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ABSTRACT

The advent of large language models (LLMs) has made it possible to generate
natural written dialogues between two agents. However, generating human-like
spoken dialogues from these written dialogues remains challenging. Spoken dia-
logues have several unique characteristics: they frequently include backchannels
and laughter, and the smoothness of turn-taking significantly influences the flu-
idity of conversation. This study proposes CHATS — CHatty Agents Text-to-
Speech — a discrete token-based system designed to generate spoken dialogues
based on written dialogues. Our system can generate speech for both the speaker
side and the listener side simultaneously, using only the transcription from the
speaker side, which eliminates the need for transcriptions of backchannels or
laughter. Moreover, CHATS facilitates natural turn-taking; it determines the ap-
propriate duration of silence after each utterance in the absence of overlap, and
it initiates the generation of overlapping speech based on the phoneme sequence
of the next utterance in case of overlap. Experimental evaluations indicate that
CHATS outperforms the text-to-speech baseline, producing spoken dialogues that
are more interactive and fluid while retaining clarity and intelligibility.

1 INTRODUCTION

Large Language Models (LLMs) have profoundly influenced the field of natural language process-
ing (NLP) and artificial intelligence (AI) (Zhao et al., 2023). LLMs, with their capacity to generate
coherent and contextually relevant content, have enabled more natural text-based dialogues between
humans and computers and paved the way for inter-computer communication. The recently pro-
posed concept of Generative Agents (Park et al., 2023) underscores the potential of LLMs, where
emulated agents within the model engage in autonomous dialogues, store information, and initiate
actions. This emerging paradigm of agent-to-agent communication offers vast potential across var-
ious sectors, from entertainment to facilitating human-to-human information exchange. However,
considering the dominance of spoken communication in human interactions, integrating voice into
machine dialogues can provide a richer expression of individuality and emotion, offering a more
genuine experience. A significant challenge then emerges: how can we transform written dialogues,
whether generated by LLMs or humans, into human-like spoken conversations?

Although both written and spoken dialogues serve as mediums for communication, their charac-
teristics and effects on the audience differ significantly. Spoken dialogues are imbued with unique
elements such as backchannels, laughter, and smooth transitions between speakers. These are rarely
captured fully in written form. For instance, a nod or a simple ”uh-huh” serves as a backchannel
in spoken dialogues, subtly indicating the listener’s engagement and understanding (Yngve, 1970).
Similarly, laughter can convey amusement, act as a bridge between topics, and ease potential ten-
sions (Adelswärd, 1989). The smoothness of turn-takings in spoken dialogues, wherein one speaker
naturally yields the floor to another, introduces a rhythm and fluidity that is challenging to repro-
duce in text (Stivers et al., 2009). Several approaches have been proposed to model these backchan-
nels (Kawahara et al., 2016; Lala et al., 2017; Adiba et al., 2021; Lala et al., 2022), laughter (Mori
et al., 2019; Tits et al., 2020; Bayramoğlu et al., 2021; Xin et al., 2023; Mori & Kimura, 2023), and
turn-taking (Lala et al., 2017; Hara et al., 2018; Sakuma et al., 2023). However, most have focused
on human-to-agent conversation or the task itself (e.g., laughter synthesis) and the agent-to-agent
situation has not been evaluated.
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A straightforward approach for transforming written dialogues into spoken dialogues involves em-
ploying a text-to-speech (TTS) system. Advancements in TTS have facilitated the generation of
individual utterances at a quality comparable to human voice (Kim et al., 2021; Tan et al., 2022).
Certain studies have focused on generating conversational speech by considering linguistic or acous-
tic contexts (Guo et al., 2021; Cong et al., 2021; Li et al., 2022; Mitsui et al., 2022; Xue et al., 2023).
Furthermore, certain studies have equipped LLMs with TTS and automatic speech recognition to
facilitate human-to-agent speech communication (Huang et al., 2023; Zhang et al., 2023; Wang
et al., 2023; Rubenstein et al., 2023). However, these systems are fully turn-based, where each
speaker utters alternatively, and the characteristics of spoken dialogues such as backchannels and
turn-taking are neglected. Recently, SoundStorm (Borsos et al., 2023) has succeeded in generating
high-quality spoken dialogue; however, it requires transcriptions for backchannels and is subject
to a 30-s length constraint. Another approach introduced the dialogue generative spoken language
modeling (dGSLM), which generates two-channel audio autoregressively, achieving realistic vocal
interactions, laughter generation, and turn-taking (Nguyen et al., 2023). Although dGSLM’s oper-
ation based solely on audio is revolutionary, it cannot control utterance content via text. Moreover,
as reported in section 4.4, generating meaningful content with dGSLM requires a vast dataset.

This study proposes CHATS (CHatty Agents Text-to-Speech), a system for transforming writ-
ten dialogue into spoken dialogue, whose content is coherent with the input written dialogue but
generated with backchannels, laughter, and smooth turn-taking. By conditioning dGSLM on the
phonetic transcription of speaker’s utterance, our system can generate meaningful and contextu-
ally proper utterances on the speaker side. Simultaneously, it generates various backchannels and
laughter without transcription on the listener side. The proposed system is designed to overcome
the limitations of existing methods, including the turn-based nature of TTS systems and content
control constraints of textless models. A collection of audio samples can be accessed through
https://anonresearch81.github.io/research/publications/CHATS/.

Our contributions are multi-fold:

• Exploration of Dual-Tower Transformer Architecture: Our system is built on top of
dGSLM, whose core comprises a dual-tower Transformer to generate discrete acoustic to-
kens. We condition dGSLM with phonemes and investigate the effect of pre-training in
TTS tasks on the textual fidelity. Furthermore, we introduce a pitch representation follow-
ing Kharitonov et al. (2022) and analyze its effects on both textual fidelity and prosody.

• Introduction of a Turn-Taking Mechanism: A novel mechanism for predicting the tim-
ing of spoken dialogues is introduced. This encompasses both the duration of pauses af-
ter utterances and instances where subsequent utterances overlapped with preceding ones,
echoing the organic rhythm and fluidity of human conversations.

• Extensive Investigation of Generated Spoken Dialogue Characteristics: We conduct
a comprehensive analysis of the characteristics of generated spoken dialogue, comparing
its closeness to human dialogue across various dimensions. These include the quality of
utterances, the frequency and content of backchannels, the duration of turn-taking events,
and the subjective perception of dialogue naturalness.

2 BACKGROUND

2.1 GENERATIVE SPOKEN LANGUAGE MODELING

Generative Spoken Language Modeling (GSLM) is a framework introduced by Lakhotia et al. (2021)
to capture both acoustic and linguistic characteristics of spoken language directly from raw audio,
without relying on text or labels. One of the main challenges in raw audio modeling is its excessive
information; for instance, a typical audio file contains tens of thousands of samples per second
(e.g., 16,000 in 16 kHz audio) and includes various non-linguistic factors like speaker identity and
background noise. To effectively process this, GSLM employs a pipelined architecture as shown
in Figure 1. The first step involves encoding the raw audio into a sequence of discrete Units. This
encoding aims to reduce information density (as units are typically at 50 Hz) and to discard non-
linguistic information. These units are automatically discovered by clustering the hidden features of
a pre-trained self-supervised learning (SSL) model. The module responsible for this conversion is
collectively referred to as the speech-to-unit (s2u) module. Subsequently, a unit Language Model
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Figure 1: Overview of GSLM pipeline
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Figure 2: DLM architecture

(uLM) is trained on these discrete units. Similar to language models used for NLP, the uLM employs
the standard Transformer architecture and can generate continuations of existing unit sequences once
it has been trained. The final step involves the unit-to-speech (u2s) module, which transforms these
units back into raw audio. Originally, the u2s module combined a TTS model, Tacotron 2 (Shen
et al., 2018), with a neural vocoder, WaveGlow (Prenger et al., 2019). However, recent studies
(Kharitonov et al., 2022; Nguyen et al., 2023) have replaced these with a single neural vocoder,
HiFi-GAN (Kong et al., 2020).

