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Abstract
Knowledge Graphs (KGs) are pivotal in advanc-001
ing AI applications, and their extension into002
multi-modal dimensions (MMKGs) is open-003
ing new avenues for innovation. This survey004
systematically defines MMKGs, charts their005
construction progress, and analyzes existing006
MMKG-related tasks. We provide detailed007
task definitions, evaluation benchmarks, and008
insights into significant breakthroughs, while009
also discussing current challenges and high-010
lighting emerging trends in the field.011

1 Introduction012

Knowledge Graphs (KGs) play a critical role013

in structuring long-tail knowledge and serve as014

foundational elements in many successful AI sys-015

tems (Hogan et al., 2022). While traditional KGs016

offer considerable benefits, their focus on single-017

modality knowledge restricts their applicability to018

multi-modal tasks. For example, scenarios with019

complex visual details are difficult to enhance020

solely through text-based knowledge, highlight-021

ing the need for Multi-Modal Knowledge Graphs022

(MMKGs) that incorporate symbols from other023

modalities (e.g., Vision). This integration offers024

a viable strategy for overcoming the limitations025

of traditional KGs and broadening their capabil-026

ities, as illustrated in Fig. 1. Within this paper,027

we first trace the progression from conventional028

KGs to MMKGs, noting the evolving focus within029

the semantic web community. We then carefully030

explore the impact of multi-modal techniques on031

KGs, discussing both their current state and future032

prospects. Detailed analysis covers methodologi-033

cal developments within each task and benchmarks034

key areas, enabling effective comparison across035

tasks. Focusing primarily on research from the past036

three years, we also includes a discussion on the037

recent advancements in Large Language Models038

(LLMs), exploring their synergies with the afore-039

mentioned topics. In summary, this survey aims040

Figure 1: Roadmap for Multi-Modal Knowledge Graph
construction and application.

to offer a comprehensive, insightful overview of 041

the MMKG field, offering deep insights into the 042

evolving landscape and guiding future studies. 043

2 Preliminaries 044

Knowledge Graphs. KGs represent entities and 045

their relationships in a graph structure, where nodes 046

symbolize real-world entities or atomic values (at- 047

tributes), and edges denote relations. Knowledge 048

in KG is often captured in triples, with an ontology- 049

based schema defining basic entity classes and their 050

relations in a taxonomic structure. A KG is de- 051

fined as G = E ,R, T , with entities E , relations 052

R, and statements T . Statements include rela- 053

tional fact triples (h, r, t) (i.e., TR = E ×R× E), 054

where h is the head entity, r is the relation, and t 055

is the tail entity, or attribute triples (e, a, v) (i.e., 056

TA = E × A × V), where e is an entity, a is an 057

attribute, and v is the attribute’s value. v can be 058

literals such as strings or dates and may include 059

metadata like labels and textual definitions. 060

Ontology. Within the semantic web community, 061

ontologies serve as KG schemas with key features 062

including: (i) Hierarchical classes, often termed as 063

concepts; (ii) Properties that specify the terms used 064

in relations; (iii) Hierarchies involving both con- 065

cepts and relations; (iv) Constraints, including the 066

domain and range of relations, as well as class dis- 067

jointness; (v) Logical expressions that encompass 068

relation composition. 069
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Figure 2: Comprehensive Overview of Multi-modal Knowledge graph research. Due to space constraints and
task overlaps, we focus on the most representative sub-tasks in each category (Acquisition, Fusion & Inference,
Application) to maximize relevant content coverage. Additional content is analyzed in the Appendix3.

Languages like RDF, RDFS1, and OWL2 intro-070

duce built-in vocabularies to capture these knowl-071

edge elements, ensuring richer semantics and supe-072

rior quality (Horrocks, 2008) with predicates like073

rdfs:subClassOf denoting concept subsumption.074

Multi-modal Knowledge Graphs. A KG qual-075

ifies as multi-modal (MMKG) when it contains076

knowledge symbols expressed in multiple modali-077

ties, which can include, but are not limited to, text,078

images, sound, or video. This survey distinguishes079

between two MMKG representation methods, A-080

MMKG and N-MMKG, as inspired by Zhu et al.081

(2022a), where A-MMKGs treat images as entity082

attributes, and N-MMKGs allow images to stand083

as independent entities with direct relationships:084

• A-MMKG utilizes multi-modal data (e.g., im-085

ages) as specific attribute values for entities or086

concepts, with TA = E × A× (VKG ∪ VMM ),087

where VKG and VMM are values of KG and088

multi-modal data, respectively.089

• N-MMKG treats multi-modal data as KG enti-090

ties, with TR = (EKG ∪ EMM )×R× (EKG ∪091

EMM ), separating typical KG entities (EKG)092

from multi-modal entities (EMM ).093

Given the convenience in data access and simi-094

larity to traditional KGs, A-MMKG forms the basis095

for most current applications or methods in MMKG096

research, as elaborated in § 4.3 and § 4.4.097

MMKG Construction. We outline two principal098

paradigms following Zhu et al. (2022b):099

(i) Annotating Images with Symbols from a KG,100

which prioritizes the extraction of visual entities/-101

concepts, relations, and events, crucial for the dy-102

namic creation of KGs like scene and event graphs103

(Ma et al., 2022). This approach, however, faces104

1RDF Schema, https://www.w3.org/TR/rdf-schema/
2Web Ontology Language, https://www.w3.org/TR/

owl2-overview/
3For a focused discussion, most method references, de-

tailed descriptions and benchmarks are organized in the
Appendix for readers interested in tracing the original sources.

