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Abstract

To successfully apply learning-based approaches to long-horizon sequential decision making
tasks, a human teacher must be able to specify the task in a way that provides appropriate
guidance to the learner. The two most prominent policy learning paradigms, reinforcement
learning (RL) and imitation learning, both require considerable human effort to specify a
long-horizon task, either through dense reward engineering or providing many demonstra-
tions that follow an approach that is feasible for the learner. We propose the illustrated
landmark graph (ILG) as a form of task specification that exposes opportunities for the
learner to customize its approach to its unique capabilities without the need for reward en-
gineering, and allows the human teacher to intuitively provide intermediate guidance without
the need for full-length demonstration. Each source-to-sink path in the ILG represents a
way to complete the task, and each vertex along a path represents an intermediate landmark.
To communicate the meaning of a landmark to the learner, the teacher provides illustrative
observations drawn from states within the landmark. We further propose ILG-Learn, an
approach that interleaves planning over the ILG, policy learning, and active querying of the
human teacher to guide the learner. Our experimental evaluation shows that ILG-Learn
learns policies that successfully complete a block stacking task and a 2D navigation task,
while approaches that receive specifications in the form of final goal observations (RCE) or
full-length demonstrations (behavior cloning) fail. Additionally, we show that a multi-path
ILG allows ILG-Learn to adapt to the capabilities of a learner with limited perception.

1 Introduction

How can a human best teach an agent to perform a new long horizon task? The two most popular classes
of approaches today are reinforcement learning (RL) and imitation learning. In RL, (Sutton & Barto, 2018)
the teacher specifies the task via a reward function that assigns higher scores to more desirable environment
configurations. The agent then interacts with the environment to learn how to achieve high rewards. For
long-horizon tasks, the efficiency of this trial-and-error exploration depends intimately on the human teacher’s
ability to design a well-shaped reward function that encourages incremental progress towards the final goal
(Laud, 2004; Ng et al., 1999; Sowerby et al., 2022; Gupta et al., 2022). As a concrete example, let us
consider the block stacking task (StackChoice) shown in Figure 1. The task is to build a tower; the agent
may choose to place block A (red) on block B (green) or vice versa. The task itself is fully specified by a
simple “sparse” reward function that is 1 when the blocks are stacked and 0 otherwise. However, in practice,
the human teacher must write a more sophisticated reward function that provides “dense” rewards during
task execution. For example, it might incorporate small positive rewards for reaching various milestones
towards the task: moving the gripper close to the block, grasping, lifting, aligning, and finally placing the
block. To write such a reward function, the human teacher must be able to interpret the sensor readings
available to the learner and prudently balance the weight given to each term in the reward function. In
general, reward engineering is difficult, error-prone and requires considerable expertise, (Booth et al., 2023;
Amodei et al., 2016; Skalse et al., 2022) limiting RL’s applicability to long-horizon tasks.

Imitation learning (Hussein et al., 2017; Zare et al., 2023; Ravichandar et al., 2020) allows the human to
teach the agent by demonstrating desired behavior. Compared to RL, imitation learning shifts the teaching

1



Under review as submission to TMLR

Initial layout Grasp B

Initial layout
(Outwardview visualization)

Grasp B
(Outwardview perspective)

B

A

B

AB

A

start

grasp
A

grasp
B

stack

start grasp
A stack

StackChoice ILG structure

start grasp
B stack

start stack

StackAB ILG structure

StackBA ILG structure

Representation of example-based 
control landmark density 

Representation of imitation 
learning landmark density

start stack

Figure 1: Left: Renderings of the Stack task, which we use as a running example throughout the text,
including in our experiments. At the start of each episode, block A (red) starts closer to the robot than
block B (green). Both blocks initialize at randomized positions along the centerline of the table. In the
Outwardview condition, block A initially occludes block B. Right: ILG structure for variations of the Stack
task, alongside representations of the landmark density used by baseline policy learning algorithms.

burden from reward engineering to demonstration. Although demonstrations are an intuitive form of task
specification, providing high-quality demonstrations may not always be feasible (Ravichandar et al., 2020).
The teacher might not know how best to perform a task, or how to manually operate the agent to do so,
e.g. there may be no good interfaces to manually operate a biped robot to run smoothly. Even without
these problems, demonstrations can be cumbersome to provide: in the StackChoice task, the teacher would
need to teleoperate the robot and gather many demonstrations to adequately cover the states that the agent
may encounter during deployment. Finally, demonstrations must account for the learner’s limitations: e.g.,
stacking the blocks in one order may be easier for the robot to learn and perform than the other, because
of limitations on its sensing, perception, or actuation abilities. These limitations are not always easily
characterized in advance.

Reward functions and demonstrations occupy opposite ends of a design spectrum: a reward function specifies
what must be achieved (perhaps without much intermediate guidance), while a demonstration specifies how
to achieve it (perhaps too prescriptively). Ideally, the teacher could provide a specification that balances the
declarative nature of a reward function (which exposes opportunities for the learner to customize its approach
according to its capabilities) with the prescriptive nature of a demonstration (which provides fine-grained
guidance). To address this gap (visualized in Figure 2), we propose the illustrated landmark graph (ILG)
as a form of long-horizon task specification. Each vertex of an ILG represents an intermediate landmark,
which is a subset of the environment’s state space. To show the meaning of a landmark to the learner,
the teacher must be able to provide a handful of illustrative observations drawn from states within the
landmark. Each directed edge (u, v) in the ILG represents the edge task of transitioning the environment
from the landmark represented by u to the landmark represented by v. Each sink vertex represents a final
landmark. The long horizon task is to reach any final landmark, passing through intermediate landmarks
on the way. Importantly, the ILG can contain multiple paths to a final landmark, exposing opportunities

2



Under review as submission to TMLR

for the learner find a plan that suits its capabilities. Returning to our block stacking task, a human teacher
can identify that grasping a block before placing it is a useful landmark and can communicate this to the
learner via the StackChoice ILG shown in Figure 1.
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Figure 2: The ILG bridges the sparse,
declarative guidance provided by goal ex-
amples and the dense, prescriptive guidance
provided by demonstrations.

To leverage the ILG for policy learning, we propose ILG-Learn.
At a high level, ILG-Learn interleaves Dijkstra-style planning
over the ILG with example-based control, (Fu et al., 2018; Singh
et al., 2019; Eysenbach et al., 2021) a lightweight alternative
to imitation learning that uses goal observations instead of
full-length demonstrations, to learn an edge policy for each
edge task. Beyond providing the ILG and its associated illus-
trated observations, the ILG-Learn teacher need only respond
to binary success/failure queries during training to inform the
learner’s graph search. This intuitive teacher-learner interface
allows the learner to benefit from exploration without requiring
the teacher to engineer a reward function.

A key benefit of the ILG specification is the ability
to represent multiple paths to overall success. The
StackChoice ILG includes multiple paths to the final land-
mark (“stack”)—depending on the learner’s capabilities it may
be easier stack the blocks in one order or the other. For exam-
ple, if the agent were to perceive the world using an outward-
facing camera mounted opposite the robot on the surface of
the table (as shown in Figure 1), block B would initially be
occluded, making it easier to start by grasping the (unoccluded) block A. By querying the teacher for suc-
cess/failure feedback, the ILG-Learn learner can focus exploration along the most promising paths. Our
experiments show that ILG-Learn adapts to the occlusion condition and learns a policy that grasps the
unoccluded block first. This capacity for train-time adaptation reduces the burden on the human teacher to
predict which approach will be most feasible for the learner.

