined below. We refer the readers to Appendix A
for additional details and examples. In Sec. 3, we will apply these ideas to a ground cost c for which
S, as defined in Def. 1, is a rational function in variables (x, y, η, ξ) ∈ X × Y × TxX × T ∗

yY .

SOS programming is a special class of polynomial optimization problems. Generic polynomial
optimization problems take the form

min
x∈Rn

f(x) (6)

subject to x ∈ C := {x ∈ Rn | gi(x) ≤ 0 ∀ i ∈ JngK},

where f and gi are given multivariate polynomials in vector variable x. Problems of the form (6),
in general, are computationally intractable because verifying the non-negativity of a multivariate
polynomial is NP-hard (Parrilo, 2003, page 4, Ch. 1). The set C is semialgebraic, as defined next.

Definition 4 (Semialgebraic set). (Bochnak et al., 2013, Ch. 2) A set of the form{
x ∈ Rn | g(x) ≤ 0, g ∈ Rdg

[x], dg ∈ N
}

is called basic semialgebraic. A semialgebraic set is de-
fined as the finite union of basic semialgebraic sets.

Example. The set of all 3× 3 correlation matrices a.k.a. the elliptope

{(x1, x2, x3)∈ R3 |

[
1 x1 x2

x1 1 x3

x2 x3 1

]
∈ S3+}={(x1, x2, x3)∈ [−1, 1]3 |2x1x2x3−x2

1−x2
2−x2

3+1 ≥ 0}

is semialgebraic. The set equality follows from Sylvester’s criterion (Meyer, 2000, Sec. 7.6): a
symmetric matrix is positive semidefinite if and only if its principal minors are all nonnegative.

Semialgebraic sets are known (Tarski, 1998), (Blekherman et al., 2012, Appendix A.4.4) to be stable
under finitely many intersections and unions, complement, topological closure, polynomial map-
pings and Cartesian product.

Introducing a new variable γ ∈ R, we rewrite (6) as

max
γ∈R

γ (7)

subject to f(x)− γ ≥ 0 ∀x ∈ C semialgebraic.

Under the assumption that the semialgebraic set C = {x ∈ Rn | gi(x) ≤ 0, i ∈ JngK} is also
Archimedean2, Putinar’s Positivstellansatz (Putinar, 1993) allows expressing the non-negativity of
the polynomial f(x)− γ over C with an equivalent (see Appendix A.3) SOS representation:

f(x)− γ = s0(x)−
∑

i∈JngK

si(x)gi(x), (8)

where s0, s1, . . . , sng
∈
∑
sos

[x], the set of multivariate SOS polynomials in vector variable x ∈ Rn.

The degree bounds for s0, s1, . . . , sng
can be found in Nie & Schweighofer (2007b).

Let d be maximum of the degrees of f, g1, . . . , gng , and let Zd(x) be a column vector of mono-
mials of the form (1, x, x2, · · · , xd) of length ζ :=

∑d
r=0

(
n+r−1

r

)
. Since the SOS polynomials

s0, s1, . . . , sng can be parameterized (Parrilo, 2003) by quadratic forms si(x) = Zd(x)
⊤SiZd(x),

for Si ⪰ 0, problem (7) can be written as a semidefinite program (SDP):

max
(γ,S0,S1,...,Sng )∈R×Sζ+×...×Sζ+︸ ︷︷ ︸

ng+1 times

γ (9)

subject to f(x)− γ = Zd(x)
⊤S0Zd(x)−

∑
i∈JngK

Zd(x)
⊤SiZd(x)gi(x),

2slightly stronger than compactness, see Appendix A.3 and Laurent (2009)
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where the previous polynomial equality constraint is actually a linear equality constraint in the de-
cision variables. Thanks to this SDP representation, existing software such as SOSTOOLS Pa-
pachristodoulou et al. (2013), YALMIP Lofberg (2004) or SOSOPT Seiler (2013) can be used to
solve SOS tightening of polynomial optimization problems via interior point methods in polynomial
time (Alizadeh et al., 1998).

3 PROBLEM FORMULATION

We now apply the SOS programming discussed in Sec. 2.2 to the following two problems.

Forward problem. Given c,X ,Y as per Assumption A1 in Sec. 1, verify if the ground cost c :
X×Y → R≥0 satisfies either MTW(0) or MTW(κ) (Definition 2) or NNCC (Definition 3) condition.

Inverse problem. Given c,X ,Y as per Assumption A1 in Sec. 1, find semialgebraic U×V ⊆ X×Y
such that the ground cost c : U × V → R≥0 satisfies either MTW(0) or MTW(κ) (Definition 2) or
NNCC (Definition 3) condition.

The SOS formulations for the aforesaid problems detailed next rely on F in (4)-(5), and hence
S, being rational function in (x, y) ∈ X × Y . For this to hold, the ground cost c being rational
as in Assumption A1 is sufficient (see Proposition 13 in Appendix B) but not necessary. Indeed,
Examples 2 and 4 in Sec. 4 consider non-rational ground cost c for which the proposed SOS
method can still be used.

3.1 FORWARD PROBLEM

Per Assumption A1, let the X × Y be as follows for some dm, ℓ ∈ N.

X × Y = {(x, y) ∈ Rn × Rn | mi(x, y) ≤ 0, mi(x, y) ∈ Rdm [x, y] ∀i ∈ JℓK} (10)

Then, the optimization formulation of the NNCC condition (Definition 3) on the semialgebraic set
X × Y , can be written as a feasibility problem:

min 0 (11)
subject to S(x,y)(ξ, η) ≥ 0, ∀(x, y) ∈ X × Y, ξ ∈ TxX , η ∈ T ∗

yY.

If (11) has a solution, then the NNCC condition is satisfied for all (x, y) ∈ X × Y .

To verify the MTW(κ) condition (Definition 2) for some κ ≥ 0, we need an additional constraint on
the pair (ξ, η), namely η(ξ) = 0. The resulting formulation is

min 0 (12)

subject to S(x,y)(ξ, η) ≥ κ∥ξ∥2∥η∥2, ∀(x, y) ∈ X × Y, ξ ∈ TxX , η ∈ T ∗
yY such that η(ξ) = 0.

Verifying the MTW(0) condition is then the special case (κ = 0) of (12).

If F in (4)-(5) is a rational function, i.e., F = FN

FD
∈ RN,D[x, y], then problems (11)-(12) are of the

form (7). In particular, the NNCC feasibility problem (11) can be tightened to an SOS program as
follows (proof in Appendix C).

Theorem 5 (NNCC forward problem). Given the semialgebraic set (10) with a ground cost function
c : X × Y → R≥0, let F in (5) be of the form F = FN

FD
∈ RN,D[x, y], N,D ∈ N. If there exist

s0, s1, . . . , sℓ ∈
n2∑
sos

[x, y] such that

(
FN (x, y) + F⊤

N (x, y)
)
− s0(x, y)FD(x, y) +

∑
i∈JℓK

si(x, y)mi(x, y) ∈
n2∑
sos

[x, y], (13)

then c satisfies the NNCC condition on X × Y .

A modified version of Theorem 5 can be used to verify the MTW(κ) condition for κ ≥ 0.

6
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Theorem 6 (MTW(κ) forward problem). Given the semialgebraic set (10) with a ground cost func-
tion c : X × Y → R≥0, let F in (5) be of the form F = FN

FD
∈ RN,D[x, y], N,D ∈ N. If there exist

s1, . . . , sℓ ∈
∑
sos

[x, y, ξ, η] and t ∈ Rdt [x, y, ξ, η], dt ∈ N, such that

(ξ ⊗ η)⊤
(
FN (x, y) + F⊤

N (x, y)
)
(ξ ⊗ η)− κFD(x, y)∥ξ∥2∥η∥2

+
∑
i∈JℓK

si(x, y, ξ, η)mi(x, y) + t(x, y, ξ, η)η⊤ξ ∈
∑
sos

[x, y, ξ, η], (14)

then c satisfies the MTW(κ) condition on X × Y for some κ ≥ 0.

