
Published in Transactions on Machine Learning Research (03/2025)

Illustrated Landmark Graphs for Long-Horizon Policy Learn-
ing

Christopher Watson ccwatson@seas.upenn.edu
Department of Computer and Information Science
University of Pennsylvania

Arjun Krishna arjk@seas.upenn.edu
Department of Computer and Information Science
University of Pennsylvania

Rajeev Alur alur@cis.upenn.edu
Department of Computer and Information Science
University of Pennsylvania

Dinesh Jayaraman dineshj@seas.upenn.edu
Department of Computer and Information Science
University of Pennsylvania

Reviewed on OpenReview: https: // openreview. net/ forum? id= 0AOUWC4ss8

Abstract

Applying learning-based approaches to long-horizon sequential decision-making tasks re-
quires a human teacher to carefully craft reward functions or curate demonstrations to
elicit desired behaviors. To simplify this, we first introduce an alternative form of task-
specification, Illustrated Landmark Graph (ILG), that represents the task as a directed
graph where each vertex corresponds to a region of the state space (a landmark), and each
edge represents an easier to achieve sub-task. A landmark in the ILG is conveyed to the
agent through a few illustrative examples grounded in the agent’s observation space. Second,
we propose ILG-Learn, a human in the loop algorithm that interleaves planning over the
ILG and sub-task policy learning. ILG-Learn adaptively plans through the ILG by relying
on the human teacher’s feedback to estimate the success rates of learned policies. We con-
duct experiments on long-horizon block stacking and point maze navigation tasks, and find
that our approach achieves considerably higher success rates (≈ 50% improvement) com-
pared to hierarchical reinforcement learning and imitation learning baselines. Additionally,
we highlight how the flexibility of the ILG specification allows the agent to learn a sequence
of sub-tasks that is better suited to its limited capabilities.

1 Introduction

How can a human best teach an agent to perform a new long horizon task? The two most popular classes
of approaches today are reinforcement learning (RL) and imitation learning. In RL, (Sutton & Barto, 2018)
the teacher specifies the task via a reward function that assigns higher scores to more desirable environment
configurations. The agent then interacts with the environment to learn how to achieve high rewards. For
long-horizon tasks, the efficiency of this trial-and-error exploration depends intimately on the human teacher’s
ability to design a well-shaped reward function that encourages incremental progress towards the final goal
(Laud, 2004; Ng et al., 1999; Sowerby et al., 2022; Gupta et al., 2022). As a concrete example, let us
consider the block stacking task (StackChoice) shown in Figure 1. The task is to build a tower; the agent
may choose to place block A (red) on block B (green) or vice versa. The task itself is fully specified by a

1

https://openreview.net/forum?id=0AOUWC4ss8

Published in Transactions on Machine Learning Research (03/2025)

Grasp BInitial layout
(Outwardview visualization)

Grasp B
(Outwardview perspective)

B
AB

A

start

grasp
A

grasp
B

stack

start grasp
A stack

StackChoice ILG structure

StackAB ILG structure

Figure 1: Left: Illustrates the Stack task. At the start of each episode, block A (red) starts closer to the
robot than block B (green). Both blocks initialize at randomized positions along the centerline of the table.
In the Outwardview condition, block A initially occludes block B. Right: ILG structure for variations of
the Stack task. The StackBA ILG is defined analogously.

simple “sparse” reward function that is 1 when the blocks are stacked and 0 otherwise. However, in practice,
the human teacher must write a more sophisticated reward function that provides “dense” rewards during
task execution. For example, it might incorporate small positive rewards for reaching various milestones
towards the task: moving the gripper close to the block, grasping, lifting, aligning, and finally placing the
block. To write such a reward function, the human teacher must be able to interpret the sensor readings
available to the learner and prudently balance the weight given to each term in the reward function. In
general, reward engineering is difficult, error-prone and requires considerable expertise, (Booth et al., 2023;
Amodei et al., 2016; Skalse et al., 2022) limiting RL’s applicability to long-horizon tasks.

Imitation learning (Hussein et al., 2017; Zare et al., 2023; Ravichandar et al., 2020) allows the human to
teach the agent by demonstrating desired behavior. Compared to RL, imitation learning shifts the teaching
burden from reward engineering to demonstration. Although demonstrations are an intuitive form of task
specification, providing high-quality demonstrations may not always be feasible (Ravichandar et al., 2020).
The teacher might not know how best to perform a task, or how to manually operate the agent to do so,
e.g. there may be no good interfaces to manually operate a biped robot to run smoothly. Even without
these problems, demonstrations can be cumbersome to provide: in the StackChoice task, the teacher would
need to teleoperate the robot and gather many demonstrations to adequately cover the states that the agent
may encounter during deployment. Finally, demonstrations must account for the learner’s limitations: e.g.,
stacking the blocks in one order may be easier for the robot to perform than the other, because of limitations
on its sensing, perception, or actuation abilities – which are sometimes hard to characterize in advance.

Reward functions and demonstrations occupy opposite ends of a design spectrum: a reward function specifies
what must be achieved (perhaps without much intermediate guidance), while a demonstration specifies how
to achieve it (perhaps too prescriptively). Ideally, the teacher could provide a specification that balances the
declarative nature of a reward function (which exposes opportunities for the learner to customize its approach
according to its capabilities) with the prescriptive nature of a demonstration (which provides fine-grained
guidance). To address this gap, we propose the illustrated landmark graph (ILG) as a form of long-horizon
task specification that is inspired by the use of temporal logic to structure reinforcement learning (Li et al.,
2017; Jothimurugan et al., 2021). Each vertex of an ILG represents an intermediate landmark, which is a
subset of the environment’s state space, analogous to an atomic proposition of a temporal logic specification.
To show the meaning of a landmark to the learner, the teacher must be able to provide a handful of illustrative
observations drawn from states within the landmark. Each directed edge (u, v) in the ILG represents the
edge task of transitioning the environment from the landmark represented by u to the landmark represented
by v. Each sink vertex represents a final landmark. The long horizon task is to reach any final landmark,
passing through intermediate landmarks on the way. Importantly, the ILG can contain multiple paths to
a final landmark, exposing opportunities for the learner find a plan that suits its capabilities. Returning
to our block stacking task, a human teacher can identify that grasping a block before placing it is a useful
landmark and can communicate this to the learner via the StackChoice ILG shown in Figure 1.

2

Published in Transactions on Machine Learning Research (03/2025)

To leverage the ILG for policy learning, we propose ILG-Learn. At a high level, ILG-Learn interleaves
Dijkstra-style planning over the ILG with example-based control, (Fu et al., 2018; Singh et al., 2019; Eysenbach
et al., 2021) a lightweight alternative to imitation learning that uses goal observations instead of full-length
demonstrations, to learn an edge policy for each edge task. This allows the learner to benefit from temporal
abstraction, as in hierarchical reinforcement learning, (Hutsebaut-Buysse et al., 2022) without the need for
reward engineering. Concretely, to train an edge policy for “start→ grasp B”, the teacher would provide
illustrative observations by manipulating the gripper to grasp block B, then letting the learner observe the
grasp with its onboard sensors. Example-based control lets the learner use such illustrative observations in
lieu of a reward function as it interacts with the environment to learn a control policy to grasp block B.
Beyond providing the ILG and its associated illustrative observations, the ILG-Learn teacher has to only
respond to binary success/failure queries during training to inform the learner’s graph search. This intuitive
teacher-learner interface allows the learner to benefit from exploration without requiring reward engineering.

A key benefit of the ILG specification is the ability to represent multiple paths to overall success. The
StackChoice ILG includes multiple paths to the final landmark (“stack”)—depending on the learner’s capa-
bilities it may be easier stack the blocks in one order or the other. For example, if the agent were to perceive
the world using an outward-facing camera mounted opposite the robot on the surface of the table (as shown
in Figure 1), block B would initially be occluded, making it easier to start by grasping the (unoccluded)
block A. By querying the teacher for success/failure feedback, the ILG-Learn learner can focus exploration
along the most promising paths. Our experiments show that ILG-Learn adapts to the occlusion condition
and learns a policy that grasps the unoccluded block first. This capacity for train-time adaptation reduces
the burden on the human teacher to predict which approach will be most feasible for the learner. In this
way, the ILG differs from the symbolic abstractions used for Task & Motion Planning, (Zhao et al., 2024) in
which the human must define which transitions are feasible before planning begins.

Another benefit of the ILG is that the teacher can choose a landmark density (the number of intermediate
vertices along a path in the ILG) that is dense enough to guide efficient exploration yet not so dense as to be
overly prescriptive. At one extreme, the teacher could provide a landmark graph that comprises a single edge,
thus recovering the free-form exploration of ILG-Learn’s underlying example-based control algorithm. At the
other extreme, the teacher could identify many intermediate landmarks to tightly scaffold exploration. The
ideal landmark density depends on the task of interest; we believe that the intuitive structure of the ILG will
enable the teacher to apply domain knowledge to select an appropriate landmark density without concerning
themselves with the low-level details of the robot’s perception and motor capabilities. Our experiments show
that ILG-Learn outperforms baselines that use end-to-end example-based control (which embodies minimal
landmark density) and behavior cloning (which uses full-length demonstrations). In summary:

• We introduce the ILG as a form of task specification that allows a human teacher to decompose a
task into a series of easier to achieve landmarks, thereby providing intermediate guidance without
reward engineering, full length demonstration, or explicit knowledge of the learner’s capabilities.

• We propose ILG-Learn, a learning algorithm that leverages the ILG’s interpretable-by-design nature
to allow the teacher to provide lightweight guidance as the learner learns policies and a plan to suit
its unique capabilities.

• We empirically show that providing a suitable ILG enables ILG-Learn to learn long-horizon policies
that achieve significantly (∼ 50%) higher success rates compared to approaches that do not receive
structured guidance (RCE and behavior cloning). Additionally, we demonstrate how a multi-path
ILG facilitates learning when the teacher cannot fully anticipate the learner’s capabilities.

2 Related work

Hierarchical reinforcement learning, Task & Motion Planning. Hierarchical reinforcement learn-
ing (HRL) (Hutsebaut-Buysse et al., 2022; Pateria et al., 2021) incorporates temporal abstraction into
reinforcement learning, effectively decomposing a long horizon task into easier to achieve sub-tasks. Prior
works (Kulkarni et al., 2016; Nachum et al., 2018) have shown that incorporating some human priors for

3

Published in Transactions on Machine Learning Research (03/2025)

temporal task decomposition enables RL algorithms to find useful abstractions to solve long-horizon tasks.
The ILG specification format allows the human teacher to provide such abstractions; at a high level, each
edge in the ILG is analogous to an option in the options framework (Sutton et al., 1999). Unlike existing
HRL techniques, ILG-Learn uses example-based control and teacher-learner interaction to avoid the need
for reward engineering and explicit specification in terms of environment states.

In robotics, Task & Motion Planning (Garrett et al., 2021; Zhao et al., 2024) is a popular framework
to decompose long-horizon tasks into high-level symbolic task planning and low-level continuous motion
optimization. Typically, a TAMP system designer must specify task-relevant abstractions such as motion
primitives, their affordances, and constraints, etc., to synthesize task and motion plans under the assumption
that the required state is fully observable and the effects of chosen sub-task and action sequences can be
modeled deterministically. Contrary to this, to create an ILG the teacher only needs to specify various
potentially feasible sequences of sub-tasks and ground them via illustrative observations. During training,
ILG-Learn uses the ILG to scaffold exploration and discovers a sequence of landmarks that the agent can
feasibly achieve based on its capabilities. This directed exploration to arrive at the effective task plan is
reminiscent of Go-Explore (Ecoffet et al., 2021). ILG-Learn differs from Go-Explore in that landmarks serve
as the task specification (avoiding the need for reward design), include human-defined relationships (in the
form of the ILG), and are illustrated to the learner via teacher-provided observations (rather than reached
organically).

