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Abstract
Unsupervised domain adaptation (UDA) for time
series data remains a critical challenge in deep
learning, with traditional pseudo-labeling strate-
gies failing to capture temporal patterns and
channel-wise shifts between domains, producing
sub-optimal pseudo labels. As such, we intro-
duce TransPL, a novel approach that addresses
these limitations by modeling the joint distri-
bution P(X, y) of the source domain through
code transition matrices, where the codes are de-
rived from vector quantization (VQ) of time se-
ries patches. Our method constructs class- and
channel-wise code transition matrices from the
source domain and employs Bayes’ rule for tar-
get domain adaptation, generating pseudo-labels
based on channel-wise weighted class-conditional
likelihoods. TransPL offers three key advan-
tages: explicit modeling of temporal transitions
and channel-wise shifts between different do-
mains, versatility towards different UDA sce-
narios (e.g. weakly-supervised UDA), and ex-
plainable pseudo-label generation. We validate
TransPL’s effectiveness through extensive analy-
sis on four time series UDA benchmarks and con-
firm that it consistently outperforms state-of-the-
art pseudo-labeling methods by a strong margin
(6.1% accuracy improvement, 4.9% F1 improve-
ment), while providing interpretable insights into
the domain adaptation process through its learned
code transition matrices.

1. Introduction
Time series often exhibit strong variability across different
domains (e.g. users, devices) due to both dynamic tempo-
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ral transitions and inherent sensor characteristics. As such,
a model trained on one specific domain (i.e. source) may
not generalize to previously unseen domains (i.e. target).
For instance, in human activity recognition using wearable
devices, the accelerometer’s gravity component may re-
main stable across users but the gyroscope readings can
shift dramatically when users wear devices with varying
tightness (Parkka et al., 2007). Therefore, characterizing
the temporal transitions within time series and incorpo-
rating selective shift in sensors (channels) for time se-
ries domain adaptation potentially enhances both the model
adaptation process and the transparency of the black-box
methodology, as we understand “what” needs to be adapted.

In this work, we propose TransPL, a novel unsupervised
domain adaptation (UDA) pseudo-labeling strategy for time
series classification. TransPL models the temporal transi-
tions via vector quantized (VQ) codebooks (Van Den Oord
et al., 2017) and applies a selective channel adaptation strat-
egy by quantifying the alignment between the channel code
transition matrices of the source and target domains. In
the UDA setup, the target model has access to both the
labeled source and the unlabeled target domain training sets.
TransPL models the jointP(X, y)of the labeled source do-
main through the construction of code transition matrices,
where the transition matrices are used for pseudo-labeling
the unlabeled target’s training set using Bayes’ rule. Previ-
ous pseudo-labeling strategies (He et al., 2023b) are mostly
derived from image domains (Lee et al., 2013; Liu et al.,
2023b), where they operate as black boxes that fail to ex-
plicitly model the temporal dynamics and selective channel
shifts inherent to time series. Instead, they rely on the
source domain’s classifier or the clustering of the target
domain, resulting in sub-par model performance and black-
box pseudo-labels. In light of this, TransPL provides the
following contributions:1

1. We formulate unsupervised domain adaptation (UDA)
for time series as learning discrete transitions between
vector quantized (VQ) codes that characterize tempo-
ral dynamics based on our novel coarse and fine VQ
structure. The learned codes are used to construct class-

1https://github.com/eai-lab/TransPL
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and channel-wise transition matrices.
2. Using Bayes’ rule, we calculate the class posteriors in

a channel-wise manner, where the posteriors are calcu-
lated from the class-conditional likelihoods and a prior.
This widens TransPL’s applicability to various UDA
setups, including weakly supervised scenarios, where
the label distribution (i.e. prior) is known. Further-
more, we quantify channel alignment scores using the
optimal transport (Flamary et al., 2021), allowing us to
weight channel-wise confidence of the class posteriors.

3. We demonstrate that TransPL outperforms existing
pseudo-labeling strategies, resulting in enhanced UDA
performance across time series benchmarks, as well
being interpretable, providing transparent explanations
for the generated pseudo-labels.

2. Backgrounds and Related Works
2.1. Pseudo Labeling in UDA

Pseudo labeling constructs synthetic class labels (i.e. pseudo
labels) for unlabeled target domain samples in unsupervised
domain adaptation (UDA), where the labels serve as a su-
pervision signal for training the model on target domain
data. Existing pseudo labeling approaches can be classi-
fied into several sub-types. Confidence-based methods such
as Softmax (Lee et al., 2013) utilize prediction probabili-
ties from source-trained classifiers; ATT (Saito et al., 2017)
uses multiple classifiers to obtain pseudo labels through
prediction agreement. Prototype-based methods like nearest
class prototype (NCP) (Wang & Breckon, 2020) leverage
learned source class prototype representations. Another
category includes clustering-based techniques that rely on
the latent representation of unlabeled target domains (Wang
& Breckon, 2020). These methods have been further en-
hanced through hybrid approaches that combine clustering
with confidence-based filtering to identify and remove un-
reliable pseudo labels, as demonstrated in SHOT (Liang
et al., 2020) and T2PL (Liu et al., 2023a). However, these
methodologies have mostly been developed for static data
like images, and their application to time series (He et al.,
2023b) is suboptimal as they fail to capture two critical as-
pects: the temporal dynamics inherent in sequential data
and the multi-channel characteristics of time series. Unlike
images, time series exhibit strong temporal dependencies
and channel-wise shifts that require explicit modeling for ef-
fective domain adaptation. Our TransPL bridges this gap for
the first time by explicitly modeling both the temporal tran-
sitions and channel-wise shifts via vector quantized (VQ)
codebooks and transition matrices.

2.2. Unsupervised Domain Adaptation in Time Series

Due to the lack of semantics in time series, it is often known
that labeling time series is costly compared to images and

text (Kim et al., 2024). As such, the UDA setup is partic-
ularly important for time series, where obtaining labeled
data from different domains (e.g. users) is expensive. Co-
DATS (Wilson et al., 2020) is an extension of DANN (Ganin
et al., 2016), a domain adversarial approach that aligns
source and target through adversarial training. Notably, Co-
DATS introduced the concept of weak supervision (WS) in
time series through target label distributions, which is espe-
cially relevant in practical scenarios such as activity recog-
nition where users can provide self-reported estimates of
time spent on different activities. Here, the WS in CoDATS
is provided through an ad-hoc minimization of Kullback-
Leibler (KL) divergence between the expectation of the
target prediction distribution and the weakly-supervised la-
bel distribution. In contrast, TransPL can integrate WS
directly into the pseudo label formulation through Bayes’
rule, providing a mathematically principled approach to
incorporating prior knowledge of target label distributions.

More recent approaches have explored various aspects of
time series adaptation. SASA (Cai et al., 2021) constructs
and aligns sparse associative structures between domains
using attention maps. RAINCOAT (He et al., 2023a) lever-
ages both time and frequency features for domain alignment,
arguing that frequency features exhibit stronger domain in-
variance. CauDiTS (Sun et al., 2024) approaches the prob-
lem through causality, disentangling causal and non-causal
patterns in time series, where causal patterns maintain do-
main invariance. However, none of these methods explicitly
model temporal state transitions or channel-wise shifts, nor
do they provide an explainable outcome of the adaptation
process, which are key contributions of TransPL.

After our submission, we discovered SSSS-TSA (Ahad
et al., 2025) addresses channel-level variations using self-
attention mechanisms to select relevant channels for align-
ment. While we share similar motivations, SSSS-TSA dif-
fers from ours by employing self-attention for channel selec-
tion and implementing separable channel-level encoders and
classifiers, where there is a clear methodological distinction
in how channels are selectively aligned.