2.2 DIALOGUE GENERATIVE SPOKEN LANGUAGE MODELING

Nguyen et al. (2023) applied the GSLM framework to model spoken dialogues directly, wherein two
speakers’ voices were recorded separately in two-channel audio. This framework is referred to as
dialogue Generative Spoken Language Modeling (dGSLM). While the s2u and u2s modules were
remained similar to the original GSLM, a novel architecture for uLM called Dialogue Transformer
Language Model (DLM) was proposed to handle two channels of units simultaneously, as illustrated
in Figure 2. DLM comprises two towers of Transformers that share their weights, allowing for
interactions between two-channel units. In addition, DLM introduces Edge Unit Prediction and
Delayed Duration Prediction objectives to efficiently model the repeating units (e.g. 96, 96, 52, 52,
52, . . . ). The edge unit prediction forces the model to predict the next unit only if it differs from the
current one (i.e. edge unit). The delayed duration prediction allows the model to predict the duration
of an edge unit at time step t with a one-step delay (i.e. at time step t+ 1).

3 CHATS

3.1 SYSTEM ARCHITECTURE

Our system aims to generate spoken dialogues wherein the spoken content aligns with input written
dialogues but listener’s responses (e.g. backchannels and laughter) are automatically generated. To
address this challenging task, we adopt the pipeline architecture of GSLM (Lakhotia et al., 2021),
comprising three primary modules: s2u module, uLM, and u2s module.

3.1.1 SPEECH-TO-UNIT (S2U) MODULE

The s2u module extracts a concise representation from speech signals, operating on the entirety of
a spoken dialogue. It (1) facilitates easy modeling by the uLM and (2) retains the necessary detail
for the u2s module to reconstruct a high-fidelity waveform. Following Kharitonov et al. (2022),
our s2u module extracts two distinct representations: Content Units and Pitch Units. The content
units, which are identical to the “units” described in section 2, are used to capture the spoken content
information. It is obtained using a combination of a pre-trained Hidden-Unit BERT (HuBERT) (Hsu
et al., 2021) and a k-means clustering (MacQueen, 1967). The pitch units are used to capture the
prosody of speech, which is often discarded in content units. It is obtained by quantizing the speaker-
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Figure 3: Overview of MS-DLM. It processes content and pitch streams to predict subsequent units
and their delayed durations. Each stream comprises a speaker ID, phonemes of current and next
utterances, context units, and units to be generated. Each channel corresponds to a different speaker.
Phonemes are replaced with listening (LIS) tokens when the utterance is made by the other speaker.

normalized logarithm of the fundamental frequency (logF0). For the notation, these units are
referred to as uc,k

n,t or simply uc,k
t when the nth utterance need not be highlighted, where n is the

utterance index, t is the timestep, c is the audio channel, and k is the codebook index associated with
the content and pitch units, respectively. We assume c, k ∈ {1, 2} in this study.

3.1.2 UNIT LANGUAGE MODEL (ULM)

The uLM is designed to generate content and pitch units for two channels based on written dialogue.
In contrast to s2u and u2s modules, the uLM focuses on individual utterances, rather than entire
dialogues, owing to inherent sequence length limitations. However, our uLM only requires the
text of the current and next utterances to generate the current speech, thus facilitating sequential
production of spoken dialogues without waiting for the generation of the entire written dialogue.

Model Architecture: The uLM architecture is based on the DLM (Nguyen et al., 2023) described
in section 2.2, which comprises two decoder-only Transformer towers that share parameters. We
propose a novel Multi-Stream DLM (MS-DLM) architecture for handling multiple streams. We
extend the DLM to include two input and output projection layers associated with the content and
pitch streams, respectively, wherein the content and pitch unit sequences are prefixed with the tokens
described in the subsequent paragraph. The detailed architecture is depicted in appendix A.1.

Prefix tokens: We meticulously design the input sequences of our uLM to facilitate the text-based
control over spoken content. The proposed sequences, as illustrated in Figure 3, are as follows:

BOS, sc, pcn,1, . . . , p
c
n,Mn

,NXT, pcn+1,1, . . . , p
c
n+1,Mn+1

,CTX, uc,k
t−C , . . . , u

c,k
t−1,SEP (1)

where sc is the speaker ID of channel c , Mn is the number of phonemes in the nth utterance, C is the
predetermined context length, and pcn,m is the mth phoneme of the nth utterance if uttered by speaker
sc, and otherwise substituted with listening (LIS) token. BOS, NXT, CTX, SEP tokens represent
beginning of sentence, phonemes of the next utterance, context units, and separator, respectively.
Building on the practices from Kharitonov et al. (2022), the uLM delays the pitch stream by one
step considering their high correlation with content stream. Positions without tokens owing to this
delay are filled with padding (PAD) tokens. Additionally, the target sequence obtained by shifting
the input sequence by one step is appended with an end-of-sentence (EOS) token.

The conditioning of the uLM on the speaker ID compensates for the context length constraint, en-
suring that the model retains each speaker’s unique characteristics. Further, phonemes of the n+1th
utterance are essential for handling overlaps, particularly if the n+1th utterance disrupts the nth one.
With these prefix tokens, our uLM generates speaker’s unit sequences from phonemes conditionally,
and listener’s unit sequences (may contain backchannels and laughter) unconditionally.

Training Objective: The model adopts both the edge unit prediction and delayed duration predic-
tion techniques, proposed by Nguyen et al. (2023), for both content and pitch streams. Full details
can be found in appendix A.2.

4



Under review as a conference paper at ICLR 2024

0.000       1.500      A: Hey, thinking of seeing that new movie this weekend.

1.800       3.000      B: "Time's Mirage"?

3.300       5.000      A: Yeah, that one. Coworker said it's good.

5.000       5.300      B: Uh-huh.

5.100       6.500      A: Mentioned something about great visuals.

7.300       8.000      B: And the music?

8.200     10.100      A: Right! They loved the soundtrack. Made them dance 

in their seat, apparently.

9.400     10.200      B: Hahaha!

10.500     12.000      B: Sounds fun. Let's go together.

(a) Spoken dialogue transcription

A: Hey, thinking of seeing that new movie this weekend.

B: "Time's Mirage"?

A: Yeah, that one. Coworker said it's good. Mentioned 

something about great visuals.

B: And the music?

A: Right! They loved the soundtrack. Made them dance 

in their seat, apparently.

B: Sounds fun. Let's go together.

(b) Written dialogue

Figure 4: Comparison of (a) raw spoken dialogue transcription and (b) typical written dialogue.