Specification-guided reinforcement learning and reward machines. ILG-Learn’s use of the human-
specified ILG is inspired by specification-guided reinforcement learning, in which a human provides a temporal
logic specification that can be used to structure hierarchical reinforcement learning (Jothimurugan et al.,
2021; Araki et al., 2021) or reward function generation (Li et al., 2017; Bozkurt et al., 2020). The main benefit
of specification-guided reinforcement learning is that some (or all) reward engineering effort can be replaced
with logical specification, which may be more intuitive and less error prone. A specification-derived reward
function can be expressed as a reward machine (Toro Icarte et al., 2022), which is a finite-state automaton
whose current state determines the reward function. Both the ILG and the reward machine expose the
symbolic structure of a multi-step task to a learner. Unlike an ILG, however, a reward machine does not
include a distinguished “final goal” state; maximizing accumulated reward may or may not require reaching
a particular reward machine state. The ILG exposes the high-level objective (reach a final landmark) to
the learner, who must combine graph-based planning and example-based control to obtain local guidance.
On the other hand, a reward machine immediately exposes local guidance to the learner (in the form of the
initial reward machine state’s reward function) and the learner may leverage the reward machine’s symbolic
structure to guide exploration as it seeks to maximize accumulated reward.

ILG-Learn’s use of the ILG is directly inspired by DiRL’s (Jothimurugan et al., 2021) use of the analogous
abstract graph, which is built according to the structure of a temporal logic specification. ILG-Learn and
DiRL both use the specification’s structure to scaffold train-time planning; this contrasts with the approach
of Yalcinkaya et al. (2024), which uses a neural network to produce an embedding of the specification serves
as input to a goal-conditioned policy. The ILG-definable specifications are subsumed by linear temporal logic;
ILG-Learn can equivalently be seen as a specification-guided reinforcement learning algorithm in which the
learner must infer the semantics of each atomic predicate (landmark) from a set of illustrative observations
and active success/failure queries.

Imitation learning and example-based control. As we argued in Section 1, the price of imitation
learning’s intuitive teacher-learner interface is rigidity: the learner is vulnerable to compounding deviations
from the teacher’s demonstrations (Ross et al., 2011) and may not enjoy the flexibility to adjust its approach
to suit its own unique capabilities. To address these challenges, inverse reinforcement learning (Arora &
Doshi, 2021; Adams et al., 2022) gleans the demonstrator’s intent, allowing the agent to learn a policy
through environmental interaction rather than rote memorization. In the context of long horizon policy
learning, UVD (Zhang et al., 2024) and Relay Imitation Learning (Gupta et al., 2020) identify subgoals within
demonstrations that can be used for compositional imitation inspired by goal-conditioned RL. Compared to
ILG-Learn, these approaches remove the need for the teacher to identify landmarks, but in so doing reduce

4

Published in Transactions on Machine Learning Research (03/2025)

the teacher’s ability to scaffold exploration and require the teacher to provide demonstrations rather than
illustrative observations.

Example-based control (Fu et al., 2018; Singh et al., 2019; Eysenbach et al., 2021) allows the teacher to
provide single-timestep examples of the environment state after task completion rather than full-length
demonstrations. It is often significantly easier for a human to provide a single-timestep example than a full
demonstration, and sparse guidance allows the learner more flexibility. However, for long-horizon tasks, such
low landmark density may not provide the learner enough guidance to complete the task. At a high level, our
proposed method, ILG-Learn, scales example-based control to long-horizon tasks by incorporating human
exploration biases in the form of intermediate landmarks. We use the example-based control algorithm RCE
(Eysenbach et al., 2021) to learn each edge policy that transitions the environment between landmarks.

Human-in-the-loop policy learning. Reinforcement learning with human feedback (RLHF) (Kaufmann
et al., 2024; Arzate Cruz & Igarashi, 2020; Najar & Chetouani, 2021) elicits guidance from a human during
training to reduce (or completely eliminate) reliance upon the environment’s reward function. Some recent
applications of RLHF to robotics query human preference over states to discover subgoals for HRL (Zhou
et al., 2024) or goal-conditioned exploration (Villasevil et al., 2023). Instead of using human preference to
discover landmarks, ILG-Learn requires the teacher to choose which landmarks to include in the ILG before
learning begins. ILG-Learn then incorporates human feedback in the form of success/failure queries to direct
exploration towards paths that cater to the learner’s capabilities. ILG-Learn’s use of active queries to steer
the learner away from undesirable behavior is inspired by VICE-RAQ, (Singh et al., 2019) an example-
based control algorithm that targets success/failure queries on states that closely resemble human-provided
examples, which prevents an inferred reward function from encouraging progress towards spurious goals.

Human feedback can also be used to facilitate imitation learning. For example, HI-IRL (Pan & Shen, 2018)
requires the human to provide subgoal states alongside a full-length demonstration. During training, the
learner can ask for focused demonstrations of particularly hard-to-learn subgoals. Another recent approach,
Thrifty DAgger (Hoque et al., 2021) quantifies novelty and risk to make the most of a limited human
interaction budget. Another approach in the DAgger (Ross et al., 2011) family, RLIF (Luo et al., 2024) lets
the human intervene during training to tell the learner when it behaves unsatisfactorily and provide a short
demonstration of better behavior. The aforementioned techniques begin with a full-length demonstration
of the task, which contrasts with our ILG’s ability to express multiple paths to success. In a similar vein,
Memarian et al. (2020) combine automata learning and inverse reinforcement learning to discover a subgoal
decomposition alongside a policy to complete a long-horizon task. Their approach allows the learner to
ask for specific guidance while discovering the subgoal decomposition but is not immediately applicable to
continuous-state environments with difficult control tasks.

3 Illustrated landmark graphs

We introduce the illustrated landmark graph (ILG) as a form of long-horizon task specification. A key
feature of the ILG is that the teacher communicates the meaning of each landmark to the learner using
illustrative observations and does not need to provide explicit definitions in terms of the environment’s state.
In Section 3.1 we define the environment and policy model before defining the ILG specification format
in Section 3.2. The ILG is a useful form of specification because of the way it facilitates teacher-learner
interaction; we describe our proposed interaction interface in Section 3.3.

3.1 Preliminaries

As is standard in RL, we assume the agent interacts with an environment that can be expressed as a Markov
Decision Process (MDP). An MDP comprises a continuous set of states S, a continuous set of actions A,
dynamics governed by the transition probability distribution p(st+1 | st, at), and a starting state distribution
η. Instead of specifying the task via a reward function (as is commonly done in MDPs), we will use an ILG
as the task specification and incorporate human interaction to guide the learner.

5

Published in Transactions on Machine Learning Research (03/2025)

At each timestep t, the agent receives an observation o(st) ∈ Ω where Ω is the observation space. The
observation function o : S → Ω captures the learner’s perception capabilities. In a real-world setting, o(st)
may represent raw sensor readings or the outputs of a state-estimation module. A policy is a function
π : (Ω×A)∗ ×Ω→ ∆(A) that maps a trace of observations and actions to a distribution over next actions.

3.2 ILG and satisfaction

Each vertex of an ILG represents a landmark, which is a subset of the state space S, and each edge in the
the ILG represents the edge task of transitioning between two landmarks. The ILG must have at least one
sink vertex; each sink corresponds to a final landmark. The agent’s goal is to reach a final landmark.

Formally, an ILG is a tuple (U, E, u0, β) with vertex set U , directed edge set E, distinguished source vertex
u0, and landmark map β : U → 2S that maps each vertex to the set of states that comprise the corresponding
landmark. An ILG must have at least one sink vertex. A trajectory ξ = s0a0s1a1 . . . satisfies the landmark
graph (U, E, u0, β) iff there exists a sink vertex u ∈ U and a time t such that st ∈ β(u).

Figure 1 shows the structure of the StackChoice ILG. There are two source-to-sink paths: “start →
grasp A → stack” and “start → grasp B → stack.” Any trajectory that passes through a state in the
landmark represented by the sink vertex “stack” satisfies the specification. The vertices “grasp A” and
“grasp B” provide intermediate guidance to a policy learner. This guidance takes the form of teacher-learner
interaction during training as detailed in the following subsection.

3.3 Interaction and illustration

As is common in RL, we assume that the learner does not begin with knowledge of the environment’s
transition probabilities; it must learn about environment dynamics through interaction. Similarly, we assume
that the learner does not have explicit access to the ILG specification’s landmark map β : U → 2S . During
training, the learner begins with access to the structure (U, E, u0) of the ILG (U, E, u0, β). In order to obtain
guidance toward the landmark represented by a vertex u, the learner must interact with the teacher to request
illustrative observations drawn from states within β(u). The learner may also request success/failure feedback
from the teacher to see if the current state of the environment lies within a particular landmark.

During training, the learner interacts with the teacher and with the environment using the following proce-
dures. Training proceeds as a sequence of episodes. At each timestep t within an episode the learner receives
an observation o(st) and may:

• reset() Reset the environment to a state s0 ∼ η. The learner receives the observation o(s0).

• step(at) Provide an action at to the environment, which causes the environment to transition to a
state st+1 ∼ p(·|st, at). The learner receives the observation o(st+1).

• requestIllustration(u, ρ) where u ∈ U is the vertex of the ILG to be illustrated and the second
argument ρ ∈ U∗ lets the the learner tell the teacher which path it wishes to extend to u. In
response, the teacher provides a dataset of illustrative observations Ou ⊂ {o(s) ∈ Ω | s ∈ β(u)} of
illustrative observations of states within β(u). Although the path ρ does not affect the contract that
the teacher must uphold, it may help the teacher choose a useful set of illustrative observations: in
the StackChoice example, a good teacher would respond to requestIllustration(stack, start →
grasp A) with examples of block A stacked on top of block B (not of B stacked on A).

• querySuccess(u) where u ∈ U is a vertex of the ILG. The teacher provides binary success/failure
feedback of whether the current environment state st is in the landmark β(u).

Given an MDP M, observation function o, and ILG G, the learner tries to learn a policy π that maximizes
the probability that a trajectory ξ drawn from π interacting with M while receiving observations according
to o satisfies G.

Importantly, the teacher is never asked to explicitly define the landmark map β. Instead, the teacher must be
able to provide a set of illustrative observations for each landmark and serve as an oracle for querySuccess.

6

Published in Transactions on Machine Learning Research (03/2025)

The teacher can provide a set of illustrative observations by, for example, physically positioning a robot and
allowing its sensors to perceive the environment. This intuitive interaction interface allows the teacher to
guide the learner without needing to understand the low-level details of the learner’s perception capabilities.

Underlying the ILG’s usefulness is its customizability. To permit multiple approaches to complete the
task, the human can include multiple paths that lead to a final landmark. In addition to using branching
to expose options for high-level planning, the teacher can adjust the landmark density (the number of
intermediate landmarks) along each path to provide the appropriate granularity of guidance. In the context
of policy learning, low landmark density cedes resolution of low-level control details to the underlying learning
algorithm. This is both convenient for the teacher and can result in well-optimized motion if the learner can
successfully transition between landmarks. On the other hand, excessively low landmark density can render
policy learning intractable, as the underlying learning algorithm is left with insufficient exploration bias.

4 Learning algorithm

We propose ILG-Learn, a human-in-the-loop approach to policy learning for ILG specifications. At a high
level, ILG-Learn performs the following steps:

• Policy learning. For an edge (u, v) of the ILG, the learner uses example-based control to learn an
edge policy π(u,v) that tries to transition the environment from the landmark represented by u to
the landmark represented by v.