2.3. Time Series Discretization

Methods like Symbolic approXimation (SAX) (Lin et al.,
2003) transform continuous time series into symbolic se-
quences by discretizing amplitude values into a finite al-
phabet. However, the transformation typically relies on
predefined quantization schemes that may not capture data-
specific patterns. VQVAE (Vector Quantized Variational
Auto Encoder) (Van Den Oord et al., 2017) is a generative
model that learns discrete representations (i.e. codes) of
continuous data through a codebook-based quantization ap-
proach. VQVAE learns the discretization step directly from
data, allowing for more adaptive and meaningful representa-
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tions of temporal patterns. In time series, VQVAE has been
used for generation (Lee et al., 2023), self-supervised learn-
ing (Gui et al., 2024), and for foundation models (Talukder
et al., 2024). Here, TransPL is the first to leverage VQVAE
for UDA in time series and to provide explainable insights
through the use of code transition matrices.

3. Overview
In this section, we formalize the notations, and provide an
overview of TransPL with an illustrative figure in Figure 1.

Notations. Formally, we define the labeled source domain
as S = {(X, y)|X ∼ PS

X , y ∼ PS
Y }, where PX and PY

are the instance and label distributions. Let X ∈ RD×T

be a time series instance, where D and T denote the num-
ber of channels (sensors) and sequence length, respectively.
We employ the superscript d=1, ..., D to refer to each in-
dividual channel Xd. The unlabeled target domain T =
{X|X ∼ PT

X}, is accessible during model training. Follow-
ing the covariate shift assumption (Zhang et al., 2013), we
assume P(y|X)S =P(y|X)T while PS

X ̸=PT
X . Here, the

label spaces PS
Y and PT

Y are identical, with y∈{1, ...,K},
and K denoting the total number of classes.

Overview. We first segment the time series into non-
overlapping patches (i.e. tokens) of length m, where we ob-
tain N=

⌊
T
m

⌋
number of patches for each channel. As such,

we can reshape the time series instance X ∈ RD×T into
Xre ∈RD×N×m, and encode each patches into latent vec-
tors using a patch encoder Eθ (i.e. Transformer). Patchifying
time series enables each temporal segment to be mapped to
discrete vector quantized (VQ) codes, which are later used
for the construction of coarse code transition matrices, al-
lowing us to represent temporal transitions and channel-wise
alignment explicitly. Section 4 details the mapping of latent
patches to discrete VQ codes and their utilization in con-
structing three different types of transition matrices (TM):
the class-wise TM from the source domain, and channel-
wise TM from both source and target domains. Section 5
describes how the class-wise TM is used to construct class-
conditional likelihoods for the unlabeled target sequence,
while the channel-wise TMs are used for calculating chan-
nel alignment scores using optimal transport (Flamary et al.,
2021). These likelihoods and channel-wise alignment guide
the generation of pseudo labels for the unlabeled target do-
main, where the model is fine-tuned using the labeled source
and pseudo-labeled target data for domain adaptation.

4. Source Training
The objective of source training is to model the
joint P(X, y)S from the source by constructing meaningful
vector quantized (VQ) code sequences from the labeled
source data. Directly modeling the joint distribution from

raw time series data is impractical due to its high dimen-
sionality and continuous nature, which makes density esti-
mation in the raw input space challenging. Therefore, we
use a patch encoder Eθ (i.e. Transformer) as the backbone
to encode patches Xre∈RD×N×m into a latent representa-
tion Z∈RD×N×ddim , where ddim is the size of the latent. To
simplify the notation in the rest of this paper, we will focus
on a single channel d where the latent patch sequence is
given as Z[d,:,:]= [z1,. . . ,zN ]. We then employ VQ to map
the patches into discrete codes, reducing the complexity
while preserving temporal dynamics. This discretization
enables modeling the joint distribution through tractable
transition matrices from VQ codes. Here, the question is
how to guide the VQ codes to capture generalized temporal
patterns while maintaining reconstruction ability without
being too fine-grained for tractable transition modeling.

4.1. Coarse and Fine Codebook Training

To address this, we adopt a residual codebook learning strat-
egy with two distinct codebooks: a coarse codebook Cc=
{ec}nc

c=1 with a limited number of codes nc to capture pri-
mary temporal patterns, and a fine codebook Cf ={ef}

nf

f=1

with a larger capacity (nc≪nf ) to capture residual details,
where ec, ef ∈Rddim . A codebook is a finite set of learnable
vectors that serve as reference points for quantizing con-
tinuous latent representations into discrete codes through
euclidean distance assignments. The quantization process
for a single patch token z∈Rddim follows:

c̃=argminc ∥ℓ2(z)−ℓ2(ec)∥22; where ec∈Cc
f̃=argminf ∥ℓ2(z)−ℓ2(ec̃)−ℓ2(ef )∥22; where ef ∈Cf

where z is first mapped to a coarse code and the residual
ℓ2(z)−ℓ2(ec) is quantized with a fine code. c̃ and f̃ de-
note the selected coarse and fine codebook indices, respec-
tively, and ℓ2 is the L2 normalization which converts the Eu-
clidean distance into cosine similarity assignment (Yu et al.,
2021). After quantization, we perform regular VQVAE (Van
Den Oord et al., 2017) training, where we optimize the VQ
loss LVQ=Lcode+Lrec. The Lcode optimizes the codebook
and Lrec is used with a decoder Dϕ (i.e. transformer) to
reconstruct the original time series X.

Lcode = ∥ sg[z]− ec∥22 + β∥ sg[ec]− z∥22
+ ∥ sg[z− ec]− ef∥22 + β∥ sg[ef ]−(z− ec)∥22

Lrec = ∥X−Dϕ(ec + ef )∥22

β is a commitment term which we set to 0.25 and sg is a
stop gradient operation. We also train a classifier head using
the [CLS]∈ Rddim token that has been encoded using Eθ,
optimizing the cross-entropy loss Lce as the classification
objective. The final loss function for source training is

Lsrc= Lce+LVQ. (1)
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Figure 1: Overall scheme of TransPL. (A) Source Training: We first train the whole model architecture, i.e., encoder, decoder, two VQ
codebooks (coarse and fine codebook), and classifier, using the labeled source domain data. A [CLS] token is appended to the input
patches and is used as the input to the classifier. (B) Coarse Code Transition Matrices (TM): The trained encoder and coarse codebook
infer coarse codes from both target (unlabeled) and source (labeled) domains. These codes serve as states for constructing class-wise
TM (from source) and channel-wise TM (from both domains). (C) Pseudo Label Construction: For unlabeled target data, we compute
class-conditional likelihoods per channel using class-wise TM to obtain channel-wise class labels. These are weighted by the similarity
between source and target channel-wise TMs, then averaged to generate final pseudo labels.

Design method. The hierarchical structure of mapping to
limited coarse codes followed by residual fine codes draws
inspiration from classical time series additive decomposi-
tion methods (Brockwell & Davis, 2002), where a time
series can be decomposed into trend, seasonal, and residual.
For simplicity, we adopt a two-level representation where
the coarse encodes the short-term trend of the patches and
the fine maps the residual details. The coarse code can be
thought of as capturing the essential time dynamics and is
used for coarse code transition matrices, while the fine code
is solely used for stable VQVAE training. To validate the
roles of the coarse and fine codes, we analyze their per-
mutation entropy (PE), a measure of complexity (Bandt &
Pompe, 2002). Figure 2 shows that the reconstructed coarse
code has lower PE compared to fine codes in various time
series tasks, aligning with our expectation that the coarse
code captures the global trends, while the fine code encodes
the residual details. Table 1 compares different codebook
size combinations, showing that our design method main-
tains strong reconstruction performance while having zero
dead codes (i.e. codes that are not being used), enabling
tractable computation for transition matrices.

