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Abstract

This work presents a neuro-symbolic analysis of the learnability of Recurrent Neural Net-
works (RNNs) in classifying structured formal languages—specifically, counter languages
and Dyck languages, which serve as canonical examples of context-free and mildly
context-sensitive grammars. While prior studies have highlighted the expressive power
of first-order (LSTM) and second-order (O2RNN) architectures within the Chomsky hier-
archy, we challenge this perspective by shifting the focus from theoretical expressivity to
practical learnability under finite precision constraints. Our results suggest that RNNs func-
tion more as finite-state machines than stack-based automata when implemented with re-
alistic training regimes and embedding representations. We show that classification perfor-
mance degrades sharply as structural similarities between positive and negative sequences
increase—highlighting a core limitation in the RNN’s ability to internalize hierarchical
structure without symbolic scaffolding. Interestingly, even simple linear classifiers built on
top of RNN-derived embeddings outperform chance, underscoring the hidden representa-
tional capacity within learned states. To probe generalization, we train models on input
lengths up to 40 and evaluate on lengths extending to 500, using 10 distinct seeds to mea-
sure statistical robustness. O2RNNs consistently demonstrate greater stability and gen-
eralization compared to LSTMs, particularly under varied initialization strategies. These
findings expose the fragility of learned language representations and emphasize the role of
architectural bias, initialization, and data sampling in determining what is truly learnable.
Ultimately, our study reframes RNN learnability through the lens of symbolic structure
and computational constraints, advocating for stronger formal criteria when assessing neu-
ral models’ capacity to reason over structured sequences. We argue that expressivity alone
is insufficient—stability, precision, and symbolic alignment are essential for true
neuro-symbolic generalization.

1. Introduction

Recurrent neural networks (RNNs) are experiencing a resurgence, spurring significant re-
search aimed at establishing theoretical bounds on their expressivity. As natural neural
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analogs to state machines described by the Chomsky hierarchy, RNNs offer a robust frame-
work for examining learnability, stability, and generalization—core aspects for advancing
the development of memory-augmented models.

While conventional RNN architectures typically approximate finite state automata,
LSTMs have shown the capacity to learn and generalize non-regular grammars, including
counter languages and Dyck languages. These non-regular grammars demand a state ma-
chine enhanced with a memory component, and LSTM cell states have been demonstrated to
possess sufficient expressivity to mimic dynamic counters. However, understanding whether
these dynamics are stable and reliably learnable is crucial, particularly as the stability of
learned fixed points directly impacts the generalization and reliability of these networks.

In this work, we extend the investigation into the expressiveness of RNNs by focusing
on the empirical evidence for learnability and generalization in complex languages, with
specific attention to Dyck and counter languages. Our analysis reveals the following key
insights: (1) Theoretical expressivity of LSTM does not necessarily translate to practical
learnability on dyck and counter languages; (2) The stability of LSTM feature encodings
is heavily influenced by the precision of the network’s internal dynamics; (3) Higher Order
connections (O2RNN) demonstrate consistant performance across different training strate-
gies and random seed; (4) LSTM’s ability to perform dynamic counting is closely tied to the
stability of its cell state, which relies on the fixed points of the tanh activation function; and
(5) the choice of initialization strategy significantly influences the stability of fixed points
in RNNs.

Our analysis builds upon results from Omlin and Giles (1996) regarding the behavior
of the sigmoid activation function, extending this understanding to the fixed points of the
tanh function used in LSTM cell and hidden state updates. Drawing from parallels noted by
Merrill et al. (2020) between LSTMs and counter machines, we show that while LSTM cell
states exhibit the expressivity needed for counting, this capability is not reliably captured
in the hidden state. As a result, when the difference between successive hidden states falls
below the precision threshold of the decoder, the classifier can no longer accurately represent
the counter, leading to generalization failure. Additionally, we explore how input and forget
gates within the LSTM clear the counter dynamics as state changes accumulate, resulting
in an eventual collapse of dynamic behavior.

Further, we extend our exploration to analyze the learnability of classification layers
when the encoding RNN is initialized randomly and not trained. This setup allows us to
assess the extent of instability induced by the collapse of counter dynamics in the LSTM cell
state and the role of numeric precision in the hidden state that supports the classification
layer’s performance.

It is crucial to recognize that most prior studies demonstrating the learnability of RNNs
on counter languages such as a™b", a™b""c", and ab"c"d"™ have overlooked the significance
of topological distance between positive and negative samples. Such sampling consider-
ations are vital for a thorough understanding of RNN trainability. To address this gap,
we incorporate three sampling strategies with varying levels of topological proximity be-
tween positive and negative samples, thereby challenging the RNNs to genuinely learn the
counting mechanism.

By focusing on stability and fixed-point dynamics, our work offers a plausible lens
through which the learnability of complex grammars in recurrent architectures can be bet-
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ter understood. We argue that stability, as characterized by the persistence of fixed points,
is a critical factor in determining whether these models can generalize and reliably encode
non-regular languages, shedding light on the inherent limitations and potentials of RNNs
in such tasks.

2. Related Work

The relationship between Recurrent Neural Networks (RNNs), automata theory, and formal
methods has been a focal point in understanding the computational power and limitations
of neural architectures. Early studies have shown that RNNs can approximate the behavior
of various automata and formal language classes, providing insights into their expressivity
and learnability. Giles and Omlin (1993) were one of the first to demonstrate that RNNs are
capable of learning finite automata. Expanding on this, Omlin and Giles (1992b) showed
that second-order recurrent networks, which include multiplicative interactions between
inputs and hidden states, are superior state approximators compared to standard first-order
RNNs.

The analysis of RNNs’ functional capacity continued with Omlin and Giles (1996);
Mali et al. (2023), who investigated the discriminant functions underlying first-order and
second-order RNNs. Their results provided a deeper understanding of how these architec-
tures utilize hidden state dynamics to implement decision boundaries and process temporal
patterns. Meanwhile, the theoretical limits of RNNs were formalized by Siegelmann and
Sontag (1992), who proved that RNNs are Turing Complete when equipped with infinite
precision. This result implies that RNNs, in principle, can simulate any computable func-
tion, positioning them as universal function approximators.

Building on these foundational insights, recent research has aimed to identify the prac-
tical scenarios under which RNNs can achieve such theoretical expressiveness. Mali et al.
(2023) extended Turing completeness results to a second-order RNN, demonstrating that it
can achieve Turing completeness in bounded time. This shift towards practical expressivity
has opened new avenues for applying RNNs to complex language tasks. Moving towards
specific language modeling tasks, Gers and Schmidhuber (2001) explored how Long Short-
Term Memory (LSTM) networks can learn context-free and context-sensitive grammars,
such as a™b" and a™b"c". Their results showed that LSTMs could successfully learn these
patterns, albeit with limitations in scaling to larger sequence lengths. Extending these
findings, Merrill et al. (2020) established a formal hierarchy categorizing RNN variants
based on their expressivity, placing LSTMs in a higher class due to their ability to simu-
late counter machines. Suzgun et al. (2019a) analyzed the ability of LSTMs to learn the
Dyck-1 language, which models balanced parentheses, and found that while a single LSTM
neuron could learn Dyck-1, it failed to generalize to Dyck-2, a more complex language with
nested dependencies. Their follow-up work Suzgun et al. (2019b) studied generalization on
a™b"™, a"b"c", and a"b"c"d" grammars, showing that performance varied significantly with
sequence length sampling strategies.