Theorems 5 and 6 allow us to replace the constraints in the feasibility problems (11) and (12) with
their SOS counterparts (13) and (14), respectively. As a result, both feasibility problems admit an
SDP formulation as in (9). In Sec. 4.1, we will illustrate the solutions for these problems via SOS-
TOOLS and YALMIP. In Appendix D, we analyze the runtime complexity of the SDP computation
for the feasibility problems (13) and (14).

3.2 INVERSE PROBLEM

If the constraints in the forward problems (11) or (12) are infeasible, i.e., the NNCC or the MTW(κ)
conditions are falsified for some (x, y) ∈ X × Y, ξ ∈ TxX , η ∈ T ∗

yY , then one may still be
interested to know if such conditions hold locally. Indeed, the NNCC or the MTW(κ) conditions are
not globally satisfied in many OT problems. Nevertheless, if we have smooth measures supported
on relatively c-convex domains (e.g., small balls) within some set U × V ⊆ X × Y where local
regularity holds, then the associated Monge OT map τopt will be continuous. This motivates the
inverse problems of finding semialgebraic U × V ⊆ X × Y where NNCC or MTW(κ) holds.

Let X × Y be as in (10), and let vol denote the volume measure. Then, a natural formulation of the
NNCC inverse problem is

argmax
U×V⊆X×Y

vol(U × V) (15)

subject to S(u,v)(ξ, η) ≥ 0, ∀(u, v) ∈ U × V, ξ ∈ TuU , η ∈ T ∗
v V.

Likewise, the MTW(κ), κ ≥ 0, inverse problem is

argmax
U×V⊆X×Y

vol(U × V) (16)

subject to S(x,y)(ξ, η) ≥ κ∥ξ∥2∥η∥2, ∀(u, v) ∈ U × V, ξ ∈ TuU , η ∈ T ∗
v V such that η(ξ) = 0.

The volume maximization objectives in problems (15)-(16) are motivated by our desire to compute
“largest” set under-approximators of X ×Y where the desired OT regularity conditions hold locally.

To parameterize the decision variable U×V using polynomials, we define U×V as the zero sublevel
set of some measurable V , i.e., U × V = {(x, y) ∈ X × Y | V (x, y) ≤ 0} where V ∈ Rd[x, y]. If
F in (4)-(5) is a rational function, i.e., F = FN

FD
∈ RN,D[x, y], then problem (19) and its MTW(κ)

counterpart can be recast in the form (7) by imposing the constraint −V (x, y) ≤ f(x, y) for all
principal minors f of FN . Then, the problem (15) becomes

max
V ∈Rd[x,y]

vol (U × V) (17)

subject to mi(x, y) ≤ V (x, y) ∀ (x, y) ∈ X × Y, i ∈ JℓK.
V (x, y) + f(x, y) ≥ 0, ∀(x, y) ∈ X × Y, f ∈ pminor(FN ).

Likewise, the problem (16) can be rewritten as

max
V ∈Rd[x,y]

vol (U × V) (18)

subject to mi(x, y)∥ξ∥2∥η∥2 ≤ V (x, y, ξ, η) ∀ (x, y) ∈ X × Y, i ∈ JℓK,

V (x, y, ξ, η) + (ξ ⊗ η)⊤FN (x, y)(ξ ⊗ η) ≥ κFD(x, y)∥ξ∥2∥η∥2,
∀(x, y) ∈ X × Y, ξ ∈ TxX , η ∈ T ∗

yY such that η(ξ) = 0.
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To remove the implicit dependence of the objective vol (U × V) on V , we note that maximiz-
ing vol (U × V) is equivalent to minimizing vol ((X × Y) \ (U × V)). Furthermore, utilizing the
heuristic used in Theorem 2 of Jones (2024) to solve such sublevel set volume minimization prob-
lems, we replace vol ((X × Y) \ (U × V)) with the expression∫

Λ

|V (x, y)−max
i∈JℓK

mi(x, y)|dxdy =

∫
Λ

V (x, y)dxdy −
∫
Λ

max
i∈JℓK

mi(x, y)dxdy.

Since the latter term in the above expression is a constant, minimizing the above is equivalent to
minimizing

∫
Λ
V (x, y)dxdy. Although the best choice for the domain of integration is Λ = X ×Y ,

that choice may not be compact, and thus the integral may be unbounded. Henceforth, we choose a
priori Λ to be some compact subset of X × Y . Thus, the NNCC inverse problem (17) becomes

min
V ∈Rd[x,y]

∫
Λ

V (x, y)dxdy (19)

subject to mi(x, y) ≤ V (x, y) ∀ (x, y) ∈ Λ, i ∈ JℓK,
V (x, y) + f(x, y) ≥ 0 ∀(x, y) ∈ Λ, f ∈ pminor(FN ).

The MTW(κ) inverse problem (18) can be reformulated likewise. Since problem (19) is of the form
(7), we perform SOS tightening as in Sec. 3.1 to obtain the following (proof in in Appendix C).
Theorem 7 (NNCC inverse problem). Given the semialgebraic set (10) with a ground cost function
c : X ×Y → R≥0, let F in (5) be of the form F = FN

FD
∈ RN,D[x, y], N,D ∈ N. For some compact

set Λ := {(x, y) ∈ X × Y | λ(x, y) ≤ 0, λ(x, y) ∈ Rdλ
[x, y], dλ ∈ N} chosen a priori, suppose

V± : Λ→ R solves the optimization problem

min
V ∈Rd[x,y]

∫
Λ

V (x, y)dxdy,

subject to V (x, y)−mi(x, y) + ri(x, y)λ(x, y) ∈
∑
sos

[x, y], ∀ i ∈ JℓK,

V (x, y)± FD(x, y) + s0(x, y)λ(x, y) ∈
∑
sos

[x, y],

V (x, y)± fj(x, y) + sj(x, y)λ(x, y) ∈
∑
sos

[x, y], ∀j ∈ J|pminor(FN )|K,

s0(x, y), sj(x, y), ri(x, y) ∈
∑
sos

[x, y] ∀i ∈ JℓK, j ∈ J|pminor(FN )|K,

where fj are principal minors of FN . Then, the ground cost c satisfies the NNCC condition on the
set {(x, y) ∈ Λ | V+(x, y) ≤ 0} ∪ {(x, y) ∈ Λ | V−(x, y) ≤ 0}.

Likewise, the MTW(κ) inverse problem can be recast as an SOS program (Thm. 14 in Appendix
C). As in Sec. 3.1, such SOS reformulations can be solved via SOSTOOLS and YALMIP. We will
illustrate the same in Sec. 4.2.

4 NUMERICAL RESULTS

Now we solve the SOS formulations for the forward (Sec. 3.1) and the inverse (Sec. 3.2) problems
for ground costs c found in the literature. A visual comparison of the contours for the costs consid-
ered in this Section, can be found in Appendix E. All numerical results reported next were obtained
by solving the corresponding SOS programs via SOSTOOLS (Papachristodoulou et al., 2013) and
YALMIP (Lofberg, 2004) on a HP Spectre laptop with Intel i7-7500U CPU @2.70GHz (4 CPUs)
with 16GB RAM. Our SOS implementations leverage the representation of F in Appendix B, Propo-
sition 13, part (iii). Appendix F lists more examples of non-Euclidean OT costs that appeared in the
machine learning literature, and are amenable to the proposed method.