Figure 2: A. Average PE: The average permutation entropy (PE)
score for the reconstructed coarse and fine VQ codes. PE is a
measure of temporal complexity (Bandt & Pompe, 2002), where
a lower PE indicates a simpler pattern. Across all time series
benchmarks (i.e. UCIHAR, HHAR, WISDM), the coarse code
exhibits lower PE compared to the fine code. B. Visualization: The
reconstructed coarse and fine VQ codes shows that the coarse code
has simplistic patterns (e.g. upward, downward trends), while the
fine code has more complex patterns. Full results in Appendix B.

4.2. Coarse Code Transition Matrices (TMs)

After source training, we freeze all learnable parameters
and infer the coarse codes from the training sets of both
the source and target domains. We now view each coarse
code sequence as a discrete Markov chain, where the codes
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Table 1: Comparison of single VQVAE (top three rows) versus our
residual coarse-fine VQ codebook configurations (bottom rows)
on HHAR task. Results are averages of 10 source-target pairs.

Coarse Fine MSE ↓ PL Acc ↑ PL MF1 ↑ Dead Code (%) ↓

8 - 0.214 65.4 63.8 0.1
64 - 0.115 58.8 55.7 22.5
128 - 0.106 59.4 54.9 66.8

64 64 0.077 58.6 54.7 20.9
64 8 0.093 59.1 54.9 22.2
8 8 0.126 65.6 63.6 0.0

8 64 0.090 68.4 66.9 0.0

represent the states of the chain. Let st denote the state at
time step t=[1, . . . , N ], and Cc={ec}nc

c=1 be the set of nc

possible coarse codes (states). The transition probabilities
between states are estimated based on the observed code
sequences in the training data, under the assumption that the
probability of transitioning to a particular state depends only
on the current state (i.e. 1-step Markov property). Formally,
the transition probability from state i to state j is given by:

p(st+1=ej |st=ei) =
count(ei, ej)

count(ei)
(2)

where count(ei, ej) is the number of occurrences of the
transition from code ei to ej in the training sequences, and
count(ei) is the total number of occurrences of code ei.

Using the inferred coarse codes, we construct three sets of
coarse code transition matrices (TM): class-wise TM from
the source domain PS

cl, and channel-wise PS
ch and PT

ch

from the source and target domains, respectively. Note that
we can only construct the class-wise TM for the source, as
we do not have access to the label information of the target.

Class-Wise TM (Source). Based on the covariate shift
assumption P(y|X)S =P(y|X)T , the temporal sequences
from the same class should have similar coarse code tran-
sition patterns between source and target, while sequences
from different classes should have distinct transition pat-
terns. As such, from the labeled source training data, we
collect the coarse code sequences and construct the TM for
each class and channel, leading to PS

cl ∈ RK×D×nc×nc ,
where K is the number of classes, D is number of chan-
nels, and nc is the number of coarse codes. Each class-wise
TM PS

cl,k, where k∈{1, . . . ,K}, is used to calculate the
channel-wise class-conditional likelihood p(Xd|y= k) in
Bayes’ theorem for constructing pseudo-labels in the tar-
get domain. Calculating the class-conditional likelihood is
similar to how we perform the maximum likelihood esti-
mation in Hidden Markov Models (Bishop & Nasrabadi,
2006). This likelihood measures the probability of observ-
ing a given coarse code sequence from channel d of X
conditioned on the class label y=k, based on the transition
patterns observed from the source domain.

Channel-Wise TM (Source & Target). Since PS
X ̸=PT

X ,
the marginal of the input data differs between the source

and target. As such, we construct PS
ch, PT

ch ∈RD×nc×nc

for each channel d= {1, . . . , D} by constructing the TM
in a channel-wise manner. Unlike the class-wise TM PS

cl,
the PS

ch and PT
ch are constructed without considering the

class labels. The channel-wise TM captures the transition
patterns specific to each channel in both domains, later used
for channel-wise alignment calculation in Section 5.

5. Target Adaptation
5.1. Pseudo Labeling
Strategy. We propose a pseudo-labeling approach that lever-
ages transition matrices (TM) for domain adaptation. Given
an unlabeled time series instance X from the target, we
construct a pseudo label vector ŷ=[ŷ1, . . . , ŷk]

⊤, where ŷk
is the logits for class k and is calculated by:

ŷk =
1

D

D∑
d=1

wd
p(Xd|y=k) p(k)∑K
c=1 p(X

d|y=c) p(c)
(3)

The pseudo label can be seen as a weighted aggregation of
channel-wise class posteriors, where the posterior is formu-
lated using Bayes’ theorem (Bishop & Nasrabadi, 2006).
The p(Xd|y= k) is the class conditional likelihood of ob-
serving the coarse code sequence in channel d given the
class-wise TM PS

cl,k and p(k) is the prior label distribution
of label k in the target domain. The channel-wise class
posteriors are weighted by the channel alignment score wd

for all channels d=[1, . . . , D]. Intuitively, class posteriors
from channels that are shifted less are weighted more.

Channel Alignment via Optimal Transport. When a chan-
nel shift occurs between the source and target domains, the
change is expected to manifest in the coarse code transition
patterns, which can be captured by the channel-wise TMs.
For notational simplicity, let pS

(i,:),p
T
(i,:) ∈ Rnc represent

the transition probability vectors from code i to all other
codes j=[1, . . . , nc] in channel d of the source and target
domains, respectively, with

∑nc

j=1 p
S
(i,j)=

∑nc

j=1 p
T
(i,j)=1.

In practice, we add a small constant ϵ to each element and re-
normalize the rows to handle numerical instabilities. Here,
simply measuring the difference between the two vectors
based on measures such as the Euclidean distance does not
take into account the code-wise semantics. For instance,
coarse codes A and B might capture similar patterns. As
such, the transitions A)A and A)B should be considered se-
mantically similar, even though they correspond to different
indices in the transition probability vectors.

To address this, we use optimal transport (Peyré et al., 2019)
to measure the shift between the source and target transi-
tion probabilities. Optimal transport finds a transportation
plan γ∗

i ∈ Rnc×nc
+ that minimizes the cost of transport-

ing pS
(i,:) into pT

(i,:), where the cost is defined by a cost
matrix M∈Rnc×nc

+ that encodes the semantic distance be-
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tween the coarse codes. Formally, the optimal transport
problem for code i is defined as:

γ∗
i = argmin

γi∈Rnc×nc
+

⟨γi,M⟩ s.t. γi1 = pS
(i,:), γ

⊤
i 1 = pT

(i,:)

(4)
where ⟨·, ·⟩ denotes the Frobenius dot product, and 1 is an
all-ones vector. The constraints ensure that the marginal
distributions of the transportation plan match the source and
target transition probabilities. The cost matrix M(i,j) is the
cosine distance between the coarse codes:

M(i,j) = 1− e⊤i ·ej/∥ei∥∥ej∥. (5)

The intuition behind the cost matrix is that the cost is low
when the transition happens between similar codes. This
aligns with the idea that transitioning between semantically
similar codes should be less costly than transitioning be-
tween dissimilar codes. Once the transportation plan γ∗

i is
obtained, we can compute the channel alignment score wd:

wd= exp

−

(
1

nc

nc∑
i=1

⟨γ∗
i ,M⟩

)2

/ σ2

 (6)

where ⟨γ∗
i ,M⟩ is the Earth mover’s distance (Pele & Wer-

man, 2009) between the source and target probability vec-
tors. The exp(·) is the RBF kernel with σ as the bandwidth
hyperparameter, effectively converting the distance to an
alignment score. The channel alignment score has an intu-
itive meaning: place higher weights for channels that have
shifted less, while placing smaller weights for channels that
have undergone strong domain shift. This weighting scheme
prioritizes class labels from more reliable channels.