Beyond traditional RNNs, the role of specific activation functions in enhancing expres-
sivity has also been studied. Weiss et al. (2018b) showed that RNNs with ReLU activations
are strictly more powerful than those using standard sigmoid or tanh activations when it
comes to counting tasks. This observation suggests that architectural modifications can
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significantly alter the network’s functional capacity. In a similar vein, Stogin et al. (2024)
proposed neural network pushdown automata and neural network Turing machines, es-
tablishing a theoretical framework for integrating stacks into neural architectures, thereby
enabling them to simulate complex computational models like pushdown automata and
Turing machines. On the stability and generalization front, Dave et al. (2024) compared
the stability of states learned by first-order and second-order RNNs when trained on Tomita
and Dyck grammars. Their results indicate that second-order RNNs are better suited for
maintaining stable state representations across different grammatical tasks, which is critical
for ensuring that the learned model captures the true structure of the language. Their work
also explored methods for extracting deterministic finite automata (DFA) from trained net-
works, evaluating the effectiveness of extraction techniques like those proposed by Weiss
et al. (2018a) and Wang et al. (2018). This line of research is pivotal in understanding
how well trained RNNs can be interpreted and how their internal state representations
correspond to formal structures.

In terms of language generation and hierarchical structure learning, Hewitt et al. (2020)
demonstrated that LSTMs, when trained as language generators, can learn Dyck-(k, m)
languages, which involve hierarchical and nested dependencies, drawing parallels between
these formal languages and syntactic structures in natural languages. Finally, several studies
have shown that the choice of objective functions and learning algorithms significantly
affects RNNs’ ability to stably learn complex grammars. For instance, Lan et al. (2022) and
Mali et al. (2021) demonstrated that specialized loss functions, such as minimum description
length, lead to more stable convergence and better generalization on formal language tasks.
In light of the diverse findings from the aforementioned studies, our work systematically
analyzes the divergence between the theoretical expressivity of RNNs and their empirical
generalization capabilities through the lens of fixed-point theory. Specifically, we investigate
how different RNN architectures capture and maintain stable state representations when
learning complex grammars, focusing on the role of numerical precision, learning dynamics,
and model stability. By leveraging theoretical results on fixed points and state stability,
we provide a unified framework to evaluate the strengths and limitations of various RNN
architectures.

3. Fixed Points of Discriminant Functions

In this section we focus on two prominent discriminant functions: sigmoid and tanh, both
of which are extensively utilized in widely-adopted RNN cells such as LSTM and O2RNN.

Theorem 1 BROUWER’S FIXED POINT THEOREM Boothby (1971): For any contin-
uous mapping f : Z — Z, where Z is a compact, non-empty convex set, 3 z5 s.t. f(zp) = 2y

From Brouwer’s fixed point theorem, we directly get the following corollaries:

Corollary 2 Let f : R — R be a continuous, monotonic function with a non-empty,
bounded, and convex co-domain D C R. Then f has at least one fized point, i.e., there
exists some ¢ € R such that f(c) = c.

1
W, where w, b S

R, has at least one fized point, i.e., there ezists some ¢ € R such that o(c) = c.

Corollary 3 A parameterized sigmoid function of the form o(x) =
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Figure 1: The fixed points of discriminant function f(wz + b) are the intersection points
with the line g(z) = x (solid black curve). The given figures show the existence of fixed
points for b in range [—8, —4] and w = 13 for sigmoid ( a and b) and tanh (¢ and d ). We
can observe here that in the given range as the w increased from 5 to 13, the number of
fixed points increased from 1 to 3.

Corollary 4 A parameterized tanh function of the form ~(x) = tanh(wx +b), where w,b €
R, has at least one fized point, i.e., there exists some ¢ € R such that v(c) = c.

In this work we go beyond sigmoid and show that tanh also has three fixed points.
Figure 1 visually demonstrates the existence of three fixed points for sigmoid as well as
tanh discriminant functions.

Theorem 5 A parameterized tanh function vy(x) = tanh(wzx + b) has three fized points for
a given b €]b=,bT[ and w > wy, for some b=, b",wy € R and b~ < b™.

The proofs for the theorem and the above corollaries are provided in the Appendix.

4. Experiment Setup

Models

We evaluate the performance of two types of Recurrent Neural Networks (RNNs): Long
Short-Term Memory (LSTM) networks by Hochreiter and Schmidhuber (1997) and Second-
Order Recurrent Neural Networks (O2RNNs) by Omlin and Giles (1992a). The LSTM is
considered a first-order RNN since its weight tensors are second-order matrices, whereas the
O2RNN utilizes third-order weight tensors for state transitions, making it a second-order
RNN. The state update for the O2RNN is defined as follows:

hgt) = Z wijkxg-t)hg_l) + bi,
g,k

where w;j, is a third-order tensor that models the interactions between the input vector
z® and the previous hidden state A=Y and b; is the bias term. All models consist of
a single recurrent layer followed by a sigmoid activation layer for binary classification, as
defined in Equation 10.
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Datasets

We conduct experiments on eight different formal languages, divided into two categories:
Dyck languages and counter languages. The Dyck languages include Dyck-1, Dyck-2, Dyck-
4, and Dyck-6, which vary in the complexity and depth of nested dependencies. The counter
languages include a™b"c”, a™b"c*d", a™b™a™b"™, and a™b"™a™b™. Each language requires
the network to learn specific counting or hierarchical patterns, posing unique challenges for
generalization.

The number of neurons used in the hidden state for each RNN configuration is summa-
rized in Table 1. To ensure robustness and a fair comparison, all models were trained on
sequences with lengths ranging from 1 to 40 and tested on sequences of lengths ranging from
41 to 500, thereby evaluating their generalization capability on longer and more complex
sequences.

Training and Testing Methodology

Since the number of possible sequences grows exponentially with length (for a sequence
of length I, there are 2! possible combinations), we sampled sequences using an inverse
exponential distribution over length, ensuring a balanced representation of short and long
strings during training. Each model was trained to predict whether a given sequence is a
positive example (belongs to the target language) or a negative example (does not follow
the grammatical rules of the language).

For all eight languages, positive examples are inherently sparse in the overall sample
space. This sparsity makes the generation of negative samples crucial to ensure a challenging
and informative training set. We generated three different datasets, each using a distinct
strategy for sampling negative examples:

1. Hard 0 (Random Sampling): Negative samples were randomly generated from
the sample space without any structural similarity to positive samples. This method
creates a broad variety of negatives, but many of these are trivially distinguishable,
providing limited learning value for more sophisticated models.

2. Hard 1 (Edit Distance Sampling): Negative samples were constructed based
on their string edit distance from positive examples. Specifically, for a sequence of
length [, we generated negative strings that have a maximum edit distance of 0.25[.
This approach ensures that negative samples are structurally similar to positive ones,
making it challenging for the model to differentiate them based solely on surface-level
patterns.