Another benefit of the ILG is that the teacher can choose a landmark density (the number of intermediate
vertices along a path in the ILG) that is dense enough to guide efficient exploration yet not so dense as to be
overly prescriptive. At one extreme, the teacher could provide a landmark graph that comprises a single edge,
thus recovering the free-form exploration of ILG-Learn’s underlying example-based control algorithm. At the
other extreme, the teacher could identify many intermediate landmarks to tightly scaffold exploration. The
ideal landmark density depends on the task of interest; we believe that the intuitive structure of the ILG will
enable the teacher to apply domain knowledge to select an appropriate landmark density without concerning
themselves with the low-level details of the robot’s perception and motor capabilities. Our experimental
evaluation shows that ILG-Learn outperforms baselines that use end-to-end example-based control (which
embodies minimal landmark density) and behavior cloning (which uses full-length demonstrations). In
summary:

• We introduce the ILG as a form of long-horizon task specification that allows a human teacher
represent multiple paths to success and provide intermediate landmarks without explicit knowledge
of the learner’s perception capabilities and without the need to provide full-length demonstrations
of desired behavior.

• We propose ILG-Learn, a learning algorithm that leverages the ILG’s interpretable-by-design nature
to allow the teacher to provide lightweight guidance as the learner learns policies and a plan to suit
its unique capabilities.

• We empirically show that providing a suitable ILG enables ILG-Learn to learn successful policies,
while approaches that do not receive structured guidance (RCE and bahavior cloning) struggle.
Additionally, we show that a multi-path ILG facilitates learning when the teacher cannot fully
anticipate the learner’s capabilities.
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2 Related work

Hierarchical reinforcement learning and structured exploration. Hierarchical reinforcement learn-
ing (HRL) (Hutsebaut-Buysse et al., 2022; Pateria et al., 2021) decomposes a task into multiple subtasks
that may be easier to learn.

Although an ILG specification does not fit precisely into the traditional options framework (Sutton et al.,
1999) since the (1) the teacher does not explicitly define entry and exit conditions for each edge task and (2)
the learner’s choice of which edge task to execute is conditioned on the history of ILG edges traversed thus
far, ILG-Learn is related to recent approaches (Araki et al., 2021; Neary et al., 2022; 2024) that start with
human-specified options and simultaneously learn intra-option control policies and a policy over options.
The main difference between ILG-Learn and these approaches is that ILG-Learn leverages example-based
control and teacher-learner interaction to avoid the need for reward engineering and explicit specification in
terms of environment states.

ILG-Learn’s use of the ILG is directly inspired by DiRL’s (Jothimurugan et al., 2021) use of the analogous
abstract graph, which is built according to the structure of a temporal logic specification. The ILG-definable
specifications are subsumed by LTL. The main difference between ILG-Learn and specification-guided re-
inforcement learning algorithms is that ILG-Learn uses human-in-the-loop interaction to guide the learner
instead of an explicitly defined reward structure (see, e.g., Toro Icarte et al. (2022); Alur et al. (2022)).

Rather than reactively select a path through the ILG during execution, ILG-Learn uses the ILG as a scaffold
for efficient exploration during training. During training, the learner freezes a single path through the ILG
that is well-suited to the learner’s capabilities; there is thus no high-level policy performing edge selection
during deployment. This directed exploration towards the frontiers of the ILG is reminiscent of Go-Explore
(Ecoffet et al., 2021). ILG-Learn differs from Go-Explore in that landmarks serve as the task specification
(avoiding the need for a reward function), include human-defined relationships (in the form of the ILG), and
are illustrated to the learner via teacher-provided observations (rather than reached organically).

Imitation learning and example-based control. As we argued in Section 1, the price of imitation
learning’s intuitive teacher-learner interface is rigidity: the learner is vulnerable to compounding deviations
from the teacher’s demonstrations (Ross et al., 2011) and may not enjoy the flexibility to adjust its approach
to suit its own unique capabilities. To address these challenges, inverse reinforcement learning (Arora &
Doshi, 2021; Adams et al., 2022) gleans the demonstrator’s intent, allowing the agent to learn a policy
through environmental interaction rather than rote memorization. In the context of long horizon policy
learning, UVD (Zhang et al., 2024) and Relay Imitation Learning (Gupta et al., 2020) identify subgoals within
demonstrations that can be used for compositional imitation inspired by goal-conditioned RL. Compared to
ILG-Learn, these approaches remove the need for the teacher to identify landmarks, but in so doing reduce
the teacher’s ability to scaffold exploration and require the teacher to provide demonstrations rather than
illustrative observations.

Example-based control (Fu et al., 2018; Singh et al., 2019; Eysenbach et al., 2021) allows the teacher to
provide single-timestep examples of the environment state after task completion rather than full-length
demonstrations. It is often significantly easier for a human to provide a single-timestep example than a full
demonstration, and sparse guidance allows the learner more flexibility. However, for long-horizon tasks, such
low landmark density may not provide the learner enough guidance to complete the task. At a high level, our
proposed method, ILG-Learn, scales example-based control to long-horizon tasks by incorporating human
exploration biases in the form of intermediate landmarks. We use the example-based control algorithm RCE
(Eysenbach et al., 2021) to learn each edge policy that transitions the environment between landmarks.

Human-in-the-loop policy learning. Reinforcement learning with human feedback (RLHF) (Kaufmann
et al., 2024; Arzate Cruz & Igarashi, 2020; Najar & Chetouani, 2021) elicits guidance from a human during
training to reduce (or completely eliminate) reliance upon the environment’s reward function. Some recent
applications of RLHF to robotics query human preference over states to discover subgoals for HRL (Zhou
et al., 2024) or goal-conditioned exploration (Villasevil et al., 2023). Instead of using human preference to
discover landmarks, ILG-Learn requires the teacher to choose which landmarks to include in the ILG before
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learning begins. ILG-Learn then incorporates human feedback in the form of success/failure queries to direct
exploration towards paths that cater to the learner’s capabilities.

Human feedback can also be used to facilitate imitation learning. For example, HI-IRL (Pan & Shen, 2018)
requires the human to provide subgoal states alongside a full-length demonstration. During training, the
learner can ask for focused demonstrations of particularly hard-to-learn subgoals. Another recent approach,
RLIF (Luo et al., 2024), builds upon the DAgger (Ross et al., 2011) family of algorithms by allowing a
user to intervene during training to tell the learner when it behaves unsatisfactorily and provide a short
demonstration of better behavior. The aforementioned techniques begin with a full-length demonstration
of the task, which contrasts with our ILG’s ability to express multiple paths to success. In a similar vein,
Memarian et al. (2020) combine automata learning and inverse reinforcement learning to discover a subgoal
decomposition alongside a policy to complete a long-horizon task. Their approach allows the learner to
ask for specific guidance while discovering the subgoal decomposition but is not immediately applicable to
continuous-state environments with difficult control tasks.

3 Illustrated landmark graphs

We introduce the illustrated landmark graph (ILG) as a form of long-horizon task specification. A key
feature of the ILG is that the teacher communicates the meaning of each landmark to the learner using
illustrative observations and does not need to provide explicit definitions in terms of the environment’s state.
In Section 3.1 we define the environment and policy model before defining the ILG specification format
in Section 3.2. The ILG is a useful form of specification because of the way it facilitates teacher-learner
interaction; we describe our proposed interaction interface in Section 3.3.