4.1 FORWARD PROBLEM

Example 1 (Perturbed Euclidean cost). In this example, we consider the perturbed Euclidean cost
c(x, y) = ∥x − y∥2 − ε∥x − y∥4, x, y ∈ Rn, ε > 0. Lee & Li (2009) analytically showed that for
ε small enough, the MTW(0) condition is satisfied on the semialgebraic set X × Y := {(x, y) ∈
Rn × Rn : ∥x− y∥ ≤ 0.5}.
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Algorithm 1 Bisection method
to estimate the largest ε for
which MTW(0) holds

Choose εtol, εmin and εmax

while |εmin − εmax| > εtol
do

ε← (εmin + εmax) /2
if S(ε) ⪰ 0 then

εmin ← ε
else

εmax ← ε
end if

end while
return ε

We estimate the largest perturbation to the Euclidean metric, i.e.,
the largest ε > 0 such that the cost function c satisfies the NNCC
condition when n = 1, and the MTW(0) condition when n ≥ 2.
We do so by invoking Theorem 5 and Theorem 6 respectively,
to test the feasibility of the associated SOS programs for varying
ε > 0. We then estimate the largest ε, denoted as εmax, for which
the NNCC and MTW(0) conditions hold, via bisection search.

For n = 1, there are no pairs ξ, η such that η(ξ) = 0 with η and
ξ both non-zero. In this case, one can verify analytically that for
ε ≤ 2/3, the MTW tensor is non-negative, i.e., S(·,·)(ξ, η) ≥ 0
for any pair of ξ, η. Our SOS computation per Theorem 5 fol-
lowed by bisection estimate matches (Table 2 first column) the
analytical prediction εmax = 2/3.

For testing the MTW(0) condition with n = 2, we use the SOS
formulation per Theorem 6 and perform the same bisection search for εmax. To reduce the computa-
tional complexity, we leveraged translational invariance of c by fixing x = 0, and by parameterizing
the orthogonal vector-covector pair (ξ, η) as ξ = [a, 1]⊤ and η = [−1, a]⊤.

Table 2: Numerical results for Example 1

Dimensions, n 1 2
εmax 0.67 1.05 · 10−2

Residual 1.19 · 10−7 4.18 · 10−7

The last row in Table 2 reports the resid-
uals of the corresponding SOS programs,
where the residual equals the largest co-
efficient in the polynomial S(x,y)(ξ, η) −
s(x, y, ξ, η)⊤s(x, y, ξ, η) where s is the square
root of S obtained from the SOS program.

Example 2 (Log-partition costs). We now consider a ground cost of the form c(x, y) = Ψ(x− y)
where Ψ is the log-partition function of some exponential family. Pal & Wong (2018; 2020) con-
sidered the log-partition function of the multinomial distribution and showed that the solutions
to OT with the associated cost (i.e., the free energy) could be used to create pseudo-arbitrages
(Fernholz, 1999) in stochastic portfolio theory. Khan & Zhang (2020) showed that this c satis-
fies the MTW(0) condition and derived a regularity theory for the associated OT. More generally,
for c(x, y) = Ψ(x− y), the MTW tensor S is proportional to the quantity

Ax(ξ, η) =
∑

i,j,k,l,p,q,r,s

(ΨijpΨ
pqΨqrs −Ψijrs)Ψ

rkΨslηiηjξkξl, x ∈ X , ξ ∈ TxX , η ∈ T ∗
xX , (20)

which can be interpreted geometrically in terms of the curvature of an associated Kähler met-
ric (Khan & Zhang, 2020, p. 399). We consider the cost c(x, y) = ΨIsoMulNor(x − y), where

ΨIsoMulNor(x) := 1
2

(
− log x1 +

n∑
i=2

x2
i /x1

)
is the log-partition function for isotropic multivariate

normal distribution, and x ∈ {x ∈ Rn | x1 > 0}. The regularity of c(x, y) = ΨIsoMulNor(x − y)
follows from the non-negativity of A (Khan & Zhang, 2022, Prop. 9) but checking the latter is
non-trivial for n > 2 and this computation provides a certificate of this property.

Although c(x, y) = ΨIsoMulNor(x − y) is not a rational function, but the inverse of the mixed
Hessian H in (1) is a matrix-valued polynomial, and consequently Ax(ξ, η) is a rational func-
tion. Specifically, if we parameterize the vector-covector pairs (ξ, η) as ξ = [ξ1, · · · , ξn]⊤,

η = [η1, · · · , ηn−1,− 1
ξn

n−1∑
i=1

ξiηi]
⊤, then Ax(ξ, η) = poly(x, ξ, η)/x2

1ξ
2
n, where poly denotes a

polynomial in x, ξ, η. For n = 2, direct computation gives poly(x, ξ, η) = 6ξ21 (ξ2x1 − ξ1x2)
2

which is trivially in SOS form. However, for n ≥ 3, analytic verification of non-negativity of poly
is significantly challenging. In such cases, we use Theorem 6 to find an SOS decomposition of the
form poly(x, ξ, η) = s(x, ξ, η)⊤s(x, ξ, η) via the YALMIP toolbox (Lofberg, 2004). The explicit
expression of the polynomial s thus computed for n = 3, is reported in Appendix E. In Table 3,
we report the residuals and total computational time taken to set up and solve the SOS optimization
problem in YALMIP (Lofberg, 2004).

4.2 INVERSE PROBLEM

Example 3 (Perturbed Euclidean cost revisited).

9
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Table 3: Numerical results for Example 2

Dimensions, n 3 4 5 6
Residual 1.034 · 10−7 4.804 · 10−8 4.683 · 10−8 3.475 · 10−11

Total time (sec) 0.7220 0.8050 1.2520 1.6690

Figure 1: Inner approx-
imation of the region
where MTW tensor is≥ 0
for Example 3.

Recall from Sec. 4.1 that the cost c(x, y) = ∥x − y∥2 − ε∥x − y∥4
fails the MTW(0) condition for large ε > 0. To illustrate the so-
lution for the MTW(0) inverse problem (Sec. 3.2), we fix ε = 1,
Λ = [−1, 1]2, X = {[0, 0]}, and X × Y as in Example 1. As
before, we parameterize (ξ, η) as ξ = [a, 1]⊤, η = [−1, a]⊤. We
solve the SOS formulation of the inverse problem per Theorem 14
(Appendix C) to estimate the region where the MTW(0) condition
is locally satisfied. The resulting region is depicted in Fig. 1.
In this example, we parameterize V to be a degree 14-polynomial
in (y1, y2, a). We find that CPU time for solving the underlying
SDP is 0.97s (total time from problem setup to plotting is 115s).

Example 4 (Squared distance cost for a surface of positive curva-
ture). We now consider the ground cost c(x, y) = 3(x1 − y1)

2(x2 +

y2) + 4(x3
2 + y32)− (4x2y2 − (x1 − y1)

2)
3
2 , which is a scaled squared

distance induced by the incomplete Riemannian metric ds2 = x2(dx
2
1+dx2

2) (Bryant, 2018), which
has positive Gaussian curvature. On the diagonal x = y, the MTW tensor is proportional to the sec-
tional curvature of the metric, so there is a neighborhood in which MTW(0) holds. Therefore, it is
of interest to quantify this region.

Figure 2: Inner approx-
imation of the region
where MTW tensor is≥ 0
for Example 4.