challenges in representing infrequent (i.e., long- 105

tail) multi-modal knowledge, primarily due to the 106

recurrent depiction of common real-world entities 107

across diverse contexts. The use of supervised 108

methods further compounds these challenges, as 109

they are inherently constrained by the finite scope 110

of pre-existing labels. Moreover, those systems 111

demands substantial pre-processing, including the 112

formulation of specific rules, the creation of pre- 113

determined entity lists, and the application of pre- 114

trained detectors and classifiers, all of which pose 115

significant scalability challenges (Li et al., 2020a). 116

Typical construction methods for most of the 117

current MMKG is (ii) Grounding KG Symbols to 118

Images, which involves: entity grounding (i.e., as- 119

sociating entities with corresponding images from 120

online sources (Oñoro-Rubio et al., 2019)), concept 121

grounding (i.e., selecting diverse, representative im- 122

ages for visual concepts and abstracting common 123

visual features), and relation grounding (i.e., choos- 124

ing images that semantically mirror the relation of 125

the input triples). Nevertheless, considering the 126

scale factor, this paradigm currently poses the prin- 127

cipal challenge in large-scale MMKG construction. 128

3 MMKG Evolution 129

In Appendix A.2.2 and Tab. 1, we provide a de- 130

tailed exposition of MMKG-related work prior to 131

2021, initially centered on defining MMKG con- 132

cepts and frameworks. Recently, the focus in the 133

MMKG community has shifted from Construc- 134

tion to Refinement and Application. Specifically, 135

Peng et al. (2022) explore image quality control in 136

MMKG construction through an Image Refining 137

Framework that uses clustering for de-duplication 138

and noise reduction, taps into Wikidata for entity 139

descriptions, and relies on a pre-trained model to 140

gauge image-text similarity, discarding images be- 141

low a certain relevance threshold. In MMKG con- 142

struction, accurately aligning concepts with their 143

corresponding images is crucial. The challenge 144

arises from distinguishing between visualizable 145
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Table 1: Overview of various MMKGs, detailing their publish (Pub.) time, types, scale, data sources, and supported
(Sup.) tasks, where symbol ∗ indicates the inclusion of triple-level multi-modal information within the MMKG.
Not that only part of the Sup. tasks are listed that have been experimentally validated in original studies, although
MMKGs have a wider potential task range. The key distinctions among nodes, entities, and concepts are based
on their representation: entities typically correspond directly to real-world object names, nodes include both these
entities and textual elements (Alberts et al., 2020) like Wikipedia articles, and concept is a further decomposition of
entity where each entity has multiple concepts, corresponding to different aspects such as “culture”, “geography”,
and “history” (Zhang et al., 2023a; Zha et al., 2023). Besides, this table primarily lists MMKGs in general visual
multi-modal scenarios, excluding other event-based or domain-specific MMKGs like ManipMob-MMKG (Song
et al., 2023c), which focuses on indoor scenes. Abbreviations used: Data source: CN (ConceptNet); DBP
(DBpedia); Freebase (FB); VG (VisualGenome); WP (Wikipedia); WN (WordNet); WD (Wikidata); Wikimedia
(WM); Web Search Engine (WSE); YG (YAGO). Tasks: Image Classification (IMGC); Cross-Modal Retrieval
(CMR); Object Detection (OD); Scene Graph Generation (SGG); Visual Question Anwering (VQA); Concept
Understanding (CU); Multi-modal Knowledge Graph Completion (MKGC), Knowledge Graph Reasoning (MKGR),
Entity Alignment (MMEA), Entity Linking (MMEL) and Information Extraction (MMIE).

Pub. Time MMKGs Types Scale (#nodes / #images) Data Sources Sup. Tasks

2013-12 NEIL (Chen et al., 2013) N-MMKG 1152 (classes) / 300K WN / Image WSE OD, etc.
2014-09 ImageNet (Russakovsky et al., 2015) A-MMKG 21K (classes) / 3.2M WN / Image WSE IMGC, OD, etc.
2016-02 VisualGenome (Krishna et al., 2017) A-MMKG 35 (classes) / 108K WN / MS COCO / YFCC (Thomee et al., 2016) SGG, VQA, etc.
2016-09 WN9-IMG (Xie et al., 2017) A-MMKG 6.5K (entities) / 14K WN / ImageNet MKGC
2017-01 ImageGraph (Liu et al., 2017) A-MMKG 15K (entities) / 837K FB / Image WSE CMR
2017-10 IMGpedia (Ferrada et al., 2017) N-MMKG 2.6M (entities) / 15M DBP / WM Commons CMR
2019-03 MMKG (Liu et al., 2019b) A-MMKG 45K (entities) / 37K FB / DBP / YG / Image WSE MMEA, MKGC
2020-07 GAIA (Li et al., 2020a) N-MMKG 457K (entities) / NA FB / GeoNames / News Websites MMIE
2020-08 VisualSem (Alberts et al., 2020) N-MMKG 90K (nodes) / 938K WP / WN / ImageNet CMR
2020-09 DBP-DWY-Vis (Liu et al., 2021) A-MMKG 178K (entities) / 117K WP / DBP15k (Sun et al., 2017) / DWY15K (Guo et al., 2019) MMEA
2020-12 Richpedia (Wang et al., 2020) N-MMKG 2.8M (entities) / 2.9M WD / WM / Image WSE MMKG Querying
2021-06 RESIN (Wen et al., 2021) N-MMKG 51K (events) / NA WD / News Websites MMIE
2022-10 MKG-W&Y (Xu et al., 2022b) A-MMKG 30K (entities) / 29K OpenEA (Sun et al., 2020c) / Image WSE MKGC
2022-10 MarKG (Zhang et al., 2023b) A-MMKG 11K (entities) / 76K WD / Image WSE MKGR
2023-02 Multi-OpenEA (Li et al., 2023l) A-MMKG 920K (entities) / 2.7M OpenEA / Image WSE MMEA
2023-03 UKnow (Gong et al., 2023) N-MMKG 1.4M (entities) / 1.1M WP / Image WSE MKGC, CMR
2023-07 UMVM (Chen et al., 2023f) A-MMKG 238K (entities) / 205K DBP-DWY-Vis / Multi-OpenEA MMEA
2023-08 AspectMMKG (Zhang et al., 2023a) A-MMKG 2.3K (entities) / 645K WP / Image WSE MMEL
2023-10 TIVA-KG (Wang et al., 2023h) A-MMKG∗ 440K (entities) / 1.7M CN / Image WSE MKGC
2023-11 MMpedia (Wu et al., 2023b) A-MMKG 2.7M (entities) / 19.5M DBP / Image WSE MKGC

2023-12 VTKGs (Lee et al., 2023) A-MMKG∗ 43K (entities) / 460K
CN / WN / UnRel (Peyre et al., 2017) / VRD (Lu et al., 2016)
HICO-DET (Chao et al., 2018) / VisKE (Sadeghi et al., 2015)

MKGC

2023-12 M2ConceptBase (Zha et al., 2023) A-MMKG 152K (concepts) / 951K Wukong (Gu et al., 2022) / Baidu Encyclopedia VQA, CU