• Success estimation. Given a learned path policy (a sequence of edge policies), the learner queries
the teacher for binary success/failure feedback to estimate the success probability of the policy.

• Planning. The learner tries to find a source-to-sink path of minimal cost, where cost is defined as
the negative logarithm of the associated path policy’s success probability.

At the outset, the learner receives the structure (U, E, u0) of the ILG specification (U, E, u0, β) but does
not know how to reach any landmark. By interacting with the environment and the teacher (through the
interface described in Section 3.3) the learner learns policies to reach intermediate landmarks and a plan
to satisfy the ILG specification by reaching a final landmark (represented by a sink vertex). ILG-Learn
iteratively builds a tree of lowest-cost known paths from the source to the other vertices of the ILG. Since
the cost of a path depends on the success probability of the learned edge policies, ILG-Learn interleaves
graph search and policy learning to obtain the path costs on the fly during training. Learning proceeds as
a series of learning intervals, each of which focuses on a single edge of the ILG. Once ILG-Learn finds the
lowest cost path ρ to a sink vertex, ILG-Learn returns the plan ρ and the associated path policy.

Algorithm 1 sketches the full ILG-Learn algorithm and Figure 2 illustrates the steps of a learning interval. In
the following textual description we will denote the ILG specification as (U, E, u0, β) and assume the learner
has access to the environment M and the human teacher through the interface described in Section 3.3.
To make our description concrete, we will use the StackChoice task introduced in Section 1 as a running
example. The structure (U, E, u0) of the StackChoice ILG is shown in Figure 1.

ILG-Learn hyperparameters

illustrationCount: illustrative observations per request.
episodeLength: fixed horizon for edge policy training.
intervalLength: environment steps per learning interval (exclusive of those used during resets).
estimationQueries: # rollouts (each with a success/failure query) at end of each learning interval.
successThreshold: lower bound on success probability for an edge to be considered learned.
intervalsLimit: max # of learning intervals per edge.

Exploration order (selectEdge). ILG-Learn’s exploration order is determined by the selectEdge sub-
routine. At the outset, ILG-Learn’s tree of known paths contains only the “start” vertex u0. To extend this

7

Published in Transactions on Machine Learning Research (03/2025)

Algorithm 1: ILG-Learn
Input: ILG structure (U, E, u0), access to MDP M via reset and step, access to human teacher via

requestIllustration and querySuccess.
Output: Path ρ and associated path policy
ρu0 , πu0 , reachProbu0 ← [], None, 1;
reachProbu ← 0 ∀u ∈ V \ {u0};
while selectEdge() returns (u, v) do
O(v)← requestIllustration(v, ρu);
π(u,v) ← learnPolicy(Ov, ρu, πu);
π ← sequencePolicies(πu, π(u,v));
successProb← estimateProbability(v, π);
if successProb > reachProbv then

reachProbv ← successProb;
ρv ← ρu ◦ (u, v);
πv ← π;

u← argmaxu∈sinkVertices(G)(reachProbu);
return ρu, πu

1. 2. 3. 4.

Figure 2: Stages of a learning interval: (1) The learner selects an edge and requests illustrative observations
to guide learning. (2) The human teacher provides illustrative observations of the destination landmark.
(3) The learner uses example-based control to learn an edge policy from environmental interaction. (4) The
learner executes the edge policy and queries the teacher for success/failure feedback.

tree, selectEdge chooses an edge leaving the tree for which to learn a control policy. ILG-Learn implements
a fine-grained interleaving (mediated by the successThreshold and intervalsLimit hyperparameters) of
policy and plan learning to accelerate learning. For details, see Appendix A.

Let us suppose that selectEdge chooses the edge (u, v) = (start, grasp A). This marks the start of a learning
interval dedicated to learning the edge policy π(u,v).

Human guidance (requestGoals). After selecting an edge (u, v), ILG-Learn asks the human teacher to
provide a dataset Ov containing illustrationCount illustrative observations drawn from states within β(v).
In our example, the teacher would provide a set of observations that illustrate “grasp A”.

Policy learning (learnPolicy). ILG-Learn runs example based control for intervalLength environment
steps (structured as episodes of episodeLength timesteps) to learn an edge policy π(u,v). This learning
process does not require interaction with the human teacher.

In our example, the learner would interact with the environment to learn a policy that tries to reach states
that yield observations that look similar to the illustrative observations of the “grasp A” landmark. This
similarity is quantified by the example-based control algorithm. Our implementation uses RCE, (Eysenbach
et al., 2021) which is inspired by actor-critic reinforcement learning. In RCE, the critic network is trained to
predict a time-discounted success probability for observation-action pairs. Success is defined as a regression
task: the success probability of illustrative observations is regressed to 1 while other observations (collected
in a replay buffer) are assumed to not represent success. The critic’s scores are used to optimize the policy,
similarly to the soft actor critic RL algorithm (Haarnoja et al., 2017). Since this is the first edge along a
path, each learning episode starts from the environment’s reset distribution.

8

Published in Transactions on Machine Learning Research (03/2025)

In a future learning interval, ILG-Learn may try to learn the next step of the path, namely, how to stack
block A on top of block B (assuming block A is already grasped). Since policy learning is sensitive to the
starting state distribution, ILG-Learn needs to start learning π(u,v) from the distribution induced by the
(already learned) path policy πu. So in the case of learning to stack block A on block B, each episode
would start by executing the (start, grasp A) policy (for the same fixed horizon episodeLength) to reach
the appropriate starting distribution for the (grasp A, stack) edge task.1

Success Estimation (estimateProbability) The last step of each learning interval is to estimate the
probability that the learned edge policy π(u,v) successfully reaches β(v). Just as it was important to start
training π(u,v) from the state distribution reached by executing πu, it is important to evaluate π(u,v) from
the distribution reached by πu. The estimateProbability subroutine executes estimationEpisodes addi-
tional rollouts of the sequenced policy, using querySuccess(u) at the last timestep of each rollout, to ask the
human teacher whether the rollout was successful. If this empirical path probability exceeds that of the best
known path ρv to v, ILG-Learn updates the best known path and associated path policy πv. If the empirical
probability exceeds successThreshold (or the per-edge max number of learning intervals intervalsLimit
is reached) then ILG-Learn will consider the edge fully explored. At this point, the path cost (the negative
logarithm of the success probability) is solidified. No more learning intervals can be allocated to (u, v).
Future learning intervals can now be allocated to edges that leave v.

Since success estimation only occurs at the end of each learning interval, the intervalLength hyperparameter
mediates a tradeoff between learning efficiency in terms of total environment steps and learning efficiency
in terms of human annotation burden. A short intervalLength means that the estimateProbability
subroutine is executed more frequently, which reduces the likelihood that superfluous training effort will be
invested in an edge policy. However, estimateProbability requires the teacher to respond to success/failure
queries. We provide advice for selecting ILG-Learn’s hyperparameters in Appendix B.

Termination. Training is complete when the selectEdge subroutine returns None, indicating that ILG-
Learn has found the lowest-cost path in the ILG and the associated path policy. Otherwise, a new learning
interval will commence, focusing exploration along the edge chosen by selectEdge.

5 Experiments

Our experiments show that ILG-Learn can learn policies to successfully complete long horizon tasks. To
better understand the importance of allowing the teacher to choose the ILG’s landmark density we evaluate
ILG-Learn against RCE, a state of the art example-based control algorithm that does not use intermediate
landmarks, and behavior cloning (BC), an imitation learning algorithm that receives full-length demonstra-
tions. We include two variants of BC, one which predicts actions using an MLP that is architecturally similar
to ILG-Learn and RCE, as well as the modern diffusion policy (Chi et al., 2023) architecture. Since the ILG
task specification is new, there do not exist direct analogs of ILG-Learn to baseline against; rather, RCE’s
examples and BC’s demonstrations represent two alternatives to ILG specifications.

We also compare against hierarchical reinforcement learning with reward machines (HRM), (Toro Icarte
et al., 2022) an HRL algorithm that exploits the structure of a handcrafted reward machine that provides
dense rewards. Our reward machine definitions mirror the structure of the ILG for each task; our experiments
explore whether ILG-Learn’s use of example-based control to learn each edge task can rival or exceed the
efficacy of reinforcement learning with dense rewards.

Finally, we investigate whether ILG-Learn can discover the path through multi-path (branching) ILG that
suits the learner’s capabilities. Such train-time adaptation would reduce the burden on the teacher to predict
the best approach to task completion a priori. We conduct our experiments in simulation using the following
environments:

1Steps used during resets do not contribute to the intervalLength steps per learning interval, however in our experimental
evaluation we limit the total number of environment steps to 10 million.

9

Published in Transactions on Machine Learning Research (03/2025)

Stack. Our Stack family of environments is a customized robosuite (Zhu et al., 2020) environment
that simulates a 7-DoF Franka Panda arm that receives 55-dimensional state observations and uses a 7-
dimensional action space (which represents an operational space controller with fixed impedance). As intro-
duced in Section 1, the learner must stack the blocks to build a tower. The blocks are initially placed along
the centerline of the table, with block A closer to the robot than block B. The exact positions of each block
are randomized. We include multiple versions of the task: StackChoice (stack the blocks in either order),
StackAB (stack the red block A on the green block B), and StackBA (stack block B on block A). To study ILG-
Learn’s ability to adapt to a learner’s unique capabilities, we further include the StackChoice-Outwardview
and StackBA-Outwardview variants, which simulate observations collected from an object-detector operating
from a camera mounted on the same side of the table as the robot arm. Whenever a block is occluded, we
mask the corresponding components of the observation space. Figure 1 illustrates the Stack tasks; for more
details see Appendix E.

The “grasp A” landmark comprises the states where the robot gripper fingers are spread approximately
the width of the block, and both fingers contact Block A. “grasp B” is defined analogously. The “stack”
landmark comprises the states where the blocks are in contact and on top of each other. During train-
ing, a scripted “human” teacher provides illustrationCount (10 in our StackAB experiment, and 50 in
StackChoice-Outwardview and StackBA-Outwardview) illustrative observations per requestGoals call.
The scripted teacher always provides the same set of illustrative observations on subsequent requestGoals
with the same desired vertex and path to extend. The scripted teacher responds to querySuccess call
perfectly accurately, according to the landmark definitions defined in Appendix E.

For the StackAB RCE baseline, we ran experiments with both 100 and 1000 goal examples, all of block A
having been stacked on block B. These are drawn from the same distribution as the illustrative observations
provided to ILG-Learn for StackAB’s “Stack” landmark. Similarly, we ran StackAB BC experiments with 100
and 1000 full-length demonstrations gathered using a scripted policy that includes some random variation
(see Appendix E for details). Each demonstration is 200 timesteps in length, with the task typically being
completed by around 150 timesteps.

Point Maze. We use custom layouts of the Point Maze environment from Gymnasium Robotics (de Laz-
cano et al., 2023; Fu et al., 2020). The agent is a force-actuated point-mass with a 2-dimensional action space
and receives 4-dimensional observations that comprise its position and velocity. The agent must navigate
from its starting position in the lower-left to the goal position in the upper-right. We include three variants
of a diagonal maze (DiagonalMaze3x3, DiagonalMaze5x5, DiagonalMaze7x7) that differ in the length of the
task. We also include a DiagonalMaze7x7-Coarse variant that has low landmark density and two variants
of a 4x4 maze that differ only in their associated ILG specifications. Illustrations are shown in Figure 3; the
landmark regions are the centers of the rooms that are highlighted in pink.