This metric has two further properties which make analysis of its MTW
tensor more tractable. First, it admits a symmetry in the x1 coordi-
nate, which allows us to set x1 = 0. Second, the scalings (x1, x2) 7→
(ax1, ax2) are homotheties of the metric. Therefore, we can scale the
metric so that x2 = 1, and so to determine regions for which the MTW
condition holds, it suffices to assume X = [0, 1].

We fix Λ = [−1, 1] × [0, 2], X × Y = {[0, 1]} × {(y1, y2) ∈
[−1, 2] × [0, 2] | 4y2 − y21 ≥ 0}, and parameterize the (ξ, η) pairs
as ξ = [a, 1]⊤, η = [1,−a]⊤. The MTW tensor S is a function of
y1, y2, a. However, since S has non-polynomial terms, specifically,
(4y2 − y21)

1/2, we employ a change of variable z = (4y2 − y21)
1/2

to obtain S([0,1],y)(ξ, η) as a rational polynomial in y1, y2, a, z. As
in Example 3, we solve the SOS formulation of the inverse problem
per Theorem 14 (Appendix C) to estimate the region where the corre-
sponding MTW(0) condition is locally satisfied. The computed region
is shown in Fig. 2. Similar to the previous example, V is parameterized as a degree-14 polynomial
in (y1, y2, z, a). We find the CPU time for solving the underlying SDP is 19.6s (total time from
problem setup to plotting is 120s). The bulk of this time is spent on problem parsing and SDP setup
needed to deploy off-the-shelf solvers, and a customized solver should reduce this overhead.

5 CONCLUSIONS

We propose a provably correct computational approach to the forward and inverse problems of deter-
mining regularity for a cost function based on the sum-of-squares (SOS) programming. The forward
problem verifies that a given ground cost globally satisfies non-negative cost curvature (NNCC) or
the Ma-Trudinger-Wang (MTW) condition. The inverse problem concerns with finding a region in
which the NNCC or the MTW condition holds. The proposed computational approach generalizes
for a large class of costs including but not limited to rational functions, and is the first computational
work on OT regularity. Our contributions here significantly advance the current state-of-the-art
where the NNCC and the MTW conditions have been analytically verified for a limited number of
problems. Since the desired conditions require checking the non-negativity of biquadratic forms,
analytical approaches have remained unwieldy. We demonstrate that the proposed SOS program-
ming approach can leverage existing solvers, can recover known results in the literature, and can
help discover new results on OT regularity.
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A NONNEGATIVE POLYNOMIALS AND SUM-OF-SQUARES PROGRAMMING

In this section, we clarify the connections between the nonnegative and the SOS polynomials. For
the benefit of readers not already familiar with this topic, we outline the theoretical rudiments with
pedagogical examples.

A.1 SOS POLYNOMIAL

Definition 8 (SOS polynomial). A polynomial poly in variable x ∈ Rn is SOS, if there exist finitely
many (say m) polynomials poly1,poly2, . . . ,polym ∈ R[x] such that

poly(x) = (poly1(x))
2
+ (poly2(x))

2
+ . . .+ (polym(x))

2
. (21)

We denote the set of all SOS polynomials in x ∈ Rn as
∑
sos

[x].

A weaker notion of SOS is nonnegative polynomial. Specifically, a polynomial poly ∈ R[x] is
called nonnegative if poly(x) ≥ 0 for all x ∈ Rn. We note that∑

sos

[x] ⊂ nonnegative polynomials in x ⊂ R[x]. (22)

The following example highlights that the first inclusion is strict.
Example. (A polynomial that is nonnegative but not SOS) The Motzkin polynomial (Motzkin,
1967)

polyMotzkin (x1, x2) := x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1,

is nonnegative for all (x1, x2) ∈ R2, as immediate from the AM-GM inequality

x4
1x

2
2 + x2

1x
4
2 + 1

3
≥
(
x4
1x

2
2 · x2

1x
4
2 · 1

)1/3
= x2

1x
2
2.

However, the Motzkin polynomial is not an SOS polynomial but instead a ratio of SOS polynomials.
The latter follows from that(

1 + x2
1 + x2

2

)
· polyMotzkin (x1, x2)

=2

(
1

2
x3
1x2 +

1

2
x1x

3
2 − x1x2

)2

+
(
x2
1x2 − x2

)2
+
(
x1x

2
2 − x1

)2
+

1

2

(
x3
1x2 − x1x2

)2
+

1

2

(
x1x

3
2 − x1x2

)2
+
(
x2
1x

2
2 − 1

)2
.

Figure 3: The Motzkin polynomial.

SOS polynomials can be expressed as a quadratic
form

poly(x) = (zd(x))
⊤
Qzd(x), Q ⪰ 0, (23)

where zd(x) denotes the monomial vector
(1, x, . . . , xd)⊤. In practice, it may suffice to use
a subvector of the monomial vector zd(x).
Example. (Scalar-valued SOS decomposition)
The SOS polynomial poly(x1, x2) = 2x4

1 +
5x4

2−x2
1x

2
2 +2x3

1x2 is expressible as a quadratic
form

poly(x1, x2) =

 x2
1

x2
2

x1x2

⊤ [
2 −3 1
−3 5 0
1 0 5

] x2
1

x2
2

x1x2

 .

The quadratic form representation called SOS decomposition, is convenient because if a nonnegative
polynomial is SOS, then certifying its non-negativity is equivalent to certifying that the matrix Q ⪰
0. The latter is an SDP feasibility problem amenable to off-the-shelf interior point software.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 MATRIX-VALUED SOS POLYNOMIAL

A generalization of our interest is M×M matrix-valued SOS polynomials POLY(x) where x ∈ Rn.
To this end, we first generalize the notion of nonnegative polynomials to semidefinite matrix-valued
polynomials as follows.
Definition 9 (Semidefinite matrix-valued polynomial). A mapping

F : Rn 7→ SM+
such that all entries of F (x) are in R[x], is called positive semidefinite matrix-valued polynomial.
Definition 10 (Matrix-valued SOS polynomial). An M × M positive semidefinite matrix-valued
polynomial POLY in variable x ∈ Rn, is called matrix-valued SOS polynomial if it admits a de-
composition

POLY(x) = (IM ⊗ zd(x))
⊤
Q (IM ⊗ zd(x)) , Q ⪰ 0. (24)

We denote the set of all M ×M matrix-valued SOS polynomials in x ∈ Rn as
M∑
sos

[x].

The matrix-valued SOS decomposition (24) generalizes the scalar-valued SOS decomposition (23).
Example. (Matrix-valued SOS decomposition) Consider the matrix-valued polynomial

POLY(x1, x2) =

[
2x2

1x
2
2 x1x

2
2

x1x
2
2 2x2

1x
2
2 − 2x1x

2
2 + 4x2

2

]
.

While the elements of POLY are not all SOS polynomials, we can verify that

POLY(x1, x2) =

(
I2 ⊗

[
x1x2

x2

])⊤
2 0 0 1
0 0 0 0
0 0 2 −1
1 0 −1 4

(I2 ⊗ [x1x2

x2

])
.

Moreover, since the matrix in the above quadratic form is positive semidefinite, POLY is a positive
semidefinite matrix-valued polynomial with an SOS decomposition.

In the matrix-valued case, the inclusion (22) generalizes as expected:

M∑
sos

[x] ⊂M ×M positive semidefinite polynomials in x ⊂ RM×M [x]. (25)

Similar to the case of scalar SOS polynomials, if a matrix-valued semidefinite polynomial is SOS,
then certifying so is equivalent to certifying that the matrix Q in (24) satisfies Q ⪰ 0, which is again
an SDP feasibility problem.