concepts (VCs), like “dog”, which have clear vi-146

sual representations, and non-visualizable concepts147

(NVCs), such as “mind” or “texture”, which lack148

direct visual counterparts. Jiang et al. (2022) intro-149

duce a visual concept classifier that identifies VCs150

and NVCs, utilizing ImageNet instances to exem-151

plify the former. This initial binary classification152

is just a preliminary step, as the main challenge153

in MMKG construction involves selecting repre-154

sentative images for entities, potentially through155

clustering methods like K-means or spectral clus-156

tering (Zhu et al., 2022b). Building upon this,157

Zhang et al. (2023a) introduce AspectMMKG,158

enriching MMKGs by associating entities with159

aspect-specific images and refining image selection160

with a trained model. Besides, Wu et al. (2023b)161

present MMpedia, a scalable, high-quality MMKG162

constructed via a pipeline that leverages DBpedia163

(Auer et al., 2007) to filter NVCs and refine entity-164

related images using textual and type information.165

Toward addressing complex multi-modal scenar-166

ios and further automating MMKG construction,167

Gong et al. (2023) introduce UKnow, a unified168

knowledge protocol that categorizes N-MMKG 169

triples into five unit types: in-image, in-text, cross- 170

image, cross-text, and image-text. They establish 171

a pipeline convert existing datasets into UKnow’s 172

format, simplifying the creation of new datasets 173

from existing image-text pairs. Additionally, Zha 174

et al. (2023) present M2ConceptBase, a multi- 175

modal conceptual MMKG framework. Initially, 176

they extract candidate concepts from textual de- 177

scriptions in image-text pairs and refine them using 178

rule-based filters. These concepts are then aligned 179

with corresponding images and detailed descrip- 180

tions through context-aware multi-modal symbol 181

grounding. For concepts not fully grounded, GPT- 182

3.5-Turbo generates supplementary descriptions. 183

Wang et al. (2023h) investigate the impact of dif- 184

ferent modalities in Link Prediction via TIVA-KG, 185

an MMKG covering text, image, video, and audio. 186

Built upon the foundation of ConceptNet (Speer 187

et al., 2017), TIVA-KG supports triplet grounding 188

(i.e., associating a common-sense triplet with tan- 189

gible representations like images). Similarly, Lee 190

et al. (2023) propose VTKGs, where images are 191

3



Figure 3: Representative N-MMKG ontologies and corresponding MMKG examples using those ontologies.

attached to both entities/triplets, and each entity/re-192

lation is accompanied by textual descriptions.193

N-MMKG Ontology: URI prefixes are crucial in194

ontologies, uniquely identifying classes and prop-195

erties and ensuring compliance with RDF stan-196

dards. Standard prefixes (e.g., rdf, rdfs, owl) ensure197

cross-domain consistency, while custom ones (e.g.,198

imo for IMGpedia and rpo for Richpedia) bring in199

domain-specific nuances. Fig. 3 visualizes the evo-200

lutionary trajectory of MMKG ontologies (detailed201

in Appendix A.2.2), highlighting the unique chal-202

lenges N-MMKGs face: (i) An individual entity203

may exhibit multiple visual representations (i.e.,204

varied aspects). (ii) Efficiently extracting informa-205

tion from visual modalities across entities is cru-206

cial. (iii) Development of diverse multi-modal rep-207

resentation methods can extend from entity-level208

to relation and triple-level, as explored in recent209

works (Wang et al., 2023h; Lee et al., 2023).210

4 Multi-modal Knowledge Graph Tasks211

4.1 MMKG Representation Learning212

Late Fusion methods emphasize modality inter-213

actions and feature aggregation just prior to output214

generation (Fig. 9 (a)). MKGRL-MS (Wang et al.,215

2022b) crafts unique single-modal embeddings,216

employing multi-head self-attention to determine217

each modality’s contribution to semantic compo-218

sition and sum the weighted multi-modal features219

for MMKG entity representation. MMKRL (Lu220

et al., 2022b) learns cross-modal embeddings in a221

unified translational semantic space, merging them222

through concatenation. DuMF (Li et al., 2022c)223

applies a bilinear layer for feature projection and an224

attention block for modality preference learning in 225

each track, integrating features via a gate network. 226

Early Fusion methods integrate multi-modal fea- 227

ture at an initial stage, enabling full modality in- 228

teractions for complex reasoning (Fig. 9 (b)). Fang 229

et al. (2023b) first normalizes entity modalities into 230

a unified embedding using an MLP, then refines 231

them by contrasting with perturbed negative sam- 232

ples. MMRotatH (Wei et al., 2023b) utilizes a 233

gated encoder to merge textual and structural data, 234

filtering irrelevant information within a rotational 235

dynamics-based KGE framework. Recent studies 236

(Lee et al., 2023) utilize (V)PLMs like BERT and 237

ViT for multi-modal data integration. They format 238

graph structures, text, and images into sequences or 239

dense embeddings compatible with LMs, thereby 240

utilizing the LMs’ reasoning capabilities and the 241

knowledge embedded in their parameters to sup- 242

port tasks such as Multi-modal Link Prediction. 243

4.2 MMKG Acquisition 244

As the first step in MMKG construction (Fig. 1), 245

MMKG Acquisition (or Extraction), involves inte- 246

grating multi-modal data from sources like search 247

engines or public databases to enhance existing 248

KGs or develop new MMKGs. 249

Named Entity Recognition (NER) identifies and 250

classifies named entities in text into categories like 251

persons, organizations, and locations. For example, 252

in the sentence “Apple Inc. is founded by Steve Jobs 253

in California”, NER models would identify “Apple 254

Inc.” as an organization, “Steve Jobs” as a per- 255

son, and “California” as a location. Multi-modal 256

Named Entity Recognition (MNER) extends this 257
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(§ 2) MMKG
Construction

Large-scale
MMKG

A-MMKG
ImageNet (Deng et al., 2009), VisualGenome (Krishna et al., 2017), ImageGraph (Oñoro-Rubio et al., 2019), MMKG (Liu et al., 2019b),
VisualSem (Alberts et al., 2020), AspectMMKG (Zhang et al., 2023a), MMpedia (Wu et al., 2023b), TIVA-KG (Wang et al., 2023h),
VTKGs (Lee et al., 2023), M2ConceptBase (Zha et al., 2023)

N-MMKG NEIL (Chen et al., 2013), IMGpedia (Ferrada et al., 2017), GAIA (Li et al., 2020a), VisualSem (Alberts et al., 2020),
Richpedia (Wang et al., 2020), RESIN (Wen et al., 2021), UKnow (Gong et al., 2023)

Quality
Improvement Image Refining Framework (Peng et al., 2022), Filter Non-visual Entities (Jiang et al., 2022; Wu et al., 2023b), Scene-Driven MMKG (Song et al., 2023c)

Task-specific
MMKG

WN9-IMG (Xie et al., 2017), MMKG (Liu et al., 2019b), DBP-DWY-Vis (Liu et al., 2021), MKG-W & MKG-Y (Xu et al., 2022b),
Multi-OpenEA (Li et al., 2023l), MMEA-UMVM (Chen et al., 2023f), MarKG (Zhang et al., 2023b), TIVA-KG (Wang et al., 2023h)