3. Hard 2 (Topological Proximity Sampling): Negative samples were generated
using topological proximity to positive strings, based on the structural rules of the
language. For instance, in the counter language a™b"c", a potential negative string
could be ™ 1b" 1" which maintains a similar overall structure but violates the lan-
guage’s grammatical constraints. This method ensures that the negative samples are
more nuanced, requiring the model to maintain precise state transitions and counters
to correctly classify them.
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5. Results and Discussion

model — Istm Istm o2rnn o2rnn

(trained layers) (all layers) (classifier-only) (all layers) (classifier-only)

grammars sdim max mean+std max mean=tstd max mean=tstd max meanzstd
Dyck-1 2 85.95 8288 +£254 73.89 72.3+128 8338 80.57 £2.37 63.88 63.85 £ 0.02
Dyck-2 4 98.65 87.35 £ 8.3 72.99 70.05 £ 3.35 86.85 82.57 £2.11 63.67 60.75 £ 2.41
Dyck-4 8 99.2 86.57 £+ 8.01 7193 69.58 £3.71 99.11 94.55 £ 0.85 63.71 59.88 £+ 2.44
Dyck-6 12 97.45  87.34 £ 8.85 72.27 68.64 £ 224 99.54 984 £ 142 6274 60.33 £ 1.79
abncm 6 98.13 90.17 £ 15.30 81.09 78.60 = 1.54 97.86 97.27 £0.35 69.71 69.66 £ 0.03
abmcd"™ 8 98.33 90.45 £+ 14.22 80.95 79.59 + 0.97 97.24 96.11 + 243 71.8 71.74 £ 0.03
abmamb" 8 99.83  98.05 £ 4.65 70.83 69.69 £ 0.74 99.76 99.58 £ 0.19  58.7  58.08 £ 0.48
ab™a"p™ 8 99.93 99.64 £ 0.56  73.25 70.59 £1.18 99.43 99.13 + 0.38 58.67 56.95 £ 2.58

Table 1: Performance comparison of RNNs trained with all layers and when trained with
all weights frozen except classifier with hard I negative string sampling.

Istm

(all layers)

Istm

(classifier-only)

o2rnn

(all layers)

o2rnn

(classifier-only)

gram. n. set max mean + std max mean £ std max mean + std max mean + std
hard 0  99.92 99.28 + 0.29 96.13 93.14 + 2.53 99.61 99.27 + 0.48 83.37 83.32 + 0.03

a™b"c™ hard 1  98.13 90.17 + 15.30  81.09 78.60 £+ 1.54 97.86 97.27 £ 0.35 69.71 69.66 + 0.03
hard 2 87.49 74.35 + 13.23 75.64 74.48 + 0.73 86.42 82.10 + 3.3 69.94 69.85 + 0.07
hard 0  99.59 99.36 + 0.19 98.1 95.94 + 1.49 99.48 98.91 + 1.17 87.53 87.5 £+ 0.02

a™b"cdm hard 1  98.33 90.45 + 14.22 80.95 79.59 + 0.97 97.24 96.11 + 2.43 71.8 71.74 + 0.03
hard 2 85.81 71.66 £+ 12.21 75.33 74.47 + 1.29 85.61 80.84 + 3.68 70.72 70.66 £+ 0.03

Table 2: Performance of RNNs declines when negative strings closer to positive strings are
sampled for training

Learnability of Dyck and Counter Languages

The results from Table 2 for negative set hard 0 confirm prior findings on the expressivity
of LSTMs and RNNs on counter, context-free, and context-sensitive languages. A one-layer
LSTM is theoretically capable of representing all classes of counter languages, indicating
that its expressivity is sufficient to model non-regular grammars. However, the results
for negative sets hard 1 and hard 2 indicate that this expressivity does not necessarily
translate to practical learnability. The observed performance drop on these harder negative
sets suggests that, despite the LSTM’s capacity to model such languages, its ability to
generalize correctly under realistic training conditions is limited. This discrepancy between
expressivity and learnability calls for a deeper understanding of how the network’s internal
dynamics align with the objective function during training.

In particular, the sparsity of positive samples combined with naively sampled negative
examples (as in hard 0) allows the classifier to partition the feature space even when the
internal feature encodings are not well-structured. This may give an inflated impression
of the LSTM’s practical learnability. Tables 1 and 2 compare fully trained models and
classifier-only trained models, showing that the latter can achieve above-chance accuracy,
even with minimal feature encoding. When negative samples are sampled closer to positive
ones, as in hard 1 and hard 2, the classifier struggles to maintain robust partitions, high-
lighting that the underlying feature encodings are not sufficiently aligned with the grammar
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Figure 2: Transitions of hidden and cell states of LSTM for Dyck-1 grammars
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structure. Future work can leverage fixed-point theory and expressivity analysis to establish
better learnability bounds, offering a more principled approach to bridge the gap between
theoretical capacity and empirical generalization.

Stability of Feature Encoding in LSTM

The stability of LSTM feature encodings is heavily influenced by the precision of the net-
work’s internal dynamics. Across 10 random seeds, the standard deviation of accuracy for
fully trained LSTMs is significantly higher compared to classifier-only models, particularly
for challenging sampling strategies. For example, a fully trained LSTM on a™b"c"™ shows a
standard deviation of 15.30% compared to only 1.54% for the classifier-only network using
hard 1 sampling. This difference is less pronounced for hard 0 (0.29%) but becomes more
severe for hard 2 (13.23%), indicating that instability in the learned feature encodings in-
creases as the negative examples become structurally closer to positive ones. This instability
is due to the LSTM’s reliance on its cell state to encode dynamic counters, which may not
align precisely with the hidden state used for classification. As a result, slight deviations in
internal dynamics cause substantial fluctuations in performance, suggesting a lack of robust
fixed-point behavior in the cell state.

Stability of Second-Order RNNs

In contrast, the O2RNN, which utilizes a third-order weight tensor, demonstrates more
consistent performance across different training strategies and random seeds. In all configu-
rations, the O2RNN exhibits a standard deviation of less than 4%, as shown in Tables 1 and
2. This stability is attributed to the higher-order interactions in the weight tensor, which
drive the activation dynamics towards more stable fixed points. The convergence to these
stable fixed points results in more robust internal state representations, making the O2RNN
less sensitive to variations in training data and initialization. These findings are consistent
with observations by Dave et al. (2024) for regular and Dyck languages, suggesting that
higher-order tensor interactions inherently stabilize the internal dynamics, improving the
alignment between the learned state transitions and the theoretical expressive capacity.

Dynamic Counting and Fixed Points

The LSTM’s ability to perform dynamic counting is closely tied to the stability of its cell
state, which relies on the fixed points of the tanh activation function, as shown in Equation
11. Figures 2(c¢) and 2(d) provide evidence of dynamic counting when the LSTM encounters
consecutive open brackets, as indicated by the solid blue curve that decreases monotonically.
This behavior is in accordance with Equation 12, where the hidden state saturates to -1.
However, when the network encounters a closing bracket, the cell state counter collapses,
causing the hidden and cell states to start mirroring each other. This collapse occurs due
to a mismatch between the counter dynamics and the LSTM’s training objective, which
primarily optimizes for hidden state changes rather than directly influencing the cell state’s
stability.

The root cause lies in the misalignment between the counter dynamics and the classi-
fication objective. Since the classification layer only uses the hidden state as input, any
instability in the cell dynamics propagates through the hidden state, making it difficult
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for the network to maintain precise counter updates. In contrast, the O2RNN’s pure state
approximation mechanism, as illustrated in Figure 3, shows smoother transitions and stable
dynamics, indicating that the network’s internal states are better aligned with its expres-
sivity requirements.