A.3 SOS POLYNOMIALS AND ARCHIMEDEAN SEMIALGEBRAIC SETS

Consider the set of all nonnegative polynomials of degree m in n variables. Hilbert (Reznick, 2000)
showed that for n ≥ 3,m ≥ 6 or n ≥ 4,m ≥ 4, there exist nonnegative polynomials that are not
SOS. No general bound on this gap is known, although there exist related literature for nonnegative
polynomials with additional structures (Chesi, 2007; Ahmadi & Parrilo, 2013).

However, the situation is much better in the case of non-negative polynomials over the so-called
Archimedean semialgebraic sets (Nie & Schweighofer, 2007a; Prestel & Delzell, 2013; Jacobi &
Prestel, 2001).
Definition 11 (Archimedean semialgebraic set). A compact semialgebraic set C := {x ∈ Rn : 0 ≤
mi(x) ∈ R[x], i ∈ JℓK} is called Archimedean if there exists h ∈ R[x] nonnegative over C, and
si ∈

∑
sos

[x] such that

h(x)−
ℓ∑

i=1

si(x)mi(x) ∈
∑
sos

[x].
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The reason why the Archimedean property comes in handy in SOS context is as follows. Any
polynomial f that is strictly positive on C := {x ∈ Rn : 0 ≤ mi(x) ∈ R[x], i ∈ JℓK} Archimedean,
admits representation

f(x) = s0(x) +

ℓ∑
i=1

si(x)mi(x), where si ∈
∑
sos

[x].

This is equivalent to say that for any f > 0 on C Archimedean, we have

f(x)−
∑
i

si(x)mi(x) ∈
∑
sos

[x]

since f(x)−
∑

i si(x)mi(x) = s0(x) ∈
∑
sos

[x].

We remark here that Definition 11 is non-constructive. In practice, an useful fact is that any compact
semialgebraic set C can be made Archimedean by adding an additional constraint 0 ≤ mℓ+1(x) =
r2−x⊤x for large enough r ∈ R. In other words, the positivity of a polynomial on C semialgebraic,
can be verified on C ∩ {x : r2 − x⊤x ≥ 0} via SOS programming. In summary, SOS program-
ming formulations are less conservative on compact semialgebraic sets, and not conservative on
Archimedean sets. Hence the equivalence between (7) and (8) on Archimedean sets.

B SUPPORTING MATHEMATICAL RESULTS

Here, we collect several mathematical results supporting the developments in the main text.

For a suitably smooth ground cost c, let the mixed-Hessian H ′ := (∇x ⊗∇y)c. Following (1), we
then have

H = (H ′)
−1

=


c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n

...
...

. . .
...

cn,1 cn,2 · · · cn,n


−1

, where ci,j =
∂2c

∂xi∂yj
.

The Lemma 12 next characterizes det(H ′) and the entries of H as rational functions, provided the
ground cost c is rational. This will come in handy for establishing Proposition 13 that follows.
Lemma 12 (Properties of rational cost function). Let c ∈ Rd[x, y] where x, y ∈ Rn and d ∈ N. Let
d1 := n(d− 2). Then

(i) det(H ′) ∈ Rd1 [x, y],

(ii) [H]i,j ∈ Rd1−d+2,d1
[x, y] ∀(i, j) ∈ JnK× JnK.

Similarly, let cN/cD = c ∈ RN,D[x, y] where x, y ∈ Rn and N,D ∈ N. Let d2 := 3D + N − 2.
Then

(iii) det(H ′) ∈ Rnd2,n4D[x, y],

(iv) [H]i,j ∈ R4D+(n−1)d2,nd2
[x, y] ∀(i, j) ∈ JnK× JnK.

Proof. Proof of (i). For any n ∈ N, we have

det(H ′) =

n∑
k=1

ck,lCk,l =

n∑
k=1

(−1)k+lck,lMk,l

where Cs and Ms represent the cofactors and minors of H ′, respectively. Clearly, ci,j ∈
Rd−2[x, y] ∀(i, j) ∈ JnK× JnK.

By induction, we next show that Mk,l ∈ Rd1−d+2[x, y]. Specifically, for n = 1, we have M1,1 =
1 ∈ R0[x, y]. As inductive hypothesis, suppose for n = N , we have Mk,l ∈ R(N−1)(d−2)[x, y]
∀(k, l) ∈ JNK× JNK. Now, for the case n = N + 1, we get

M ′
k,l =

N+1∑
k=1

(−1)k+lck,lMk,l ∈ R(N+1−1)(d−2)[x, y],
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because ck,l ∈ R(d−2)[x, y], and the degree of a sum of polynomials is no greater than the maximum
degree of the summands. Thus, the inductive hypothesis must hold for any n ∈ N. Consequently,
det(H ′) =

∑n
k=1(−1)k+lck,lMk,l ∈ Rd1

[x, y].

Proof of (ii). For n = 1,

c1,1 = [H]1,1 = [[c1,1]
−1]1,1 = 1/c1,1 ∈ R0,(d−2)[x, y] ,

since c1,1 ∈ Rd−2[x, y]. Now proceeding by induction, for n ≥ 2 we have

H =
1

det(H ′)
adj(H ′) =

1

det(H ′)
cof(H ′)⊤,

where adj, cof denote the adjugate and the cofactor matrix, respectively.

So by part (i) of this Lemma 12, we conclude

ci,j = [H]i,j =
Cj,i

det(H ′)
=

(−1)j+iMj,i

det(H ′)
∈ R(n−1)(d−2),n(d−2)[x, y],

since Mj,i is the determinant of an (n− 1)× (n− 1) submatrix of H ′.

Proof of (iii) and (iv). We proceed as we did above for the polynomial case. For n = 1, det(H ′) =
c1,1 ∈ R3D+N−2,4D[x, y], with denominator c4D. Then the statement (iii) follows by the same
inductive argument used for the proof of statement (i).

Similarly, for n = 1 we have c1,1 ∈ R4D,3D+N−2[x, y]. Then the statement (iv) follows by pro-
ceeding as in the proof for statement (ii), and applying the result (iii), along with cancelling all cn−1

D

terms encountered in the numerator and denominator of ci,j .

We now use Lemma 12 to show that the entries of F in (5) are rational functions (Proposition 13,
part (i)-(ii)), under the standing assumption that c is rational. We also derive a generic representation
of the entries of F (Proposition 13, part (iii)) that will be helpful for numerical implementation of
the proposed SOS formulation.
Proposition 13 (Entries of F ). Consider F as in (5).

(i) If c ∈ Rd[x, y], x, y ∈ Rn, d ∈ N, then

[F ]i,j ∈ RdN ,dD
[x, y],

where

dN = 3n(d− 2)− d,

dD = 3n(d− 2).

(ii) If cN/cD = c ∈ RN,D[x, y], x, y ∈ Rn, N,D ∈ N, then

[F ]i,j ∈ R(n4−1)dD+dN ,n4dD
[x, y],

where

dN = 19D +N − 4 + (5N − 2)(3D +N − 2),

dD = 12D − 5N(3D +N − 2).

(iii) For given ground cost c(x, y) where x, y ∈ Rn, define matrices C ∈ Rn×n, D ∈ (Rn)⊗3

as [C]r,s := cij,rs, [D]r,s := ∇xc,rs. For any k ∈ JnK, let ek denote the kth standard basis
vector in Rn. Then

[F ]i+n(j−1),k+n(l−1) = (∇ycij)
⊤H

(
(Hek)

⊤D(Hel)
)
− (Hek)

⊤C(Hel).

Proof. Proof of (i). By Lemma 12, we have

cij,p, cq,rs ∈ Rd−3[x, y],

cij,rs ∈ Rd−4[x, y],

cp,q, cr,k, cs,l ∈ R(n−1)(d−2),n(d−2)[x, y].
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Then, from the arithmetic combinations of rational functions, we find

(cij,pc
p,qcq,rs − cij,rs)c

r,kcs,l ∈ RdN ,dD
[x, y], (26)

wherein dN , dD are as stated in part (i).