Class Conditional Likelihood The p(Xd|y = k) is the
class conditional likelihood of observing coarse code se-
quence of Xd given class-wise TM for class k (Section 4.2).
Assuming a first-order Markov property, we calculate the
likelihood of the sequence as the product of the individual
transition probabilities

∏N−1
t=1 p(st+1|st, y = k). Here, st

and st+1 are the coarse codes at steps t and t+1 in the
sequence Xd. In practice, to ensure numerical stability, we
compute the log-likelihood instead:

log p(Xd|y=k) =
1

N

N−1∑
t=1

log p(st+1|st, y=k) (7)

Incorporating Prior. In UDA, the model does not have
access to the label of the target distribution. As such, we
set p(k), the prior label distribution of class k to a uniform
distribution. However, the distribution of the label might be
accessible as a form of weak supervision (e.g. self-report on
the proportion of time a subject has spent on each exercise in
HAR) and has been known as domain adaptation with weak
supervision (Wilson et al., 2020). Following this, we can
naturally incorporate the label distribution as prior p(k) in

Bayes’ theorem when such information is given. Following
the log computation in class conditional likelihood, the log
prior is used: log p(k)/τ where τ is a temperature hyperpa-
rameter that modulates the strength of the prior. Searching
for an appropriate τ was important in our analysis, as too
strong τ leads to degraded model performance by forcing
the model to predict the dominant class.

Putting it all together. We compute the pseudo label for the
target domain instance by: (1) computing the channel-wise
class posteriors based on the likelihoods and label priors,
and (2) weighting the channel-wise class posteriors based
on the channel alignment scores that capture sensor shifts.

5.2. Pseudo Label Training With Target Domain

After constructing the pseudo label vector ŷ for the target
domain’s training set, we use the argmaxk ŷ as the label.
For each mini-batch during training, we select the top rtop
percent of samples based on their confidence scores, defined
as maxk ŷk, to form a reliable subset for model updates. We
fine-tune all model parameters from the source model (i.e.
encoder, decoder, classifier, and codebooks) and optimize
the following objective similar to Lsrc in Equation (1):

Ltrg= λ1Lce+λ2LVQ. (8)

The λ1 and λ2 are the weighting coefficients, which can be
replaced with learnable parameters adopted from multi-task
learning (Kendall et al., 2018) to avoid extensive search.

6. Experiments
We introduce the datasets, experiment setups, and compari-
son baselines in our work. The details are in Appendix C.

Datasets. We consider four time series datasets: UCI-
HAR (Anguita et al., 2013), WISDM (Kwapisz et al., 2011),
HHAR (Stisen et al., 2015), and PTB (Bousseljot et al.,
1995). The first three tasks are human activity recognition
tasks where we set each user as a single domain and select
10 pairs of source and target domains. The source-target
pairs are exactly the same as the benchmark suite performed
by AdaTime (Ragab et al., 2023). PTB is an electrocardio-
gram (ECG) dataset, where we select each age group as
domains and assess the adaptation performance between
four different pairs of different age groups.

Experiments. We used the labeled source and unlabeled
target’s training set for training, and the labeled source do-
main’s test set as the validation set. We evaluated the per-
formance of the adapted model on the target domain’s test
set (source risk setup (Ragab et al., 2023)). We utilized the
same patch encoder from the works of (Gui et al., 2024) and
re-implemented all baselines using the same encoder. We
report the average accuracy and macro-F1 score (MF1) over
the different domains, with full results in Appendix D.
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Table 2: Adaptation Performance in Target. Mean accu-
racy (Acc) and macro F1 (MF1) over 10 pairs. Best in bold,
second best underlined. Full results in Appendix D.

Dataset UCIHAR WISDM HHAR PTB
Acc MF1 Acc MF1 Acc MF1 Acc MF1

No Adapt 57.0 53.6 59.8 49.1 55.7 52.0 50.5 56.9
DeepCoral 62.0 57.6 61.9 52.0 57.6 54.9 57.4 67.8
MMDA 60.8 54.0 60.1 52.0 58.7 55.6 60.0 70.1
CoDATS 62.7 58.5 63.7 48.3 61.4 59.4 56.1 67.6
SASA 57.2 51.4 60.9 45.6 60.3 56.5 62.4 73.8
RAINCOAT 58.6 61.1 47.3 63.0 58.6 61.1 59.8 41.2
SoftMax 62.4 57.4 61.8 52.7 62.5 59.4 62.3 70.7
NCP 59.4 53.9 56.7 50.0 51.5 45.6 60.6 67.7
SP 62.6 59.2 51.4 45.8 50.8 47.4 60.6 67.2
ATT 56.2 46.1 58.7 47.5 59.2 51.8 55.7 59.8
SHOT 67.8 64.3 62.2 54.6 64.8 63.2 61.6 66.9
T2PL 63.8 60.6 57.3 53.3 64.1 62.8 59.0 67.0

TransPL 69.0 64.9 64.0 56.2 68.4 65.3 67.2 74.0

Baselines. We compared TransPL with several DA methods
such as DeepCoral (Sun & Saenko, 2016), MMDA (Rahman
et al., 2020), CoDATS (Wilson et al., 2020), SASA (Cai
et al., 2021), RAINCOAT (He et al., 2023a), and pseudo
labeling strategies such as Softmax (Lee et al., 2013),
NCP (Wang & Breckon, 2020), SP (Wang & Breckon, 2020),
ATT (Saito et al., 2017), SHOT (Liang et al., 2020), and
T2PL (Liu et al., 2023a).

Implementation. We selected the number of coarse and
fine codes to nc=8, nf =64 for all tasks. The patch length
was set to m = 15 for PTB, and the rest to m = 8. The
detailed configurations and search ranges for TransPL and
baselines are provided in Appendix E.

7. Results
7.1. Performance on UDA

In Table 2, we report the mean accuracy and mean macro
F1 (MF1) of the target domain’s test set across all baselines
and datasets, with the full results in Appendix D. Following
the evaluation protocol of AdaTime (Ragab et al., 2023),
we maintain strict experimental consistency by utilizing
identical source-target pairs (10 pairs for HAR tasks, four
pairs for PTB) without any selective sampling. TransPL
demonstrates the best adaptation performance across all
four datasets, achieving large improvements over the non-
adapted baseline with average gains of 11.4% in accuracy
and 12.2% in MF1. The performance gain was obtained
by explicitly modeling the temporal transitions and incor-
porating channel-wise shifts. Notably, when compared to
the strongest baseline SHOT, TransPL maintains a consis-
tent advantage of an average 3.0% in accuracy and 2.9%
in MF1. These results are significant as they are achieved
using a uniform label prior distribution; as demonstrated
in Section 7.3, incorporating the true class distribution prior
can lead to more substantial performance gains.

7.2. Accuracy of Pseudo Labels

We report the accuracy of the constructed pseudo label of
TransPL in Table 3 over the unlabeled target domain’s train-
ing set, alongside other pseudo labeling methods. In prac-
tice, the pseudo label’s performance is not used or known
during model training as we do not have access to the true
labels of the target domain. However, this analysis provides
valuable insights into the quality of our pseudo labels and
their contribution to the overall adaptation performance. We
first demonstrate that TransPL is the best pseudo labeling
method compared to existing pseudo label strategies such
as SoftMax, NCP, SP, ATT, SHOT, and T2PL. The average
performance gains are 6.1% and 4.9% compared to the best
results of all baselines. In addition, using the true label
distribution for the prior p(k) as a weak supervision (WS)
shows that the gains widen to 10.7% and 5.2% for accuracy
and MF1, respectively. Also, we note that using WS leads to
enhanced pseudo labeling performance in seven out of eight
cases for TransPL, showcasing that our method effectively
leverages prior knowledge when available while maintaining
robust performance even without such information.

Table 3: Pseudo-labeling accuracy in target training. Weak
supervision (WS) denotes the use of prior label information.