3.1.3 UNIT-TO-SPEECH (U2S) MODULE

The u2s module is developed to solve an inverse problem of s2u module. It is trained to reconstruct
the original waveform given content and pitch units extracted using the s2u module. As content and
pitch units contain minimal speaker information, the u2s module also accepts a speaker embedding.
Following Kharitonov et al. (2022), we adapt the discrete unit-based HiFi-GAN (Polyak et al., 2021).

3.2 PREPROCESSING AND MODELING TECHNIQUES FOR SPOKEN DIALOGUE

3.2.1 WRITTEN DIALOGUE PREPARATION VIA BACKCHANNEL EXCLUSION

We consider a dataset comprising recordings of spontaneous dialogues between two speakers, each
accompanied by its transcription (Figure 4 (a)). These transcriptions inherently contain elements
not usually present in standard written dialogues (Figure 4 (b)), such as timestamps and listener re-
sponses, including backchannels and laughter. Training CHATS directly on these raw transcriptions
would be suboptimal, as the system might then fail to replicate these spontaneous behaviors when
processing typical written dialogue inputs. To address this, we remove elements like backchan-
nels and laughter from the transcriptions using a combination of rule-based and machine learning
approaches. This modification ensures that the system learns to autonomously generate these be-
haviors in the listener’s responses.

First, we omit the temporal metadata and retain only the verbal content. In this process, successive
utterances from an identical speaker are merged if they are separated by a silence of < 200 ms,
and are referred to as inter-pausal units (IPUs). Subsequently, we remove the listener’s IPUs, which
correspond to backchannels and laughter, from the transcription through the following steps:

Step 1 If one speaker’s IPU encompasses another’s, it is termed the speaker IPU (s-IPU), while the
latter is termed the listener IPU (l-IPU). Any IPUs not fitting these definitions are labeled
as undefined IPUs (u-IPUs).

Step 2 A binary classifier , hereinafter referred to as IPU classifier, is trained to determine whether
a given IPU is an s-IPU or l-IPU based on its content units. The training is conducted using
speech segments corresponding to s-IPUs and l-IPUs identified in step 1.

Step 3 The classifier trained in step 2 is then applied to categorize the u-IPUs.
Step 4 IPUs identified as l-IPUs in steps 1 or 3 are excluded from the transcription.

Consequently, the resulting written dialogues are composed exclusively of s-IPUs. Hereinafter,
”utterance” denotes an s-IPU unless otherwise specified.

3.2.2 TURN-TAKING MECHANISM (TTM)

To simulate natural turn-taking, which includes overlapping speech, the uLM is trained using a
simple and effective approach. Considering two successive utterances, turn-taking can be bifurcated
into two scenarios: no overlap and overlap. These are shown in the top section of Figure 5. Let an
and bn be the start and end times of the nth utterance, respectively. The conditions for no overlap
and overlap can be described by bn ≤ an+1 and bn > an+1, respectively. These start and end times
are modified as follows:

b̂n = ân+1 = max(bn, an+1) =

{
bn (overlap)
an+1 (no overlap) . (2)
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Figure 5: Two scenarios of turn-taking, (a) no overlap and (b) overlap.

The modified time boundaries are shown in the bottom section of Figure 5. Following these alter-
ations, our uLM is trained to predict the duration of trailing silence in the no overlap scenario, and
pinpoint the onset of overlap in the overlap scenario. In the Overlap scenario, the uLM must gener-
ate the first bn − an+1 seconds of the n+1th utterance concurrently with the nth utterance; thus we
condition our uLM with the phonemes of the n + 1th utterance. Moreover, the uLM is tasked with
the continuation of the n+1th utterance in the overlap scenario, justifying our decision to condition
the uLM using context units.

3.2.3 DATA AUGMENTATION BY CONTEXT REDUCTION

Although context units are included in the prefix tokens, they are not available during the initial
steps of inference, which leads to suboptimal generation quality at the start of the dialogue. To
address this, data augmentation is proposed, wherein the context is either removed or shortened.
We augment the dataset by modifying the context length to C ′ = {0, 0.1C, 0.2C, ..., 0.9C} for
each training example. This augmentation is only performed for utterances that do not overlap with
previous utterances, as the uLM must generate continuations of context units in the overlap scenario.

3.3 INFERENCE PROCEDURE

Considering a written dialogue comprising N utterances and speaker pair information (s1, s2), a
corresponding spoken dialogue can be generated as follows. For each utterance indexed by n =
1, . . . , N , first, the prefix tokens are acquired. The phonemes of the nth and n + 1th utterances
are derived using a grapheme-to-phoneme tool, while the context units are sourced from the units
generated in previous steps. Then, the content and pitch units of the nth utterance are generated
autoregressively using the uLM. The process concludes when the EOS token is chosen as the content
unit for any channel. Thereafter, the delayed pitch units are synchronized with the content units and
concatenated to the units that were produced in the earlier steps. Subsequently, the two desired
waveform channels are derived using the u2s module. Notably, since our system does not rely on
input sentences that extend beyond two sentences ahead, it can facilitate continuous spoken dialogue
generation when integrated with an LLM. Illustrative explanation is provided in appendix A.3.

4 EXPERIMENTS

4.1 SETUP

Datasets: We used internal spoken dialogue dataset comprising 74 h of two-channel speech sig-
nals (equivalent to 147 h of single-channel speech signals). It includes 538 dialogues conducted
by 32 pairs with 54 Japanese speakers (certain speakers appeared in multiple pairs) with their tran-
scriptions. Additionally, we utilized the Corpus of Spontaneous Japanese (CSJ) (Maekawa, 2003) to
pre-train our uLM. It contains single-channel speech signals with their phoneme-level transcriptions.
All of these were utilized, excluding dialogue data, resulting in 523 h from 3,244 speakers. A detail
of our internal dataset and complete procedure of preprocessing are described in appendix B.1.

Model, training, and inference: A simple 3-layer bidirectional LSTM was used for the IPU clas-
sifier described in section 3.2.1. For the s2u module, we utilized a pre-trained japanese-hubert-
base1 model for content unit extraction, and the WORLD vocoder (Morise et al., 2016) for pitch

1https://huggingface.co/rinna/japanese-hubert-base
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unit extraction. For the uLM model, a Transformer model comprising 6 layers, 4 of which were
cross-attention layers, with 8 attention heads per layer and an embedding size of 512 was consid-
ered (Nguyen et al., 2023). This uLM was developed atop the DLM implementation found in the
fairseq library2 (Ott et al., 2019). A single-channel variant of our uLM was pre-trained on the CSJ
dataset. Subsequently, we finetuned a two-channel uLM on all of the s-IPUs from our spoken dia-
logue dataset. Model optimization was performed over 100k steps on two A100 80GB GPUs with
a batch size of 30k tokens per GPU, requiring approximately 5 h for pre-training and 11 h for fine-
tuning. During inference, nucleus sampling (Holtzman et al., 2020) with p = 0.9 was adopted. The
u2s module utilized the discrete unit-based HiFi-GAN (Kong et al., 2020; Polyak et al., 2021) with
minor adjustments. This model was optimized over 500k steps on a single A100 80GB GPU with
a batch size of 16 0.5-second speech segments, requiring approximately 32 h. Further details are
provided in appendix B.2.

4.2 UTTERANCE-LEVEL EVALUATION

Table 1: PER measured in TTS set-
ting. The lowest PER in each sec-
tion are bolded.