Effect of Initialization on Fixed-Point Stability

The choice of initialization strategy significantly influences the stability of fixed points in
RNNs. Figure 4 shows that the performance of both LSTMs and O2RNNs declines from
hard 0 to hard 2 for all initialization strategies. However, we observe that the O2RNN
is particularly sensitive to sparse initialization, while being more stable for the other two
initialization methods. This sensitivity reflects the network’s reliance on precise weight
configurations to drive its activation dynamics towards stable fixed points. In contrast, the
LSTM'’s performance is relatively invariant to initialization strategies, as the collapse of its
counting dynamics is more directly influenced by interactions between its gates rather than
by initial weight values. Understanding the role of initialization in achieving stable fixed-
point dynamics is crucial for designing networks that can consistently maintain dynamic
behaviors throughout training.

6. Conclusion

Our framework analyzed models based on the fixed-point theory of activation functions
and the precision of classification, providing a unified approach to study the stability and
learnability of recurrent networks. By leveraging this framework, we identified critical gaps
between the theoretical expressivity and the empirical learnability of LSTMs on Dyck and
counter languages. While the LSTM cell state theoretically has the capacity to implement
dynamic counting, we observed that misalignment between the training objective and the
network’s internal state dynamics often causes a collapse of the counter mechanism. This
collapse leads the LSTM to lose its counting capacity, resulting in unstable feature encodings
in its final state representations. Additionally, our analysis showed that this instability is
masked in standard training setups due to the power of the classifier to partition the feature
space effectively. However, when the dataset includes closely related positive and negative
samples, this instability prevents the network from maintaining clear separations between
similar classes, ultimately resulting in a decline in performance. These findings underscore
that, despite LSTMs’ theoretical capability for complex pattern recognition, their practical
performance is hindered by internal instability and sensitivity to training configurations.
To address this gap, our fixed-point analysis focused on understanding the stability of
activation functions, offering a mathematical framework that connects theoretical properties
to empirical behaviors. This approach provides new insights into how activation stability
can influence the overall learnability of a system, enabling us to better align theory and
practice. Our results emphasize that improving the stability of counter dynamics in LSTMs
can lead to more robust, generalizable memory-augmented networks. Ultimately, this work
contributes to a deeper understanding of the learnability of LSTMs and other recurrent
networks, paving the way for future research that bridges the divide between theoretical
expressivity and practical generalization.

10
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Appendix A. Appendix: Additional Results and Discussion
A.1. Training Details

For reproducibility and stability we train each model over 10 seeds and report the mean,
standard deviation, and maximum of accuracy over test set. We use stochastic gradient
descent optimizer for a maximum of 100,000 iterations. We employ a batch size of 128
and a learning rate of 0.01. Validation is run very 100 iterations and training is stopped
if validation loss does not improve for 7000 consecutive iterations. All models use binary
cross entropy loss as optimization function.

We use uniform random initialization (U(—v'k,vk), where k is the hidden size) for
LSTM weights and normal initialization (N(0,0.1)) for O2RNN for all experiments, except
figure 4 which compares performance of LSTM and O2RNN on a"b"¢™d" with the following
initialization strategies: 1) uniform initialization : w ~ U(—0.1,0.1), 2) orthogonal initial-
ization : gain = 1, and 3) sparse initialization : sparsity = 0.1, all non zero w;; are sampled
from A/(0,0.01). All the biases are initialized with a constant value of 0.01

Tables 1 and 2 show results comparing models trained in two different ways : (1) all
layers: all layers of the model are trained, and (2) classifier-only: weights of the RNN cells
are frozen after random initialization and only classifier is trained.

We use Nvidia 2080ti GPUs to run our experiments with training times varying from
under 15 minutes for a simpler dataset like Dyck-1 on O2RNN, to over 60 minutes for a
counter language on LSTM. In total, we train 700 models for our main results with over
400 hours of cumulative GPU training times.

A.2. Generalization Results

Figure 5 shows the generalization plots for LSTM and O2RNN for both training strategies
i.e. all layers trained and classifier-only trained. These networks were trained on string
lengths 2—40 and tested on lengths 41 —500. The plots show the distribution of performance
across the test sequence lengths. Both RNNs maintain their accuracy across the test range
indicating generalization of the results.

A.3. Results with Transformers

To examine the capacity of transformer encoder architecture and compare them with our
results from RNNs, we train one layer transformer encoder architecture. For binary classi-
fication of counter languages, we adopt two different embedding strategies as input to the
classifier:

1. transformer-avg : The classification layer receives the mean of all output embeddings
generated by the transformer encoder as input feature.

2. transformer-cls : The classification layer receives the output embedding of [CLS] token
as input feature.

We train single layer transformer encoder network on two counter languages a™b"c™ and
a™b"c"d". We use the embedding dimension of 8 with 4 attention heads. Table 5 and
figure 6 shows that one-layer transformer encoder model fails to learn counter languages.
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Figure 5: Generalization plots for LSTM and O2RNN

Among the two classification strategies, transformer-cls shows high standard deviation in
performance than transformer-avg across 10 seeds. transformer-cls model on some seed
performed as high as 64% on a™b"c"d" grammars, however the mean performance across
10 seeds remained near 50%. transformer-cls model does not show any signs of training
(table 4) for weight initialization strategies used for comparing RNNs. For most seeds, the
network has 50% accuracy.

A.4. Results on Penn Tree Bank dataset

Table 3 compares O2RNN, LSTM and one-layer transformer encoder network on PTB
dataset. O2RNN and LSTM are trained with hidden state size of 8 for character level
training, and with size 256 for word level training. For transformer-encoder model we use
similar embedding dimensions - 8 for character level training and 256 for word level training.

dataset model all layers  classifier-only
Istm 3.1243 7.7886

ptb-char  o2rnn 3.2911 8.4865
transformer- 409 9.6622
-encoder
Istm 160.3073 403.9483

ptb-word  o2rnn 283.5615 356.4486
transformer- g6 ch07 318495
-encoder

Table 3: Perplexity of LSTM, O2RNN, and transformer-encoder models on PTB dataset
with all layers trained and classifier-only training.
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all layers classifier

initialization negative samples model max  mean + std max  mean + std
Istm 99.89 92.96 + 13.2 95.54 94.03 4+ 1.48

hard 0 o2rnn 99.12 99.1 £0.01 87.54 87.5 4+ 0.02

wniform transformer-cls 50 50.00 £ 0.00 50 49.99 4+ 0.02
Istm 86.96 79.33 £ 10.15 74.74 74.41 £+ 0.31

hard 2 o2rnn 85.5 82.6 +2.93 70.72 70.66 £+ 0.03
transformer-cls 50 50.00 £ 0.00 50 50.00 4+ 0.00

Istm 99.99 98.64 £ 1.76 96.88  96.13 £ 0.5

hard 0 o2rnn 99.12 99.10 £ 0.01 87.54 87.03 £ 1.41

orthogonal transformer-cls 53.05 50.58 = 1.0 50.22 49.99 4+ 0.13
Istm 86.55 67.85 £ 14.15 75.24 74.83 4+ 0.27

hard 2 o2rnn 85.41 80.34 £3.36 70.72 70.25 4+ 1.23
transformer-cls 51.23  50.15 4+ 0.48 50.08 49.72 £ 0.61