3.1 Preliminaries

As is standard in RL, we assume the agent interacts with an environment that can be expressed as a Markov
Decision Process (MDP). An MDP comprises a continuous set of states S, a continuous set of actions A,
dynamics governed by the transition probability distribution p(st+1 | st, at), and a starting state distribution
η. Instead of specifying the task via a reward function (as is commonly done in MDPs), we will use an ILG
as the task specification and incorporate human interaction to guide the learner.

At each timestep t, the agent receives an observation o(st) ∈ Ω where Ω is a continuous observation space.
The observation function o : S → Ω represents the learner’s perception capabilities. In a real-world setting,
o(st) may comprise raw sensor readings or the outputs of a pretrained perception module. A policy is a
function π : (Ω×A)∗×Ω→ ∆(A) that maps a finite trace of observations and actions to a distribution over
next actions.

3.2 ILG and satisfaction

Each vertex of an ILG represents a landmark, which is a subset of the state space S, and each edge in the
the ILG represents the edge task of transitioning between two landmarks. The ILG must have at least one
sink vertex; each sink corresponds to a final landmark. The agent’s goal is to reach a final landmark.

Formally, an ILG is a tuple (U, E, u0, β) with vertex set U , directed edge set E, distinguished source vertex
u0, and landmark map β : U → 2S that maps each vertex to the set of states that comprise the corresponding
landmark. An ILG must have at least one sink vertex. A trajectory ξ = s0a0s1a1 . . . satisfies the landmark
graph (U, E, u0, β) iff there exists a sink vertex u ∈ U and a time t such that st ∈ β(u).

Figure 1 shows the structure of the StackChoice ILG. There are two source-to-sink paths: “start →
grasp A → stack” and “start → grasp B → stack.” Any trajectory that passes through a state in the
landmark represented by the sink vertex “stack” satisfies the specification. The vertices “grasp A” and
“grasp B” provide intermediate guidance to a policy learner. This guidance takes the form of teacher-learner
interaction during training as detailed in the following subsection.
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3.3 Interaction and illustration

As is common in RL, we assume that the learner does not begin with knowledge of the environment’s
transition probabilities; it must learn about environment dynamics through interaction. Similarly, we assume
that the learner does not have explicit access to the ILG specification’s landmark map β : U → 2S . During
training, the learner begins with access to the structure (U, E, u0) of the ILG (U, E, u0, β). In order to obtain
guidance toward the landmark represented by a vertex u, the learner must interact with the teacher to request
illustrative observations drawn from states within β(u). The learner may also request success/failure feedback
from the teacher to see if the current state of the environment lies within a particular landmark.

During training, the learner interacts with the teacher and with the environment using the following proce-
dures. Training proceeds as a sequence of episodes. At each timestep t within an episode the learner receives
an observation o(st) and may:

• reset() Reset the environment to a state s0 ∼ η. The learner receives the observation o(s0).

• step(at) Provide an action at to the environment, which causes the environment to transition to a
state st+1 ∼ p(·|st, at). The learner receives the observation o(st+1).

• requestIllustration(u, ρ) where u ∈ U is the vertex of the ILG to be illustrated and the second
argument ρ ∈ U∗ lets the the learner tell the teacher which path it wishes to extend to u. In
response, the teacher provides a dataset of illustrative observations Ou ⊂ {o(s) ∈ Ω | s ∈ β(u)} of
illustrative observations of states within β(u). Although the path ρ does not affect the contract that
the teacher must uphold, it may help the teacher choose a useful set of illustrative observations: in
the StackChoice example, a good teacher would respond to requestIllustration(stack, start →
grasp A) with examples of block A stacked on top of block B (not of B stacked on A).

• querySuccess(u) where u ∈ U is a vertex of the ILG. The teacher provides binary success/failure
feedback of whether the current environment state st is in the landmark β(u).

Given an MDP M, observation function o, and ILG G, the learner tries to learn a policy π that maximizes
the probability that a trajectory ξ drawn from π interacting with M while receiving observations according
to o satisfies G.

Importantly, the teacher is never asked to explicitly define the landmark map β. Instead, the teacher must be
able to provide a set of illustrative observations for each landmark and serve as an oracle for querySuccess.
The teacher can provide a set of illustrative observations by, for example, physically positioning a robot and
allowing its sensors to perceive the environment. This intuitive interaction interface allows the teacher to
guide the learner without needing to understand the low-level details of the learner’s perception capabilities.

Underlying the ILG’s usefulness is its customizability. To permit multiple approaches to complete the
task, the human can include multiple paths that lead to a final landmark. In addition to using branching
to expose options for high-level planning, the teacher can adjust the landmark density (the number of
intermediate landmarks) along each path to provide the appropriate granularity of guidance. In the context
of policy learning, low landmark density cedes resolution of low-level control details to the underlying learning
algorithm. This is both convenient for the teacher and can result in well-optimized motion if the learner can
successfully transition between landmarks. On the other hand, excessively low landmark density can render
policy learning intractable, as the underlying learning algorithm is left with insufficient exploration bias.

4 Learning algorithm

We propose ILG-Learn, a human-in-the-loop approach to policy learning for ILG specifications. At a high
level, ILG-Learn performs the following steps:

• Policy learning. For an edge (u, v) of the ILG, the learner uses example-based control to learn an
edge policy π(u,v) that tries to transition the environment from the landmark represented by u to
the landmark represented by v.
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• Success estimation. Given a learned path policy (a sequence of edge policies), the learner queries
the teacher for binary success/failure feedback to estimate the success probability of the policy.

• Planning. The learner tries to find a source-to-sink path of minimal cost, where cost is defined as
the negative logarithm of the associated path policy’s success probability.

At the outset, the learner receives the structure (U, E, u0) of the ILG specification (U, E, u0, β) but does
not know how to reach any landmark. By interacting with the environment and the teacher (through the
interface described in Section 3.3) learns policies to reach intermediate landmarks and a plan to satisfy the
ILG specification by reaching a final landmark (represented by a sink vertex). ILG-Learn iteratively builds
a tree of lowest-cost known paths from the source to the other vertices of the ILG. Since the cost of a path
depends on the success probability of the learned edge policies, ILG-Learn interleaves graph search and
policy learning to obtain the path costs on the fly during training. Learning proceeds as a series of learning
intervals, each of which focuses on a single edge of the ILG. Once ILG-Learn finds the lowest cost path ρ to
a sink vertex, ILG-Learn returns the plan ρ and the associated path policy.

Algorithm 1 sketches the full ILG-Learn algorithm and Figure 3 illustrates the steps of a learning interval. In
the following textual description we will denote the ILG specification as (U, E, u0, β) and assume the learner
has access to the environment M and the human teacher through the interface described in Section 3.3.
To make our description concrete, we will use the StackChoice task introduced in Section 1 as a running
example. The structure (U, E, u0) of the StackChoice ILG is shown in Figure 1.

Algorithm 1: ILG-Learn
Input:

• ILG structure (U, E, u0)
• Access to MDP M via reset and step.
• Access to human teacher via

requestIllustration and querySuccess.
Output: Path ρ and associated path policy

1 ρu0 ← [ ];
2 πu0 ← None;
3 reachProbu0 ← 1;
4 reachProbu ← 0 ∀u ∈ V \ {u0};
5 while selectEdge() returns (u, v) do
6 O(v)← requestIllustration(v, ρu);
7 π(u,v) ← learnPolicy(Ov, ρu, πu);
8 π ← sequencePolicies(πu, π(u,v));
9 successProb← estimateProbability(v, π);

10 if successProb > reachProbv then
11 reachProbv ← successProb;
12 ρv ← ρu ◦ (u, v);
13 πv ← π;
14 u← argmaxu∈sinkVertices(G)(reachProbu);
15 return ρu, πu

ILG-Learn parameters

illustrationCount: illustrative ob-
servations provided per request.
episodeLength: Fixed time hori-
zon used when training each edge
policy.
intervalLength: training episodes
per learning interval.
estimationQueries: Number of
rollouts (each with a success/failure
query) performed at the end of each
learning interval.
successThreshold: Lower bound
on success probability for an edge to
be considered learned.
intervalsLimit: Upper bound on
learning intervals per edge.