METHOD PER ↓
Ground Truth 8.95
Resynthesized 11.49

Baseline 12.13
w/o pretraining 14.10

Proposed 13.03
w/o pretraining 15.32
w/o augmentation 59.35
w/o context units 14.12
w/o next sentence 12.79

First, we focused on the utterance-level generation quality of
the proposed system. The fidelity of the generated speech to
the input text was investigated by evaluating our system in the
TTS setting. We generated speech waveform corresponding
to all 4,896 utterances in the test set separately and measured
their phoneme error rate (PER). To perform phoneme recog-
nition, we finetuned japanese-hubert-base model with the CSJ
dataset. We compared the performance of the proposed system
(Proposed) with other systems, including 1) Ground Truth,
the ground-truth recordings, 2) Resynthesized, where we com-
bined s2u and u2s modules to resynthesize the original wave-
form, and 3) Baseline, a single-channel counterpart of Pro-
posed trained without phonemes of next sentence and the turn-
taking mechanism. Additionally, we ablated several compo-
nents including pre-training on CSJ dataset (w/o pre-training),
data augmentation by context reduction (w/o augmentation),
context units (w/o context), and phonemes of next sentence
(w/o next sentence). PERs for Ground Truth and Resynthesized include both grapheme-to-phoneme
error and phoneme recognition error, while Baseline and Proposed include only the latter.

The results are summarized in Table 1. Although the PER for the Proposed system was slightly
worse than for Baseline, the degradation was minute considering that it performed other tasks in
addition to basic TTS, including generating the listener’s speech and predicting turn-taking. Pre-
training and use of the context units were effective, and data augmentation was crucial because no
context was given in the TTS setting. The Proposed w/o next sentence marginally outperformed Pro-
posed in TTS setting; however, it often generated unnatural or meaningless content as overlapping
segment. We investigated the effect of introducing pitch units in appendix C.

4.3 DIALOGUE-LEVEL EVALUATION

Next, we evaluated the spoken dialogue generation quality of the proposed system. We quantified
how close the generated spoken dialogues were to the recorded ones from two aspects: listener’s and
turn-taking events. For comparison, we prepared a Baseline system, the same system described in
section 4.2 but operated alternatively to generate spoken dialogue, as well as dGSLM (Nguyen et al.,
2023). As Baseline cannot generate the listener’s tokens, we filled them with the most frequently
used content and pitch units corresponding to unvoiced frames. Furthermore, Proposed w/o TTM
was evaluated to investigate the effectiveness of our turn-taking mechanism.

We created written dialogues that excluded listener’s events for the test set as detailed in sec-
tion 3.2.1. Next, we generated the entire spoken dialogues from those written dialogues. For
dGSLM, we utilized 30 s of speech prompts from the test set to generate the subsequent 90 s. As
the resulting dialogues for dGSLM were three times longer than the original test set, we divided the
results (e.g., backchannel frequency and duration) by three.

2https://github.com/facebookresearch/fairseq
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4.3.1 LISTENER’S EVENT EVALUATION

We applied the Silero Voice Activity Detector (VAD)3 to the generated spoken dialogues and per-
formed hybrid IPU classification for each IPU as in section 3.2.1. We then counted the number of
backchannels qBC and all utterances qALL along with their durations dBC and dALL. The results are
summarized in Table 2. Although the backchannel frequency and duration for Proposed were lower
than for Ground Truth, the proportion of backchannels in all utterances was closest to the Ground
Truth in terms of both frequency and duration. dGSLM tended to produce too many backchannels,
whereas Baseline produced too few. Further, Proposed w/o TTM produced excessive backchannels.
We conjecture that the uLM generates overlapped segments twice without the TTM (as the last part
of the nth utterance and the first part of the n+ 1th utterance), resulting in unwanted backchannels.
Further investigation of backchannel content and speaker-specific characteristics, as well as laughter
frequency and duration, is described in appendix D.

Table 2: Backchannel frequency q and duration d. Ratios closest to the Ground Truth are bolded.

METHOD qBC qALL 100× qBC/qALL dBC [s] dALL [s] 100× dBC/dALL

Ground Truth 1854 9453 19.61 1518 16588 9.15

dGSLM 1710 6141 27.84 1678 12378 13.56
Baseline 76 3656 2.08 151 11713 1.29
Proposed 1535 6668 23.02 1322 14001 9.44

w/o TTM 1756 5273 33.30 1480 14052 10.53

4.3.2 TURN-TAKING EVENT EVALUATION

Following Nguyen et al. (2023), we examined the distribution of four turn-taking events: 1) IPU, a
speech segment in one speaker’s channel delimited by a VAD silence of ≥ 200 ms on both sides,
2) overlap, a section with voice signals on both channels, 3) pause, a silence segment between two
IPUs of the same speaker, and 4) gap, a silence segment between two IPUs by distinct speakers.
The results are summarized in Figure 6. Both dGSLM and Proposed exhibited similar distribution
to the Ground Truth, confirming that the proposed system could mimic human-like turn-taking. The
distribution of Baseline, particularly for overlaps, deviated significantly from that of the Ground
Truth because theoretically it cannot generate any overlaps. The durations of pauses and gaps were
underestimated for Proposed w/o TTM, which is congruent with the idea that the TTM is helpful for
estimating appropriate silence durations following each utterance. Speaker-specific characteristics
of turn-taking events are investigated in appendix E.
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Figure 6: Distributions of turn-taking event durations.

3https://github.com/snakers4/silero-vad
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4.4 HUMAN EVALUATION

Finally, we measured the subjective quality of the generated spoken dialogue. For each speaker
pair, we randomly extracted two 10-turn dialogues, each lasting 15–45 seconds, from the test set,
leading to a total of 64 dialogues. We generated the corresponding spoken dialogue segments using
the Baseline and Proposed systems. For dGSLM, we used 30 s of the recorded speech segments
preceding these dialogues as prompts and generated 30 s continuations for each one. Each dia-
logue segment was assessed based on three distinct criteria: 1) Dialogue Naturalness, evaluating
the fluidity of the dialogue and the naturalness of the interaction, 2) Meaningfulness, determining
the comprehensibility of what is spoken, and 3) Sound Quality, checking for noise or distortion in
the speech signal. Each item was rated on a 5-point scale from 1–5 (bad to excellent). Twenty-four
workers participated in the evaluation and each rated 25 samples. The instructions and dialogue
examples actually used for the evaluation are presented in appendices F and G, respectively.

The results are presented in Table 3. The Proposed system outscored both the dGSLM and Base-
line systems across all metrics. Particularly, it recorded a significantly higher score in Dialogue
Naturalness compared to the Baseline system (p = 0.038 in the Student’s t-test). Thus, features
such as backchannels, laughter, and seamless turn-taking, rendered possible by the proposed sys-
tem, are vital for generating natural spoken dialogues. Interestingly, dGSLM had low scores in both
Meaningfulness and Dialogue Naturalness. This finding is at odds with the results from a previous
study (Nguyen et al., 2023). We hypothesize that this decline in performance was owing to the
smaller dataset used (2,000 h in the previous study vs. 74 h in this study). However, considering that
Meaningfulness of dGSLM was low in the previous study as well, our system’s text conditioning
capability proves to be highly effective for generating meaningful spoken dialogue.