In each Maze variant, the scripted teacher provides ILG-Learn with 10 illustrative observation per landmark.
Similar to the StackAB, we conduct DiagonalMaze experiments in which the RCE and BC baselines 100 goal
examples or demos (respectively), as well as experiments in which they receive 1000. The RCE baseline with
100 examples all drawn from the final goal region, and the BC baseline with 100 full-length demonstrations
gathered by a scripted policy.

5.1 Landmark density and learning objective

To disentangle the importance of allowing the teacher to choose the ILG’s landmark density from the
importance of multi-path specifications, we first turn our attention to tasks specified with a linear ILG.
In the StackAB environment (Figure 1), the ILG-Learn learner receives a linear ILG that mandates placing
the red block A on the green block B. At the end of each learning interval (100k environment steps, exclusive
of steps used during resets) the teacher responds to 30 success/failure queries. We allow ILG-Learn and RCE
to train for 10 million environment steps and allow BC to train until the validation loss stops decreasing.
Appendix F contains learning curves.

ILG-Learn achieves an average success rate of 0.975 for the StackAB task (Table 1). This is markedly higher
than the success rates achieved by the RCE baseline (0.050) or the BC baseline (0.059) when provided

10

Published in Transactions on Machine Learning Research (03/2025)

Table 1: Success rates (mean over 5 trials). ILG-Learn, RCE, and HRM are trained for a maximum of 10
million environment steps; see Appendix E for experimental details and Appendix F for learning curves.

ILG-Learn RCE RCE BC (MLP) BC (DiffP) HRM
(ours) 100 example 1000 ex. 100 demo 1000 demo

StackAB 0.975 0.050 0.392 0.059 0.28 0.005
DiagonalMaze3x3 1.00 0.00 0.600 0.991 0.91 1.00
DiagonalMaze5x5 1.00 0.00 0.200 0.989 0.68 0.00
DiagonalMaze7x7 0.995 0.00 0.00 0.476 0.689 0.00

DiagonalMaze7x7-Coarse 0.00 0.00 0.00 0.476 0.689 0.00

DiagonalMaze3x3 Maze4x4-Fine Maze4x4-CoarseDiagonalMaze7x7 DiagonalMaze7x7-Coarse

Figure 3: The Maze environments with ILGs superimposed (pink). The agent starts in the lower-left room
and must navigate to the upper-right room. DiagonalMaze5x5 is analogous to the 3x3 and 5x5 variants.

with 100 goal examples or demonstrations, respectively. Even when provided with 1000 examples, RCE
only achieves 0.392 average success rate, and BC (with the more modern Diffusion Policy architecture) only
achieves 0.28 success rate. The fact that the RCE baseline achieves a low success rate shows that single-
frame observations are too sparse to guide the learner towards success; allowing the teacher to specify an ILG
with the intermediate “grasp A” landmark was crucial for ILG-Learn’s success. On the other hand, the BC
baseline, which receives very dense guidance towards the goal, yields policies that rarely succeed, showing
that carefully mimicking a teacher’s detailed demonstrations does not necessarily yield a good policy.

The DiagonalMaze family of environments shows that the teacher’s choice of landmark density is more
important for tasks with longer horizons. DiagonalMaze-3x3, DiagonalMaze-5x5, and DiagonalMaze-7x7
differ only in the length of the path that the learner must travel. Looking again at Table 1, we see that
ILG-Learn consistently matches or exceeds the performance of the RCE and BC baselines. Importantly,
BC achieves high success rate for the relatively short-horizon DiagonalMaze3x3 and DiagonalMaze5x5 but
its performance deteriorates dramatically as the size of the maze increases to 7x7. On the other hand,
ILG-Learn consistently yields near-perfect success rates regardless of maze size. This supports the intuition
that ILG-Learn can scale to long horizon tasks by (1) allowing the learner flexibility to explore and discover

start

grasp
A

grasp
B

stack
0.0

start

grasp
A

grasp
B

stack
0.0

0.0
start

grasp
A

grasp
B

stack

0.63

0.0
start

grasp
A

grasp
B

stack

0.63

0.0

start

grasp
A

grasp
B

stack

0.86

0.0
start

grasp
A

grasp
B

stack

0.86

0.0

0.10

start

grasp
A

grasp
B

stack

0.86

0.0

0.10

start

grasp
A

grasp
B

stack

0.86

0.0

0.86

1. 2. 3. 4.

5. 6. 7. 8.

Figure 4: Learning intervals for StackChoice- Outwardview. The most recently explored edge is highlighted
in pink and results of estimateSuccess are annotated.

11

Published in Transactions on Machine Learning Research (03/2025)

suitable policies to reach each landmark and (2) incorporating success/failure feedback during training to
ensure each edge policy is learned successfully before moving on to train successive policies. This is unlike
BC and other imitation learning algorithms that are vulnerable to compounding deviations between the
demonstrations and the actual trajectories taken by the agent.

To realize ILG-Learn’s benefits, the human teacher must provide an ILG with appropriate landmark density.
Given the excessively low landmark density of DiagonalMaze7x7-Coarse, ILG-Learn consistently fails to
learn a successful policy (while the ILG of DiagonalMaze7x7 yields near-perfect policies). Such a failure
occurs when the exploration needed to learn an edge policy exceeds the capabilities of ILG-Learn’s underlying
example-based control algorithm. We provide advice for selecting landmark density in Section 6.

To investigate the efficacy of example-based control as ILG-Learn’s low-level policy learning algorithm, we
compare the performance of ILG-Learn with that of HRM. In StackAB and each DiagonalMaze environment,
we provide HRM with a reward machine in which each reward machine state corresponds to a landmark in
our ILG specification. To encourage progress toward completing the long-horizon task, the reward machine
provides dense rewards that encourage progress to the next landmark, which triggers a transition to the next
reward machine state when reached. The dense reward functions for StackAB are directly inspired by the
original environmental reward of the original robosuite Stack benchmark. For the DiagonalMaze tasks,
the reward is negative euclidean distance to the center of the next landmark (see Appendix D.4 for details).

We find that for the relatively short-horizon task DiagonalMaze3x3, HRM achieves a perfect success rate
of 1.00. However, HRM fails to complete the larger DiagonalMaze environments. HRM also achieves a low
average success rate (0.015) for StackAB. While in-depth reward engineering could improve the performance
of HRM, the fact that ILG-Learn achieves high success rates with an intuitive ILG specification and 10
illustrative observations per landmark suggests that our approach may be a viable alternative to hierarchical
reinforcement learning for long horizon tasks.

5.2 Multi-path specifications

A critical attribute of the proposed ILG specification is that it can include multiple source-to-sink paths, each
representing an approach to complete the long-horizon task. To evaluate whether ILG-Learn can discover
the path that best suits the learner’s capabilities, we turn to the StackChoice-Outwardview task introduced
in Section 1 and illustrated in Figure 1. The task is to stack the blocks (in either order). Importantly, the
learner observes the position of each block via a simulated object detector based on a camera situated on the
same side of the table as the robot, facing outward toward the blocks. Since the red block A starts closer to
the camera than the green block B, the learner cannot detect the position of block B until a block is moved
to break the occlusion.

Table 2: Success rate (mean of 5 trials) of ILG-Learn given multi-path specifications.

StackChoice- StackBA- Maze4x4- Maze4x4-
OutwardView OutwardView Fine Coarse

0.952 0.147 1.00 0.800

As expected, in all five trials (random seeds) of ILG-Learn, the learner acquired a policy that follows
the path “start → grasp A → stack” achieving an average success rate of 0.952. Figure 4 illustrates the
exploration process followed by the learner during one representative trial. Initially, the learner explores
the ILG by alternating between allocating learning intervals to the (start, grasp A) edge as well as the
(start, grasp B) edge. However, after 5 training intervals (about 700 thousand total environment steps) the
learner successfully acquires a policy for the (start, grasp A) edge, and is thus able to reach the “grasp A”
landmark. ILG-Learn’s best-first search heuristic (detailed in Appendix A) guides further exploration along
this path, focusing on the (grasp A, stack) edge. At the end of the 8th learning interval (slightly more than 1
million total environment steps), the learner has acquired a policy that it estimates has a success probability
of 0.86. Since this exceeds the user-specified successThreshold of 0.8, ILG-Learn terminates. Note that
in reality, the success rate of the final policy is 0.947 (estimated from 1000 rollouts)- discrepancy between

12

Published in Transactions on Machine Learning Research (03/2025)

the learner’s estimate of its own success probability can arise because (1) the learner only uses a modest
number (in this case 30, the value of the estimationQueries parameter) of success/failure queries and (2)
the learner only queries the final timestep of each rollout while we allow success to occur at any point along
the trajectory.

The adaptive exploration scaffolded by the ILG described above is crucial for the ILG-Learn learner to
successfully complete the task. To illustrate this, we compare against the StackBA-Outwardview task, which
differs from StackChoice-Outwardview only in the ILG provided to the learner. StackBA-Outwardview
forces the learner to start by grasping block B, which is very hard for the learner, since block B is initially
occluded. As expected, ILG-Learn achieves a low average success rate of 0.147 on StackAB-Outwardview.

If the human teacher were able to predict which path would be easiest for the learner to follow, the teacher
could simply provide a linear ILG (in the the above example, “start → grasp A → stack”). However,
such upfront prediction may pose a substantial burden to the teacher. A key benefit of using illustrative
observations to specify landmarks is that the teacher does not need to be intimately familiar with the learner’s
perception capabilities—the same specification might even be used for multiple robots with different camera
viewpoints. Moreover, using example-based control as a subroutine to let the learner acquire policies to
achieve each landmark frees the teacher from having to worry about low-level details of the learner’s motor
capabilities. To fully realize these freedoms afforded to the teacher, the high-level task specification must
also be, to some degree, agnostic to the intricacies of the learner’s perception, control, and policy learning
capabilities. A branching ILG provides this freedom to the teacher: the teacher can provide an ILG to
scaffold exploration and allow the learner to interact with the environment to discover a plan that best fits
its unique capabilities.

6 Discussion

In Section 5 we observed that ILG-Learn can learn successful policies for manipulation and navigation tasks.
In this section, we discuss how the ILG definition affects the feasibility and efficiency of learning, providing
both advice for users of ILG-Learn and highlighting directions for future work.

Human effort. To apply ILG-Learn, the human teacher must provide an ILG decomposition that contains
at least one path that can feasibly be learned via iterated example based control. Although allowing the
teacher to provide a branching ILG reduces the teacher’s burden to predict the best landmark decomposition,
some tasks may be hard for humans to effectively decompose. An important direction for future work is to
conduct a careful user study, in the style of Cui et al. (2021); Biyik et al. (2020); Fitzgerald et al. (2023),
to investigate the degree of human effort needed to specify an ILG that facilitates successful and efficient
application of ILG-Learn. We envision two future directions to reduce the burden of ILG definition: first, we
propose to refine the ILG during training by prompting the teacher to provide new intermediate landmarks
when the learner struggles. Second, we propose to eliminate the need for manual ILG design altogether,
instead allowing the human to specify the task using natural language (and perhaps a few final goal images
or demonstrations) and then prompting a foundation model to construct a formal specification (taking
inspirations from works such as Lang2LTL (Liu et al., 2023) and SayCan (Ahn et al., 2022)), which can in
turn be compiled into an ILG (as in DiRL (Jothimurugan et al., 2021)). These directions are complementary;
in the context of text-based sequential decision making, ADaPT (Prasad et al., 2024) has shown that an LLM
planner can decompose difficult tasks on-the-fly in response to the capabilities of a low level executor. We
believe that iterative refinement of the ILG by a foundation model would improve the general applicability
of ILG-Learn.