Exploration order (selectEdge). ILG-Learn’s exploration order is determined by the selectEdge sub-
routine. At the outset, ILG-Learn’s tree of known paths contains only the “start” vertex u0. To extend this
tree, selectEdge chooses an edge leaving the tree for which to learn a control policy. ILG-Learn implements
a fine-grained interleaving (mediated by the successThreshold and intervalsLimit parameters) of policy
and plan learning to accelerate learning. For details, see Appendix A.

Let us suppose that selectEdge chooses the edge (u, v) = (start, grasp A). This marks the start of a learning
interval dedicated to learning the edge policy π(u,v).

7



Under review as submission to TMLR

1. 2. 3. 4.

Figure 3: Stages of a learning interval: (1) The learner selects an edge and requests illustrative observations
to guide learning. (2) The human teacher provides illustrative observations of the destination landmark.
(3) The learner uses example-based control to learn an edge policy from environmental interaction. (4) The
learner executes the edge policy and queries the teacher for success/failure feedback.

Human guidance (requestGoals). After selecting an edge (u, v), ILG-Learn asks the human teacher to
provide a dataset Ov containing illustrationCount illustrative observations drawn from states within β(v).
In our example, the teacher would provide a set of observations that illustrate “grasp A”.

Policy learning (learnPolicy). ILG-Learn runs example based control for intervalLength episodes
each of episodeLength timesteps to learn an edge policy π(u,v). This learning process does not require
interaction with the human teacher.

In our example, the learner would interact with the environment, trying to reach states that look similar
to the human-provided examples of the “grasp A” landmark. Since this is the first edge along a path, each
learning episode starts from the environment’s initial state distribution.

In a future learning interval, ILG-Learn may try to learn the next step of the path, namely, how to stack
block A on top of block B (assuming block A is already grasped). Since policy learning is sensitive to the
starting state distribution, ILG-Learn needs to start learning π(u,v) from the distribution induced by the
(already learned) path policy πu. So in the case of learning to stack block A on block B, each episode
would start by executing the (start, grasp A) policy (for the same fixed horizon episodeLength) to reach
the appropriate starting distribution for the (grasp A, stack) edge task.1

Success Estimation (estimateProbability) The last step of each learning interval is to estimate the
probability that the learned edge policy π(u,v) successfully reaches β(v). Just as it was important to start
training π(u,v) from the state distribution reached by executing πu, it is important to evaluate π(u,v) from
the distribution reached by πu. The estimateProbability subroutine executes estimationEpisodes addi-
tional rollouts of the sequenced policy, using querySuccess(u) at the last timestep of each rollout, to ask the
human teacher whether the rollout was successful. If this empirical path probability exceeds that of the best
known path ρv to v, ILG-Learn updates the best known path and associated path policy πv. If the empirical
probability exceeds successThreshold (or the per-edge max number of learning intervals intervalsLimit
is reached) then ILG-Learn will consider the edge fully explored. At this point, the path cost (the negative
logarithm of the success probability) is solidified. No more learning intervals can be allocated to (u, v).
Future learning intervals can now be allocated to edges that leave v.

Termination. Training is complete when the selectEdge subroutine returns None, indicating that ILG-
Learn has found the lowest-cost path in the ILG and the associated path policy. Otherwise, a new learning
interval will commence, focusing exploration along the edge chosen by selectEdge.

5 Experiments

Our experiments show that ILG-Learn can learn policies to successfully complete long horizon tasks. To
better understand the importance of allowing the teacher to choose the ILG’s landmark density we evaluate
ILG-Learn against RCE, a state of the art example-based control algorithm that does not use intermediate
landmarks, and behavior cloning (BC), an imitation learning algorithm that receives full-length demonstra-

1In our experimental evaluation, we include the environment steps used during resets in the total environment steps used.
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tions. Since the ILG task specification is new, there do not exist direct analogs of ILG-Learn to baseline
against; rather, RCE’s examples and BC’s demonstrations represent two alternatives to ILG specifications.

We also show that ILG-Learn can discover the path through multi-path (branching) ILG that suits the
learner’s capabilities, reducing the burden on the teacher to predict the best approach to task completion a
priori. We conduct our experiments in simulation using the following environments:

Stack. Our Stack family of environments is a customized robosuite (Zhu et al., 2020) environment
that simulates a 7-DoF Franka Panda arm that receives 55-dimensional state observations and uses a 7-
dimensional action space (which represents an operational space controller with fixed impedance). As intro-
duced in Section 1, the learner must stack the blocks to build a tower. We include multiple versions of the
task: StackChoice (stack the blocks in either order), StackAB (stack the red block A on the green block
B), and StackBA (stack block B on block A). To study ILG-Learn’s ability to adapt to a learner’s unique
capabilities, we further include the StackChoice-Outwardview and StackBA-Outwardview variants, which
simulate observations collected from an object-detector operating from a camera mounted on the same side
of the table as the robot arm. Whenever a block is occluded, we mask the corresponding components of the
observation space. Figure 1 illustrates the Stack tasks; for more details see Appendix D.

Point Maze. We use custom layouts of the Point Maze environment from Gymnasium Robotics (de Laz-
cano et al., 2023; Fu et al., 2020). The agent is a force-actuated point-mass with a 2-dimensional action space
and receives 4-dimensional observations that comprise its position and velocity. The agent must navigate
from its starting position in the lower-left to the goal position in the upper-right. We include three variants
of a diagonal maze (DiagonalMaze3x3, DiagonalMaze5x5, DiagonalMaze7x7) that differ in the length of the
task. We also include a DiagonalMaze7x7-Coarse variant that has low landmark density and two variants
of a 4x4 maze that differ only in their associated ILG specifications. Illustrations are shown in Figure 4.

5.1 Customizable landmark density

To disentangle the importance of allowing the teacher to choose the ILG’s landmark density from the
importance of multi-path specifications, we first turn our attention to tasks specified with a linear ILG.
In the StackAB environment (Figure 1), the ILG-Learn learner receives a linear ILG that mandates placing
the red block A on the green block B. The blocks are initially placed along the centerline of the table,
with block A closer to the robot than block B. The exact positions of each block are randomized. For each
landmark, the teacher provides 50 illustrative observations, for a total of 100 illustrative observations. At
the end of each learning interval (100k environment steps, exclusive of steps used during resets) the teacher
responds to 30 success/failure queries. To admit a fair comparison, the RCE baseline receives 100 goal
examples, all of block A having been stacked on block B. We provide the BC baseline with 40 full-length
demonstrations gathered using a scripted policy that includes some random variation (see appendix D for
details). Each demonstration is 200 timesteps in length and completes the task in ∼150 timesteps. We allow
ILG-Learn and RCE to train for 10,000 environment steps and allow BC to train until the training loss stops
decreasing. Appendix E contains learning curves.