Dataset UCIHAR WISDM HHAR PTB
Acc MF1 Acc MF1 Acc MF1 Acc MF1

SoftMax 63.8 59.6 60.9 51.9 60.3 57.2 68.2 78.7
NCP 57.9 54.0 52.2 45.8 47.3 42.2 62.7 71.6
SP 57.4 54.5 49.9 46.2 48.0 46.6 59.8 68.5
ATT 55.7 45.7 58.8 46.5 57.8 50.4 58.9 64.0
SHOT 66.1 64.3 57.7 53.3 62.2 61.2 65.5 75.1
T2PL 62.9 60.8 56.3 53.5 61.3 60.7 65.5 75.1

1D-CNN 65.8 62.5 50.2 39.8 51.5 47.3 68.1 48.2
LSTM 62.2 58.6 42.3 29.1 46.8 42.8 64.4 46.9
GRU 61.3 56.5 43.8 33.3 48.9 44.6 65.4 47.6

TransPL 71.0 67.8 61.8 56.1 68.4 66.9 80.4 86.7
TransPL (+WS) 74.2 68.7 69.3 53.0 69.0 67.4 87.7 89.3

Use of Transition Matrix. TransPL is a novel pseudo la-
beling approach, where the joint distribution P(X, y)S of
the source is modeled through the coarse code transition
matrices (TM). The use of TM to model the joint distribu-
tion of time series is beneficial for several reasons. First, the
use of TM aggregates transition patterns across sequences,
providing robustness against temporal variations and noise
common in time series data. Second, TM enables the ex-
plicit modeling of class-conditional patterns and channel-
wise shifts that are unique characteristics in time series
adaptation. To demonstrate, we compared our generative
approach to the direct modeling of the coarse codes using
discriminative approaches using models such as 1D-CNN,
LSTM (Hochreiter, 1997), and GRU (Cho et al., 2014). Uti-
lizing the same data as in TransPL, these sequential models
show significantly sub-optimal pseudo labeling performance
as in Table 3, failing to capture domain-invariant temporal
dynamics present in the source domain.
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7.3. Weakly Supervised UDA

We compared TransPL with CoDATS (Wilson et al., 2020)
under the assumption that the true class label distribution of
target training is known as a form of weak supervision (WS).
For instance, in human activity recognition, while individual
sample labels are difficult to obtain, users can self-report
their time allocation across different activities. CoDATS
incorporates WS during model training by minimizing the
Kullback-Leibler (KL) divergence between the true label
distribution and the expected target class predictions in each
mini-batch. In contrast, TransPL leverages this distribution
during the pseudo-labeling stage, employing it as a prior
p(k) in the Bayes formulation described in Equation (3).

Table 4: Comparing weak supervision (WS) performance be-
tween CoDATS and TransPL.

Dataset Metric CoDATS TransPL
Base +WS (Gain) Base +WS (Gain)

UCIHAR Acc 62.7 62.3 (-0.4) 69.0 71.2 (+2.2)
MF1 58.5 58.4 (-0.1) 64.9 67.1 (+2.2)

WISDM Acc 63.7 67.1 (+3.4) 64.0 71.3 (+7.3)
MF1 48.3 50.8 (+2.6) 56.2 57.9 (+1.6)

HHAR Acc 61.4 60.8 (-0.6) 68.4 70.4 (+2.0)
MF1 59.4 59.1 (-0.3) 65.3 67.3 (+2.0)

PTB Acc 56.1 49.8 (-5.3) 67.2 72.4 (+5.2)
MF1 67.6 60.0 (-6.5) 74.0 77.3 (+3.3)

In Table 4, we show that utilizing WS is beneficial
for TransPL in all datasets, while CoDATS shows mixed
results. Notably, CoDATS exhibits performance degradation
in UCIHAR, HHAR, and PTB tasks, suggesting that weak
supervision can potentially hinder model performance by
introducing prediction bias. In contrast,TransPL achieves
consistent performance improvements in both accuracy and
MF1 across all tasks. These results highlight TransPL’s
robustness even in challenging scenarios where source and
target domains exhibit different class distributions (Ragab
et al., 2023), as observed in WISDM and PTB.

7.4. Class Conditional Likelihoods

The class-wise transition matrices (TMs) derived from
TransPL provide interpretable insights into the robustness
and discriminative power of our pseudo-labeling process.
Figure 3 illustrates this through the analysis of class-
conditional likelihoods for an unlabeled target sequence.
Here, TransPL successfully identifies the true class (class 2)
by assigning it the highest likelihood, while also revealing
meaningful similarities with class 0 through comparable
temporal patterns. The zero likelihood assigned to class
4 further demonstrates the method’s discriminative ability,
as this class exhibits a distinctly different temporal pattern
with static transitions between identical coarse codes. Most
importantly, the TMs capture these temporal relationships
despite significant amplitude variations between source and

target sequences, highlighting our method’s invariance to
amplitude shifts while preserving temporal dynamics. As
such, unlike black-box classifiers or clustering-based ap-
proaches, TransPL’s pseudo labeling process provides trans-
parent insights into the pseudo-labeling process.

b) Class-wise 
Transition Matrix

Class 0

Class 4

Class 2

a) Samples 
from Source

c) Unlabeled Target
Sequence

(Class Label: 2)

d) Class-Conditional 
Likelihoods

Class 0: 0.009

Class 4: 0.000

Class 2: 0.905

Figure 3: Class conditional likelihood visualization in UCI.
Samples from the source are used to construct the class-wise tran-
sition matrices (TMs). Then, these TMs are used to calculate the
class-conditional likelihoods of the unlabeled target sequence.

7.5. Ablation Study

We conducted ablation experiments in Table 5 to evaluate the
joint usage of channel alignment (CA) weighting and prior
label distribution as weak supervision (WS) in TransPL.
The results demonstrate that both modules contribute to im-
proved domain adaptation performance, whether applied
individually or in combination. In seven out of eight cases,
the best results were obtained when both modules were used
together. Here, the performance gain from the use of CA in-
dicates that it is beneficial to model the channel-wise shifts
in multivariate time series for domain adaptation. Addition-
ally, utilizing prior label distribution as WS enhances the
model’s adaptation capability. The findings confirm that
CA and WS address complementary aspects of time series
adaptation, making their joint usage beneficial.

Table 5: Ablation of channel alignment (CA) and weak supervi-
sion (WS) modules in the adaptation performance.

UCIHAR WISDM HHAR PTB
CA WS Acc MF1 Acc MF1 Acc MF1 Acc MF1

✗ ✗ 68.0 63.5 62.3 51.0 63.2 59.5 68.3 73.3
✓ ✗ 69.0 64.9 64.0 56.2 68.4 65.3 67.2 74.0
✗ ✓ 68.6 63.8 69.2 55.2 62.3 58.8 72.2 77.9

✓ ✓ 71.2 67.1 71.3 57.9 70.4 67.3 72.4 77.3

7.6. Channel Alignment Analysis

We analyzed the effectiveness of our proposed channel align-
ment (CA) distance measure by examining its representation
space and its ability to capture source-target channel-wise
shifts. Figure 4 presents a channel-wise visualization of
source and target samples, revealing varying degrees of do-
main shift across channels. Notably, channel three exhibits a
more pronounced distributional shift between the source and
target domains compared to channels one and two. By com-
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paring our distance measure to clustering-based approaches
such as prototype distance, we show that prototype-based
methods fail to capture the channel-wise shifts, as they ag-
gregate features across all samples and ignore the temporal
dynamics inherent in time series. However, our CA module
effectively captures the shift from the source to target by
computing the average costs of transporting each code tran-
sition vector between the source and target, demonstrating
its ability to address channel shifts in time series.

Ch. 1 Ch. 2 Ch. 3

Distance Measures Ch.1 Ch.2 Ch.3 Rank 

Prototype L2 Distance 2.10 1.63 2.05 2 < 3 < 1

Earth Mover’s Distance (ours) 0.08 0.14 0.33 1 < 2 < 3

Figure 4: Channel alignment (CA) analysis. We visualized the
latent representation of each channels’s [CLS] token and observe
that the degree of shift differs between channels. Specifically,
channel 3 shows higher degrees of shift between source and target
compared to channel 1 and 2. We show that using prototype
distances (as in clustering based approaches) lead to inaccurate
distance measurement, while our earth mover’s distance from the
CA module provides well calibrated distance between channels.