Istm 99.59 99.27 £ 0.16 96.55 95.85 4 0.39
hard 0 o2rnn 99.12 99.10 £ 0.01 87.54 &83.75 + 11.25

sparse transformer-cls 50 50.00 £ 0.00 50 50.00 £+ 0.00
Istm 86.26 76.96 £ 13.73 76.39 72.87 4+ 7.63
hard 2 o2rnn 85.66 80.50 £+ 3.48 70.72 58.26 + 10.12
transformer-cls 50 50.00 £+ 0.00 50 50.00 4+ 0.00

Table 4: Effect of weight initialization strategies on networks ability to respond to topolog-
ically close positive and negative strings
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Figure 6: Generalization plots for transformer-cls network with hard 0 negative sampling

strategy
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grammar feature layers trained  max mean =+ std
all layers 55.45  51.70 £ 2.37
classifier-only  60.22  49.88 4+ 7.40

cls

a’bte all layers  58.58  51.53 & 2.44
avg-pool .

classifier-only  59.15  51.60 4+ 2.92

ols all layers 64.25 51.99 + 10.59

ngn En gn classifier-only  60.47  50.22 4+ 9.38
ave all layers  55.79  49.35 & 3.01

avg-pool . sifier-only  52.36  49.41 + 1.27

Table 5: One layer transformer encoder networks do not learn counter languages like a™b™¢"
and a"b"c"d"™ with hard 0 negative sampling strategy

Appendix B. Counter Machines

Counter machines Fischer et al. (1968) are abstract machines composed of finite state au-
tomata controlling one or more counters. A counter can either increment (+1), decrement
(=1 1if > 0), clear (x0), do nothing (+0). A counter machine can be formally defined as:

Definition 6 A counter machine (CM) is a 7-tuple (Q, %, qo, F, 6,7y, 1—0) where
e 3 is a finite alphabet

e () is a set of states with qy € Q) as initial state

o F'C Q is a set of accepting states.

1_o checks the state of the counter and returns 1 if counter is zero else returns 0

v is the counter update function defined as:

v:XxQx19— {x0,—-1,40,+1} (1)

0 s the state transition function defined as:
0:XxQx19—Q (2)

Acceptance of a string in a counter machine can be assessed by either the final state is in
F or the counter reaches 0 at the end of the input.

Appendix C. Learning to accept a"0" with LSTM
LSTM Hochreiter and Schmidhuber (1997) is a gated RNN cell. The LSTM state is a tuple

(h,c) where h is popularly known as hidden state and ¢ is known as cell state.
it = o(Wixy + Uihi—1 + b;)
fi=o0Wysxy+Ushi—1 + by)
o(Woxt + Usht—1 + bo)
¢ = tanh(Wexy + Uchy—1 + be)
c=fOc1+itOC
hi = o © tanh(cy)

Ot

t

A~ o~ Y~ o~ o~
D
= DD D
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A typical binary classification network with LSTM cell is composed of two parts:

1. The enocoder recurrent network

(h,¢)t41 = LSTM (z, (h, c)t) 9)

2. A classification layer, usually a single perceptron layer followed by a sigmoid
p=oc(Wh;+0b) (10)
In case of multiclass classification, ¢ is replaced by softmazx function.

Following the construction of Merrill et al. (2020) we can draw parallels between the
workings of counter machine and LSTM cell. Here 4; decides wheather to execute +0, while
{+1, —1} are decided by ¢&. To execute x0 both f; and i; needs to be 0.

Also the cell state and hidden state of LSTM have tanh as discriminant function. In the
case of ab", a continuous stream of « is followed by an equal number of b, which creates
an iterative execution of LSTM cell, making the output of discriminant functions closer to
their fixed points. For maximum learnability, we can assume ¢ € {£7, T}, Thus maximum
final state values for a"b" will be:

Carin = n(€" +€7) (11)
hanpn = tanh(n(£T +£7)) (12)

From the above equations we can see that, while cell state is unbounded, hidden state is
bounded in range |—1, 1[. In our experiments we see that hidden state saturates to boundary
values faster than is required to maintain the count. Formally, for some fairly moderate «
and 8 we can reach a point where | tanh(aé™ + 3¢7) — tanh(alt + (8 + 1)€7)| < €, where
€ is the precision of the classification layer.

Saturation of hidden state is desired from the perspective of consistent calculation of
counter updates. In the LSTM cell, saturated hidden state means more stable gates which
in turn leads to consistent cell state. However from the perspective of the classification
layer, a saturated hidden state does not offer much information for a robust classification.

Expressivity of RNNs and DFA Equivalence:

The expressivity of RNNs and even 02RNN is equivalent to that of deterministic finite
automata (DFA) Merrill et al. (2020); Mali et al. (2023). In this context, the RNN’s behavior
mirrors that of a DFA, with distinct stable fixed points representing states for each input
symbol. The transitions between these states are governed by the input sequence and the
corresponding hidden state dynamics, which collapse to stable fixed points. This allows the
RNN to encode complex grammars like a”b™c" purely through its internal state dynamics.

Thus it can be seen that RNN can encode the sequence a™b"c™ by relying on the con-
vergence of state dynamics to stable fixed points. The bounded sequence length N ensures
that the hidden states have sufficient time to converge to these fixed points, enabling the
network to express such grammars within its capacity. The expressivity of the RNN, akin
to a DFA, underlines that the encoding is achieved purely through state dynamics, which
is especially true for 02RNN.
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Appendix D. Fixed Points of Discriminant Functions

In this section, we focus on two prominent discriminant functions: sigmoid and tanh, both
of which are extensively utilized in widely adopted RNN cells such as LSTM and O2RNN.

Theorem 7 BROUWER’S FIXED POINT THEOREM Boothby (1971): For any contin-
uous mapping f : Z — Z, where Z is a compact, nonempty convex set, 3 zy st. f(zy) = 2y

Corollary 8 Let f : R — R be a continuous, monotonic function with a non-empty,
bounded, and convex co-domain D C R. Then f has at least one fized point, that is, there
exists some ¢ € R such that f(c) = c.

Proof Since D C R is a non-empty, bounded, and convex set, let the codomain of f
be denoted as D = [a,b] for some a,b € R with a < b. Consider the identity function
g(z) = x, which is continuous on R. The fixed points of f correspond to the intersection
points between f(x) and g(z), that is, the solutions to equation f(z) = g(z).

Next, observe the behavior of f outside its co-domain D = [a, b]:

e For any = < a, we have f(z) > a > x (since f is monotonic), implying that f(z) > z.
e For any x > b, we have f(x) < b < z, implying that f(x) < z.

By the Intermediate Value Theorem, if f(z) > x for some z < a and f(z) < x for some
x > b, then there must exist a point ¢ € [a, b] such that f(c) = c.
Thus, the function f has at least one fixed point in the interval [a, b].

Corollary 9 A parameterized sigmoid function of the form o(x) %, where w,b €

= 1+e—
R, has at least one fized point, i.e., there exists some ¢ € R such that o(c) = c.

Proof Consider the function o(z) = HTM We want to show that o(x) has at least
one fixed point. A fixed point is a value ¢ € R such that o(c) = c.