ILG-Learn achieves an average success rate of 0.752 for the StackAB task (Table 1), which is markedly higher
than the success rates achieved by the RCE baseline (0.050) or the BC baseline (0.106). The fact that the
RCE baseline achieves near-zero success rate shows that single-frame observations are too sparse to guide the
learner towards success; allowing the teacher to specify an ILG with the intermediate “grasp A” landmark
was crucial for ILG-Learn’s success. On the other hand, the BC baseline, which receives very dense guidance
towards the goal, yields policies that rarely succeed, showing that carefully mimicking a teacher’s detailed
demonstrations does not necessarily yield a successful policy.

The DiagonalMaze family of environments shows that the teacher’s choice of landmark density is more
important for tasks with longer horizons. DiagonalMaze-3x3, DiagonalMaze-5x5, and DiagonalMaze-7x7
differ only in the length of the path that the learner must travel. In each DiagonalMaze variant, we provide
ILG-Learn with 10 illustrative observation per landmark, the RCE baseline with 100 examples all drawn
from the final goal region, and the BC baseline with 10 full-length demonstrations gathered by a scripted
policy. Looking again at Table 1, we see that ILG-Learn consistently matches or exceeds the performance
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ILG-Learn (ours) RCE BC
StackAB 0.752 0.050 0.106

StackChoice-Outwardview 0.952 - -
StackBA-Outwardview 0.147 - -

DiagonalMaze3x3 1.00 0.00 0.990
DiagonalMaze5x5 0.991 0.00 0.826
DiagonalMaze7x7 0.971 0.00 0.476

DiagonalMaze7x7-Coarse 0.00 0.00 0.476
Maze4x4-Fine 1.00 0.400 -

Maze4x4-Coarse 0.800 0.400 -

Table 1: Final success rates (means over 5 trials). Both ILG-Learn and RCE
are trained for a maximum of 10 million environment steps, see Appendix D
for experimental details and Appendix E for learning curves. Entries marked
with “-” indicate experiments that were not needed for our investigation.

DiagonalMaze3x3

DiagonalMaze5x5

Maze4x4-Fine

Maze4x4-Coarse

DiagonalMaze7x7

DiagonalMaze7x7-Coarse

Figure 4: The Maze family of environments with ILGs superimposed (light
pink). In each, the agent starts in the lower-left room and must navigate to
the upper-right room. DiagonalMaze5x5 is defined analogously to the 3x3
and 5x5 variants. The Maze family of environments with ILGs superimposed
(light pink). In each, the agent starts in the lower-left room and must navigate
to the upper-right room. DiagonalMaze5x5 is defined analogously to the 3x3
and 5x5 variants.
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of the RCE and BC baselines. Importantly, BC achieves high success rate for the relatively short-horizon
DiagonalMaze3x3 but its performance deteriorates dramatically as the size of the maze increases. On the
other hand, ILG-Learn consistently yields near-perfect success rates regardless of maze size. This supports
the intuition that ILG-Learn can scale to long horizon tasks by (1) allowing the learner flexibility to explore
and discover suitable policies to reach each landmark and (2) incorporating success/failure feedback during
training to ensure each edge policy is learned successfully before moving on to train successive policies. This
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unlike BC and other imitation learning algorithms that are vulnerable to compounding deviations between
the demonstrations and the actual trajectories taken by the agent.

To realize ILG-Learn’s benefits, the human teacher must provide an ILG with appropriate landmark density.
Given the excessively low landmark density of DiagonalMaze7x7-Coarse, ILG-Learn consistently fails to
learn a successful policy (while the ILG of DiagonalMaze7x7 yields near-perfect policies). Such a failure
occurs when the exploration needed to learn an edge policy exceeds the capabilities of ILG-Learn’s underlying
example-based control algorithm. We provide advice for selecting landmark density in Section 6.

5.2 Multi-path specifications

A critical attribute of the proposed ILG specification is that it can include multiple source-to-sink paths, each
representing an approach to complete the long-horizon task. To evaluate whether ILG-Learn can discover
the path that best suits the learner’s capabilities, we turn to the StackChoice-Outwardview task introduced
in Section 1 and illustrated in Figure 1. The task is to stack the blocks (in either order). Importantly, the
learner observes the position of each block via a simulated object detector based on a camera situated on the
same side of the table as the robot, facing outward toward the blocks. Since the red block A starts closer to
the camera than the green block B, the learner cannot detect the position of block B until a block is moved
to break the occlusion.

As expected, in all five trials (random seeds) of ILG-Learn, the learner acquired a policy that follows
the path “start → grasp A → stack” achieving an average success rate of 0.952. Figure 5 illustrates the
exploration process followed by the learner during one representative trial. Initially, the learner explores
the ILG by alternating between allocating learning intervals to the (start, grasp A) edge as well as the
(start, grasp B) edge. However, after 5 training intervals (about 700 thousand total environment steps) the
learner successfully acquires a policy for the (start, grasp A) edge, and is thus able to reach the “grasp A”
landmark. ILG-Learn’s best-first search heuristic (detailed in Appendix A) guides further exploration along
this path, focusing on the (grasp A, stack) edge. At the end of the 8th learning interval (slightly more than 1
million total environment steps), the learner has acquired a policy that it estimates has a success probability
of 0.86. Since this exceeds the user-specified successThreshold of 0.8, ILG-Learn terminates. Note that
in reality, the success rate of the final policy is 0.947 (estimated from 1000 rollouts)- discrepancy between
the learner’s estimate of its own success probability can arise because (1) the learner only uses a modest
number (in this case 30, the value of the estimationQueries parameter) of success/failure queries and (2)
the learner only queries the final timestep of each rollout while we allow success to occur at any point along
the trajectory.

The adaptive exploration scaffolded by the ILG described above is crucial for the ILG-Learn learner to
successfully complete the task. To illustrate this, we compare against the StackBA-Outwardview task, which
differs from StackChoice-Outwardview only in the ILG provided to the learner. StackBA-Outwardview
forces the learner to start by grasping block B, which is very hard for the learner, since block B is initially
occluded. As expected, ILG-Learn achieves a low average success rate of 0.147 on StackAB-Inwardview.

If the human teacher were able to predict which path would be easiest for the learner to follow, the teacher
could simply provide a linear ILG (in the the above example, “start → grasp A → stack”). However,
such upfront prediction may pose a substantial burden to the teacher. A key benefit of using illustrative
observations to specify landmarks is that the teacher does not need to be intimately familiar with the learner’s
perception capabilities—the same specification might even be used for multiple robots with different camera
viewpoints. Moreover, using example-based control as a subroutine to let the learner acquire policies to
achieve each landmark frees the teacher from having to worry about low-level details of the learner’s motor
capabilities. To fully realize these freedoms afforded to the teacher, the high-level task specification must
also be, to some degree, agnostic to the intricacies of the learner’s perception, control, and policy learning
capabilities. A branching ILG provides this freedom to the teacher: the teacher can provide an ILG to
scaffold exploration and allow the learner to interact with the environment to discover a plan that best fits
its unique capabilities.

11



Under review as submission to TMLR

6 Discussion

In Section 5 we observed that ILG-Learn can learn successful policies for manipulation and navigation tasks.
In this section, we discuss how the ILG definition affects the feasibility and efficiency of learning, providing
both advice for users of ILG-Learn and highlighting directions for future work.

Landmark graphs and feasibility. To apply ILG-Learn, the human teacher must provide an ILG de-
composition that contains at least one path that can feasibly be learned via iterated example based control.
Although allowing the teacher to provide a branching ILG reduces the teacher’s burden to predict the best
landmark decomposition, some tasks may be hard for humans to effectively decompose. Future work could
dynamically revise the ILG during training by prompting the teacher to provide new intermediate landmarks
when the learner struggles.