8. Limitation
We acknowledge the following limitations of our work. First,
our work assigns lower weights to channels that are heavily
shifted during the adaptation phase. However, only cer-
tain channels may contain class-relevant information (Kim
et al., 2024), and when class information is concentrated in
channels experiencing significant domain shift, our method
would assign lower weights to these channels, leading to
degraded adaptation performance. Future works can in-
corporate channel importance measures alongside ours, al-
lowing for weighting that considers both channel shift and
the importance of the channel for classification. Second,
while we empirically observed that the coarse codes capture
more general patterns and the fine codes capture more fine-
grained details, this is not regularized mathematically. We
may consider adding regularization terms to enforce such
hierarchical relationships explicitly.

9. Conclusion
We propose TransPL, a novel pseudo labeling method for
time series domain adaptation, which incorporates coarse
and fine vector quantized codes to model the temporal tran-
sitions through VQ-code transition matrices (TMs). The
TMs enable the explicit modeling of temporal transitions
and channel-wise shifts in time series, enabling us to im-

prove adaptation performance. Moreover, the transparent
nature of our pseudo labeling provides interpretable insights
at each stage, making it both powerful and explainable.

Acknowledgment
This work was supported by the Institute of Information &
communications Technology Planning & Evaluation(IITP)
grant funded by the Korea government(MSIT) (No.RS-2024-
00508465) and Institute of Information & communications
Technology Planning & Evaluation(IITP) grant funded by
the Korea government(MSIT) (No.RS-2020-II201336, Arti-
ficial Intelligence Graduate School Program(UNIST)).

The authors acknowledge Dr. Seokju Hahn and Dr. Yoontae
Hwang for their insightful discussions that significantly
contributed to the development of this work. We also thank
the anonymous reviewers for providing insightful feedback
and going through our manuscript.

Impact Statement
This paper presents work whose goal is to advance the field
of unsupervised domain adaptation of time series. Previ-
ous works have mostly focused on simply enhancing the
adaptation performance but have not provided explainable
insights into “what” is being shifted in time series. Here, our
TransPL specifically addresses this problem by modeling
the temporal transitions and channel-wise shifts in multi-
variate time series through the use of coarse code transition
matrices. We strongly believe that our approach of using the
coarse code patterns provides novel insights into the time
series community.

References
Ahad, N., Davenport, M. A., and Dyer, E. L. Time series

domain adaptation via channel-selective representation
alignment. Transactions on Machine Learning Research,
2025.

Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz,
J. L., et al. A public domain dataset for human activity
recognition using smartphones. In Esann, volume 3, pp.
3, 2013.

Bandt, C. and Pompe, B. Permutation entropy: a natural
complexity measure for time series. Physical review
letters, 88(17):174102, 2002.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition
and machine learning, volume 4. Springer, 2006.

Bousseljot, R., Kreiseler, D., and Schnabel, A. Nutzung der
ekg-signaldatenbank cardiodat der ptb über das internet.
1995.

9



TransPL: VQ-Code Transition Matrices for Pseudo-Labeling of Time Series Unsupervised Domain Adaptation

Brockwell, P. J. and Davis, R. A. Introduction to time series
and forecasting. Springer, 2002.

Cai, R., Chen, J., Li, Z., Chen, W., Zhang, K., Ye, J., Li, Z.,
Yang, X., and Zhang, Z. Time series domain adaptation
via sparse associative structure alignment. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 6859–6867, 2021.
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A. Notations.

Symbol Description Dimension
X Original time series instance RD×T

Xre Original time series instance reshaped into patches RD×N×m

y True label of time series instance R
S Source -
T Target -
PX , PY Time series instance and label distributions -
D Number of channels (sensors) -
T Time sequence length -
m Size of patch -
N Total number of patch in a single time series sequence -
ddim Dimension of latent representation -
nc, nf Number of coarse and fine codes 8, 64
Cc Coarse codebook Rddim×nc

Cf Fine codebook Rddim×nf

ec, ef Coarse and fine code vector Rddim

PS
cl Class-wise coarse code transition matrix from source RK×D×nc×nc

PS
ch Channel-wise coarse code transition matrix from source RD×nc×nc

PT
ch Channel-wise coarse code transition matrix from target RD×nc×nc

M Cost matrix Rnc×nc
+

Table 6: Notation and Symbols
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B. Coarse and Fine Codes

Figure 5: Visualization of the full coarse and fine codes in HHAR task. We visualized the trained coarse and fine codes from the
HHAR task 2 → 11. The top row contains the 8 coarse codes, and the rest are 64 fine codes. We observe that the fine codes are capturing
more fine grained detailed compared to the coarse codes.
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C. Experiment Details
Hardware and Software. We performed all experiments on a single NVIDIA RTX A6000-48GB GPU. We used Python 3.10
and PyTorch 2.0.1. For the main experiment pipelines, we used PyTorch Lightning 2.1.2. All baselines were re-implemented
within our frameworks.

Datasets. We used four datasets to test our domain adaptation algorithm: UCIHAR, WISDM, HHAR, and PTB. The
UCIHAR, WISDM, HHAR tasks are human activity recognition (HAR) datasets and are well-known benchmark datasets
for domain adaptation in time series. We used the same datasets and splits provided in AdaTime (Ragab et al., 2023).
PTB is an ECG dataset, where the task is to classify five different classes of diseases. However, a more processed binary
classification (Myocardial infarction vs Healthy Control) dataset was suggested by (Wang et al., 2024), and we used this
dataset. The detailed distribution of classes and setup of domains are shown in Table 7.

Table 7: Distribution of PTB Task. We did not used (N.U) age groups 20-30, 70-80, and 80-90 as there were not enough balanced class
samples. We set age groups 30-40 as Domain 1, 40-50 as Domain 2, 50-60 as Domain 3, and 60-70 as Domain 4.

Age Group Label Patient Count Domain

20-30 Healthy control 13 N.U

30-40 Healthy control 11 1Myocardial infarction 4

40-50 Healthy control 6 2Myocardial infarction 25

50-60 Healthy control 9 3Myocardial infarction 43

60-70 Healthy control 6 4Myocardial infarction 47

70-80 Myocardial infarction 23 N.U

80-90 Healthy control 1 N.UMyocardial infarction 5

Source and Domain Pairs. For UCIHAR, WISDM, and HHAR, we used the exact same ten different splits provided in
AdaTime (Ragab et al., 2023). For PTB, we utilized four different pairs of source and target, as shown below.

• UCIHAR: 2 → 11, 6 → 23, 7 → 13, 9 → 18, 12 → 16, 18 → 27, 20 → 5, 24 → 8, 28 → 27, 30 → 20.

• WISDM: 7 → 18, 20 → 30, 35 → 31, 17 → 23, 6 → 19, 2 → 11, 33 → 12, 5 → 26, 28 → 4, 23 → 32.

• HHAR: 0 → 6, 1 → 6, 2 → 7, 3 → 8, 4 → 5, 5 → 0, 6 → 1, 7 → 4, 8 → 3, 0 → 2.

• PTB: 1 → 3, 1 → 4, 3 → 4, 4 → 1

Dataset Task Type Domains Length # Channels # Class

UCIHAR HAR 30 128 9 6
WISDM HAR 36 128 3 6
HHAR HAR 9 128 3 6
PTB ECG 4 300 15 2

Table 8: Details of the datasets used in our main experiments

D. Full Results
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Table 9: UCIHAR Results Acc. Results across different source-target domain pairs.