Now observe that regardless of the choice of p, q, r, s, the denominator of (26) will be the polynomial
det(H ′) (as shown in the proof of Lemma 12, part (i)). So, all entries of F are sums of rational
polynomials with common denominator and with a numerator degree dN as above. From this, the
desired result follows.

Proof of (ii). In the case when c is rational, by Lemma 12, we have

cij,p, cq,rs ∈ R7D+N−3,8D[x, y],

cij,rs ∈ R15D+N−4,16D[x, y],

cp,q, cr,k, cs,l ∈ R4D+(n−1)(3D+N−2),n(3D+N−2)[x, y],

where the denominator of all partial derivatives of c is a power of cD. Then, from the arithmetic
combinations of the rational terms, cancelling out powers of cD as allowed, we have

(cij,pc
p,qcq,rs − cij,rs)c

r,kcs,l ∈ RdN ,dD
[x, y],

wherein dN , dD are as stated. The desired result follows since [F ]i,j is a sum of n4 of these rational
terms.

Proof of (iii). We compute

[F ]i+n(j−1),k+n(l−1) =
∑

p,q,r,s

(cij,pc
p,qcq,rs − cij,rs)c

r,kcs,l

=
∑
r,s

(
(∇ycij)

TH(∇xc,rs)− cij,rs
)
cr,kcs,l

=
∑
r,s

(∇ycij)
⊤H(∇xc,rs)c

r,kcs,l −
∑
r,s

cr,kcij,rsc
s,l

= (∇ycij)
⊤H

(∑
r,s

(∇xc,rs)c
r,kcs,l

)
− (Hek)

⊤C(Hel)

= (∇ycij)
⊤H

(
(Hek)

⊤D(Hel)
)
− (Hek)

⊤C(Hel).

Note that in the last line above, D is considered as a matrix with vectorial elements.

C PROOFS FOR NNCC AND MTW FORWARD AND INVERSE PROBLEMS

In the following, we provide the proofs of several results which are stated and used in Sec. 3 and 4.

Proof of Theorem 5. Suppose such si exist. Then, we have that FN (x, y) + FT
N (x, y) ≥ 0 for all

x, y such that FD(x, y) ≥ 0, mi(x, y) ≤ 0. Thus, F = FN/FD is non-negative on X × Y and
hence, the ground cost c satisfies the NNCC condition.

Proof of Theorem 6. We proceed similar to the proof of Theorem 5. Suppose such si and t exist.
Then, (ξ ⊗ η)⊤(FN (x, y) + F⊤

N (x, y))(ξ ⊗ η) ≥ κFD(x, y)∥ξ∥2∥η∥2 for all (x, y, ξ, η) such that
mi(x, y) ≤ 0 and η⊤ξ = 0.

Proof of Theorem 7. We present this proof in two parts: one for V+ that solves the SOS problem
with a plus sign in the 2nd and 3rd constraints, and the other for V− with a minus sign therein.

For the first part, let V = V+ solve the SOS problem with the plus constraints. Then, for any
x, y such that V (x, y) ≤ 0 and λ(x, y) ≤ 0, we have that mi(x, y) ≤ V (x, y) ≤ 0 for every
i ∈ JℓK because ri(x, y) ≥ 0. Thus, (x, y) ∈ X × Y . On the same zero sublevel set of V , we also
have that FD(x, y) ≥ −V (x, y) and f(x, y) ≥ −V (x, y) ≥ 0 for all principal minors f of FN
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because s0(x, y), sj(x, y) ≥ 0. Thus, FD(x, y) ≥ 0, and from Sylvester’s criterion, FN (x, y) ⪰ 0.
Therefore, F = FN/FD ⪰ 0 on the level set {(x, y) ∈ Λ | V+(x, y) ≤ 0}.
For the second part, note that {(x, y) ∈ Λ | V+(x, y) ≤ 0} gives an inner approximation of the
region where both FN and FD are positive. However, we may have a region where both FN and
FD are negative. To find the inner approximation of such a region, we use V− along with the minus
constraints in the SOS problem. Thus, the full region where FN/FD is non-negative is a union of
the two zero sublevel sets {(x, y) ∈ Λ | V+(x, y) ≤ 0} and {(x, y) ∈ Λ | V−(x, y) ≤ 0}.
Hence, the cost function satisfies NNCC on the set {(x, y) ∈ Λ | V+(x, y) ≤ 0} ∪ {(x, y) ∈ Λ |
V−(x, y) ≤ 0}.

Theorem 14 (MTW(κ) inverse problem). Given the semialgebraic set (10) with a ground cost
function c : X × Y → R≥0, let F in (5) be of the form F = FN

FD
∈ RN,D[x, y], N,D ∈ N.

For some compact set Λ := {(x, y, ξ, η) | λ(x, y, ξ, η) ≤ 0, λ(x, y, ξ, η) ∈ Rdλ
[x, y, ξ, η], dλ ∈ N}

chosen a priori, suppose V± : Λ→ R solves the optimization problem

min
V ∈Rd[x,y,ξ,η]

∫
Λ

V (x, y, ξ, η)dxdydξdη,

subject to V (x, y, ξ, η)−mi(x, y)∥ξ∥2∥η∥2 + ri(x, y, ξ, η)λ(x, y, ξ, η) ∈
∑
sos

[x, y, ξ, η],

V (x, y, ξ, η)±
(
(ξ ⊗ η)⊤FN (x, y)(ξ ⊗ η)− κFD(x, y)∥ξ∥2∥η∥2

)
+ s0(x, y, ξ, η)λ(x, y, ξ, η) + t0(x, y, ξ, η)η

⊤ξ ∈
∑
sos

[x, y, ξ, η],

ri(x, y, ξ, η), s0(x, y, ξ, η), t0(x, y, ξ, η) ∈
∑
sos

[x, y, ξ, η], ∀ i ∈ JℓK.

Then, the ground cost c satisfies the MTW(κ) condition on the set {(x, y, ξ, η) ∈ Λ | V+(x, y, ξ, η) ≤
0, η(ξ) = 0} ∪ {(x, y, ξ, η) ∈ Λ | V−(x, y, ξ, η) ≤ 0, η(ξ) = 0}.

Proof. We proceed similar to the proof of Theorem 7. Suppose V = V+ solves the SOS problem
with plus in the 2nd constraint. Then, for any x, y, ξ, η such that V (x, y, ξ, η) ≤ 0, λ(x, y, ξ, η) ≤ 0
and η(ξ) = 0, we have that mi(x, y) ≤ V (x, y, ξ, η)/∥ξ∥2∥η∥2 ≤ 0 for every i ∈ JℓK. Likewise,(
(ξ ⊗ η)⊤FN (x, y)(ξ ⊗ η)− κFD(x, y)∥ξ∥2∥η∥2

)
≥ 0. Thus, on the zero sublevel set of V , we

have (ξ ⊗ η)⊤F (x, y)(ξ ⊗ η) ⪰ κ∥ξ∥2∥η∥2 whenever η(ξ) = 0. Hence, the cost function satisfies
MTW(κ) condition on the set {(x, y, ξ, η) ∈ Λ | V+(x, y, ξ, η) ≤ 0, η(ξ) = 0}.
Following similar arguments as in the second part of the proof of Theorem 7, we conclude that
{(x, y, ξ, η) ∈ Λ | V−(x, y, ξ, η) ≤ 0, η(ξ) = 0} gives an approximation of the region satisfying
MTW(κ) when FN , FD are both negative.