Another future direction is to reduce the burden on the human teacher by prompting a foundation model to
construct the ILG from natural language and image descriptions of the task and avoid the need for human-
provided landmark examples, taking inspiration from works such as SayCan (Ahn et al., 2022) and VIP (Ma
et al., 2023) while incorporating lightweight human feedback to ensure alignment with the teacher’s intent.

Subtask difficulty and graph exploration. As established in Section 5, decomposing a long-horizon
task into intermediate landmarks and providing a branching ILG that permits multiple paths to success
allows ILG-Learn to solve long-horizon tasks. Applying ILG-Learn to a new task thus raises the questions
“What is the appropriate landmark density?” and “How much branching should the ILG include?” At a
minimum, the teacher should design an ILG that is coarse enough that each landmark is meaningful to the
human eye (since the teacher must respond to success/failure queries). Beyond this, we recommend that the
teacher err on the side of providing a dense ILG with many landmarks and a large amount of branching. The
best-first search pattern introduced in Section 4 and detailed in Appendix A is designed to avoid exploring
every edge in the ILG.

To gain empirical insight, we compared the performance and efficiency of ILG-Learn on a 2D navigation
task using a “fine” ILG (Maze4x4-Fine) versus a “coarse” ILG (Maze4x4-Coarse). The tasks are visualized
in Figure 4 and learning curves can be found in Appendix E. In this case, either ILG suffices to learn a
successful policy: we turn our attention to how much efficiency we would lose by choosing the excessively
fine decomposition of Maze4x4-Fine. Looking at the learning curves, it takes significantly more (compar-
ing medians, 7x as many) total environment steps to learn a successful policy in Maze4x4-Fine than in
Maze4x4-Coarse. Although this loss of efficiency is regrettable, it is preferable to accidentally providing too
coarse an ILG and having learning fail altogether.

Moreover, we observed in our experiments with Maze tasks that many learning episodes for each landmark
are spent learning how to smoothly decelerate the point-mass agent to avoid overshooting the landmark.
Since we perform tabula rasa example-based control for at each edge, this learning effort is duplicated many
times, proportional to the number of edges explored in the ILG. If future work develops an example based
control algorithm that can adapt more quickly to novel tasks (perhaps by fine-tuning a pre-trained policy),
we could replace RCE with that algorithm in ILG-Learn’s learnPolicy subroutine to reduce the efficiency
reduction introduced by an excessively fine ILG.

Human annotation burden. Finally, our estimateProbability subroutine relies on human annotation.
For our experiments, we chose parameters such that the human responds to 30 success/failure queries per
100k training steps; for our StackChoice-Outwardview experiment this amounted to an average of 360
active queries per trial. While developing ILG-Learn, we tried to reduce this dependence by using a small
amount of human-annotated data to train a binary success classifier for each landmark in a manner inspired
by Singh et al. (2019). We found that even with hundreds of labeled positive examples gathered from
successful executions of the policy being trained, there was often no threshold on the output of the classifier
neural net that reliably separated success from failure. In the future, we plan to incorporate a pretrained
vision-language model, perhaps augmented with residual network trained on in-domain data, to reduce the
human annotation burden.
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A Edge selection

The selectEdge subroutine governs how ILG-Learn allocates learning intervals while exploring the ILG. As
described in Section 4, ILG-Learn starts at the source of the ILG and iteratively extends a tree of best-known
policies to the other vertices of the ILG. The key insights that inform the design of selectEdge are:

• Training an edge policy π(u,v) can only begin once the policy πu is learned (frozen), so it makes sense
to stop investing learning intervals along an edge once a desired success probability successThresh-
old is reached. This way, future learning intervals can be allocated to downstream edges.

• Different edges of the ILG may require vastly different numbers of training episodes to acquire a
successful policy, so it makes sense to dovetail learning intervals between edges so we do not spend
too much effort on a particularly difficult edge.

• Only one feasible path needs to be found, so it makes sense to use a best-first search heuristic to
avoid exploring the entire ILG.
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Our edge selection algorithm is inspired by the exploration order found in Dijkstra’s algorithm. In fact, if we
set the parameter intervalsLimit to 1, our selectEdge subroutine implements an exploration order suitable
for Dijkstra’s algorithm. When intervalsLimit is greater than 1, selectEdge incorporates dovetailed
exploration with early stopping heuristics to try to reduce the number of training episodes needed to learn
a satisfactory policy.

Appendix A.1 describes the high-level structure of selectEdge that implements dovetailed exploration and
early stopping. Appendix A.2 details the heuristic scoring function that selectEdge uses to implement best-
first exploration. Appendix B provides advice for selection of relevant parameters. The choice of parameters
used for the experiments in Section 5 are detailed in Table 2.

A.1 Dovetailed exploration

To implement early stopping and dovetailed exploration, ILG-Learn keeps track of these vertex and edge
sets:

• exploredVertices. These are the vertices to which ILG-Learn has learned and solidified a path policy.

• learnedEdges. These are edges for which we have fully learned and frozen a policy. We freeze a policy
once either (1) the empirical success probability exceeds successThreshold or (2) intervalsLimit
learning intervals have been allocated to the edge.

• abandonedEdges. These are edges that we will never invest learning effort into because we have
already found a better path to get to all of their successors.

• frontierEdges. These are edges leaving the explored tree (that is, leaving exploredVertices) that are
neither fully “learned” nor “abandoned”. At each iteration, we need to choose one edge from this
set to invest a learning interval into.

All edge sets are initially empty. The logic for maintaining these sets is shown in Algorithm 2. To reduce
notational clutter, we assume that frontierEdges, and learnedEdges, abandonedEdges are global variables
that persists across calls to selectEdge. We also assume global access to reachProb (updated in line 15 of
Algorithm 1) as well as the existence of the bookkeeping functions:

• bestSuccessProb(u, v) returns the highest estimated probability found by line 13 of Algorithm 1
during any learning interval allocated to (u, v).

• intervalsElapsed(u, v) returns the number of learning intervals that have been allocated to (u, v)

Algorithm 2: selectEdge
Input:

• ILG structure (U, E, u0)
• Parameters intervalsLimit and successThreshold (introduced in Section 4)
• Scoring heuristic parameters extensionPenalty and exploitationBonus (introduced in

Appendix A.2)
• Global access to reachProb (maintained by Algorithm 1)

Output: Edge (u, v) for next learning interval, or None if learning is complete.
1 learnedEdges← learnedEdges ∪ {(u, v) ∈ E | intervalsElapsed(u, v) ≥ intervalsLimit};
2 learnedEdges← learnedEdges ∪ {(u, v) ∈ E | ∨ bestSuccessProb(u, v) > successThreshold};
3 abandonedEdges← abandonedEdges ∪ {(u, v) | ∀u′, u ≺ u′ → reachProbu < reachProbu′};
4 exploredVertices← {u0} ∪ {v ∈ U | (∃u, (u, v) ∈ learnedEdges) ∧ (∀u, (u, v) ∈ E → (u, v) ∈

learnedEdges ∪ abandonedEdges)};
5 frontierEdges← outgoingEdges(exploredVertices) \ learnedEdges \ abandonedEdges;
6 return argmax(u,v)∈frontierEdgesscore((u, v))
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A.2 Score

The selectEdge subroutine (Algorithm 2) uses a heuristic score function to implement best-first explo-
ration. We design score to balance the following desiderata:

• Exploitation. Perform best-first search by extending paths that have low cost.