While our findings indicate advancements in spoken dialogue generation, certain areas require fur-
ther refinement to match human-level performance. Notably, the Sound Quality of the Resynthe-
sized is behind that of the Ground Truth, suggesting the necessity for improved s2u and u2s modules
with enhanced speech coding. Moreover, the Proposed system trails in Dialogue Naturalness when
compared to both the Ground Truth and Resynthesized. Thus, our future efforts will focus on accu-
mulating a more extensive dialogue dataset and refining our method accordingly.

Table 3: Human evaluation results.

METHOD Dialogue Naturalness Meaningfulness Sound Quality

Ground Truth 4.85±0.08 4.81±0.09 4.75±0.09
Resynthesized 4.48±0.12 4.55±0.12 3.82±0.18

dGSLM 2.68±0.24 1.18±0.07 2.93±0.20
Baseline 3.01±0.20 3.43±0.18 3.22±0.18
Proposed 3.30±0.18 3.58±0.17 3.38±0.18

5 CONCLUSION

This study proposed CHATS, a system that generates spoken dialogues from written ones. We pro-
posed conditioning uLM with speaker, text, and past speech to achieve coherent spoken dialogue.
Additionally, we proposed a mechanism for handling the timing for turn-taking or speech continua-
tion explicitly. We performed a detailed analysis on the generated spoken dialogue, which showed
that the proposed system reproduced the ground-truth distribution of backchannel frequency and
turn-taking event durations well. Further, the results of our human evaluations demonstrated that the
proposed system produced more natural dialogue than the baseline system, which used a TTS model
to generate spoken dialogue. We verified that the innovative capability of the proposed system to
generate backchannels and laughter without transcriptions was effective in mimicking human dia-
logue and creating natural spoken dialogue. However, there is still ample room for improvement. To
further bridge the divide between human and generated dialogues, we plan to expand our study to a
larger dataset for better naturalness and sound quality. Additionally, we will explore the advantages
of conditioning our model on raw text to better understand the context of written dialogues. Further-
more, evaluating our system from the aspect of speaking style consistency and expressiveness is a
valuable research direction.
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limirović, Damien Vincent, Jiahui Yu, Yongqiang Wang, Vicky Zayats, Neil Zeghidour, Yu Zhang,
Zhishuai Zhang, Lukas Zilka, and Christian Frank. AudioPaLM: A large language model that can
speak and listen. arXiv preprint arXiv:2306.12925, Jun. 2023.

Jin Sakuma, Shinya Fujie, and Tetsunori Kobayashi. Response timing estimation for spoken dialog
systems based on syntactic completeness prediction. In Proc. SLT, pp. 369–374, Doha, Qatar,
Jan. 2023.

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang,
Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al. Natural TTS synthesis by con-
ditioning WaveNet on mel spectrogram predictions. In Proc. ICASSP, pp. 4779–4783, Calgary,
Canada, May 2018.

Tanya Stivers, Nicholas J. Enfield, Penelope Brown, Christina Englert, Makoto Hayashi, Trine
Heinemann, Gertie Hoymann, Federico Rossano, Jan Peter De Ruiter, Kyung-Eun Yoon, and
Stephen C. Levinson. Universals and cultural variation in turn-taking in conversation. Proceed-
ings of the National Academy of Sciences, 106(26):10587–10592, Jun. 2009.

Xu Tan, Jiawei Chen, Haohe Liu, Jian Cong, Chen Zhang, Yanqing Liu, Xi Wang, Yichong Leng,
Yuanhao Yi, Lei He, Frank Soong, Tao Qin, Sheng Zhao, and Tie-Yan Liu. NaturalSpeech: End-
to-end text to speech synthesis with human-level quality. arXiv preprint arXiv:2205.04421, May
2022.

Noé Tits, Kevin El Haddad, and Thierry Dutoit. Laughter synthesis: Combining seq2seq modeling
with transfer learning. In Proc. INTERSPEECH, pp. 3401–3405, online, Oct. 2020.

Tianrui Wang, Long Zhou, Ziqiang Zhang, Yu Wu, Shujie Liu, Yashesh Gaur, Zhuo Chen, Jinyu
Li, and Furu Wei. VioLA: Unified codec language models for speech recognition, synthesis, and
translation. arXiv preprint arXiv:2305.16107, May 2023.

Detai Xin, Shinnosuke Takamichi, Ai Morimatsu, and Hiroshi Saruwatari. Laughter synthesis using
pseudo phonetic tokens with a large-scale in-the-wild laughter corpus. In Proc. INTERSPEECH,
pp. 17–21, Dublin, Ireland, Aug. 2023.

Jinlong Xue, Yayue Deng, Fengping Wang, Ya Li, Yingming Gao, Jianhua Tao, Jianqing Sun, and
Jiaen Liang. M2-CTTS: End-to-end multi-scale multi-modal conversational text-to-speech syn-
thesis. In Proc. ICASSP, pp. 1–5, Rhodes Island, Greece, Jun. 2023.

Victor H Yngve. On getting a word in edgewise. In Chicago Linguistics Society, 6th Meeting, pp.
567–578, Chicago, U.S.A., 1970.

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
SpeechGPT: Empowering large language models with intrinsic cross-modal conversational abili-
ties. arXiv preprint arXiv:2305.11000, May 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models. arXiv preprint arXiv:2303.18223, Sep. 2023.

12



Under review as a conference paper at ICLR 2024

A MS-DLM DETAILS

A.1 MODEL ARCHITECTURE

Output Projection 1

4 4 57 4

Output Projection 1

11 11 12 23

Embedding Layer 2

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Multi-Head

Self-Attention

Output Projection 1

96 52 52 EOS
1 2 1 1

Embedding Layer 1

SEP 11 11 12
96 96 52 52

2 1 2 1

SoftmaxSoftmax

Duration Projection 1Duration Projection 1

Embedding Layer 2

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Multi-Head

Self-Attention

Embedding Layer 1

SoftmaxSoftmax

Output Projection 1

Multi-Head

Cross-Attention

Multi-Head

Cross-Attention

SEP 0 0 16
4 4 57 4

4 57 4 EOS

Duration Projection 1Duration Projection 1

1 2 1 1
2 1 1 1

Stream 1

Stream 2

Ch. 1 Units Ch. 2 Units

Stream 1

Stream 2

Positional

Encoding

Shared

Weights

Shared

Weights

Shared

Weights

Ch. 2 DurationsCh. 2 UnitsCh. 1 UnitsCh. 1 Durations

Cross-Channel

Transformer

Layer × 𝐿

MS-DLM

Figure A.1: MS-DLM architecture. All weights are shared across two Transformer towers.