We also plan to incorporate foundation models to reduce the human annotation burden imposed by ILG-
Learn’s estimateProbability subroutine. For our experiments, we chose parameters such that the human
responds to 30 success/failure queries per 100k training steps; for our StackChoice-Outwardview experiment
this amounted to an average of 360 active queries per trial. While developing ILG-Learn, we tried to reduce
this dependence by using a small amount of human-annotated data to train a binary success classifier for each
landmark in a manner inspired by Singh et al. (2019). We found that even with hundreds of labeled positive
examples gathered from successful executions of the policy being trained, there was often no threshold on

13

Published in Transactions on Machine Learning Research (03/2025)

the output of the classifier neural net that reliably separated success from failure. In the future, we plan
to incorporate a foundation-model based success detector (e.g. Goko et al. (2024)) to reduce the human
annotation burden.

Subtask difficulty and learning efficiency. As established in Section 5, decomposing a long-horizon
task into intermediate landmarks and providing a branching ILG that permits multiple paths to success
allows ILG-Learn to solve long-horizon tasks. Applying ILG-Learn to a new task thus raises the questions
“What is the appropriate landmark density?” and “How much branching should the ILG include?” At a
minimum, the teacher should design an ILG that is coarse enough that each landmark is meaningful to the
human eye (since the teacher must respond to success/failure queries). Beyond this, we recommend that the
teacher err on the side of providing a dense ILG with many landmarks and a large amount of branching. The
best-first search pattern introduced in Section 4 and detailed in Appendix A is designed to avoid exploring
every edge in the ILG.

To gain empirical insight, we compared the performance and efficiency of ILG-Learn on a 2D navigation
task using a “fine” ILG (Maze4x4-Fine) versus a “coarse” ILG (Maze4x4-Coarse). The tasks are visualized
in Figure 3 and learning curves can be found in Appendix F. In this case, either ILG suffices to learn a
successful policy: we turn our attention to how much efficiency we would lose by choosing the excessively
fine decomposition of Maze4x4-Fine. Looking at the learning curves, it takes significantly more (compar-
ing medians, 7x as many) total environment steps to learn a successful policy in Maze4x4-Fine than in
Maze4x4-Coarse. Although this loss of efficiency is regrettable, it is preferable to accidentally providing too
coarse an ILG and having learning fail altogether.

Finally, we note the amount of training needed to learn a particular edge task varies between random seeds.
To reduce this variability future work could develop example-based control algorithms that are sample
efficient and learn more robustly. Additionally, in future work we plan to develop a version of ILG-Learn
that leverages dense rewards from a foundation model (taking inspiration from VIP (Ma et al., 2023b)
and RoboCLIP (Sontakke et al., 2023)). Foundation-model based low-level policy learning also presents
the opportunity to replace the role of illustrative observations with a natural language description of each
landmark, which could be combined with rewards from a language-vision foundation model such as LIV (Ma
et al., 2023a)) to enable long horizon policy learning with neither reward engineering nor human-provided
goal observations.

Acknowledgments

This work is supported in part by NSF Award 2331783, NSF CAREER Award 2239301, DARPA TIAMAT
(HR00112490421), and a gift from AWS AI to Penn Engineering’s ASSET Center for Trustworthy AI. The
authors would like to thank the TMLR reviewers for their valuable and constructive feedback.

References
Stephen Adams, Tyler Cody, and Peter A. Beling. A survey of inverse reinforcement learning. Artif.

Intell. Rev., 55(6):4307–4346, aug 2022. ISSN 0269-2821. doi: 10.1007/s10462-021-10108-x. URL https:
//doi.org/10.1007/s10462-021-10108-x.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian
Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth, Nikhil
Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda
Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes,
Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao,
Peng Xu, Sichun Xu, Mengyuan Yan, and Andy Zeng. Do as i can and not as i say: Grounding language
in robotic affordances. In arXiv preprint arXiv:2204.01691, 2022.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete
problems in ai safety, 2016.

14

https://doi.org/10.1007/s10462-021-10108-x
https://doi.org/10.1007/s10462-021-10108-x

Published in Transactions on Machine Learning Research (03/2025)

Brandon Araki, Xiao Li, Kiran Vodrahalli, Jonathan Decastro, Micah Fry, and Daniela Rus. The logical
options framework. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 307–317. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/araki21a.html.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods and
progress. Artificial Intelligence, 297:103500, 2021. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.
2021.103500. URL https://www.sciencedirect.com/science/article/pii/S0004370221000515.

Christian Arzate Cruz and Takeo Igarashi. A survey on interactive reinforcement learning: Design principles
and open challenges. In Proceedings of the 2020 ACM Designing Interactive Systems Conference, DIS ’20,
pp. 1195–1209, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450369749.
doi: 10.1145/3357236.3395525. URL https://doi.org/10.1145/3357236.3395525.

Erdem Biyik, Malayandi Palan, Nicholas C. Landolfi, Dylan P. Losey, and Dorsa Sadigh. Asking easy
questions: A user-friendly approach to active reward learning. In Leslie Pack Kaelbling, Danica Kragic,
and Komei Sugiura (eds.), Proceedings of the Conference on Robot Learning, volume 100 of Proceedings of
Machine Learning Research, pp. 1177–1190. PMLR, 30 Oct–01 Nov 2020. URL https://proceedings.
mlr.press/v100/b-iy-ik20a.html.

Serena Booth, W. Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi. The perils of
trial-and-error reward design: Misdesign through overfitting and invalid task specifications. Proceedings of
the AAAI Conference on Artificial Intelligence, 37(5):5920–5929, Jun. 2023. doi: 10.1609/aaai.v37i5.25733.
URL https://ojs.aaai.org/index.php/AAAI/article/view/25733.

Alper Kamil Bozkurt, Yu Wang, Michael M. Zavlanos, and Miroslav Pajic. Control synthesis from linear tem-
poral logic specifications using model-free reinforcement learning. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pp. 10349–10355, 2020. doi: 10.1109/ICRA40945.2020.9196796.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: compos-
able transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal
of Robotics Research, pp. 02783649241273668, 2023.

Yuchen Cui, Pallavi Koppol, Henny Admoni, Scott Niekum, Reid Simmons, Aaron Steinfeld, and Tesca
Fitzgerald. Understanding the relationship between interactions and outcomes in human-in-the-loop ma-
chine learning. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pp. 4382–4391. International Joint Conferences on Artificial Intelligence
Organization, 8 2021. doi: 10.24963/ijcai.2021/599. URL https://doi.org/10.24963/ijcai.2021/599.
Survey Track.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan Terry. Gymnasium
robotics, 2023. URL http://github.com/Farama-Foundation/Gymnasium-Robotics.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, Feb 2021. ISSN 1476-4687. doi: 10.1038/s41586-020-03157-9. URL
https://doi.org/10.1038/s41586-020-03157-9.

Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhutdinov. Replacing rewards with examples: Example-
based policy search via recursive classification. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=UVQNdLIELSU.

Tesca Fitzgerald, Pallavi Koppol, Patrick Callaghan, Russell Quinlan Jun Hei Wong, Reid Simmons, Oliver
Kroemer, and Henny Admoni. Inquire: Interactive querying for user-aware informative reasoning. In

15

https://proceedings.mlr.press/v139/araki21a.html
https://www.sciencedirect.com/science/article/pii/S0004370221000515
https://doi.org/10.1145/3357236.3395525
https://proceedings.mlr.press/v100/b-iy-ik20a.html
https://proceedings.mlr.press/v100/b-iy-ik20a.html
https://ojs.aaai.org/index.php/AAAI/article/view/25733
http://github.com/google/jax
https://doi.org/10.24963/ijcai.2021/599
http://github.com/Farama-Foundation/Gymnasium-Robotics
https://doi.org/10.1038/s41586-020-03157-9
https://openreview.net/forum?id=UVQNdLIELSU
https://openreview.net/forum?id=UVQNdLIELSU

Published in Transactions on Machine Learning Research (03/2025)

Karen Liu, Dana Kulic, and Jeff Ichnowski (eds.), Proceedings of The 6th Conference on Robot Learning,
volume 205 of Proceedings of Machine Learning Research, pp. 2241–2250. PMLR, 14–18 Dec 2023. URL
https://proceedings.mlr.press/v205/fitzgerald23a.html.

Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine. Variational inverse control with events:
A general framework for data-driven reward definition. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/c9319967c038f9b923068dabdf60cfe3-Paper.pdf.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-
driven reinforcement learning, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pp. 1582–1591. PMLR, 2018. URL http://proceedings.
mlr.press/v80/fujimoto18a.html.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling,
and Tomás Lozano-Pérez. Integrated task and motion planning. Annual review of control, robotics, and
autonomous systems, 4(1):265–293, 2021.

Miyu Goko, Motonari Kambara, Daichi Saito, Seitaro Otsuki, and Komei Sugiura. Task Success Predic-
tion for Open-Vocabulary Manipulation Based on Multi-Level Aligned Representations. In 8th Annual
Conference on Robot Learning, 2024.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy learn-
ing: Solving long-horizon tasks via imitation and reinforcement learning. In Leslie Pack Kaelbling,
Danica Kragic, and Komei Sugiura (eds.), Proceedings of the Conference on Robot Learning, volume
100 of Proceedings of Machine Learning Research, pp. 1025–1037. PMLR, 30 Oct–01 Nov 2020. URL
https://proceedings.mlr.press/v100/gupta20a.html.

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham Kakade, and Sergey Levine. Unpacking reward shap-
ing: Understanding the benefits of reward engineering on sample complexity. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 15281–15295. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/
paper_files/paper/2022/file/6255f22349da5f2126dfc0b007075450-Paper-Conference.pdf.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. Deep Reinforcment Learning Symposium,
2017.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas Steiner,
and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024. URL http://github.
com/google/flax.

Ryan Hoque, Ashwin Balakrishna, Ellen R. Novoseller, Albert Wilcox, Daniel S. Brown, and Ken Goldberg.
Thriftydagger: Budget-aware novelty and risk gating for interactive imitation learning. In Conference on
Robot Learning, 2021. URL https://api.semanticscholar.org/CorpusID:237371142.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A survey
of learning methods. ACM Comput. Surv., 50(2), apr 2017. ISSN 0360-0300. doi: 10.1145/3054912. URL
https://doi.org/10.1145/3054912.

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement learning: A survey
and open research challenges. Machine Learning and Knowledge Extraction, 4(1):172–221, 2022. ISSN
2504-4990. doi: 10.3390/make4010009. URL https://www.mdpi.com/2504-4990/4/1/9.

16

https://proceedings.mlr.press/v205/fitzgerald23a.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/c9319967c038f9b923068dabdf60cfe3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c9319967c038f9b923068dabdf60cfe3-Paper.pdf
http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v100/gupta20a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/6255f22349da5f2126dfc0b007075450-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6255f22349da5f2126dfc0b007075450-Paper-Conference.pdf
http://github.com/google/flax
http://github.com/google/flax
https://api.semanticscholar.org/CorpusID:237371142
https://doi.org/10.1145/3054912
https://www.mdpi.com/2504-4990/4/1/9

Published in Transactions on Machine Learning Research (03/2025)

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforcement
learning from logical specifications. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-
14, 2021, virtual, pp. 10026–10039, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
531db99cb00833bcd414459069dc7387-Abstract.html.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement learning from
human feedback, 2024.

Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2022. URL
https://github.com/ikostrikov/jaxrl2. v2.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart: Noise injection for robust
imitation learning. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg (eds.), Proceedings of the
1st Annual Conference on Robot Learning, volume 78 of Proceedings of Machine Learning Research, pp.
143–156. PMLR, 13–15 Nov 2017. URL https://proceedings.mlr.press/v78/laskey17a.html.