Combining the above, the cost function satisfies the MTW(κ) condition on the union of the sets
{(x, y, ξ, η) ∈ Λ | V+(x, y, ξ, η) ≤ 0, η(ξ) = 0} and {(x, y, ξ, η) ∈ Λ | V−(x, y, ξ, η) ≤ 0, η(ξ) =
0}, as claimed.

D COMPUTATIONAL COMPLEXITY

Recall that xd denotes a monomial vector in components of x ∈ Rn of degree d, and zd(x) :=
(1, x, x2, . . . , xd)⊤. If a nonnegative (scalar) polynomial poly of degree 2d in variable x ∈ Rn,
admits an SOS representation

poly = (zd(x))
⊤
Qzd(x), Q ⪰ 0,

then zd(x) ∈ R(
d+n
d ); see e.g., Seiler et al. (2013). This can be generalized to matrix-valued SOS

polynomials as follows.

Consider an M ×M matrix POLY with (not necessarily nonnegative) polynomial entries. If POLY
admits an SOS representation

POLY = (Zd(x))
⊤
QZd(x), Zd(x) := IM ⊗ zd(x), Q ⪰ 0,

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

then the matrix Q has size M
(
d+n
d

)
×M

(
d+n
d

)
. This will be useful in the sequel.

D.1 COMPLEXITY ANALYSIS FOR THE FORWARD PROBLEM: NNCC

In Theorem 5, to verify the SOS condition (13), we need to find matrices Q ⪰ 0, S0 ⪰ 0, Si ⪰ 0
for all i ∈ JℓK, such that(

FN (x, y) + F⊤
N (x, y)

)
− (In2 ⊗ Zd(x, y))

⊤S0(In2 ⊗ Zd(x, y))FD(x, y)

+
∑
i∈JℓK

(In2 ⊗ Zd(x, y))
⊤Si(In2 ⊗ Z(x, y))mi(x, y) = (In2 ⊗ Zd(x, y))

⊤Q(In2 ⊗ Zd(x, y)).

(27)

This feasibility problem has (ℓ + 2) positive semidefinite matrices as decision variables. Next, we
upper bound the degree of the matrix-valued polynomial in (13), which will allow us to estimate
the size of the underlying SDP for complexity analysis. To this end, we will find the number of
constraints in the SDP, and the number of decision variables in the same.

Number of constraints. Let mi ∈ RM [x, y] for all i ∈ JℓK. Then, from Proposition 13, we have
[F ]i,j ∈ R(n4−1)dD+dN ,n4dD

[x, y], where

dN = 19D +N − 4 + (5N − 2)(3D +N − 2) = O(DN),

dD = 12D − 5N(3D +N − 2) = O(DN).

Notice that FN + F⊤
N is a n2 × n2 matrix-valued polynomial of degree dN . If we parameterize s0

to have of degree dN − dD, and si to be of degree dN −M , then the left-hand-side polynomial in
(27) has degree dN under the practical assumptions that M ≪ max{N,D} and dD < dN . Since
the left-hand-side polynomial is in 2n variables (because x, y ∈ Rn) with degree dN , the corre-
sponding monomial vector has length

(
dN+2n

2n

)
. Since two polynomials are equal if and only if their

coefficients for all monomials are equal, the number of equality constraints in (27) is n4
(
dN+2n

2n

)
.

Number of decision variables. Since the highest monomial degree in the left-hand-side of (27) is
dN (an even number), the highest degree in Zd(x, y) must be dN/2. Thus, Zd(x, y) is a monomial
vector of size

(
dN/2+2n

2n

)
. Then the size of all the positive semidefinite matrix decision variables,

namely, Q, S0, S1, S2, . . . , Sℓ, is n2
(
dN/2+2n

2n

)
×n2

(
dN/2+2n

2n

)
. Thanks to symmetry, the number of

free variables in each of these matrices, is n2
(
dN/2+2n

2n

) (
n2
(
dN/2+2n

2n

)
+ 1
)
/2. Since the number

of the positive semidefinite matrix decision variables is ℓ+2, the number of decision variables equals

(ℓ+ 2)n2

(
dN/2 + 2n

2n

)(
n2

(
dN/2 + 2n

2n

)
+ 1

)
/2. (28)

Overall complexity. Given a generic SDP with Ms constraints and an SDP variable of
size Ns × Ns, the state-of-the-art worst-case runtime complexity Jiang et al. (2020) is
O
(√

Ns(MsN
2
s +Mω

s +Nω
s )
)

where ω ∈ [2.376, 3] is matrix inversion complexity. Notice that
this complexity does not account for specific structure of the SDP at hand. For more details, we
refer the readers to Nesterov & Nemirovskii (1994); Andersen et al. (2003); Wright (1997).

In our case, (28) equals Ns (Ns + 1) /2, which gives

Ns = O
(√

ℓ n2+dN/2
)
, (29)

where we have suppressed the dependence on constants N,D. From the number of constraints
discussed before, we have

Ms = O
(
n4+dN

)
. (30)

Combining (29) and (30) with the aforementioned generic SDP complexity, gives the worst-case
runtime complexity

O
(
ℓ5/4n9+5dN/4 + nω(4+dN ) + ℓω/2nω(2+dN/2)

)
. (31)
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From (31), we observe that for fixed dimension n, the worst-case runtime complexity w.r.t. the
number of semialgebraic constraints ℓ has faster than linear but sub-quadratic growth. For fixed ℓ,
this runtime complexity has polynomial scaling w.r.t. n with exponent depending on dN = O(DN),
where D,N denote the degrees of the denominator and numerator polynomials of the cost function
c(x, y), respectively. We note that the complexity (31) does not take into account the sparsity pattern
induced by the specific block-diagonal structure of the decision variable for our SOS SDP. So the
complexity in practice is significantly lower, as observed in the reported numerical examples.

D.2 COMPLEXITY ANALYSIS FOR THE FORWARD PROBLEM: MTW(κ)

In Theorem 6, to verify the SOS condition (14), we need to find κ ≥ 0, Q ⪰ 0, Si ⪰ 0 for all
i ∈ JℓK, and suitable real matrix T such that

(ξ ⊗ η)⊤
(
FN (x, y) + F⊤

N (x, y)
)
(ξ ⊗ η)− κFD(x, y)∥ξ∥2∥η∥2

+
∑
i∈JℓK

Zd(x, y, ξ, η)
⊤SiZd(x, y, ξ, η)mi(x, y) + Zd(x, y, ξ, η)

⊤TZd(x, y, ξ, η)η
⊤ξ

= Zd(x, y, ξ, η)
⊤QZd(x, y, ξ, η). (32)

The decision variables for this problem comprises of (ℓ+1) positive semidefinite matrices, 1 indefi-
nite matrix, and 1 nonnegative scalar. Similar to the NNCC analysis above, we can estimate the size
of SDP problem for the MTW(κ) condition. The key difference here, however, is that the polyno-
mials are now defined on x, y, ξ, η, and the matrix-valued SOS constraint is replaced by scalar SOS
constraints.

Number of constraints. For a polynomial in 4n variables (because x, y, ξ, η ∈ Rn) with degree
dN , we have

(
dN+4n

4n

)
monomials and hence the same number of equality constraints.