(§ 4.2) MMKG
Acquisition

(§ ??) Named
Entity

Recognition

OCSGA (Wu et al., 2020b), RpBERT (Sun et al., 2021a), MEGA (Zheng et al., 2021a), IAIK (Chen et al., 2021b), RIVA (Sun et al., 2020a),
UMT (Yu et al., 2020), UMGF (Zhang et al., 2021a), UAMNer (Liu et al., 2022b), CAT-MNER (Wang et al., 2022j), MAF (Xu et al., 2022a),
SMVAE (Zhou et al., 2022), HVPNeT (Chen et al., 2022d), FMIT (Lu et al., 2022a), MRC-MNER (Jia et al., 2022), GEI (Zhao et al., 2022b),
DCM-GCN (Zhang et al., 2023k), R-GCN (Zhao et al., 2022a), MPMRC (Bao et al., 2023), TISGF (?), MNER-QG (Jia et al., 2023),
DebiasCL (Zhang et al., 2023e), MKGformer (Chen et al., 2022c), DGCF (Mai et al., 2023), MMIB (Cui et al., 2023b), ITA (Wang et al., 2022g),
PromptMNER (Wang et al., 2022i), BFCL (Wang et al., 2023d), MoRe (Wang et al., 2022e), MGICL (Guo et al., 2023a),
PGIM (Li et al., 2023c), PROMU (Hu et al., 2023a), HamLearning (Liu et al., 2023b), MGCMT (Liu et al., 2024b)

(§ ??) Relation
Extraction

MNRE (Zheng et al., 2021b), MEGA (Zheng et al., 2021a), MoRe (Wang et al., 2022e), HVPNet (Chen et al., 2022d), MKGformer (Chen et al., 2022c),
Iformer (Li et al., 2023f), MRE-ISE (Wu et al., 2023a), DGF-PT (Li et al., 2023g), MMIB (Cui et al., 2023b), Hu et al. (Hu et al., 2023b),
ReXMiner (Wang and Shang, 2023), PROMU (Hu et al., 2023a)

(§ A.4.2) Event
Extraction

Image-Text: WASE (Li et al., 2020b), CLIP-EVENT (Li et al., 2022b), UniCL (Liu et al., 2022a), CAMEL (Du et al., 2023b); Video-Text: JMMT
(Chen et al., 2021a), CoCoEE (Wang et al., 2023e), TSEE (Li et al., 2023a), Zero-shot (Liu et al., 2022a), Few-shot (Moghimifar et al., 2023)

(§ 4.3) MMKG
Fusion

(§ ??) Entity
Alignment

MMEA (Chen et al., 2020), HMEA (Guo et al., 2021), EVA (Liu et al., 2021), MSNEA (Chen et al., 2022b), MCLEA (Lin et al., 2022),
MultiJAF (Cheng et al., 2022), ACK-MMEA (Li et al., 2023h), SKEA (Su et al., 2023), EIEA (Li et al., 2023b), MoAlign (Li et al., 2023i),
PathFusion (Zhu et al., 2023b), XGEA (Xu et al., 2023a), DFMKE (Zhu et al., 2023d), Wang et al. (Wang et al., 2023c),
MEAformer (Chen et al., 2023e), UMAEA (Chen et al., 2023f), GEEA (Guo et al., 2023b), PSNEA (Ni et al., 2023)

(§ A.5.2) Entity
Linking & (§ A.5.3)

Disambiguation

DZMNED (Moon et al., 2018a), BLINK (Wu et al., 2020a), JMEL (Adjali et al., 2020), ET (Adjali et al., 2020), ALBEF (Li et al., 2021),
GENRE (Cao et al., 2021), GHMFC (Wang et al., 2022d), IMN (Zhang and Huang, 2022), METER (Dou et al., 2022), MMEL (Yang et al., 2023),
MIMIC (Luo et al., 2023), Kuaipedia (Pan et al., 2022a), GDMM (Wang et al., 2023f), GEMEL (Shi et al., 2023), DWE (Song et al., 2023b)

(§ 4.4) MMKG
Inference

(§ ??) Knowledge
Graph Completion

IKRL (Xie et al., 2017), TBKGC (Sergieh et al., 2018), MKBE (Pezeshkpour et al., 2018), TransAE (Wang et al., 2019), RSME (Wang et al., 2021b),
VBKGC (Zhang and Zhang, 2022), OTKGE (Cao et al., 2022b), MoSE (Zhao et al., 2022c), MMKRL (Lu et al., 2022b), MANS (Zhang et al., 2023f),
MMRNS (Xu et al., 2022c), MKGformer (Chen et al., 2022c), IMF (Li et al., 2023k), MultiFORM (Zhang et al., 2022b), CamE (Xu et al., 2023c),
CMGNN (Fang et al., 2023a), SGMPT (Liang et al., 2023a), HRGAT (Liang et al., 2023b), QEB (Wang et al., 2023h), VISITA (Lee et al., 2023)

(§ A.7.1) Knowledge
Graphs Reasoning MMKGR (Zheng et al., 2023a), TMR (Zheng et al., 2023b), MarT (Zhang et al., 2023b)

(§ 4.5) MMKG-
driven Tasks

Image Retrieval (Liu et al., 2017; Ferrada et al., 2017; Alberts et al., 2020), Cross-modal Retrieval (Chen et al., 2021b; Huang et al., 2022; Feng et al., 2023; Zeng et al., 2023),
Reasoning (Zha et al., 2023), Generation (Zhao et al., 2021; Jin and Chen, 2023), Pre-training: Triple-level (Pan et al., 2022b); Graph-level (Gong et al., 2023; Li et al., 2023j),
Industry Application (Zhu et al., 2021; Xu et al., 2021; Wang et al., 2023g; Sun et al., 2023a, 2020b; Cao et al., 2022a)

Figure 4: Taxonomy of the Multi-modal Knowledge Graph Realm, with the "Multi-modal" prefix omitted for clarity.

Figure 5: Illustrative examples demonstrating the appli-
cation scenarios for MNER (left) and MMRE (right).

process by incorporating visual information(Chen258

et al., 2023d). Similarly, Relation Extraction (RE)259

detects and classifies semantic relationships be-260

tween entities within text identifying a “founded by”261

relationship between “Apple Inc.” and “Steve Jobs”262

in the same sentence. Multi-modal Relation Ex-263

traction (MMRE) uses visual cues to enrich these264

analyses, proving effective in contexts like news265

articles where text accompanies images or videos.266

For further details, see Appendix A.4.1 and Fig. 5.267

MNER. (i) BiLSTM-based Methods (Moon268

et al., 2018b) primarily employ a modality atten-269

tion network to combine text and image features,270

incorporating a visual attention gate within LSTM271

to better recognize named entities in social media272

posts. (ii) PLM-based Methods (Yu et al., 2020)273

modifies the standard PLM (e.g., BERT) structure274

for MNER by adding a Transformer layer for en- 275

hanced text representation and a cross-modal Trans- 276

former for visual integration. Some of them find 277

visual inputs effective in identifying entity types 278

but not spans, leading to the inclusion of a text- 279

only module for more accurate entity span detec- 280

tion. (iii) Special Cases: Certain studies address 281

unique challenges in MNER. For example, Debi- 282

asCL (Zhang et al., 2023e) focuses on bias miti- 283

gation in MNER through a visual object density- 284

guided hard sample mining strategy and a debiased 285

contrastive loss. 286

MMRE. Zheng et al. (2021b) first demonstrate 287

how multi-modal data can bridge semantic gaps 288

and improve social media text analysis. Build- 289

ing on this, works like (Zheng et al., 2021a; Wu 290

et al., 2023a) introduce a textual-visual relation 291

alignment method that synchronizes sentence pars- 292

ing trees with visual scene graphs for more precise 293

MMRE. Similarly, PLM-based methods (Chen 294

et al., 2022d; Li et al., 2023g) employ approaches 295

akin to those in MNER. 296

4.3 MMKG Fusion 297

The proliferation of heterogeneous data across the 298

Internet has led to the creation of numerous inde- 299
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pendent MMKGs. Integrating these from diverse300