Adam Daniel Laud. Theory and application of reward shaping in reinforcement learning. PhD thesis,
University of Illinois at Urbana-Champaign, USA, 2004. AAI3130966.

Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic rewards. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3834–3839. IEEE
Press, 2017. doi: 10.1109/IROS.2017.8206234. URL https://doi.org/10.1109/IROS.2017.8206234.

Jason Xinyu Liu, Ziyi Yang, Ifrah Idrees, Sam Liang, Benjamin Schornstein, Stefanie Tellex, and Ankit Shah.
Lang2ltl: Translating natural language commands to temporal robot task specification. In Conference on
Robbot Learning (CoRL), 2023. URL https://arxiv.org/abs/2302.11649.

Jianlan Luo, Perry Dong, Yuexiang Zhai, Yi Ma, and Sergey Levine. RLIF: Interactive imitation learning
as reinforcement learning. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=oLLZhbBSOU.

Yecheng Jason Ma, William Liang, Vaidehi Som, Vikash Kumar, Amy Zhang, Osbert Bastani, and Di-
nesh Jayaraman. Liv: Language-image representations and rewards for robotic control. arXiv preprint
arXiv:2306.00958, 2023a.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy Zhang.
Vip: Towards universal visual reward and representation via value-implicit pre-training, 2023b.

Farzan Memarian, Zhe Xu, Bo Wu, Min Wen, and Ufuk Topcu. Active task-inference-guided deep inverse
reinforcement learning. In 2020 59th IEEE Conference on Decision and Control (CDC), pp. 1932–1938,
2020. doi: 10.1109/CDC42340.2020.9304190.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement
learning. Advances in neural information processing systems, 31, 2018.

Anis Najar and Mohamed Chetouani. Reinforcement learning with human advice: A survey. Frontiers
in Robotics and AI, 8, 2021. ISSN 2296-9144. doi: 10.3389/frobt.2021.584075. URL https://www.
frontiersin.org/articles/10.3389/frobt.2021.584075.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the Sixteenth International Conference on
Machine Learning, ICML ’99, pp. 278–287, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc. ISBN 1558606122.

17

https://proceedings.neurips.cc/paper/2021/hash/531db99cb00833bcd414459069dc7387-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/531db99cb00833bcd414459069dc7387-Abstract.html
https://github.com/ikostrikov/jaxrl2
https://proceedings.mlr.press/v78/laskey17a.html
https://doi.org/10.1109/IROS.2017.8206234
https://arxiv.org/abs/2302.11649
https://openreview.net/forum?id=oLLZhbBSOU
https://www.frontiersin.org/articles/10.3389/frobt.2021.584075
https://www.frontiersin.org/articles/10.3389/frobt.2021.584075

Published in Transactions on Machine Learning Research (03/2025)

Xinlei Pan and Yilin Shen. Human-interactive subgoal supervision for efficient inverse reinforcement learning.
In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’18, pp. 1380–1387, Richland, SC, 2018. International Foundation for Autonomous Agents and
Multiagent Systems.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement learning:
A comprehensive survey. ACM Comput. Surv., 54(5), jun 2021. ISSN 0360-0300. doi: 10.1145/3453160.
URL https://doi.org/10.1145/3453160.

Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. ADaPT: As-needed decomposition and planning with language models. In Kevin Duh,
Helena Gomez, and Steven Bethard (eds.), Findings of the Association for Computational Linguistics:
NAACL 2024, pp. 4226–4252, Mexico City, Mexico, June 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-naacl.264. URL https://aclanthology.org/2024.findings-naacl.
264/.

Harish Ravichandar, Athanasios S. Polydoros, Sonia Chernova, and Aude Billard. Recent advances in robot
learning from demonstration. Annual Review of Control, Robotics, and Autonomous Systems, 3(Volume 3,
2020):297–330, 2020. ISSN 2573-5144. doi: https://doi.org/10.1146/annurev-control-100819-063206. URL
https://www.annualreviews.org/content/journals/10.1146/annurev-control-100819-063206.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudík (eds.),
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15
of Proceedings of Machine Learning Research, pp. 627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011.
PMLR. URL https://proceedings.mlr.press/v15/ross11a.html.

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end robotic rein-
forcement learning without reward engineering, 2019.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and charac-
terizing reward gaming. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 9460–9471. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
3d719fee332caa23d5038b8a90e81796-Paper-Conference.pdf.

Sumedh A Sontakke, Jesse Zhang, Sébastien M. R. Arnold, Karl Pertsch, Erdem Bıyık, Dorsa Sadigh, Chelsea
Finn, and Laurent Itti. Roboclip: one demonstration is enough to learn robot policies. In Proceedings of
the 37th International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY,
USA, 2023. Curran Associates Inc.

Henry Sowerby, Zhiyuan Zhou, and Michael L. Littman. Designing rewards for fast learning, 2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA, 2018. ISBN 0262039249.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999. ISSN 0004-
3702. doi: https://doi.org/10.1016/S0004-3702(99)00052-1. URL https://www.sciencedirect.com/
science/article/pii/S0004370299000521.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE, 2012. doi:
10.1109/IROS.2012.6386109.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, and Sheila A. McIlraith. Reward machines:
Exploiting reward function structure in reinforcement learning. J. Artif. Int. Res., 73, May 2022. ISSN
1076-9757. doi: 10.1613/jair.1.12440. URL https://doi.org/10.1613/jair.1.12440.

18

https://doi.org/10.1145/3453160
https://aclanthology.org/2024.findings-naacl.264/
https://aclanthology.org/2024.findings-naacl.264/
https://www.annualreviews.org/content/journals/10.1146/annurev-control-100819-063206
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/3d719fee332caa23d5038b8a90e81796-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/3d719fee332caa23d5038b8a90e81796-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://doi.org/10.1613/jair.1.12440

Published in Transactions on Machine Learning Research (03/2025)

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel
Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander
Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium, March 2023. URL
https://zenodo.org/record/8127025.

Marcel Torne Villasevil, Max Balsells I Pamies, Zihan Wang, Samedh Desai, Tao Chen, Pulkit Agrawal, and
Abhishek Gupta. Breadcrumbs to the goal: Supervised goal selection from human-in-the-loop feedback. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=uOEeui0rL7.

Beyazit Yalcinkaya, Niklas Lauffer, Marcell Vazquez-Chanlatte, and Sanjit Seshia. Compositional automata
embeddings for goal-conditioned reinforcement learning. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, vol-
ume 37, pp. 72933–72963. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/
paper_files/paper/2024/file/858fc542b70d3b39067f7d3b1cd77635-Paper-Conference.pdf.

Maryam Zare, Parham M. Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation learning:
Algorithms, recent developments, and challenges, 2023.

Zichen Zhang, Yunshuang Li, Osbert Bastani, Abhishek Gupta, Dinesh Jayaraman, Yecheng Jason Ma,
and Luca Weihs. Universal visual decomposer: Long-horizon manipulation made easy. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6973–6980. IEEE, 2024.

Zhigen Zhao, Shuo Cheng, Yan Ding, Ziyi Zhou, Shiqi Zhang, Danfei Xu, and Ye Zhao. A survey of
optimization-based task and motion planning: From classical to learning approaches. IEEE/ASME Trans-
actions on Mechatronics, pp. 1–27, 2024. doi: 10.1109/TMECH.2024.3452509.

Xinglin Zhou, Yifu Yuan, Shaofu Yang, and Jianye Hao. Mentor: Guiding hierarchical reinforcement learning
with human feedback and dynamic distance constraint, 2024.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush Nasiriany, and
Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot learning. In arXiv
preprint arXiv:2009.12293, 2020.

A Edge selection

The selectEdge subroutine governs how ILG-Learn allocates learning intervals while exploring the ILG. As
described in Section 4, ILG-Learn starts at the source of the ILG and iteratively extends a tree of best-known
policies to the other vertices of the ILG. The key insights that inform the design of selectEdge are:

• Training an edge policy π(u,v) can only begin once the policy πu is learned (frozen), so it makes sense
to stop investing learning intervals along an edge once a desired success probability successThresh-
old is reached. This way, future learning intervals can be allocated to downstream edges.

• Different edges of the ILG may require vastly different numbers of training episodes to acquire a
successful policy, so it makes sense to dovetail learning intervals between edges so we do not spend
too much effort on a particularly difficult edge.

• Only one feasible path needs to be found, so it makes sense to use a best-first search heuristic to
avoid exploring the entire ILG.

Our edge selection algorithm is inspired by the exploration order found in Dijkstra’s algorithm. In fact, if we
set the parameter intervalsLimit to 1, our selectEdge subroutine implements an exploration order suitable
for Dijkstra’s algorithm. When intervalsLimit is greater than 1, selectEdge incorporates dovetailed
exploration with early stopping heuristics to try to reduce the number of training episodes needed to learn
a satisfactory policy.

19

https://zenodo.org/record/8127025
https://openreview.net/forum?id=uOEeui0rL7
https://openreview.net/forum?id=uOEeui0rL7
https://proceedings.neurips.cc/paper_files/paper/2024/file/858fc542b70d3b39067f7d3b1cd77635-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/858fc542b70d3b39067f7d3b1cd77635-Paper-Conference.pdf

Published in Transactions on Machine Learning Research (03/2025)

Appendix A.1 describes the high-level structure of selectEdge that implements dovetailed exploration and
early stopping. Appendix A.2 details the heuristic scoring function that selectEdge uses to implement best-
first exploration. Appendix B provides advice for selection of relevant parameters. The choice of parameters
used for the experiments in Section 5 are detailed in Table 3.

A.1 Dovetailed exploration

To implement early stopping and dovetailed exploration, ILG-Learn keeps track of these vertex and edge
sets:

• exploredVertices. These are the vertices to which ILG-Learn has learned and solidified a path policy.

• learnedEdges. These are edges for which we have fully learned and frozen a policy. We freeze a policy
once either (1) the empirical success probability exceeds successThreshold or (2) intervalsLimit
learning intervals have been allocated to the edge.

• abandonedEdges. These are edges that we will never invest learning effort into because we have
already found a better path to get to all of their successors.

• frontierEdges. These are edges leaving the explored tree (that is, leaving exploredVertices) that are
neither fully “learned” nor “abandoned”. At each iteration, we need to choose one edge from this
set to invest a learning interval into.

All edge sets are initially empty. The logic for maintaining these sets is shown in Algorithm 2. To reduce
notational clutter, we assume that frontierEdges, and learnedEdges, abandonedEdges are global variables
that persists across calls to selectEdge. We also assume global access to reachProb (updated in line 15 of
Algorithm 1) as well as the existence of the bookkeeping functions:

• bestSuccessProb(u, v) returns the highest estimated probability found by line 13 of Algorithm 1
during any learning interval allocated to (u, v).

• intervalsElapsed(u, v) returns the number of learning intervals that have been allocated to (u, v)

Algorithm 2: selectEdge
Input:

• ILG structure (U, E, u0)
• Parameters intervalsLimit and successThreshold (introduced in Section 4)
• Scoring heuristic parameters extensionPenalty and exploitationBonus (introduced in

Appendix A.2)
• Global access to reachProb (maintained by Algorithm 1)

Output: Edge (u, v) for next learning interval, or None if learning is complete.
learnedEdges← learnedEdges ∪ {(u, v) ∈ E | intervalsElapsed(u, v) ≥ intervalsLimit};
learnedEdges← learnedEdges ∪ {(u, v) ∈ E | ∨ bestSuccessProb(u, v) > successThreshold};
abandonedEdges← abandonedEdges ∪ {(u, v) | ∀u′, u ≺ u′ → reachProbu < reachProbu′};
exploredVertices← {u0} ∪ {v ∈ U | (∃u, (u, v) ∈ learnedEdges) ∧ (∀u, (u, v) ∈ E → (u, v) ∈
learnedEdges ∪ abandonedEdges)};

frontierEdges← outgoingEdges(exploredVertices) \ learnedEdges \ abandonedEdges;
return argmax(u,v)∈frontierEdgesscore((u, v))

A.2 Score

The selectEdge subroutine (Algorithm 2) uses a heuristic score function to implement best-first explo-
ration. We design score to balance the following desiderata:

• Exploitation. Perform best-first search by extending paths that have low cost.