Number of decision variables. Since the highest monomial degree in the left-hand-side of (27)
is dN (even number for the polynomial to be nonnegative), the highest degree in Zd(x, y, ξ, η) must
be dN/2. Thus, Zd(x, y, ξ, η) is a monomial vector of length

(
dN/2+4n

4n

)
. Then, the size of all the

matrices, namely, T , Q and Si, are
(
dN/2+4n

4n

)
×
(
dN/2+4n

4n

)
. Since we have ℓ+1 positive semidefinite

matrices, 1 scalar, and 1 indefinite matrix variable, we have (ℓ + 3)n2
Q + 1 variables. Taking the

symmetry of the positive semidefinite matrix variables into account, the total number of decision
variables equals

1 +

(
dN/2 + 4n

4n

)(
(ℓ+ 3)

(
dN/2 + 4n

4n

)
+ ℓ+ 1

)
/2. (33)

Overall complexity. Proceeding similar to the NNCC case, if Ns denotes the number of SDP
decision variables, then Ns(Ns + 1)/2 equals (33). We then obtain the number of constraints Ms

and the number of decision variables Ns as

Ms = O
(
ndN

)
, Ns = O

(√
ℓndN/2

)
.

Therefore, for the SOS computation associated with the MTW(κ) forward problem, the worst-case
runtime complexity for off-the-shelf interior point SDP solver is

O
(
ℓ5/4n9dN/4 + ℓω/2+1/4n(ω/2+1/4)dN

)
. (34)

For fixed dimension n, the above complexity is sub-quadratic w.r.t. the number of semialgebraic
constraints ℓ, as was the case in NNCC. For fixed ℓ, this complexity has polynomial scaling w.r.t.
the dimension n where the exponent depends on dN = O (DN), as before. Compared to the
NNCC case, the scaling of the worst-case complexity for the MTW(κ) case is slightly better w.r.t.
dimension n, but slightly worse w.r.t. the number of semialgebraic constraints ℓ. We again point
out that since this worst-case analysis does not take into account the sparsity pattern induced by the
specific block-diagonal structure of the decision variables for our case, the complexity in practice is
lower, as observed in the numerical examples reported herein.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E AUXILIARY NUMERICAL RESULTS

Cost contour comparison. In Sec. 4, Examples 1 through 4, we considered non-Euclidean ground
costs c to illustrate the utility of the proposed SOS framework in the analysis of OT regularity.
To help visualize the deviation of these ground costs from the canonical Euclidean cost, in Fig.
4, we plot the cost to move the unit mass from a fixed (the origin) to an arbitrary location in its
neighborhood in n = 2 dimensions, and compare it with the squared Euclidean cost.

Figure 4: Comparing contour plots of various ground costs c(x, 0) in Sec. 4 vis-à-vis the squared
Euclidean cost in n = 2 dimensions. From left to right: squared Euclidean cost, perturbed squared
Euclidean cost (Examples 1 and 3), log-partition cost (Example 2), squared distance cost for a
surface with positive curvature (Example 4).

SOS decomposition for Ax in the case n = 3. In Sec. 4.1, Example 2, we illustrated the solution
of the MTW(0) forward problem for a log-partition cost given by

c(x, y) = ΨIsoMulNor(x− y), where ΨIsoMulNor(x) :=
1

2

(
− log x1 +

n∑
i=2

x2
i /x1

)
.

We mentioned that for n ≥ 3, certifying non-negativity for Ax is challenging because the resulting
expression for Ax, although rational, is cumbersome to tackle analytically. To support this claim,
we report that our computationally discovered SOS decomposition:

poly(x, ξ, η) = s(x, ξ, η)⊤s(x, ξ, η),

where Ax(ξ, η) = poly(x, ξ, η)/x2
1ξ

2
2 in the case n = 3, is given by

s(x, ξ, η) =



0 −1.4 0 0.24 0 0
2.4 0 −0.17 0 0 0
0 1.4 0 −0.24 0 0
−2.4 0 0.17 0 −0.0002 0
0 −1.4 0 0.25 0 −1.2
2.4 0 −0.17 0 −0.0002 0
−1.6 0 −1.9 0 0 0
0 0.52 0 1.3 0 0
0 1.4 0 −0.25 0 0
−0.84 0 2 0 0 0
0 −0.52 0 −1.3 0 0




η1ξ

2
1ξ2

η1ξ
2
1ξ3

η1ξ1ξ2ξ1
η1ξ1ξ3ξ1
η2ξ1ξ2ξ2
η2ξ1ξ2ξ3

 .

The above decomposition was obtained by implementing our SOS formulation per Theorem 6 via
the YALMIP toolbox (Lofberg, 2004). For brevity, we omitted coefficients of order 10−5 or lower
in the above polynomial.

F EXAMPLES OF OT WITH NON-EUCLIDEAN GROUND COST

OT is increasingly being used for non-Euclidean manifolds/costs. In Table 4, we report several such
instances from the literature. We specifically note that the F corresponding to most of these non-
Euclidean costs c indeed have rational entries, thereby amenable to the SOS computation proposed
in this paper.
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Manifold c(x, y) F Theory ref. Application/ML
ref.

Sn−1 × Sn−1 − log ∥x− y∥ rational (Wang, 1996;
Loeper, 2011)

(Froese Hamfeldt
& Turnquist,
2021)

Sn−1 × Sn−1 b1 −
√
b2 + b3∥x− y∥2 rational

under a
variable
change

(Oliker, 2011) (Yadav et al.,
2019)

Rn × Sn−1 −⟨x, y⟩/∥x∥ rational (Wilson et al.,
2014)

(Fan et al., 2021)

Hn ×Hn − cosh ◦dHn(x, y) = rational (Lee & Li,
2012)

(Alvarez-Melis
et al., 2020)

−
(
1 + 2 ∥x−y∥2

(1−∥x∥2)(1−∥y∥2)

)
(Hoyos-Idrobo,
2020) (Vinh Tran
et al., 2020)

Rn × Rn infγ∈C(x,y)
∫ 1

0
L (γt, γ̇t) dt - Lee & Mc-

Cann (2011)
Pooladian et al.
(2024)

Unknown 1
2d

2(x, y) learnt - - (Solomon et al.,
2015)

numerically from data (Huguet et al.,
2023)

Rn × Rn log(1+
∑n

i=1exp(xi − yi)) rational Pal & Wong
(2018)

Campbell &
Wong (2022)

Table 4: Instances of non-Euclidean OT in the literature. The symbol d2(x, y) denotes the squared
Geodesic distance between x and y. In the third row, the constants b1, b2, b3 > 0. In the sixth row,
L denotes a suitable Lagrangain, and C(x, y) is the set of absolutely continuous curves γt, t ∈ [0, 1],
such that γ0 = x, γ1 = y.

In particular, the first and second rows in Table 4 correspond to different non-Eulcidean c over
sphere. These problems originated in reflector antenna design, and were one of the driving forces
for the mathematical development in OT regularity.

The c in third row corresponds to cosine similarity between an unnormalized and a normalized
vector. This OT formulation was used in (Fan et al., 2021, Sec. 6.1) for unpaired text to image
generation.

The fourth row corresponds to OT over hyperbolic manifold with the ML relevance being transport
between hierarchical word embedding.

The fifth row of Table 4 corresponds to c that are induced by an action integral for a suitable La-
grangian L, i.e., the c is the value of least action. Pooladian et al. (2024) points out that such c
are increasingly common in diffusion models. A specific example of such costs is OT over a time-
varying linear dynamical system (Chen et al., 2016a) for which c(x, y) is weighted quadratic in
x, y.

The sixth row in Table 4 points to ML literature where the c is taken as the half of the squared
geodesic distance but the geodesic itself is learnt numerically from short-time asymptotic of the heat
kernel on that manifold using Varadhan’s formula. In such cases, our method can be applied by
performing rational approximation of c.

The last row is for log-sum-exp cost inspired by information-theoretic considerations. Here too, our
SOS framework is applicable. Our Example 2 considered a generalization of this cost.
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