sources is essential, making MMKG fusion a criti-301

cal stage in large-scale MMKG construction. Entity302

Alignment (EA) is pivotal for KG integration, aim-303

ing to match identical entities across different KGs304

by leveraging their relational, attributive, and literal305

(surface) features. Multi-Modal Entity Alignment306

(MMEA) extend EA by incorporating visual data307

from MMKGs, linking each entity with images to308

improve accuracy (Liu et al., 2019b).309

MMEA: Current MMEA research falls into two310

streams based on underlying motivation. (i) Ex-311

ploring better cross-KG modality feature fusion:312

Techniques include extending MMKG representa-313

tion from Euclidean to hyperbolic space for better314

geometric interpretation (Guo et al., 2021); assign-315

ing different importance to each modality via a316

global-level attention (Liu et al., 2021) or instance-317

level transformer (Chen et al., 2023e; Li et al.,318

2023i; Wang et al., 2024a) mechanism; strengthen-319

ing this process through contrastive learning (Lin320

et al., 2022); leveraging visual cues to guide rela-321

tional feature learning and prioritize valuable at-322

tributes for alignment (Chen et al., 2022b).323

(ii) Analyzing practical limitations and chal-324

lenges in MMKG alignment: The inherent in-325

completeness of visual data in MMKGs is a chal-326

lenge as many entities lack images. Additionally,327

the intrinsic ambiguity of visual images impacts328

alignment quality due to multiple visual aspects329

per entity, as detailed in § 2. Wang et al. (2023c)330

address image-type mismatches in aligned multi-331

modal entities by using pre-defined ontologies and332

an image type classifier to filter out incongruent333

images. Chen et al. (2023f) explore the effects of334

training noise from high rates of missing modali-335

ties. Guo et al. (2023b) tackle the issue of dangling336

entities, which lack counterparts in the target KG,337

by generating new entities conditionally or uncon-338

ditionally using a mutual variational autoencoder.339

4.4 MMKG Inference340

MMKG data inherently contain missing elements,341

errors, and contradictions, making inference a criti-342

cal task for MMKG completion (Fig. 1). The goal343

of MKGC is to enrich the relational triple set TR in344

A-MMKGs by identifying missing relational triples345

among entities and relations, potentially using at-346

tribute triples TA. Specifically, Entity Prediction347

identifies missing head or tail entities in queries348

(h, r, ?) or (?, r, t); Relation Prediction pinpoints349

missing relations in (h, ?, t); Triple Classification 350

determines the truth of triples (h, r, t). Notably, 351

most current MKGC efforts focus on Entity Predic- 352

tion, also known as Link Prediction. 353

MKGC: Mainstream MKGC approaches primar- 354

ily follow two paths: (i) Embedding-based Ap- 355

proaches evolve from traditional KGE techniques 356

(Bordes et al., 2013), adapting them to include 357

multi-modal data, thus forming multi-modal entity 358

embeddings. These approaches include: Modality 359

Fusion methods (Wilcke et al., 2023), integrating 360

multi-modal embeddings of entities with their struc- 361

tural embeddings for triple plausibility estimation, 362

utilizing methods like multiple TransE-based scor- 363

ing functions (Xie et al., 2017), transformer frame- 364

work (Lee et al., 2023) or optimal transport (Cao 365

et al., 2022b) for modal interaction. Modality En- 366

semble, where separate models for different modal- 367

ities combine outputs for final predictions (Zhao 368

et al., 2022c; Li et al., 2023k). Modality-aware 369

Negative Sampling, generating false triples to im- 370

prove model discernment between accurate and 371

erroneous KG triples (Zhang and Zhang, 2022; 372

Xu et al., 2022c). (ii) Fine-Tuning based Ap- 373

proaches leverage pre-trained Transformer models 374

like BERT and VisualBERT (Li et al., 2019) to 375

utilize their deep multi-modal understanding for 376

MKGC. These methods transform MMKG triples 377

into token sequences for PLMs (Liang et al., 2022), 378

treating MKGC tasks as classification problems 379

where PLMs encode KG information and predict 380

masked entities (Chen et al., 2022c). 381

4.5 MMKG-driven Tasks 382

In this section, we explore several key directions 383

where MMKGs have shown notable impact in 384

downstream task applications. 385

Retrieval. As discussed in § 2, several MMKGs 386

could naturally support retrieval related tasks like 387

ImageGraph (Liu et al., 2017), IMGpedia (Ferrada 388

et al., 2017), and VisualSem (Alberts et al., 2020). 389

MMKG-driven Cross-modal Retrieval methods 390

like MKVSE (Feng et al., 2023), which scores intra- 391

and inter-modal relations in MMKGs using Word- 392

Net path similarity and co-occurrence correlations 393

(Fig. 6), improving Image-Text Retrieval through 394

GNN-based multi-modal embeddings. 395

Reasoning & Generation. Multi-modal reason- 396

ing and generation tasks often demand specialized 397

knowledge, including long-tail information that ex- 398
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Figure 6: We illustrates the MMKG-supported Image-
Text Retrieval process (Feng et al., 2023). For simplicity,
all URI prefixes and certain relations (sourceImg and tar-
getImg) from the PictureRelation (Inter-modal_Relation
and Intra-modal_Relation) entity are omitted. This en-
tity’s values indicate intra-modal path similarities or
inter-modal co-occurrence correlations, essential for
training a model (e.g., multi-modal GCN) to produce
knowledgeable image or text representations. Note: In
cases of multiple images within a picture unit, mean
pooling is used for a unified feature representation.