A.2 TRAINING OBJECTIVE

MS-DLM predicts the unit uc,k
n,t and its duration dc,kn,t only when uc,k

n,t ̸= uc,k
n,t−1 (i.e. uc,k

n,t is the
edge unit). It is trained by minimizing the sum of edge unit prediction and edge duration prediction
losses:

LuLM =

N∑
n=1

(Ln
EU + Ln

ED) (3)

Ln
EU =

2∑
c=1

2∑
k=1

∑
t

uc,k
n,t ̸=uc,k

n,t−1

logP (uc,k
n,t|u

∗,k
n,1:t−1; Λ,Θ) (4)

Ln
ED =

2∑
c=1

2∑
k=1

∑
t

uc,k
n,t ̸=uc,k

n,t−1

∣∣∣dc,kn,t − d̂c,kn,t(u
∗,k
n,1:t; Λ,Θ)

∣∣∣ (5)

where N is the total number of utterances in a dialogue, d̂c,kn,t is the continuous duration prediction,
and Λ,Θ are prefix tokens and model parameters, respectively.
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A.3 INFERENCE PROCEDURE

An example of MS-DLM inference steps, where the total number of utterances N = 3 and the
context length C = 4, is illustrated in Figure A.2. The inference proceeds as follows:

n = 1 The phonemes of the first and second sentences are obtained using a grapheme-to-phoneme
tool. Since the first sentence will be uttered by speaker A, its phonemes on channel 2
are replaced with LIS tokens. Similarly, the phonemes of second sentence on channel 1
are replaced with LIS tokens. The prefix tokens are then prepared by combining these
phonemes with speaker IDs and some special tokens. Note that the context units may be
absent or shorter than the context length C for small n. The content and pitch units of the
first utterance are generated in an autoregressive manner until the EOS token is selected as
the content unit for any channel.

n = 2 The phonemes of the second and third sentences are obtained in the same manner. Prefix
tokens are prepared by incorporating the units generated at n = 1 as context units. Then,
the content and pitch units of the second utterance are similarly generated.

n = 3 Since the inference ends at n = 3, phonemes of the n + 1th sentence is not used in this
step. The content and pitch units generated in the second step are used as context units.
Note that since the context length C = 4 exceeds the length of units from the previous step
(only three units are generated in n = 2), context units are additionally derived from the
previous context units.

Each step does not rely on input sentences that extend beyond two sentences ahead. For instance,
the generation of the first utterance does not rely on the third sentence. This feature facilitates
continuous spoken dialogue generation when integrated with an LLM.

<s> S02 L L L NXT y a a CTX SEP 4 4 57 4 PAD

PAD <s> S02 L L L NXT y a a CTX SEP 4 4 57 4

BOS S01 h a i NXT LIS LIS LIS CTX SEP 97 82 4 4 PAD

Speaker Phoneme Content unit Pitch unit

PAD BOS S01 h a i NXT LIS LIS LIS CTX SEP 24 21 0 0

Content stream

Pitch stream

Special token

Ch. 2 (Speaker B)

Ch. 1 (Speaker A)

<s> S02 y a a NXT LIS LIS CTX 301 372 23 207 SEP 4 4 57 PAD

PAD <s> S02 y a a NXT LIS LIS CTX 301 372 23 207 SEP 4 4 57

BOS S01 LIS LIS LIS NXT o u CTX 97 82 4 4 SEP 96 96 52 PAD

PAD BOS S01 LIS LIS LIS NXT o u CTX 24 21 0 0 SEP 11 11 12

<s> S02 LIS LIS NXT CTX 301 372 23 207 SEP 4 4 57 4 PAD

PAD <s> S02 LIS LIS NXT CTX 301 372 23 207 SEP 4 4 57 4

BOS S01 o u NXT CTX 4 96 96 52 SEP 371 276 107 400 PAD

PAD BOS S01 o u NXT CTX 0 11 11 12 SEP 16 28 29 24

Content stream

Pitch stream

Content stream

Pitch stream

𝑛 = 1

𝑛 = 2

𝑛 = 3

Figure A.2: Conceptual diagram of inference steps with total number of utterances N = 3 and
context length C = 4.
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B EXPERIMENTAL SETUP DETAILS

B.1 DATASET AND PREPROCESSING

We collected audio recordings of 74 h comprising 538 dialogues conducted by 32 pairs with 54
Japanese speakers (certain speakers appeared in multiple pairs). These dialogues were divided into
474/32/32 for train/valid/test sets, respectively (valid and test sets included all speaker pairs). For
the recording sessions, two speakers entered separate soundproof rooms, where they could see and
hear each other through glass and via headphones, respectively. Conversations occurred freely and
captured in two-channel 96 kHz/24 bit audio.

The recorded 538 dialogues yielded 538 × 2 = 1, 076 audio files, which were downsampled to 16
and 24 kHz for the s2u and u2s modules, respectively. To eliminate volume discrepancies between
different channels and speaker pairs, we calculated the average dBFS of each audio file, and used
these averages to normalize the volume levels. Subsequently, the Silero VAD4 was employed for
voice activity detection. Further, we utilized the large model of whisper5(Radford et al., 2023) for
automatic speech recognition on the detected speech segments. Manual corrections for start times,
end times, and transcriptions were made for 645 of 1,076 files. Transcripts were automatically
converted into phonemes using Open JTalk6.

B.2 MODEL, TRAINING, AND INFERENCE

IPU Classifier: For the IPU classification task, we employed a 3-layer bidirectional LSTM with
the input embedding and hidden dimensions of 256 and 512, respectively. Training was conducted
on a single A100 80GB GPU with a batch size of 8,192 tokens, using the Adam optimizer (Kingma
& Ba, 2015) with an initial learning rate of 1 × 10−4 and betas of β1 = 0.9 and β2 = 0.98.
Our training set comprised 49,339 s-IPUs and 27,794 l-IPUs, and the model was trained over 20k
steps. The checkpoint with the lowest validation loss was selected for final use. When tested on
an evaluation set containing 2,604 s-IPUs and 1,930 l-IPUs, our classifier achieved an accuracy of
87.83%.

s2u module: For the s2u module, we used japanese-hubert-base7 model, a pre-trained HuBERT
base model trained on 19k h of Japanese speech, as a frontend for the content unit extractor. It
encodes 16 kHz speech into 768-dimensional continuous vectors at 50 Hz. The k-means++ (Arthur
& Vassilvitskii, 2007) clustering model was trained on our spoken dialogue dataset described in
appendix B.1. In line with Nguyen et al. (2023), the number of clusters was set to 500. The number
of bins for pitch unit extraction was 32, one of which was designated for unvoiced frames. The
WORLD vocoder (Morise et al., 2016) was used to extract pitch every 20 ms, yielding pitch units at
50 Hz.

uLM: We adopted the same hyperparameters as described by Nguyen et al. (2023), utilizing a
Transformer model comprising 6 layers, 4 of which were cross-attention layers, with 8 attention
heads per layer and an embedding size of 512. The context length C was 500, corresponding to
a 10-s waveform. The uLM’s vocabulary included 500 content units (with 32 shared with pitch
units), 39 phonemes, 9 special tokens, and a combined total of 3,298 speaker IDs (comprising 54 +
3, 244 entries). Special tokens included BOS, EOS, PAD, NXT, CTX, SEP, LIS, as described in
section 3.1.2, UNK for unknown input, and LAU for explicitly including laughter in the phoneme
sequences. However, outputs are limited to the content/pitch units, PAD, and EOS tokens by setting
the output probabilities for other tokens to zero.