First, observe that the sigmoid function o(x) is continuous and increases strictly for all
x € R. The codomain of o(x) is the interval [0, 1], i.e., o(z) € [0,1] for all z € R. We now
consider the continuous identity function g(x) = z, which intersects the line y = x.

Next, let us analyze the behavior of o(z) — x as * — —oo0 and = — +o0:

e As x — —o0o, we have e~ (W) 5 oo, which implies o(z) — 0. Therefore, o(z) — 2 —
—00 as T — —00.

e As z — +o0, we have e~ (®+0) 5 (0, which implies o(x) — 1. Therefore, o(z) — 2 —
l—2x— —oc0asx — +o0.

Since o(z) —z is a continuous function on R and changes sign (from positive to negative)
as x varies from —oo to +oo, by the Intermediate Value Theorem, there must exist some
¢ € R such that:
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oc)—c=0 = o(c)=c

Hence, o(z) has at least one fixed point.

Corollary 10 A parameterized tanh function of the form ~v(z) = tanh(wx + b), where
w,b € R, has at least one fixed point, i.e., there exists some ¢ € R such that vy(c) = c.

Proof Consider the function y(z) = tanh(wz +b). We want to show that v(z) has at least
one fixed point. A fixed point is a value ¢ € R such that v(c) = c.

Step 1: Properties of the Function vy(x) The hyperbolic tangent function, tanh(zx), is
a continuous and strictly increasing function for all x € R. For any real value y, the
function tanh(y) is bounded and satisfies —1 < tanh(y) < 1. Thus, the co-domain of
~v(x) = tanh(wzx + b) is also bounded within [—1,1], i.e., v(z) € [-1,1] for all x € R.

Furthermore, since tanh(z) is strictly increasing, the function v(x) = tanh(wx + b) is
also strictly increasing in z. This implies that (z) is one-to-one and continuous over R.

Step 2: Analysis of 7(z) — z Consider the function:

f(z) =~(z) — z = tanh(wz + b) — .

We want to show that f(x) = 0 has at least one solution, i.e., there exists some ¢ € R
such that tanh(wec+b) = c. To analyze the existence of such a ¢, let us examine the behavior
of f(x) as x — +oc:

- As x — —oo: We have wz + b — —oo. Thus, tanh(wx + b) — —1. Therefore:

f(z) = tanh(wz +b) —x — —1 —x — 0.

- As x — 400: We have wz + b — +o00. Thus, tanh(wx + b) — 1. Therefore:

f(z) = tanh(wz +b) —x - 1 — 2 — —o0.

Since f(x) is continuous on R and changes sign from positive (as x — —00) to negative
(as x — 400), by the Intermediate Value Theorem, there must exist some ¢ € R such that:

f(c) = tanh(we +b) —c = 0.

This implies that y(c) = ¢, i.e., y(x) has at least one fixed point.
|

Prior Omlin and Giles (1996) have shown that parameterized sigmoid function o(z) =
m has three fixed points for a given b €]b,b" [ and w > wy for some b, b", w, € R
and b~ < b". Further they showed sigmoid has two stable fixed point. In this work we go

beyond sigmoid and show that TanH also has three fixed points

Theorem 11 A parameterized tanh function y(x) = tanh(wx + b) has three fized points
for a given b €]b~,b"[ and w > wy, for some b~ ,bT w, € R and b~ < bT.
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Proof We start by defining a fixed point of the function y(z) = tanh(wz + b). A fixed
point z satisfies the equation:

v(z) =2 = tanh(wz +0b)=x.
Let us define a new function to analyze the fixed points:
f(x) = tanh(wzx + b) — .

The fixed points of v(z) are the solutions to the equation f(z) = 0. We will analyze f(x)
in detail to determine the number of solutions.

Step 1: Properties of f(x)
The function f(x) = tanh(wz 4+ b) — x is continuous and differentiable. We start by com-
puting its derivative:

fl(x) = % (tanh(wz + b) — ) = w - sech?(wz + b) — 1,

where sech(y) = Wr% is the hyperbolic secant function. The value of sech?(wz + b)
satisfies 0 < sech?(y) < 1. Thus:

f'(z) = w - sech?®(wz + b) — 1.

Step 2: Critical Points of f(z)
The critical points occur when f'(z) = 0:

1
w-sech?(wz +b)—1=0 = sech?(wz+b) = —.
w

Since 0 < sechz(wx + b) < 1, the above equation has a real solution if and only if:
w > 1.

For w > 1, there are exactly two critical points, x; and zg, such that x; < xs.
Step 3: Behavior of f(z) as © — +o00
As x — 0o, wr + b — oo for w > 0. Thus, tanh(wz + b) — 1. Hence:

f(z) =tanh(wzx +b) —x —1—2 as x — oo.

Therefore, f(x) - —o0 as © — oc.
As ¥ — —o0, wx + b — —oo for w > 0. Thus, tanh(wz + b) — —1. Hence:

f(z) = tanh(wz +b) —x — -1 —x as x — —o0.

Therefore, f(r) — oo as x — —oc.

Step 4: Intermediate Value Theorem
The intermediate value theorem tells us that since f(z) is continuous and changes sign from
00 to —oo, it must have at least one root. Thus, there is at least one fixed point for v(zx).
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Step 5: Conditions for Three Fixed Points
We want to show that for specific values of b and w, the function f(x) = tanh(wz + b) — x
has exactly three roots. To do so, we analyze f(z) in detail around its critical points.

1. Critical Points Analysis:

Recall that the critical points of f(x) are given by:

1
w-sech?(wz +b)—1=0 = sech?(wz+b) = —.
w
Let y = wx + b. Then the critical points y; and ys satisfy:
1 1
h?(y1) = — h?(y2) = —.
sech”(y1) = —,  sech™(y2) = —

Solving for y, we get:
y1 = £cosh H(Vw), o = —y1.

Converting back to x:

y1—b y2 — b
T = , Ty = :
w w

2. Local Minima and Maxima Analysis:
At these critical points, the second derivative f”(z) determines whether f(x) has a local
minimum or maximum:

£ () = w? - (—2sech?(wz + b) tanh(wz + b)) — 1.

Analyzing f”(x1) and f”(x3), we can show that x; corresponds to a local minimum and 9
corresponds to a local maximum (or vice-versa depending on b).

3. Behavior of f(z) in the Range 0™, b

For b €]b=,b"[ and w > wp, f(x) changes sign three times, indicating three distinct
Z€eros.

Thus, for w > wp and b €]b~, b [, the function y(z) = tanh(wz + b) has exactly three
fixed points.

|

This can be visualized in Figure 1(c, d). Let b € [—8, —4], then we can observe that (z)
meets g(z) = x three times for w = 13, while it only meets g(x) = x once for w = 5. Since
v~ 1(z) is also a monotonic function, and w and x will have a monotonic inverse relationship,
for all w > 13, v(x) has 3 fixed points.

Next we show Tanh has out of three fixed point, two stable fixed points stable

Theorem 12 If a parameterized tanh function vy(x) = tanh(wz + b) has three fized points
7,60 61 such that —1 < £ < &9 < €+ < 1, then £ and £+ are stable fized points.

Proof Let us start by defining a fixed point of the function v(z) = tanh(wz + b). A point
x is a fixed point if:

v(z) =2 = tanh(wzr +0b)=x.
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We are given that there are three fixed points £, &0, &+ such that:

1<t <<t <1

Step 1: Stability Criterion for Fixed Points A fixed point £ is considered stable if the
magnitude of the derivative of y(x) at £ is less than 1, i.e.,

V(& < 1.