ceeds common experiences. KGs are crucial in399

these scenarios, serving as structured repositories400

for such diverse knowledge. However, there ex-401

ists a notable gap between KGs and multi-modal402

tasks, as current methods frequently depend on403

indirect approaches like modal transformation for404

knowledge representation, retrieval, and interaction405

in multi-modal contexts. This becomes problem-406

atic in tasks requiring visual common sense, lead-407

ing to multi-modal hallucinations (Fig. 7). Recent408

works (Zha et al., 2023) demonstrate that MMKGs409

can effectively bridge this gap. Specifically, Zha410

et al. (2023) introduce M2ConceptBase (detailed411

in § 2), a conceptual MMKG that improves VQA412

performance by retrieving multi-modal concept de-413

scriptions and crafting instructions to refine an-414

swers with MLLMs.415

MMKG Pre-training. Current VLMs, which pri-416

marily pre-train on basic image-text pairs, often417

overlook extensive intermodal knowledge connec-418

tions, prompting the development of MMKG-based419

methods: (i) Triple-level methods treat triples as in-420

dependent knowledge units, implicitly embedding421

the (h, r, t) structure into the VLM’s embedding422

space. For example, Pan et al. (2022b) integrate423

knowledge-based objectives into the CLIP frame- 424

work using MMKGs like Visual Genome (Krishna 425

et al., 2017) and VisualSem. They use the CLIP 426

encoder to process textual and visual entities and 427

their relationships, fusing them via a multi-modal 428

Transformer. This approach enhances CLIP’s train- 429

ing with a triple-based loss function, improving 430

performance across various multi-modal tasks. (ii) 431

Graph-level methods capitalize on the structural 432

connections among entities in a global MMKG. By 433

selectively gathering multi-modal neighbor nodes 434

around each entity featured in the training corpus, 435

they apply techniques such as GNNs or concate- 436

nation to incorporate knowledge during the pre- 437

training process (Gong et al., 2023; Li et al., 2023j). 438

Industry Application. E-commerce greatly ben- 439

efits from Multi-modal Product KGs (MMPKGs) 440

as depicted in Fig. 8. This integration supports key 441

applications such as product management, com- 442

parison, and recommendation. The K3M (Zhu 443

et al., 2021) framework utilizes MMPKGs to im- 444

prove product representations through techniques 445

like masked object prediction, masked language 446

reconstruction, and link prediction, enriching pre- 447

training and integration of multi-modal knowledge. 448

5 Future Directions 449

MMKGs, along with KGs, aim to address the lack 450

of long-tail knowledge in various tasks, reflect- 451

ing real-world patterns and human experiences. 452

Current research optimistically assumes that an 453

infinitely expansive MMKG could nearly encap- 454

sulate all relevant world knowledge, potentially 455

solving multi-modal challenges effectively. How- 456

ever, important questions remain: How can we ac- 457

quire ideal multi-modal knowledge? What should 458

the ideal MMKG feature, and can it mirror the 459

human brain’s sophisticated understanding of 460

the world? Additionally, does MMKG provide 461

unique benefits over the knowledge capabilities 462

of LLMs? Addressing these questions is crucial as 463

we continue to delve into this field. 464

MMKG Construction & Acquisition. (i) Align- 465

ing locally extracted triples from multiple images 466

with large-scale KGs (Lee et al., 2023) not only 467

extends the coverage of image quantity but also 468

incorporates the extensive knowledge scale char- 469

acteristic. (ii) Refining and aligning fine-grained 470

knowledge within MMKGs is crucial. An ideal 471

MMKG should be hierarchical, containing deep, 472
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Figure 7: Examples of limited cross-modal knowledge alignment ability in current MLLMs (Zha et al., 2023),
specifically (a) BLIP-2 (Li et al., 2023e) and (b) MiniGPT-4 (Zhu et al., 2023c), leading to hallucinations.

Figure 8: Illustration of multi-modal product data in
MMPKGs (Zhu et al., 2021), representing each product
with a title, an image, and relevant parts of the Product
Knowledge Graph (PKG) through triples such as (item,
property, value). MMPKG pre-training enhances VLMs
by improving visual grounding and domain-specific
multi-modal knowledge comprehension in E-commerce.

detailed layers of abstract multi-modal knowledge,473

allowing a single image to represent multiple con-474

cepts. Moreover, segmentation represents an ad-475

vanced requirement for grounding to reduce back-476

ground noise in visual modalities, pushing towards477

segmentation-level and multi-grained MMKGs478

as a key future direction. (iii) Efficiency in MMKG479

storage and utilization: Despite traditional KGs’480

efficiency in storing vast knowledge with minimal481

parameters, MMKGs require more storage space,482

presenting challenges in data storage and task ap-483

plication. (iv) Quality control: Regular updates484

are crucial given the dynamic nature of knowledge,485

with future directions focusing on efficiently resolv-486

ing multi-modal knowledge conflicts and updates.487

MMKG for Tasks. Several factors limit the use488

of MMKGs across diverse tasks: (i) Non-Uni-489

form Organization and Ontology: Current MMKGs490

lack a standardized format and vary in focus and491

knowledge domains, primarily catering to ency-492

clopedic or trivia knowledge (Gong et al., 2023),493

with commonsense and scientific MMKGs (Lee494

et al., 2023) being notably rare. Moreover, the ab-495

stract knowledge often cannot be visualized, limit-496

ing practical use (Wu et al., 2023b). (ii) Data Time-497

liness and Completeness: Inadequacies in these498

areas heighten the risk of multi-modal hallucina- 499

tions. (iii) Comparative Advantages of LLMs and 500

MLLMs: Noted for their generalizability and AGI 501

potential (Zhang et al., 2024), LLMs and MLLMs 502

complement MMKGs’ interpretability and flexi- 503

bility. The development, maintenance, and oper- 504

ational costs of MMKGs, coupled with industry 505

feedback, shape perceptions of their practicality. 506

(iv) Rich Semantic MMKG Construction: MMKGs 507

extend beyond traditional formats by transforming 508

multi-modal datasets into semantically enriched 509

structures through task-specific pipelines, utiliz- 510

ing existing KGs as bases. This method enhances 511

MLLM training with structured inputs and con- 512

tributes semantically rich datasets to the MMKG 513

community. (v) Reconstruction of Multi-Modal 514

Tasks with LLM: By leveraging the text understand- 515

ing and generation capabilities of LLMs, multi- 516

modal tasks can be restructured. Converting KG- 517

driven multi-modal tasks into in-MMKG tasks (e.g., 518

MKGC and MMEA) can improve domain inte- 519

gration (Pahuja et al., 2024). (vi) MMKG MoE: 520

The Mixed of Expert (MoE) architecture enhances 521

LLM applications by selectively routing inputs 522

through GateNet for efficient expert selection (Is- 523

mail et al., 2023). Proposing a specialized MMKG 524

library for domains like biology could mirror this 525

approach, optimizing MMKG utilization and inte- 526

gration with dynamic allocation efficiency. 527

6 Conclusion 528

This paper presents a thorough review of MMKG 529

construction evolution, analyzing key tasks and 530

methods relevant to the field. By providing de- 531

tailed benchmarking, we aim to create a systematic 532

blueprint of the domain, establishing it as a valu- 533

able resource for researchers either currently en- 534

gaged in or planning to enter this area. Ultimately, 535

this review serves as a foundational guide, mapping 536

the trajectory and potential of MMKG research and 537

highlighting future opportunities. 538
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7 Limitations539