Algorithm 2→11 6→23 7→13 9→18 12→16 18→27 20→5 24→8 28→27 30→20 Average

No Adapt 60.0 60.7 79.8 40.0 60.9 65.5 48.4 58.8 47.8 47.7 57.0
DeepCoral 63.2 78.8 67.3 59.3 61.1 75.2 59.3 60.0 61.1 52.3 62.0
MMDA 65.3 77.8 57.3 36.3 61.9 77.0 36.3 61.2 61.9 59.8 60.8
CoDATS 55.8 77.8 71.8 35.2 59.3 78.8 35.2 63.5 59.3 63.6 62.7
SASA 61.1 80.8 57.3 36.3 58.4 78.8 36.3 54.1 58.4 57.0 57.2
RAINCOAT 34.6 65.3 49.5 75.1 62.4 37.5 75.1 80.0 62.4 58.0 58.6
SoftMax 65.3 76.8 68.2 56.0 67.3 69.0 56.0 62.4 67.3 39.3 62.4
NCP 48.4 81.8 68.2 36.3 67.3 71.7 36.3 65.9 67.3 44.9 59.4
SP 56.8 80.8 63.6 51.6 64.6 62.8 51.6 71.8 64.6 50.5 62.6
ATT 80.0 70.7 51.8 30.8 49.6 81.4 30.8 56.5 49.6 53.3 56.2
SHOT 65.3 80.8 75.5 59.3 90.3 75.2 59.3 64.7 90.3 43.0 67.8
T2PL 65.3 72.7 72.7 57.1 69.9 63.7 57.1 69.4 69.9 36.4 63.8

TransPL 75.8 84.8 67.3 59.3 66.4 89.4 59.3 75.3 66.4 61.7 69.0

Table 10: UCIHAR Results F1. Results across different source-target domain pairs.

Algorithm 2→11 6→23 7→13 9→18 12→16 18→27 20→5 24→8 28→27 30→20 Average

No Adapt 52.7 54.3 77.6 38.2 56.0 64.9 48.0 57.1 49.3 37.5 53.6
DeepCoral 55.7 55.5 76.1 35.1 65.7 72.2 57.4 55.6 59.1 43.8 57.6
MMDA 55.7 61.9 71.0 35.6 52.9 73.0 29.9 52.8 57.9 49.1 54.0
CoDATS 46.7 60.1 70.8 54.7 73.3 76.0 23.3 63.2 55.4 61.7 58.5
SASA 52.4 63.2 77.3 17.0 48.0 76.3 32.2 49.4 49.8 48.2 51.4
RAINCOAT 34.9 63.5 68.7 60.6 57.3 44.6 75.2 81.9 65.3 59.1 61.1
SoftMax 56.2 70.8 74.0 39.7 65.8 64.5 56.7 53.2 63.9 28.7 57.4
NCP 35.3 44.6 79.0 43.7 69.9 66.5 38.4 63.2 64.7 33.4 53.9
SP 48.5 62.2 78.4 51.3 60.4 59.3 50.6 72.9 60.4 48.7 59.2
ATT 77.4 36.4 61.3 28.5 41.0 71.4 23.6 46.9 39.4 35.2 46.1
SHOT 56.5 69.7 77.9 48.7 77.5 70.4 58.1 62.7 87.7 34.2 64.3
T2PL 57.0 71.8 70.9 51.1 74.9 59.5 53.5 69.5 67.1 30.5 60.6

TransPL 70.4 63.1 82.3 35.9 64.6 88.1 56.2 72.7 63.5 52.6 64.9

Table 11: WISDM Results Acc. Results across different source-target domain pairs.

Algorithm 7→18 20→30 35→31 17→23 6→19 2→11 33→12 5→26 28→4 23→32 Average

No Adapt 80.2 64.1 66.3 48.3 62.1 31.6 60.9 73.2 83.3 27.5 59.8
DeepCoral 83.0 57.3 66.3 53.3 56.8 50.0 65.5 74.4 83.3 29.0 61.9
MMDA 70.8 19.4 59.0 71.7 75.8 42.1 73.6 73.2 54.5 60.9 60.1
CoDATS 74.5 80.6 54.2 70.0 54.5 47.4 82.8 75.6 78.8 18.8 63.7
SASA 67.9 62.1 67.5 58.3 59.8 47.4 77.0 75.6 80.3 13.0 60.9
RAINCOAT 53.1 58.5 40.2 30.6 58.9 77.8 37.0 37.8 67.6 11.8 47.3
SoftMax 76.4 52.4 67.5 60.0 51.5 46.1 74.7 74.4 83.3 31.9 61.8
NCP 67.9 49.5 67.5 46.7 56.8 59.2 59.8 47.6 83.3 29.0 56.7
SP 55.7 44.7 59.0 35.0 55.3 61.8 48.3 46.3 84.8 23.2 51.4
ATT 82.1 49.5 49.4 75.0 39.4 44.7 71.3 73.2 87.9 14.5 58.7
SHOT 71.7 58.3 67.5 41.7 78.8 46.1 47.1 68.3 83.3 59.4 62.2
T2PL 67.9 53.4 69.9 45.0 79.5 46.1 41.4 37.8 78.8 53.6 57.3

Ours 84.9 66.0 63.9 66.7 48.5 61.8 88.5 74.4 54.5 30.4 64.0

Table 12: WISDM Results F1. Results across different source-target domain pairs.

Algorithm 7→18 20→30 35→31 17→23 6→19 2→11 33→12 5→26 28→4 23→32 Average

No Adapt 65.9 55.5 56.1 35.5 58.5 48.3 38.5 39.2 74.5 19.3 49.1
DeepCoral 66.3 50.9 56.5 32.5 47.8 63.3 56.3 39.7 75.5 31.5 52.0
MMDA 67.1 26.1 54.3 47.2 69.5 51.4 61.4 39.3 62.5 41.2 52.0
CoDATS 50.3 73.3 27.2 39.0 42.5 54.7 71.6 41.4 68.7 14.0 48.3
SASA 32.4 47.3 61.1 35.4 50.6 38.9 67.2 41.5 73.6 7.7 45.6
RAINCOAT 63.5 78.1 60.2 67.7 75.9 75.8 48.8 71.1 68.8 19.8 63.0
SoftMax 66.5 47.5 60.4 40.1 45.2 59.4 59.4 39.7 76.8 32.2 52.7
NCP 43.8 51.0 59.4 24.6 51.3 65.7 56.1 31.6 83.6 32.6 50.0
SP 54.3 44.2 36.8 16.7 51.5 62.4 45.9 31.4 78.8 36.1 45.8
ATT 67.8 38.9 44.9 47.4 31.1 51.5 56.7 39.5 78.8 18.2 47.5
SHOT 67.8 56.3 59.6 21.5 75.5 57.5 44.8 37.6 79.4 46.1 54.6
T2PL 65.8 52.2 63.7 31.5 72.6 57.3 43.6 20.8 82.5 43.4 53.3

Ours 68.9 66.1 58.3 44.9 39.8 63.3 80.9 39.6 64.3 36.5 56.2
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Table 13: HHAR Results Acc. Results across different source-target domain pairs.