• Even exploration. Dovetail exploration of multiple edges, trying to assign the same amount of
training intervals to all extensions of the “sufficiently low cost” paths.

• Anticipation. Prefer extending paths that have few edges remaining to a final vertex.

As in Appendix A.1, we will assume global access to reachProb and access to the bookkeeping function
intervalsElapsed. The score of an edge comprises three terms:

score(u, v) =exploitationIncentive(u, v)
− intervalsElapsed(u, v)
−minNumberOfEdgesToAFinalVertex(v) · edgeExtensionPenalty

We describe the components as follows:

Term 1: Exploitation. The exploitation incentive strongly prioritizes investing training effort in edges
that could be part of the highest probability extension of some path in the tree explored so far. Concretely,
let

bestExtensionProb = max
(u,v)∈frontierEdges

reachProb(v)

Now let

exploitationIncentive(u, v) =
{

exploitationBonus reachProb(u) ≥ bestExtensionProb
0 otherwise

wher exploitationBonus is some very large number.

Term 2: Even exploration. Subtracting intervalsElapsed(u, v) softens the best-first search by trying to
evenly allocate intervals to promising edges. This term will be much less in magnitude than exploitation-
Bonus, so it acts as a tie-breaker within our soft best-first search.

Term 3: Anticipation. A high choice of edgeExtensionPenalty strongly strongly prioritizes extending
paths that are close to reaching a final vertex (in terms of how many edges there are).

B Parameter selection

We now provide advice for how to select the parameters introduced in Section 4:

• illustrationCount: This should be enough goals so that the underlying example-based control
algorithm can quickly learn a good policy. In our 2D navigation tasks, we found 10 goal examples
to be sufficient, while for our robotic manipulation environments we found significantly better per-
formance with 50 examples than 10. The choice of illustrationCount is tied to the specifics of
the underlying example-based control algorithm; we believe that ILGs that include landmarks that
admit a diverse set of success observations (e.g. a robotic arm can successfully grasp an object with
a wide variety of arm angles and grip positions) will benefit from a relatively large number of success
examples.
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• episodeLength: The fixed time horizon used when training each edge policy must be long enough
to allow the example-based control algorithm to explore the environment. The ideal value is usually
significantly more than the number of timesteps needed for an expert to complete any given edge
task.

• intervalLength and intervalsLimit: The quantity intervalLength× intervalsLimit should be
enough training episodes for example-based control to saturate the success probability of the edge
policy for any edge in the ILG. Since the number of learning episodes needed by example based control
varies greatly depending on random seed, we recommend over-estimating this quantity. To avoid
wasting training episodes on already-good policies, we recommend choosing a relatively low value for
intervalLength: Since the choice intervalLength governs the frequency of teacher-intervention
(in the form of responses to success/failure queries), we recommend choosing intervalLength to be
large enough that there is only a modest amount of teacher interaction, yet low enough that learning
episodes are not wasted.

• successThreshold: We recommend choosing a value of successThreshold slightly lower than
the success rate of an optimal policy. Choosing a high successThreshold causes ILG-Learn to
spend a large amount of learning effort on an edge before exploring deeper in the ILG, which may
increase the success rate of the final policy at the cost of more environmental and student-teacher
interactions.

• estimationQueries: We recommend choosing a number that gives adequate confidence in the
success rate of the learned policy. In practice, we have observed that example based control often
yields policies that either succeed much more or much less than our desired successThreshold, so
relatively few estimationQueries (e.g. 30) suffice. If there are multiple feasible tasks in the ILG,
choosing a high value of estimationQueries will improve ILG-Learn’s ability to perform best-
first search. We chose not to implement a statistically-rigorous version estimateProbability since
doing so would in general require the teacher to respond to many success//failure queries and was
not necessary for good end-to-end performance in practice.

as well as the additional parameters introduced in Appendix A.2:

• exploitationBonus: We recommend choosing a very high value, so that score function imple-
ments a “soft” best first seach, in which the second and third terms of the score function serve
as tie-breakers. To achieve this, one can choose parameters such that exploitationBonus >
intervalsLimit + diameter(G) × edgeExtensionPenalty where diameter(G) is the diameter of
the ILG.

• edgeExtensionPenalty: We recommend choosing edgeExtensionPenalty to be a guess of how
many learning intervals will be required to train an edge along a feasible path to reach the suc-
cessThreshold. Since choosing this parameter requires considerable foresight, we recommend
choosing a relatively low value.

C Implementation details

C.1 ILG-Learn and RCE

We implement ILG-Learn in Python. We re-implemented RCE (following instructions of Eysenbach et al.
(2021)) on top of JaxRL2’s (Kostrikov, 2022) implementation of SAC (Haarnoja et al., 2017). We use this
RCE implementation both as the example-based control subroutine in our ILG-Learn algorithm and as the
RCE baseline.

Hyperparameters. We use the same SAC+RCE hyperparameters as Eysenbach et al. (2021), including
the SAC-specific hyperparameters that were inherited from Haarnoja et al. (2017), although we increased the
width of each hidden layer in the actor and critic MLPs from 128 to 256. The original RCE implementation
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varied the “n-step returns” and “Q combinator” hyperparameters depending on the particular task. We use
10-step returns for all tasks, and use min as the “Q combinator” in our Stack family of environments (this
is the typical choice of Q combinator, following Fujimoto et al. (2018)). We found that the max combinator
works better in the Maze environments and use max for those environments.

Our choice of ILG-Learn-specific parameters (detailed in Appendix B) is shown in Table 2.
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illustrationCount 10 10 10 10 10 10 50 50 50
episodeLength 400 400 400 1200 200 600 80 80 80
intervalLength 100k 100k 100k 100k 100k 100k 100k 100k 100k
intervalsLimit 100 100 100 100 100 100 100 100 100
successThreshold 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
estimationQueries 30 30 30 30 30 30 30 30 30
exploitationBonus 101 101 101 101 101 101 101 101 101
edgeExtensionPenalty 3 3 3 3 3 3 3 3 3

Table 2: ILG-Learn-specific parameter selection.

Policy sequencing details. Underlying ILG-Learn’s compositional approach to long-horizon policy learn-
ing is the sequencePolicies subroutine that sequences edge policies to form a path policy. As described in
Section 4, each edge policy is executed for a fixed horizon (governed by the episodeLength parameter). To
formalize the behavior of sequencePolicies it is convenient to associate each (path or edge) policy π with
a horizon denoted horizonπ). We assume that the array horizon of such bookkeeping variables is in global
scope and define the sequencePolicies subroutine in Algorithm 3.