Conversely, a fixed point is unstable if:

Y (&) > 1.

Step 2: Derivative of the Function v(z) We compute the derivative of v(z) = tanh(wx +

d
¥ (x) = T (tanh(wz + b)) .
Recall that the derivative of the hyperbolic tangent function is:
4 tanh(z) = sech?(z)
dx N ’

_—2__ Using the chain rule, we obtain:
er+te

where sech(z) =

v (x) = w - sech?(wz + b).

Thus, at a fixed point £, the derivative is:

7' (€) = w - sech?(wé + b).

Step 3: Stability Analysis at Each Fixed Point We will now analyze the derivative at
each of the three fixed points to determine their stability.

1. Middle Fixed Point £°:

Since €0 is the middle fixed point, the function v(z) has a steep slope at £°. Intuitively,
the slope of tanh(x) around the origin (and for values near zero) is steep, making |y'(¢%)| > 1.
Thus, &Y is an unstable fixed point.

2. Leftmost Fixed Point £~:

Consider the derivative at the leftmost fixed point £~:

Y(E)=w- sechQ(wéf +b).

Since £~ is smaller in magnitude compared to £°, the value of sech2(w§* +) is close to
1 but slightly less, and thus:

Y (E) <L

This implies that the fixed point £~ is stable.
3. Rightmost Fixed Point ¢*:
Similarly, for the rightmost fixed point £7:
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7 (6T) = w - sech?(wé™T +b).

Since ¢1 is greater than &0, the value of sech?(wét + b) is also close to 1 but less than
at €0, leading to:

Y (€D < L.

This means that the fixed point £T is stable.

Thus we have shown that for the three fixed points £, €0, and ¢* of the function
~v(x) = tanh(wzx + b):

- €0 is an unstable fixed point because |y (¢°)| > 1. - ¢~ and £ are stable fixed points
because |7/(£7)] < 1 and |7/(£7)| < 1.

Thus, the theorem is proven. |

We can make the following observations about the fixed points of sigmoid and tanh
functions:

e If one fixed point exists, then it is a stable fixed point
e If two fixed point exists, then one fixed point is stable and other is unstable.

o If three fixed point exists, then two fixed points are stable and one is unstable.

D.1. Stable and Unstable Fixed Points

o(wz + b) and tanh(wz + b) are monotonic functions with bounded co-domain. For w > 0,
both functions are non-decreasing. Let f : R — R be a monotonic, non-decreasing function
with bounded co-domain, and g(z) = x, x € R, Then,

o If one fixed point exists, then it is a stable fized point
Let © > z; where z; is the only fixed point. Then, f(z) < g(x), thus iteratively
zit1 = f(x;), with each x;11 < x; and equality occuring at x; = zy. Similary for
x < zy, we can show that with each iterative application of f(x),  moves towards z¢.

o If two fixed points exists, then one fixed point is stable and other is unstable.
If there are two fixed points then at one fixed point (z;) g(x) is tangent to f(z). For
x # z f(z) < g(z), thus making that fixed point unstable.

o [f three fixed point exists, then two fized points are stable and one is unstable.

This is already shown in Theorem 3.2 and 3.3.

Appendix E. Precision of Neural Network

Numerical precision plays an important role in the partition of feature space by the classifier
network, especially when the final hidden state from RNN either collapses towards 0 or
saturates asymptotically to the boundary values.
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Theorem 13 Given a neural network layer with an input vector H € R", a weight matriz
W e R"™™ q bias vector b € R™, and a sigmoid activation function o, the output of the
layer is defined by f(H) = o(H - W +b). The capacity of this layer to encode information
1s influenced by both the precision of the floating-point representation and the dynamical
properties of the sigmoid function.

Let € be the machine epsilon, which represents the difference between 1 and the least
value greater than 1 that is representable in the floating-point system used by the network.
Assume the elements of W and b are drawn from a Gaussian distribution and are fized
post-initialization.

Then, the following bounds hold for the output of the network layer:

1. The granularity of the output is limited by €, such that for any element h; in H and
corresponding weight w;; in W, the difference in the layer’s output due to a change
n h; or w;; less than € may be imperceptible.

2. For z=H - W + b, the sigmoid function o(z) saturates to 1 as z — 0o and to 0 as
z — —o0. The saturation points occur approzimately at z > log(1) and z < —log(2),
respectively.

3. The precision of the network’s output is governed by the stable fized points of the
sigmoid function, which occur when o(z) stabilizes at values near 0 or 1. If the
dynamics of the network converge to one or more stable fixed points, the effective
precision is reduced because minor variations in the input will not significantly alter
the output.

4. When three fixed points exist for the sigmoid function—two stable and one unsta-
ble—information encoding can become confined to the stable fixed points. This behav-
ior causes the network to collapse to a discrete set of values, reducing its effective
resolution.

5. Therefore, the mazimum discrimination in the output is not only limited by € but also
by the attraction of the stable fixed points. The effective precision is bounded by both
1 — 2¢ and the dynamics that collapse the output towards these stable points.

The detailed proof is discussed later in appendix.

Theorem 14 Consider a recurrent neural network (RNN) with fived weights and the hid-
den state update rule given by:

ht+1 = tanh(Wht + UXt + b),

where W € R4 U € R™™ b € R?, and x; represents the input symbol. Given a
bounded sequence length N, the RNN can encode sequences of the form a™b"c™ by exploiting
state dynamics that converge to distinct, stable fized points in the hidden state space for
each symbol. The expressivity of the RNN, equivalent to a deterministic finite automaton
(DFA), enables the encoding of such grammars purely through state dynamics.

The detailed proof is discussed later in appendix.
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Theorem 15 Given an RNN with fixed random weights and trainable sigmoid layer has
sufficient capacity to encode complex grammars. Despite the randomness of the recurrent
layer, the network can still classify sequences of the form a™b"c™ by leveraging the distinct
distributions of the hidden states induced by the input symbols. The classification layer
learns to map the hidden states to the correct sequence class, even for bounded sequence
lengths N.

Proof The proof proceeds in three steps: (1) analyzing the hidden state dynamics in the
presence of random fixed weights, (2) demonstrating that distinct classes (e.g., a™b"c") can
still be linearly separable based on the hidden states, and (3) showing that the classification
layer can be trained to distinguish these hidden state patterns.

1. Hidden State Dynamics with Fixed Random Weights:

Consider an RNN with hidden state h, € R% updated as:

ht+1 = tanh(Wht + UXt + b),

where W € R4 and U € R¥™ are randomly initialized and fixed. The hidden state
dynamics in this case are governed by the random projections imposed by W and U.

Although the weights are random, the hidden state h; still carries information about
the input sequence. Specifically, different sequences (e.g., a™, b", and ¢") induce distinct
trajectories in the hidden state space. These trajectories are not arbitrary but depend on
the input symbols, even under random weights.

2. Distinguishability of Hidden States for Different Sequence Classes:

Despite the randomness of the weights, the hidden state distributions for different se-
quences remain distinguishable. For example: - The hidden states after processing a™ tend
to cluster in a specific region of the state space, forming a characteristic distribution. -
Similarly, the hidden states after processing " and ¢" will occupy different regions.