20

Published in Transactions on Machine Learning Research (03/2025)

• Even exploration. Dovetail exploration of multiple edges, trying to assign the same amount of
training intervals to all extensions of the “sufficiently low cost” paths.

• Anticipation. Prefer extending paths that have few edges remaining to a final vertex.

As in Appendix A.1, we will assume global access to reachProb and access to the bookkeeping function
intervalsElapsed. The score of an edge comprises three terms:

score(u, v) =exploitationIncentive(u, v)
− intervalsElapsed(u, v)
−minNumberOfEdgesToAFinalVertex(v) · edgeExtensionPenalty

We describe the components as follows:

Term 1: Exploitation. The exploitation incentive strongly prioritizes investing training effort in edges
that could be part of the highest probability extension of some path in the tree explored so far. Concretely,
let

bestExtensionProb = max
(u,v)∈frontierEdges

reachProb(v)

Now let

exploitationIncentive(u, v) =
{

exploitationBonus reachProb(u) ≥ bestExtensionProb
0 otherwise

wher exploitationBonus is some very large number.

Term 2: Even exploration. Subtracting intervalsElapsed(u, v) softens the best-first search by trying to
evenly allocate intervals to promising edges. This term will be much less in magnitude than exploitation-
Bonus, so it acts as a tie-breaker within our soft best-first search.

Term 3: Anticipation. A high choice of edgeExtensionPenalty strongly strongly prioritizes extending
paths that are close to reaching a final vertex (in terms of how many edges there are).

B Hyperparameter selection

We now provide advice for how to select the ILG-Learn-specifc hyperparameters introduced in Section 4 and
Appendix A.2. Table 3 presents our choices for each environment. For details about the hyperparameters
used for the RCE in ILG-Learn’s learnPolicy subroutine, please see Appendix D.

• illustrationCount: This should be enough goals so that the underlying example-based control
algorithm can efficiently learn a successful policy. To provide empirical insight into how to choose
a value of illustrationCount we performed multiple experiments for a subset of our environments
in which we varied the value of illustrationCount, please see Table 4. In the Section 5 we used a
value of 10 for all of our environments except for the outwardView environments, where we used 50.
We note that the choice of illustrationCount is tied to the specifics of the underlying edge tasks;
we believe that ILGs that include landmarks that admit a diverse set of success observations (e.g.
a robotic arm can successfully grasp an object with a wide variety of arm angles and grip positions)
will benefit from a relatively large number of success examples. We also note that a straightforward
extension to ILG-Learn allows the teacher to increase the number of illustrative observations if the
learner struggles to master an edge task.

• episodeLength: The fixed time horizon used when training each edge policy must be long enough
to allow the example-based control algorithm to explore the environment. The ideal value is usually
significantly more than the number of timesteps needed for an expert to complete any given edge
task.

21

Published in Transactions on Machine Learning Research (03/2025)

• intervalLength and intervalsLimit: The quantity intervalLength× intervalsLimit should be
enough training steps for example-based control to saturate the success probability of the edge
policy for any edge in the ILG. Since the number of learning episodes needed by example based
control varies depending on random seed, we recommend over-estimating this quantity. To avoid
wasting training episodes on already-good policies, we recommend choosing a relatively low value for
intervalLength: Since the choice intervalLength governs the frequency of teacher-intervention
(in the form of responses to success/failure queries), we recommend choosing intervalLength to be
large enough that there is only a modest amount of teacher interaction, yet low enough that learning
episodes are not wasted.

• successThreshold: We recommend choosing a value of successThreshold slightly lower than
the success rate of an optimal policy. Choosing a high successThreshold causes ILG-Learn to
spend a large amount of learning effort on an edge before exploring deeper in the ILG, which may
increase the success rate of the final policy at the cost of more environmental and student-teacher
interactions.

• estimationQueries: We recommend choosing a number that gives adequate confidence in the
success rate of the learned policy. In practice, we have observed that example based control often
yields policies that either succeed much more or much less than our desired successThreshold, so
relatively few estimationQueries (e.g. 30) suffice. If there are multiple feasible tasks in the ILG,
choosing a high value of estimationQueries will improve ILG-Learn’s ability to perform best-
first search. We chose not to implement a statistically-rigorous version estimateProbability since
doing so would in general require the teacher to respond to many success//failure queries and was
not necessary for good end-to-end performance in practice.

• exploitationBonus: We recommend choosing a very high value, so that score function imple-
ments a “soft” best first seach, in which the second and third terms of the score function serve
as tie-breakers. To achieve this, one can choose parameters such that exploitationBonus >
intervalsLimit + diameter(G) × edgeExtensionPenalty where diameter(G) is the diameter of
the ILG.

• edgeExtensionPenalty: We recommend choosing edgeExtensionPenalty to be a guess of how
many learning intervals will be required to train an edge along a feasible path to reach the suc-
cessThreshold. Since choosing this parameter requires considerable foresight, we recommend
choosing a relatively low value.

Table 3: ILG-Learn-specific parameter selection for the experiments shown in Section 5.

Di
ag

on
al

Ma
ze

3x
3

Di
ag

on
al

Ma
ze

5x
5

Di
ag

on
al

Ma
ze

7x
7

Di
ag

on
al

Ma
ze

7x
7-

Co
ar

se

Ma
ze

4x
4-

Fi
ne

Ma
ze

4x
4-

Co
ar

se
St

ac
kA

B
St

ac
kC

ho
ic

e-
Ou

tw
ar

dv
ie

w

St
ac

kB
A-

Ou
tw

ar
dv

ie
w

illustrationCount 10 10 10 10 10 10 10 50 50
episodeLength 400 400 400 1200 200 600 80 80 80
intervalLength 100k 100k 100k 100k 100k 100k 100k 100k 100k
intervalsLimit 100 100 100 100 100 100 100 100 100
successThreshold 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
estimationQueries 30 30 30 30 30 30 30 30 30
exploitationBonus 101 101 101 101 101 101 101 101 101
edgeExtensionPenalty 3 3 3 3 3 3 3 3 3

22

Published in Transactions on Machine Learning Research (03/2025)

C Data dependence

In order to better understand how the performance of ILG-Learn, RCE, and BC depends on the amount of
human-provided data, we performed additional experiments in which we varied the amount of illustrative
observations, goal examples, or demonstrations provided to each algorithm. We report our findings in Table 4.
For ILG-Learn, the choice of ILG-Learn-specific hyperparameters is the same as reported in Table 3 with
the exception of illustrationCount, which we manipulate.

Table 4: Final success rates (means over 5 trials). Data count denotes the number of illustrative observations
per ILG vertex, number of examples for RCE, or number of demonstrations for BC/DiffP. ILG-Learn and
RCE are trained for a maximum of 10 million environment steps; see Appendix E for experimental details
and Appendix F for learning curves. Entries are omitted where ILG-Learn achieved near-perfect success rate
with fewer illustrative observations.

ILG-Learn RCE BC (MLP) BC (DiffP)
Data count: 1 10 50 100 100 1000 1 10 100 1000
StackAB 0.00 0.975 0.752 0.863 0.050 0.392 0.00 0.005 0.059 0.28
DiagMaze3x3 1.00 1.00 0.00 0.600 0.062 0.990 0.991 0.91
DiagMaze5x5 0.991 1.00 0.00 0.200 0.004 0.826 0.989 0.68
DiagMaze7x7 0.200 0.995 0.00 0.00 0.00 0.476 0.689 0.70

D Implementation details

D.1 ILG-Learn and RCE

Our implementation is available at https://github.com/cwatson1998/ilg-learn. We implement ILG-
Learn in Python. We re-implemented RCE (following instructions of Eysenbach et al. (2021)) on top of
JaxRL’s (Kostrikov, 2022) implementation of SAC (Haarnoja et al., 2017). We use this RCE implementation
both as the example-based control subroutine in our ILG-Learn algorithm and as the RCE baseline.

RCE is an actor-critic example-based control algorithm. Rather than train an auxilliary network to provide
a loss signal to be used as in reinforcement learning (as is done in earlier example-based control algoritms
such as Fu et al. (2018)) the critic directly predicts a time-discounted probability that an observation, action
pair being considered by the learner will lead to success. Success is defined as a regression task, in which the
user-provided goal examples represent success and a pool of other transitions (in our case, the replay buffer)
represent unlabeled data that is unlikely to represent success.

Hyperparameters. We use the same SAC+RCE hyperparameters as Eysenbach et al. (2021), including
the SAC-specific hyperparameters that were inherited from Haarnoja et al. (2017), although we increased the
width of each hidden layer in the actor and critic MLPs from 128 to 256. The original RCE implementation
varied the “n-step returns” and “Q combinator” hyperparameters depending on the particular task. We
use 10-step returns and max as the “Q combinator” for all tasks, which matches the RCE authors’ choices
for their “sawyer-bin-picking” task. We note that the traditional choice of “Q-combinator” would be min,
following Fujimoto et al. (2018).

Our choice of ILG-Learn-specific parameters (detailed in Appendix B) is shown in Table 3.

Policy sequencing details. Underlying ILG-Learn’s compositional approach to long-horizon policy learn-
ing is the sequencePolicies subroutine that sequences edge policies to form a path policy. As described in
Section 4, each edge policy is executed for a fixed horizon (governed by the episodeLength parameter). To
formalize the behavior of sequencePolicies it is convenient to associate each (path or edge) policy π with
a horizon denoted horizonπ). We assume that the array horizon of such bookkeeping variables is in global
scope and define the sequencePolicies subroutine in Algorithm 3.

23

https://github.com/cwatson1998/ilg-learn

Published in Transactions on Machine Learning Research (03/2025)

Algorithm 3: sequencePolicies
Input:

• Path policy πu and edge policy π(u,v)
• Parameter episodeHorizon
• Mutable bookkeeping dict horizon

Output: Path policy to reach v
Function πv(τ):

if |τ | ≤ horizonπu
then

return πu(τ);
else

return π(u,v)(τ);
horizonπv

← horizonπ(u) + horizonπ(u,v) ;
return πv

If horizon is maintained such that horizonπ(u,v) is
episodeLength for each edge policy π(u,v) then Algo-
rithm 3 matches the textual description of Section 4.
In our implementation, we noticed that running each
edge policy for the fixed horizon resulted in non-smooth
motion, because the agent would hesitate after having
achieved each landmark (waiting for the associated edge
policy’s horizon to be fully consumed) before moving on
to the next. To reduce this “waiting time” we slightly
enriched the information provided by the teacher: every
time the learner uses querySuccess(v) at the end of an
episode to assess the success rate of an edge policy π(u,v),
if the teacher responds “Success” they also provide the
index of timestep at which the agent entered βv. Then
we update horizonπ(u,v) to be the max of these success
timestep indices, plus an addition 15 timesteps of slack

term. The results in Section 5 were collected using the above procedure, although we do not believe that
the details of our sequencePolicy heuristic is an important aspect of ILG-Learn.