Algorithm 3: sequencePolicies
Input:

• Path policy πu and edge policy π(u,v)
• Parameter episodeHorizon
• Mutable bookkeeping dict horizon

Output: Path policy to reach v
1 Function πv(τ):
2 if |τ | ≤ horizonπu then
3 return πu(τ);
4 else
5 return π(u,v)(τ);
6 horizonπv ← horizonπ(u) + horizonπ(u,v) ;
7 return πv

If horizon is maintained such that horizonπ(u,v) is
episodeLength for each edge policy π(u,v) then Algo-
rithm 3 matches the textual description of Section 4.
In our implementation, we noticed that running each
edge policy for the fixed horizon resulted in non-smooth
motion, because the agent would hesitate after having
achieved each landmark (waiting for the associated edge
policy’s horizon to be fully consumed) before moving on
to the next. To reduce this “waiting time” we slightly
enriched the information provided by the teacher: every
time the learner uses querySuccess(v) at the end of an
episode to assess the success rate of an edge policy π(u,v),
if the teacher responds “Success” they also provide the
index of timestep at which the agent entered βv. Then
we update horizonπ(u,v) to be the max of these success
timestep indices, plus an addition 15 timesteps of slack
term. The results in Section 5 were collected using the

above procedure, although we do not believe that the details of our sequencePolicy heuristic is an important
aspect of ILG-Learn.
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Success estimation details. As described in Section 4, the estimateProbability estimates the proba-
bility that a learned edge policy π(u,v) successfully reaches βv. Since we start each rollout of π(u,v) from the
state distribution induced by executing the path policy πu, we naturally obtain an empirical estimate of the
probability that the path policy obtained by sequencing πu and π(u,v). We call attention to this because our
“Dijkstra-style” planning implemented by selectEdge only receives the costs of paths, not individual edges.
If we assume that each edge has an intrinsic fixed cost, then this is an inconsequential bookkeeping detail.
However, since π(u,v) could reach β(v) even if not started from β(u) (and moreover because our cost estimates
are empirical) it is possible for the estimated cost of a path to be less than that of one of its prefixes. Such
ill-behaved path probabilities only pose a problem for ILG-Learn if a high-cost prefix dissuades selectEdge
from exploring what would become the lowest-cost source to sink path. Such a situation is only likely to
arise if the teacher provides an ILG that contains landmarks that are both (1) hard to reach and (2) not
necessary to scaffold exploration towards subsequent landmarks.

C.2 BC baseline

We implemented the BC baseline in Python using Jax (Bradbury et al., 2018) and Flax (Heek et al., 2024).
For each task, we pooled the (observation, next action) pairs from all the demonstrations and trained an
MLP to predict the next action given the current observation. Our MLP had 2 hidden layers (each of width
512), we used the Huber loss and a learning rate of 0.0001. For each task, we had a heldout set of validation
demonstrations. We stopped training when the validation loss stopped decreasing.

D Environment Details

Our manipulation environment is built in robosuite (Zhu et al., 2020). Our maze environment is built in
de Lazcano et al. (2023) and is a customized of the Maze2D environment originally introduced in D4RL (Fu
et al., 2020). All our experiments use Gymnasium Towers et al. (2023) and MuJoCo Todorov et al. (2012).

D.1 Stack

We adapt the “Stack” environment that is included in robosuite. This environment simulates a 7-DoF
Franka Panda robot arm. We use the provided 7-dimensional continuous action space that includes an
operational space controller with fixed impedance. We also use the provided observation space, which is
55-dimensional and comprises the robot’s joint angles, joint velocities, end effector position, end effector
quaternion, gripper position, gripper velocity, the position of each block, the quaternion of each block, the
gripper-object distance of each block, and the distance between the two blocks.

We make the following modfications to the original environment:

1. The side length of each cubical block is reduced from 0.05 meters to 0.04m. We do this so we can
include more randomness in the initial block placements.

2. The two blocks always initialize along the centerline (parallel to the x-axis in the simulation, which
is depth from the perspective of the robot) of the table with block A closer to the robot than block
B. The exact positions are determined randomly in each reset as follows: we uniformly select two x
coordinate values in the range (−0.2, 0.2). If the values are at least 0.05 meters apart, we let block
A start at the lower x value and block B start at the greater x value. Otherwise, we repeat this
process until we obtain sufficiently spaced x values.

3. For StackChoice-Outwardview we allow the blocks to be stacked in either order; for StackBA-
Outwardview we require block B to be stacked on block A.

4. For StackChoice-Outwardview and StackBA-Outwardview we implement simulated occlu-
sion, as if the observations are produced by an object detector that is mounted on the same side of
the table as the robot. To do this, we position a MuJoCo camera at the position indicated by the
pink camera icon in Figure 1. At each timestep, if no pixel belonging to either block A or block B
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is present in the ground-truth object segmentation yielded by this camera we mask all components
of the observation corresponding to that cube with the value −2 (which is far from the observation
values encountered in normal operation).

To generate the landmark examples and demonstrations for behavior cloning, we use a handwritten scripted
policy. We inject noise into this scripted policy so that it covers a variety of grip locations and arm paths.
We also tried using teleoperated demonstrations (and examples gathered therefrom) for the StackAB task
and did not find significantly different performance so we elected to use scripted policies to generate all data.
We include 40 demonstrations, along with an additional 10 held-out validation demonstrations to evaluate
loss during BC training.

The example observations for the “grasp” landmarks are taken after the arm has grasped and lifted the block
by ∼0.02 meters. We found that slightly lifting the block greatly improves RCE’s ability to learn a successful
policy, even in the absence of occlusion. We believe this is because grasps that do not lift the block are very
close in observation space to “near grasps” that do not make firm contact with the block, yielding a difficult
discrimination task for the RCE critic.

To simulate the teacher’s response to the querySuccess queries during training, we defined β(grasp A) to be
all states where block A is at least 0.021 meters above the surface of the table (and similarly for β(grasp B).
We defined β(stack) analogously to the success condition of the original robosuite stacking environment:
the cubes must be touching each other, the gripper cannot be touching the block on top of the tower, and
the block on top must be both above the surface of the table and aligned horizontally with the other block.

D.2 Maze

We customized Gymnasium Robotics’ Maze2D environment; our layouts are shown in Figure 4. The agent
is a force-actuated point mass with a 2-dimensional continuous action space. The observation is continuous
and 4-dimensional, comprising the agent’s current position and velocity, but not the goal location or the
location of any of the maze’s walls.

Each landmark is the center of a room, as illustrated in Figure 4. Each square room has a side-length
of 3.6; the landmark region is a circle of diameter 1 centered within the room. Only the agent’s position
(not velocity) determines membership in a landmark. To provide illustrative observations, we include one
illustrative observation from the center of the landmark, with the remaining illustrative observations drawn
uniformly at random from positions within the landmark. All illustrative observations contain 0 velocity.

The demonstrations are gathered with handwritten scripted policies that include a small amount of noise
to better cover the state space. For each task, all demonstrations traverse the same sequence of rooms
to reach the final goal. For each environment, we include 10 demonstrations and an additional 5 held-out
demonstrations for evaluating loss during training.

E Learning curves

Learning curves are found in Figure 7. We report the overall success rate of the entire task; for ILG-Learn
this means that the learner must explore a source-to-sink path before achieving nonzero success rate. Note
that some trials of ILG-Learn stop before reaching 10m environment steps, because ILG-Learn allows early
stopping. In this case, we extend the success rate of the final policy for the rest of the 10m steps (even
though no further training occurs).
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Figure 6: Learning curves showing success rate over total environment steps (including environment steps
used during resets and calls to estimateSuccess. The light lines show individual random seeds, the dark
lines show the mean of 5 random seeds.

Figure 7: Learning curves showing Huber loss during offline BC training. Each line represents one of 5
random seeds. We chose a number of training steps that was sufficient for validation loss to stop decreasing.
For StackAB we found this to occur at about 6000 steps, for the other environments we found this to occur
at about 10000 steps.

23


	Introduction
	Related work
	Illustrated landmark graphs
	Preliminaries
	ILG and satisfaction
	Interaction and illustration

	Learning algorithm
	Experiments
	Customizable landmark density
	Multi-path specifications

	Discussion
	Edge selection
	Dovetailed exploration
	Score

	Parameter selection
	Implementation details
	ILG-Learn and RCE
	BC baseline

	Environment Details
	Stack
	Maze

	Learning curves