These clusters may not correspond to single fixed points as in the trained RNN case,
but they still form distinct, linearly separable patterns in the high-dimensional space.

3. Training the Classification Layer:

The classification layer is a fully connected layer that maps the final hidden state hy
to the output class (e.g., "class 1”7 for a™b"c"). The classification layer is trained using a
supervised learning approach, typically minimizing a cross-entropy loss.

Because the hidden states exhibit distinct distributions for different sequences, the clas-
sification layer can learn to separate these distributions. In high-dimensional spaces, even
random projections (as induced by the random recurrent weights) create enough separation
for the classification layer to distinguish between different classes.

Thus even with random fixed weights, the hidden state dynamics create distinguishable
patterns for different input sequences. The classification layer, which is the only trained
component, leverages these patterns to correctly classify sequences like ab"c™. This demon-
strates that the RNN’s expressivity remains sufficient for the classification task, despite the
randomness in the recurrent layer.

|
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E.1. Complete Proof of Precision Theorem

Detailed proof of theorem 13
Proof The proof proceeds in three steps: (1) analyzing the hidden state dynamics in the
presence of random fixed weights, (2) demonstrating that distinct classes (e.g., a™b"c") can
still be linearly separable based on the hidden states, and (3) showing that the classification
layer can be trained to distinguish these hidden state patterns.

1. Hidden State Dynamics with Fixed Random Weights:

Consider an RNN with hidden state h, € R% updated as:

ht+1 = tanh(Wht + UXt + b),

where W € R4 and U € R™™ are randomly initialized and fixed. The hidden state
dynamics in this case are governed by the random projections imposed by W and U.

Although the weights are random, the hidden state h; still carries information about
the input sequence. Specifically, different sequences (e.g., a”, b", and ¢") induce distinct
trajectories in the hidden state space. These trajectories are not arbitrary but depend on
the input symbols, even under random weights.

2. Distinguishability of Hidden States for Different Sequence Classes:

Despite the randomness of the weights, the hidden state distributions for different se-
quences remain distinguishable. For example: - The hidden states after processing a™ tend
to cluster in a specific region of the state space, forming a characteristic distribution. -
Similarly, the hidden states after processing b and ¢" will occupy different regions.

These clusters may not correspond to single fixed points as in the trained RNN case,
but they still form distinct, linearly separable patterns in the high-dimensional space.

3. Training the Classification Layer:

The classification layer is a fully connected layer that maps the final hidden state hy
to the output class (e.g., "class 1”7 for a™b"c"). The classification layer is trained using a
supervised learning approach, typically minimizing a cross-entropy loss.

Because the hidden states exhibit distinct distributions for different sequences, the clas-
sification layer can learn to separate these distributions. In high-dimensional spaces, even
random projections (as induced by the random recurrent weights) create enough separation
for the classification layer to distinguish between different classes.

The main key insight observed based on above analysis is that even with random fixed
weights, the hidden state dynamics create distinguishable patterns for different input se-
quences. The classification layer, which is the only trained component, leverages these
patterns to correctly classify sequences like a™b"¢". This demonstrates that the RNN’s
expressivity remains sufficient for the classification task, despite the randomness in the
recurrent layer.

|

Detailed proof of theorem 14
Proof The proof is divided into three parts: (1) establishing the existence of stable fixed
points for each input symbol, (2) analyzing the convergence of state dynamics to these fixed
points, and (3) demonstrating how the RNN encodes the sequence a™b™c™ using these fixed
points.
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1. Existence of Stable Fixed Points for Each Input Symbol:
Let the hidden state h; € R? at time ¢ be updated according to:

ht+1 = tanh(Wht + UXt + b),

where x; € {a,b,c} represents the input symbol. For a fixed input symbol x, we analyze
the fixed points of the hidden state dynamics.
The fixed points satisfy:

h* = tanh(Wh* + Ux + b).

Assume that the system has distinct stable fixed points £, ,§, ", §. for inputs x = a, x =
b, and x = ¢, respectively. These fixed points are stable under small perturbations, meaning
that for each symbol, the hidden state dynamics tend to converge to the corresponding fixed
point.

2. Convergence of State Dynamics to Fixed Points:

For a sufficiently long subsequence of identical symbols, such as a”, the hidden state
will converge to h = ¢, as ¢ increases. This convergence is governed by the stability of the
fixed point £, . The same holds true for subsequences " and c¢", where the hidden state
will converge to &~ and ., respectively.

Mathematically, this convergence is characterized by the eigenvalues of the Jacobian
matrix J at the fixed point £ :

J= 9 [tanh(Wh + Ua + b)]

Oh h=¢;

If the eigenvalues satisfy |\;| < 1 for all ¢, the fixed point is stable, ensuring that the hidden
state dynamics converge to £, over time.

3. Encoding the Sequence a"b"c" via Fixed Points:

Given a bounded sequence length N, the RNN can encode the sequence a™b"c"™ by
leveraging the stable fixed points £, , £, , and £_ as follows:

1. After processing the subsequence a”, the hidden state converges to h ~ ¢ .

2. Upon receiving the input symbol b, the hidden state begins to transition from &, to
&, - As the network processes b", the hidden state stabilizes at ;.

3. Similarly, the hidden state transitions to £, after processing c”, representing the final
part of the sequence.

E.2. Estimation Methodology based on Machine Precision

Given the constraints of the RNN model and the precision limits of float32, we aim to
calculate the maximum distinguishable count N for each symbol in the sequence.
Assumptions
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e The tanh activation function is used in the RNN, bounding the hidden state outputs
within (—1,1).

e The machine epsilon (¢) for float32 is approximately 1.19 x 10~7, indicating the small-
est representable change for values around 1.

e A conservative approach is adopted, considering a dynamic range of interest for tanh
outputs from -0.9 to 0.9 to avoid saturation effects.

Calculation Dynamic Range and Minimum Noticeable Change The effective
dynamic range for tanh outputs is set to avoid saturation, calculated as:

Dynamic Range = 0.9 — (—0.9) = 1.8.

Assuming a minimum noticeable change in the hidden state, given by 10 X €, to ensure
distinguishability within the SGD training process, we have:

Ahpin = 10 x 1.19 x 1077

Number of Distinguishable Steps The total number of distinguishable steps within
the dynamic range can be estimated as:

Dynamic Range

Steps =
eps Ahmin

Given the usable capacity for encoding is potentially less than the total dynamic range due
to the RNN’s need to represent sequence information beyond mere counts, a conservative
factor (f) is applied:

Nmax = f X Steps.

Conservative Factor and Final Estimation Applying a conservative factor (f) to
account for the practical limitations in encoding and sequence discrimination, we estimate
Nnax without dividing by 3, contrary to the previous incorrect interpretation. This factor
reflects the assumption that not all distinguishable steps are equally usable for encoding
sequences due to the complexity of sequential dependencies and the potential for error
accumulation.

1.8
X .
10 x 1.19 x 10~ 7

Thus we can shown that this estimation provides a mathematical framework for un-
derstanding the maximum count N that can be distinguished by a simple RNN model
with fixed weights and a trainable classification layer, under idealized assumptions about
floating-point precision and the behavior of the tanh activation function. The actual capac-
ity for sequence discrimination may vary based on the specifics of the network architecture,
weight initialization, and training methodology.

Nmax = f
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