A single-channel variant of our uLM was pre-trained on the CSJ dataset, where we simplified the
prefix tokens by omitting the phonemes of the next utterance and context units. The refined prefix
tokens took the following form:

BOS, sc, pcn,1, . . . , p
c
n,Mn

,SEP. (6)

4https://github.com/snakers4/silero-vad
5https://github.com/openai/whisper
6https://open-jtalk.sourceforge.net/
7https://huggingface.co/rinna/japanese-hubert-base
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Consequently, this phase of pre-training can be regarded as a conventional text-to-speech training.
This pre-training employed two A100 80GB GPUs, each managing a batch size of 30,000 tokens.
Optimization was performed over 100k steps using an Adam optimizer (Kingma & Ba, 2015) with
an inverse square root learning rate schedule, whose initial learning rate was set to 1×10−7, warmup
steps to 10k steps, and maximum learning rate to 5× 10−4. This required approximately 5 h.

Subsequently, we finetuned a two-channel uLM on all of the s-IPUs present in our spoken dialogue
dataset, which contained 82,060 utterances. As our uLM shares the weight across two Transformer
towers, two-channel uLM were warm-started with the pre-trained single-channel uLM weights.
Finetuning was conducted in the same configuration as pre-training; however, the maximum learning
rate was 1× 10−4, requiring approximately 11 h.

For decoding, we adopted nucleus sampling (Holtzman et al., 2020) with p = 0.9. Through empiri-
cal observation, we discerned that the top-20 sampling, as utilized for dGSLM (Nguyen et al., 2023),
produced speech signals misaligned with the input phonemes. This misalignment likely stems from
units with marginally lower probabilities, such as the top-19 or top-20 units, correlating with pro-
nunciations incongruent with the desired phoneme.

u2s module: Our u2s module received a global speaker ID with 50 Hz content and pitch units.
These discrete values were embedded into 128-dimensional continuous vectors, which were then
summed to produce 50 Hz input features. These features were subsequently upsampled by factors
of [10, 6, 4, 2] to obtain a 24 kHz waveform. Following Kong et al. (2020), we trained our u2s
module with the Adam optimizer, setting an initial learning rate to 2 × 10−4 and betas at β1 = 0.8
and β2 = 0.99. The model was optimized over 500k steps on a single A100 80GB GPU with a batch
size of 16 0.5-second speech segments, requiring approximately 32 h. Our training set consisted all
of the VAD speech segments from our spoken dialogue dataset, totalling 130,050 utterances. During
inference, we decoded the waveform for each channel and utterance individually, as excessive GPU
memory would be required to process the entire 5–10 minute dialogue at once.

C EFFECTS OF INTRODUCING PITCH UNITS

To explore the effect of the pitch units, we calculated PER for systems without pitch units in the same
manner as described in section 4.2. Additionally, we extracted F0 values from the generated speech
using the WORLD vocoder, calculated the mean and variance of the voiced frames, and averaged
them across all utterances. The results are summarized in Table C.1. Interestingly, the removal
of pitch units worsened the PER for Resynthesized, whereas it improved the PER for Baseline and
Proposed systems. Thus, the requirement to predict the pitch units rendered it difficult to predict the
accurate pronunciation, which is mostly determined by the content units. However, the F0 statistics
of systems with pitch units were consistently closer to those of Ground Truth than their pitch-ablated
counterparts, indicating that the pitch units were effective for generating expressive speech uttered
in spoken dialogues.

Table C.1: PER and pitch statistics measured in TTS setting. The lowest PER and F0 statistics
closest to the Ground Truth in each section are highlighted in bold.

METHOD PER ↓ F0 mean [Hz] F0 var [Hz2]

Ground Truth 8.95 191.6 2831.6

Resynthesized 11.49 189.2 2509.8
w/o pitch units 12.20 177.0 2202.8

Baseline 12.13 181.8 2271.1
w/o pitch units 11.61 173.7 1802.5

Proposed 13.03 186.2 2639.4
w/o pitch units 11.17 178.1 2234.4
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D BACKCHANNEL AND LAUGHTER EVALUATION

D.1 BACKCHANNEL CONTENT EVALUATION

We transcribed all backchannels in the Ground Truth and generated spoken dialogues using the
large model of whisper (Radford et al., 2023). Subsequently, we removed the trailing symbols (“!”,
“...”, “。”, etc.) and sorted them by their frequency. The results are shown in Table D.1. These
results indicate that our system is capable of appropriately generating backchannels used in actual
conversations.

Table D.1: Top-20 frequently used backchannels in Ground Truth and generated spoken dialogues.
Each Japanese transcripts were translated into English to match the meaning as closely as possible.

Ground Truth Proposed (Generated)
Freq. Transcript Pronunciation Translation Freq. Transcript Pronunciation Translation

261 うん un Uh-huh 148 うん un Uh-huh
87 んー nn Mm-hm 117 ん n Mm
58 はい hai Yes 77 んんん nnn Mmm
47 そう sou I see 62 んんっ nn Mm!
43 んんん nnn Mmm 26 んんんん nnnn Mm-hmm
43 ん n Mm 25 んん nn Mm-mm
32 うんうん unun Yeah yeah 24 んー nn Mm-hm
25 んんんん nnnn Mm-mm 24 はい hai Yes
23 あーー aaa Ah 14 ふぅ fuu (sigh)
21 うーん uun Hmm 12 そう sou I see
20 www (laugh) (laugh) 11 はいはい haihai Yes yes
17 はぁ ha Oh 11 うんうん unun Yeah yeah
16 そうそうそう sousousou Exactly 10 あ、そうなんだ a, sounanda Oh, is that so?
14 ふふっ fufu (chuckle) 8 フフフフフフフ fufufufufufu (laugh)
11 ねえ nee Hey 7 はぁ ha (sigh)
11 wwww (laugh) (laugh) 6 そうそうそう sousousou Exactly
11 んんっ nn Mm! 6 そうなんだ sounanda Oh, really?
10 んふふふ nfufufu (giggle) 6 んふふふ nfufufu (giggle)
9 はいはいはい haihaihai Yes yes yes 6 そうだね soudane That’s right
9 んーー nnn Mm-hmm 5 www (laugh) (laugh)

D.2 SPEAKER-SPECIFIC CHARACTERISTICS OF BACKCHANNELS

While the overall frequency of backchannels is summarized in Table 2, it actually varies from
speaker to speaker. To further probe the speaker characteristics, we computed the proportion of
backchannels 100× qBC/qALL for each speaker. The mean absolute error (MAE) and Pearson corre-
lation coefficient r between the Ground Truth and generated dialogues were calculated. The results
are listed in Table D.2. Proposed achieved the lowest MAE and exhibited a positive correlation
with Ground Truth. These results demonstrate that the proposed system can produce backchan-
nels in appropriate frequency, and the speaker characteristics are preserved in the generated spoken
dialogues.

Table D.2: Detailed comparison of backchannel frequency for individual speakers between the ref-
erence and generated dialogues. Values closest to the Ground Truth are bolded. Significance levels
of r are shown by †(‡p < 0.01, †p < 0.05).

METHOD MAE ↓ r ↑
Ground Truth 0.00 1.00‡

dGSLM 0.09 0.63‡

Baseline 0.18 0.40‡

Proposed 0.07 0.54‡

w/o TTM 0.14 0.54‡
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D.3 LAUGHTER EVALUATION

We applied an open-source laughter detection model8 (Gillick et al., 2021) to the generated spoken
dialogues. We then counted the instances of laughter and calculated their total duration. The results
are summarized in Table D.3. The frequency and duration of laughter generated by the proposed
system were closer to those of the Ground Truth compared to those of the Baseline and dGSLM
regardless of the existence of a turn-taking mechanism. Note that the Baseline, which cannot gen-
erate laughter on the listener side, generated a certain amount of laughter because the input written
dialogue often contained laughter. dGSLM could not utilize such written information, which led to
an underestimation of laughter frequency.