Success estimation details. As described in Section 4, the estimateProbability estimates the proba-
bility that a learned edge policy π(u,v) successfully reaches βv. Since we start each rollout of π(u,v) from the
state distribution induced by executing the path policy πu, we naturally obtain an empirical estimate of the
probability that the path policy obtained by sequencing πu and π(u,v). We call attention to this because our
“Dijkstra-style” planning implemented by selectEdge only receives the costs of paths, not individual edges.
If we assume that each edge has an intrinsic fixed cost, then this is an inconsequential bookkeeping detail.
However, since π(u,v) could reach β(v) even if not started from β(u) (and moreover because our cost estimates
are empirical) it is possible for the estimated cost of a path to be less than that of one of its prefixes. Such
ill-behaved path probabilities only pose a problem for ILG-Learn if a high-cost prefix dissuades selectEdge
from exploring what would become the lowest-cost source to sink path. Such a situation is only likely to
arise if the teacher provides an ILG that contains landmarks that are both (1) hard to reach and (2) not
necessary to scaffold exploration towards subsequent landmarks.

D.2 BC (MLP) baseline

We implemented the BC baseline in Python using Jax (Bradbury et al., 2018) and Flax (Heek et al., 2024).
For each task, we pooled the (observation, next action) pairs from all the demonstrations and trained an
MLP to predict the next action given the current observation. Our MLP had 2 hidden layers (each of width
512), we used the Huber loss and a learning rate of 0.0001. For each task, we had a heldout set of 10
validation demonstrations. We stopped training when the validation loss stopped decreasing.

D.3 Diffusion Policy baseline

We use the implementation of the U-Net based Diffusion Policy as described in (Chi et al., 2023) using
PyTorch. We train the policy on 1000 expert trajectory demos for the stack and diagonal point-maze tasks.
We optimize for 100 epochs on the point maze tasks and 300 epochs for the stack task and report the mean
success rates across different seeds (3 for stack and 5 for point-maze tasks) using checkpoints that achieves
the lowest action reconstruction loss. We report the other common hyperparameters used for training in
Table 5.

D.4 HRM baseline

We baseline against the official implementation of hierarchical reinforcement learning with reward ma-
chines. Toro Icarte et al. (2022). A reward machine is a deterministic finite automaton whose alphabet
is a set of propositions over environment’s state space. In our experiments, the propositions are the names of

24

Published in Transactions on Machine Learning Research (03/2025)

parameter value
prediction horizon 8
learning rate 3e-4
weight decay 1e-4
input embed dim 256
step embed dim 256
U-Net downsample dims (256, 512, 1024)
kernel size 5
num diffusion steps 100
EMA power 0.75
batch size 128

Table 5: Diffusion Policy common training hyperparameters

the landmarks, defined formally in Appendix E. At each timestep, the current reward machine state deter-
mines which reward function is used to supply rewards to the agent. Even though the reward functions are
conditioned on the current state of the reward machine, options correspond to transitions between states.
In order to encourage an intra-option policy to reach its specified reward machine state there is a tunable
bonus hyperparamater (that we set to 1000) that is recieved by the intra-option policy for a successful tran-
sition. For our StackAB, StackChoice-OutwardView, and DiagonalMaze3x3 we define the reward machines
as shown in Figure 5.

In the StackAB environment, the reward functions rA
0 is designed to encourage reaching and grasping block

A, and rB
1 is designed to encourage completing the stack. The final state has rA

2 which gives a constant
reward of 1000. The other Stack environments’ reward machines are defined analogously, although rC

0 for
StackChoice encourages reaching either Block A or Block B.

The DiagonalMaze family of environments have reward functions that encourage reaching the next landmark
(room center). Each reward machine is defined analogously to the DiagonalMaze3x3 reward machine. The
DiagonalMaze7x7-Coarse reward machine has only three states, analogous to the three vertices of the
DiagonalMaze7x7-Coarse ILG.

We define the reward functions as follows:

rA
0 (s, a, s′) =(1− tanh (10dist(s′, BlockA)) ∗ 0.25 + 0.25[grasp(s′, BlockA)]

rB
0 (s, a, s′) =(1− tanh (10dist(s′, BlockA)) ∗ 0.25 + 0.25[grasp(s′, BlockA)]

rC
0 (s, a, s′) = max (rA

0 (s, a, s′), rB
0 (s, a, s′)

rA
1 (s, a, s′) = max ([lifted(BlockA)](1 + 0.5(1− tanh (horizontalDist(s′, BlockA)))), rA

0 (s, a, s′))
rB

2 (s, a, s′) = max ([lifted(BlockB)](1 + 0.5(1− tanh (horizontalDist(s′, BlockB)))), rA
0 (s, a, s′))

rD
0 (s, a, s′) =− dist(s′, nextRoomCenter)

where in the above definitions, dist(s′, BlockA) denotes Euclidean distance between the center of the agent’s
end effector and the center of block A. We also use the notation dist for the analogous concept in the
DiagonalMaze. Similarly, horizontalDist calculates Euclidean distance, after both points have been projected
onto the horizontal plane. All final state rewards are r(s, a, s′) = 1000. This design pattern is adopted from
the original HRM paper. The preceding rewards for the Stack family of tasks are heavily inspired by the
original reward signal from robosuite.

Internally, HRM uses DQN to select options, and DDPG as the intra-option control policy. We use the same
hyperparameters that the original authors used for their MuJoCo-based experiments.

25

Published in Transactions on Machine Learning Research (03/2025)

grasp
A

grasp
B

stack

StackChoice
reward machine

stack

StackAB
reward machine

stack

𝑟!"

DiagonalMaze3x3
reward machine

room 1

room 2
grasp

A

𝑟#"
𝑟$"𝑟%"𝑟!&𝑟%& 𝑟$&

𝑟%'
𝑟!'

𝑟$'

Figure 5: Reward machines structure for HRM baseline.

E Environment Details

Our manipulation environment is built in robosuite (Zhu et al., 2020). Our maze environment is built in
de Lazcano et al. (2023) and is a customized of the Maze2D environment originally introduced in D4RL (Fu
et al., 2020). All our experiments use Gymnasium Towers et al. (2023) and MuJoCo Todorov et al. (2012).

E.1 Stack

We adapt the “Stack” environment that is included in robosuite. This environment simulates a 7-DoF
Franka Panda robot arm. We use the provided 7-dimensional continuous action space that includes an
operational space controller with fixed impedance. We also use the provided observation space, which is
55-dimensional and comprises the robot’s joint angles, joint velocities, end effector position, end effector
quaternion, gripper position, gripper velocity, the position of each block, the quaternion of each block, the
gripper-object distance of each block, and the distance between the two blocks.

We make the following modfications to the original environment:

1. The side length of each cubical block is reduced from 0.05 meters to 0.04m. We do this so we can
include more randomness in the initial block placements.

2. The two blocks always initialize along the centerline (parallel to the x-axis in the simulation, which
is depth from the perspective of the robot) of the table with block A closer to the robot than block
B. The exact positions are determined randomly in each reset as follows: we uniformly select two x
coordinate values in the range (−0.2, 0.2). If the values are at least 0.05 meters apart, we let block
A start at the lower x value and block B start at the greater x value. Otherwise, we repeat this
process until we obtain sufficiently spaced x values.

3. For StackChoice-Outwardview we allow the blocks to be stacked in either order; for StackBA-
Outwardview we require block B to be stacked on block A.

4. For StackChoice-Outwardview and StackBA-Outwardview we implement simulated occlu-
sion, as if the observations are produced by an object detector that is mounted on the same side of
the table as the robot. To do this, we position a MuJoCo camera at the position indicated by the
pink camera icon in Figure 1. At each timestep, if no pixel belonging to either block A or block B
is present in the ground-truth object segmentation yielded by this camera we mask all components
of the observation corresponding to that cube with the value −2 (which is far from the observation
values encountered in normal operation).

Landmark definition. To simulate the teacher’s response to the querySuccess queries during training,
we defined β(grasp A) to be all states where block A is at least 0.021 meters above the surface of the table
(and similarly for β(grasp B). We defined β(stack) analogously to the success condition of the original
robosuite stacking environment: the cubes must be touching each other, the gripper cannot be touching
the block on top of the tower, and the block on top must be both above the surface of the table and aligned
horizontally with the other block.

26

Published in Transactions on Machine Learning Research (03/2025)

Examples and demonstrations. To generate the landmark examples and demonstrations for behavior
cloning, we use a handwritten scripted policy. We inject noise into this scripted policy so that it covers a
variety of grip locations and arm paths. We also tried using teleoperated demonstrations (and examples
gathered therefrom) for the StackAB task and did not find significantly different performance so we elected
to use scripted policies to generate all data. While gathering demonstrations, we injected a small amount
(uniform with magnitude 0.1) of noise into the simulated actions (but not the action labels in the stored
demonstration), similar to DART (Laskey et al., 2017). We 10 held-out validation demonstrations to evaluate
loss during BC training.

The example observations for the “grasp” landmarks are taken after the arm has grasped and lifted the block
by ∼0.02 meters. We found that slightly lifting the block greatly improves RCE’s ability to learn a successful
policy, even in the absence of occlusion. We believe this is because grasps that do not lift the block are very
close in observation space to “near grasps” that do not make firm contact with the block, yielding a difficult
discrimination task for the RCE critic.

E.2 Maze

We customized Gymnasium Robotics’ Maze2D environment; our layouts are shown in Figure 3. The agent
is a force-actuated point mass with a 2-dimensional continuous action space. The observation is continuous
and 4-dimensional, comprising the agent’s current position and velocity, but not the goal location or the
location of any of the maze’s walls.

Landmark definition. Each landmark is the center of a room, as illustrated in Figure 3. Each square
room has a side-length of 3.6; the landmark region is a circle of diameter 1 centered within the room. Only
the agent’s position (not velocity) determines membership in a landmark.

Examples and demonstrations. To provide illustrative observations, we include one illustrative obser-
vation from the center of the landmark, with the remaining illustrative observations drawn uniformly at
random from positions within the landmark. All illustrative observations contain 0 velocity.

The demonstrations are gathered with handwritten scripted policies that include a small amount of noise
to better cover the state space. For each task, all demonstrations traverse the same sequence of rooms
to reach the final goal. For each environment, we include 10 demonstrations and an additional 5 held-out
demonstrations for evaluating loss during training.

F Learning curves

We report the overall success rate of the entire task; for ILG-Learn this means that the learner must explore
a source-to-sink path before achieving nonzero success rate. Note that some trials of ILG-Learn stop before
reaching 10m environment steps, because ILG-Learn allows early stopping. In this case, we extend the
success rate of the latest training checkpoint for the rest of the 10m steps (even though no further training
occurs). We mark this extension with dashed line.

27

Published in Transactions on Machine Learning Research (03/2025)

Figure 6: Detailed learning curves for ILG-Learn. Each line represents one of 5 random seeds.

Figure 7: Learning curves showing success rate over total environment steps for ILG-Learn, RCE, and HRM
baseline experiments from Table 1. The light lines show individual random seeds, the dark lines show the
mean of 5 random seeds.

Figure 8: Learning curves showing Huber loss during offline training for the BC (MLP) experiments of
Section 5. Each line represents one of 5 random seeds. We chose a number of training steps that was
sufficient for validation loss to stop decreasing. For StackAB we found this to occur at about 6000 steps, for
the other environments we found this to occur at about 10000 steps.

28

	Introduction
	Related work
	Illustrated landmark graphs
	Preliminaries
	ILG and satisfaction
	Interaction and illustration

	Learning algorithm
	Experiments
	Landmark density and learning objective
	Multi-path specifications

	Discussion
	Edge selection
	Dovetailed exploration
	Score

	Hyperparameter selection
	Data dependence
	Implementation details
	ILG-Learn and RCE
	BC (MLP) baseline
	Diffusion Policy baseline
	HRM baseline

	Environment Details
	Stack
	Maze

	Learning curves