In this study, we provide an overview of problems,540

methods, and opportunities for multi-modal knowl-541

edge graph research. We discuss related surveys542

in Appendix A.1 and will continue adding more543

related approaches with more detailed analysis. De-544

spite our best efforts, there may be still some limi-545

tations that remain in this paper.546

References & Methods. Due to the page limit,547

we may have omitted some important references548

and cannot afford all the technical details. Our549

Literature Collection Methodology is shared in550

Appendix A.1. We primarily review cutting-edge551

methods from the past three years (mostly in 2023),552

sourced from major conferences and journals like553

ACL, EMNLP, NAACL, CVPR, NeurIPS, ICLR,554

and arXiv, etc., and we will continue to update our555

review with the latest research.556

Benchmarks. Most of the benchmarks men-557

tioned (e.g., Tab. 5 and Tab. 7) are gathered and cat-558

egorized from the experimental part of mainstream559

works. In order to help readers quickly understand560

the tasks’ goals and formats from a unified perspec-561

tive, the definition and boundary of each task may562

not be accurate enough.563

Empirical Conclusions. We provide detailed564

comparisons and discussions on in-MMKG meth-565

ods in § 4, listing some promising future directions566

in § 5. All conclusions are based on empirical anal-567

ysis of existing works, which may not capture a568

broader perspective. As the field evolves, we will569

update our findings to reflect the latest develop-570

ments.571
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A Appendix2092

A.1 Literature Collection Methodology2093

For our paper, we source literature primarily from2094

Google Scholar and arXiv. Google Scholar pro-2095

vides broad access to leading computer science con-2096

ferences and journals, while arXiv serves as a key2097

platform for preprints across various disciplines,2098

including a significant repository recognized by the2099

computer science community. We employ a sys-2100

tematic search strategy on these platforms, using2101

relevant keyword combinations to assemble our2102

references. We rigorously curate this collection,2103

manually filtering out irrelevant papers and incor-2104

porating initially overlooked studies mentioned in2105

their main texts. By exploiting Google Scholar’s2106

citation tracking, we thoroughly augment our list2107

through iterative depth and breadth traversal.2108

Organization. § 2 introduces preliminary con-2109

cepts in KGs and provides an overview of MMKG2110

settings. § 3 reviews the evolution of MMKGs,2111

focusing on the motivations and trends that have2112

shaped their development from inception to their2113

current state. § 4 discusses tasks within the2114

MMKG domain, categorizing them into four key2115

areas: MMKG Acquisition, Fusion, Inference, and2116

MMKG-driven Tasks. This section carefully ad-2117

dresses overlaps across tasks, focusing on core2118

challenges and illustrating them in Fig. 2. Further-2119

more, § 4.5 analyzes current trends and industrial2120

applications of MMKG, providing insights into2121

their impact across various sectors. Looking ahead,2122

§ 5 contemplates the future integration of multi-2123

modal methods with MMKGs, proposing potential2124

enhancements for the tasks discussed previously.2125

It also explores opportunities to sustain MMKG2126

growth, especially in light of rapid developments2127

in LLM applications. Finally, § 6 concludes this2128

article.2129

Related work. Several studies have reviewed lit-2130

erature pertinent to KGs and multi-modal learning.2131

Distinct from these, our survey highlights specific2132

differences.2133

1) Zhu et al. (2022a) explore various character-2134

istics of mainstream MMKGs and their con-2135

structions, primarily from a CV perspective.2136

This include aspects like labeling images with2137

KG symbols and symbol-image grounding.2138

Conversely, Peng et al. (2023) offer a de-2139

tailed analysis of MMKG from a semantic2140

web perspective, providing a definition and2141

an analysis of its construction and ontology 2142

architectures. However, both studies present 2143

limited insights into tasks within and beyond 2144

MMKG, such as Multi-modal Entity Align- 2145

ment (MMEA) and Multi-modal Knowledge 2146

Graph Completion (MKGC), potentially over- 2147

looking MMKG’s inherent limitations. To 2148

fully grasp the challenges facing MMKG, ex- 2149

tensive benchmarks and analyses across vari- 2150

ous academic and industrial tasks are neces- 2151

sary. 2152

2) Liang et al. (2022) have discussed MMKG 2153

reasoning, while Chen et al. (2023d) have 2154

explored extraction-based MMKG construc- 2155

tion. However, these works, scattered across 2156

various tasks, have not been systematically 2157

reviewed and analyzed, indicating a need for 2158

a cohesive evaluation within the field. 2159

3) The analyses by Zhu et al. (2022a) and Peng 2160

et al. (2023) are based on developments up to 2161

2021, whereas the latest discussions by Liang 2162

et al. (2022) and Chen et al. (2023d) extend 2163

into 2022. This timeline reveals a gap in in- 2164

tegrating the most recent insights from the 2165

MMKG community. In response to the rapid 2166

advancements in AGI from 2022 to 2023, 2167

which emphasize emerging areas like LLMs, 2168

AI-for-Science, and industrial applications, 2169

our survey aims to fill critical knowledge gaps. 2170

Our goal is to provide a clear roadmap for fu- 2171

ture research, highlighting the challenges and 2172

opportunities in these fast-evolving fields. 2173

A.2 (MM)KG Preliminaries 2174

Aiming to align with established literature, we be- 2175

gin with a widely-accepted definition of KG and 2176

its foundational operations, explore KGs enriched 2177

with ontologies from the semantic web perspective. 2178

Multi-modal Learning. We focus on visiolin- 2179

guistic (VL) tasks involving text and image data, 2180

aiming to provide in-depth analysis and research 2181

continuity. Other modalities like video or biochem- 2182

istry are less emphasized as VL methods can often 2183

be adapted to them. Thus, the input domain is 2184

X = X l×X v, with inputs x̂ = (xl, xv), where xl 2185

and xv are language and visual data, respectively. 2186

A.2.1 Knowledge Graph 2187

Since their inception around 2007, Knowledge 2188

Graphs (KGs) have become pivotal in various aca- 2189

demic domains, marked by foundational projects 2190
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such as Yago (Suchanek et al., 2007), DBPedia2191