Table D.3: Laughter frequency and duration. Values closest to the Ground Truth are bolded.

METHOD Frequency Duration

Ground Truth 1268 2975

dGSLM 998 2443
Baseline 1011 2373
Proposed 1275 2810

w/o TTM 1280 3010

E SPEAKER-SPECIFIC CHARACTERISTICS OF TURN-TAKING EVENTS

We analyzed the speaker-specific characteristics of turn-taking event durations following the pro-
cedure detailed in appendix D.2. For each speaker, we calculated the median durations of the four
turn-taking events, IPU, pause, overlap, and gap. The results are presented in Figure E.1 with their
regression lines. The values from dGSLM and Proposed demonstrate positive correlations between
the reference and generated dialogues, indicating the preservation of speaker-specific characteris-
tics. Subsequently, we determined the MAE and Pearson’s r values between Ground Truth and
each system. The results are listed in Table E.1. The performance of Proposed was consistently
superior to Baseline and Proposed w/o TTM, and it achieved comparable results to dGSLM. More-
over, dGSLM leveraged 30 s of recorded speech, whereas Proposed did not. Therefore, we conclude
that the proposed system effectively utilized the speaker information in the prompt tokens, facili-
tating the reproduction of the general aspects of turn-taking and the specific characteristics of each
individual speaker.

Table E.1: Detailed comparison of turn-taking event durations for individual speakers between the
reference and generated dialogues. Values closest to the Ground Truth are bolded. Significance
levels of r are shown by †(‡p < 0.01, †p < 0.05).

METHOD IPU PAUSE OVERLAP GAP
MAE ↓ r ↑ MAE ↓ r ↑ MAE ↓ r ↑ MAE ↓ r ↑

Ground Truth 0.00 1.00‡ 0.00 1.00‡ 0.00 1.00‡ 0.00 1.00‡

dGSLM 0.25 0.35† 0.09 0.42‡ 0.13 0.50‡ 0.06 0.42‡

Baseline 1.40 0.38‡ 0.14 0.16 0.32 0.04 0.33 0.01
Proposed 0.24 0.63‡ 0.08 0.42‡ 0.10 0.42‡ 0.08 0.34†

w/o TTM 0.34 0.52‡ 0.16 −0.09 0.11 0.35‡ 0.12 0.21

8https://github.com/jrgillick/laughter-detection
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Figure E.1: Scatter plot and regression line of the median duration of each speaker’s turn-taking
events, with the 95% confidence intervals indicated by the shaded region. Each point indicates a
different speaker.
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F HUMAN EVALUATION CRITERIA

For better reproducibility, the instruction used in our human evaluation is presented below. Please
note that this instruction is translated from Japanese.

Please listen to the following audio of friends chatting casually through head-
phones and evaluate its quality based on these three criteria:

• Dialogue Naturalness: Are backchannels and laughter appropriately included
to create a human-like interaction? Is there a seamless transition between
the speaker and listener at the right moments? Does the conversation flow
smoothly?

• Meaningfulness: Does the dialogue have meaningful content, and is it possi-
ble to understand what is being said?

• Sound Quality: Is the sound clear and easy to hear, free from noise or other
distractions?

Please rate each item on a scale of 1 (bad) to 5 (excellent). When evaluating each
criterion, do not consider the other criteria. For example, if the content is in-
comprehensible but the interaction sounds human-like, rate Dialogue Naturalness
highly.

G GENERATION CASE STUDIES

We present examples of written dialogues (Table G.1, Table G.2) and the generated spoken dialogues
using the proposed system (Figure G.1, Figure G.2). These examples correspond to the test-set
sample 1 and 2 of our demo page9. Although the original dialogues are in Japanese, we provide
their English translation for better readability. As we expected, the entire spoken dialogue closely
follows the input written dialogue, with appropriate generation of backchannels and laughter on
the listener side. Additionally, some utterances slightly overlap with previous ones, facilitating
natural turn-taking. Furthermore, our system can generate laughter on the speaker side by explicitly
including a laughter tag (LAU) in the written dialogue, as demonstrated in the sixth segment of
Figure G.2. However, upon closer examination of the fourth utterance of Figure G.2, it is observed
that the laughter from speaker B is not generated, and instead, the generation of speaker A’s utterance
begins. This indicates areas for improvement such as ensuring accurate synthesis of the input text
content and addressing the issue of too rapid onset of utterance overlap.

Table G.1: The first example of a written dialogue input with utterance index n.

n Original Script Translated Script

1 A:見たりしますね A: I do watch it.
2 B: え、すごい、実写かぁ、えっ、エフェクトつ

ける
B: Oh, that’s cool, it’s live-action, huh, with effects.

3 B: ってことはあれだよねー、あのー、編集し
て、実際の

B: So that means, um, editing it, the actual

4 B:動きは人間がやって、 B: movements are done by humans,
5 B:なんかやってみた感 B: kind of giving it a try.
6 A:もうなんかこう、光をこう、ラケットとボー

ルが当たる瞬間にこう入れてみたりとか
A: I just, like, tried adding light, like, at the moment
the racket hits the ball,

7 A:なんかそのー、ボールがそのー、えー、コー
トに着地した時に、その着地したところが崩れ
るエフェクトがあって、なんか穴がコートに開
くみたいな

A: like, when the ball, um, lands on the court, there’s
an effect where the landing spot crumbles, like a hole
opens up in the court.

8 B:うわっ B: Woah
9 B:そこまでやっちゃうんだ B: You go that far.
10 A:そうなんですよ A: Yes, that’s right.

9https://anonresearch81.github.io/research/publications/CHATS/
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A

B

Backchannel Overlap

Figure G.1: The first example of a generated spoken dialogue. Dashed lines indicate the boundaries
of each utterance, and the numbers from 1 to 10 indicate the indices of the utterances.

Table G.2: The second example of a written dialogue input with utterance index n.

n Original Script Translated Script

1 B:なかなかないよね B: It’s pretty rare, isn’t it?
2 A:ふーん、自分で行く、よね、それこそファー

ストフード
A: Hmm, you’d go there yourself, right, especially for
fast food.

3 A:くらい、よ A: At least, right.
4 B: (LAU) B: (LAU)
5 A:お安い、回転寿司の方が落ち着くし A: It’s cheaper, and I feel more at ease at conveyor belt

sushi places.
6 A:ねー、いっぱい食べれるしね(LAU)、そうなの

よ、結局ね、結局そうなんですよ、結局、そう
なる、そこに行くんです

A: Right? You can eat a lot (LAU), exactly, in the end,
that’s what it comes down to, eventually, that’s where
we go.

7 A:やっぱりすごいです A: It’s really amazing.
8 B:うん、チェーン店は、偉大ということで B: Yeah, chain stores are, in a sense, remarkable.
9 B:はい、一旦これで、おわりでいい? B: Alright, can we conclude this for now?
10 A:はい、いいですかね A: Yes, is that okay?

A

B

Backchannel Laughter Overlap

Figure G.2: The second example of a generated spoken dialogue. Dashed lines indicate the bound-
aries of each utterance, and the numbers from 1 to 10 indicate the indices of the utterances.
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