Algorithm 0→6 1→6 2→7 3→8 4→5 5→0 6→1 7→4 8→3 0→2 Average

No Adapt 37.3 56.9 45.1 63.0 63.1 47.5 73.3 63.5 55.4 51.8 55.7
DeepCoral 37.7 56.1 54.5 63.2 65.0 35.2 73.3 70.7 69.8 50.7 57.6
MMDA 38.3 55.3 57.2 53.0 57.3 47.3 80.2 76.0 61.1 61.3 58.7
CoDATS 41.7 64.3 62.0 75.8 63.2 35.9 59.1 80.0 72.9 58.7 61.4
SASA 44.1 52.9 57.6 69.0 71.8 37.9 72.8 63.7 70.5 62.5 60.3
RAINCOAT 34.6 62.6 65.3 61.1 49.5 37.5 75.1 80.0 62.4 58.0 58.6
SoftMax 38.3 51.9 59.9 70.2 76.8 45.7 79.7 67.9 73.1 61.3 62.5
NCP 35.7 46.1 59.1 42.1 51.8 54.5 52.2 60.9 57.1 55.2 51.5
SP 30.5 44.7 58.5 44.8 57.4 48.1 47.2 55.5 59.7 61.5 50.8
ATT 36.3 52.1 51.6 77.4 68.3 47.5 63.6 76.0 59.5 59.6 59.2
SHOT 35.9 47.5 58.2 77.6 86.5 44.0 81.7 73.9 70.7 71.6 64.8
T2PL 37.9 64.7 55.3 73.3 89.4 37.9 75.2 77.4 63.7 66.5 64.1

Ours 39.5 73.1 60.5 72.7 75.4 52.3 77.1 89.2 80.3 64.2 68.4

Table 14: HHAR Results F1. Results across different source-target domain pairs.

Algorithm 0→6 1→6 2→7 3→8 4→5 5→0 6→1 7→4 8→3 0→2 Average

No Adapt 34.0 49.2 40.1 63.4 57.4 38.7 72.8 60.9 56.3 47.3 52.0
DeepCoral 33.0 50.7 50.2 66.3 58.5 30.0 71.8 69.5 71.3 47.9 54.9
MMDA 35.9 48.2 51.1 54.7 50.8 36.4 80.8 75.1 63.0 60.1 55.6
CoDATS 39.6 59.7 60.5 76.2 57.1 32.3 58.1 79.5 74.5 56.5 59.4
SASA 41.4 45.7 52.5 68.6 64.1 28.7 71.4 61.8 69.8 60.9 56.5
RAINCOAT 34.9 63.5 68.7 60.6 57.3 44.6 75.2 81.9 65.3 59.1 61.1
SoftMax 37.3 45.0 53.3 72.0 70.3 37.5 78.5 66.4 74.3 59.2 59.4
NCP 29.6 39.1 48.6 34.5 46.2 44.3 46.3 59.5 57.1 50.4 45.6
SP 29.8 40.6 56.6 36.3 52.2 40.8 42.9 54.1 61.8 59.2 47.4
ATT 27.5 43.2 40.4 74.8 57.4 34.5 54.8 72.2 56.4 56.4 51.8
SHOT 35.1 45.6 53.7 76.2 86.9 37.7 80.3 72.9 72.7 70.7 63.2
T2PL 37.3 59.1 51.7 73.8 89.9 33.8 74.6 76.3 66.7 64.9 62.8

Ours 37.3 72.5 53.9 72.1 68.1 43.0 74.5 89.5 80.4 61.8 65.3

Table 15: PTB Results Acc. Results across different source-target domain pairs.

Algorithm 1→3 1→4 3→4 4→1 Average

No Adapt 25.7 35.4 92.3 48.4 50.5
DeepCoral 47.5 55.2 89.7 37.4 57.4
MMDA 39.7 74.0 92.2 33.8 60.0
CoDATS 40.6 57.7 92.3 33.8 56.1
SASA 58.4 65.1 92.3 33.8 62.4
RAINCOAT 45.6 53.1 95.6 45.0 59.8
SoftMax 45.4 65.4 92.0 46.5 62.3
NCP 36.5 58.6 79.0 68.5 60.6
SP 36.4 58.6 74.8 72.8 60.6
ATT 86.7 7.8 91.7 36.6 55.7
SHOT 37.6 59.6 84.6 64.4 61.6
T2PL 35.5 59.0 87.8 53.9 59.0

Ours 51.9 72.7 94.4 49.7 67.2

Table 16: PTB Results MF1. Results across different source-target domain pairs.

Algorithm 1→3 1→4 3→4 4→1 Average

No Adapt 32.6 46.4 96.0 52.6 56.9
DeepCoral 59.2 68.5 94.5 48.8 67.8
MMDA 49.7 84.2 96.0 50.5 70.1
CoDATS 53.1 70.9 96.0 50.5 67.6
SASA 71.3 77.4 96.0 50.5 73.8
RAINCOAT 39.3 40.4 54.1 31.0 41.2
SoftMax 58.3 77.6 95.8 50.9 70.7
NCP 47.2 71.9 87.8 64.0 67.7
SP 47.1 71.9 84.9 64.8 67.2
ATT 92.9 0.1 95.6 50.4 59.8
SHOT 48.8 72.8 91.5 54.6 66.9
T2PL 46.1 72.3 93.5 56.2 67.0

Ours 65.0 83.3 97.0 50.8 74.0
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E. Baseslines and TransPL Setup
E.1. Baselines

For all Baselines, we used the official implementations or used the implementations from AdaTime (Ragab et al., 2023). For
a fair comparison, we utilized the same patch transformer encoder structure as in our work. The batch size was set to 32 for
all works. We also conducted a hyperparameter grid search for the learning rates between [0.001, 0.002, 0.0002, 0.0005],
reporting the learning rates with the best MF1 scores. Moreover, certain methods employ multiple loss functions for
adaptation. As in our work, we employed a learnable parameter to automatically adjust the weights between these losses.

E.2. TransPL

To implement TransPL, we used the patch transformer encoder used in (Gui et al., 2024) to encode time series patches. The
patch representations were then quantized using our coarse and fine codebooks. The coarse was first mapped to the patch
representation, where the residuals were mapped to the fine codebooks. Here, we used nc = 8 and nf = 64 numbers of
codes for coarse and fine codebooks, respectively. The transition matrices are constructed using only the coarse codes, where
the transitions are calculated using a vectorized approach. We also employed the K-Means initialization for the codebooks
using the first mini-batch samples in the source domain. We utilized the same encoder architecture for the decoder of
VQVAE.

Task ddim Batch Max Epoch Patch Length (m) σ τ rtop Source LR Adaptation LR

UCIHAR 64 32 200 8 0.2 1.0 0.5 0.0005 0.0005
WISDM 128 32 200 8 0.1 2.0 0.2 0.0002 0.0005
HHAR 128 32 200 8 0.1 5.0 0.2 0.0002 0.0002
PTB 128 32 200 15 0.2 1.0 0.7 0.0005 0.0005

Table 17: TransPL Hyperparameter Configurations.

F. Different Patch Length

Table 18: Performance of Different Patch Lengths

UCIHAR WISDM HHAR
Length Acc MF1 Acc MF1 Acc MF1

m = 4 69.0 64.5 64.2 52.6 64.7 60.7
m = 8 69.0 64.9 64.0 56.2 68.4 65.3
m = 16 65.4 60.7 64.7 56.6 64.5 60.0
m = 32 67.1 63.2 56.5 49.1 55.0 51.5

Table 19: Performance of Different Patch Lengths in PTB

PTB
Length Acc MF1

m = 5 69.9 75.5
m = 10 63.2 68.1
m = 15 67.2 74.0
m = 30 68.7 76.5
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G. Channel-level corruption
To further analyze our channel-wise alignment strategy, we conducted channel-level corruption experiments on the UCIHAR
task across all ten source-target pairs. As TransPL assumes to place lower weights on channels that have shifted strongly,
we expect that our algorithm should place lower weights on channels where noise is added. From the UCIHAR task with
ten source-target pairs, we identified that the sixth channel (starting from zero index) consistently exhibited high values
across most of these pairs. When we introduced increasing levels of noise (Gaussian) to this specific channel, we observed a
corresponding decrease in values, confirming the utility of our proposed channel-level adaptation.

Figure 6: Visualization of the ranks of w6 for the UCIHAR task. Our results demonstrate that as noise magnitude increases in the
sixth channel, its rank consistently decreases across all tested pairs, confirming that our channel alignment module successfully identifies
channels that have gone through channel shift.
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