(Auer et al., 2007), and Freebase (Bollacker et al.,2192

2008). The integration of Google’s Knowledge2193

Panels into web search in 2012 highlighted a sig-2194

nificant milestone in the adoption of KGs. Today,2195

KGs enhance search engines like Google and Bing2196

and are integral to the functionality of voice assis-2197

tants like Amazon Alexa and Apple Siri, reflecting2198

their widespread business importance and increas-2199

ing prevalence.2200

Definition 1 Knowledge Graph. A Knowledge2201

Graph (KG) is denoted as G = {E ,R, T }, com-2202

prising an entity set E , a relation set R, and a2203

statement set T . A statement is either a relational2204

fact triple (h, r, t) or an attribute triple (e, a, v).2205

Specifically, KGs consist of a set of relational facts2206

forming a multi-relational graph, wherein nodes2207

represent entities (h and t in E symbolize head and2208

tail entities, respectively) and edges are denoted by2209

relations (r ∈ R). Regarding attribute triples, the2210

attribute a (a ∈ A) indicates that an entity e has2211

a certain attribute with a corresponding value v2212

(v ∈ V). These values can include various literals,2213

such as strings or dates, and cover metadata like2214

labels and textual definitions, represented through2215

either built-in or custom annotation properties.2216

Structural Composition. KGs represent entities2217

and relations using a graph structure, where nodes2218

symbolize real-world entities or atomic values (at-2219

tributes), and edges denote relations. Knowledge2220

is often captured in triples, such as (Hangzhou, lo-2221

catedAt, China). They utilize an ontology-based2222

schema to define basic entity classes and their rela-2223

tions, usually in a taxonomic structure. This semi-2224

structured nature merges structured data’s clear se-2225

mantics (from ontologies) with the flexibility of2226

unstructured data, allowing easy expansion through2227

new classes and relations.2228

Accessibility and Advantages. KGs support a2229

wide array of downstream applications, accessi-2230

ble primarily via Lookup and Querying methods.2231

Lookup in KGs, also known as KG retrieval, iden-2232

tifies relevant entities or properties based on input2233

strings, leveraging lexical indices (surface) from2234

entity and relation labels. An example of this is2235

the DBpedia online lookup service 4. Alterna-2236

tively, Querying returns results from input queries2237

crafted in the RDF query language SPARQL5.2238

4https://lookup.dbpedia.org/
5https://www.w3.org/TR/rdf-sparql-query/

These queries typically involve sub-graph patterns 2239

with variables, yielding matched entities, proper- 2240

ties, literals, or complete sub-graphs. 2241

Entity-based KGs Construction. When con- 2242

structing entity-based KGs, both ontology and 2243

data adhere to strict standards, wherein KG nodes 2244

typically represent entities in a one-to-one corre- 2245

spondence with real-world objects. These KGs 2246

are prominent in both academic projects like 2247

Yago and Freebase, and industry initiatives like 2248

OpenBG (Dong, 2023) and TeleKG (Chen et al., 2249

2023h). 2250

Note that KGs, especially those with OWL on- 2251

tologies, support symbolic reasoning, including 2252

consistency checks to identify logical conflicts and 2253

entailment reasoning to infer hidden knowledge 2254

via Description Logics. KGs also facilitate inter- 2255

domain connections. An example is the linkage 2256

between the Movie and Music domains through 2257

common entities like individuals who are both ac- 2258

tors and singers. This interconnectivity not only en- 2259

hances machine comprehension but also improves 2260

human understanding, benefiting applications like 2261

search, question answering, and recommendations. 2262

Furthermore, recent developments in LLMs high- 2263

light the crucial role of KGs, particularly in man- 2264

aging long-tailed knowledge, as evident in several 2265

studies (Dong, 2023; Sun et al., 2023c; Pan et al., 2266

2023a,b). 2267

The construction of these KGs often in- 2268

volves processing entities and relationships 2269

from structured sources like relational databases. 2270

Wikipedia (Denoyer and Gallinari, 2006), with its 2271

entity descriptions and hyperlinks between entity 2272

pages, serves as a common starting point for knowl- 2273

edge acquisition. Early KGs like Yago, DBPe- 2274

dia (Auer et al., 2007), and Freebase benefit from 2275

the high accuracy of Wikipedia data by transform- 2276

ing Infoboxes into entities and relationships. Ad- 2277

ditional sources, such as IMDb, MusicBrainz, and 2278

Goodreads, enhance coverage, especially for enti- 2279

ties of varying popularity. 2280

Integrating knowledge from various structured 2281

sources requires tackling three heterogeneity types 2282

(Dong, 2023): (i) Schema Heterogeneity, where 2283

different data sources may represent the same en- 2284

tity type and relationship differently; (ii) Entity 2285

Heterogeneity, where varied source names might 2286

depict the same real-world entity; (iii) Value Het- 2287

erogeneity, where different sources may offer dis- 2288

similar or outdated attribute values for identical 2289
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entities. Addressing these issues has spurred nu-2290

merous research tasks, including Entity Linking2291

in incomplete KG and data fusion (e.g., KG Com-2292

pletion and Entity Alignment) across diverse KGs.2293

Besides, techniques for extending KG content in-2294

clude extracting knowledge from semi-structured2295

data, such as websites. Here, each page typically2296

represents a topic entity, and information is dis-2297

played in key-value pairs, consistently positioned2298

across different pages. These techniques aim to2299

capture long-tail knowledge, often using manually2300

constructed extraction patterns and supervised ex-2301

traction algorithms.2302

Text-rich Construction. Unlike entity-based2303

KGs, text-rich KGs, with their dominant text at-2304

tributes, face challenges in extracting clean, un-2305

ambiguous entities, making them more akin to2306

bipartite graphs than to conventional connected2307

graphs. Typically, they tolerate greater ambiguities,2308

representing nodes as free texts rather than well-2309

defined entities, making them particularly suited to2310

domains like Products and Encyclopedia where se-2311

mantic distinctions between values and classes are2312

often unclear (Wang et al., 2021c). The construc-2313

tion of text-rich KGs, especially in domains with-2314

out a specialized structured knowledge base like2315

Wikipedia, generally depends on extraction mod-2316

els. These models extract structural information2317

from relevant, unstructured source data, employ-2318

ing Named Entity Recognition methods to identify2319

patterns indicative of specific attributes.2320

A.2.2 Multi-modal Knowledge Graphs2321

The limitations of traditional uni-modal (text-2322

based) KGs in handling multi-modal applications2323

have driven academic and industrial research to de-2324

velop Multi-modal Knowledge Graphs (MMKGs).2325

A KG is considered multi-modal (MMKG) when it2326

incorporates knowledge symbols in various modal-2327

ities, such as text, images, sound, or video. How-2328

ever, in this survey, we primarily focus on the vi-2329

sual modality (i.e., images) beyond traditional text-2330

based KGs.2331

Specifically, in N-MMKG, a relation triple2332

(h, r, t) in TR may include h or t as an image, with2333

r defining the relation. While in A-MMKG, an2334

attribute triple (e, a, v) in TA might associates an2335

image as v with the attribute a, typically designated2336

as hasImage. Note that N-MMKG and A-MMKG2337

are not strictly exclusive: N-MMKG might be con-2338

sidered a particular case of A-MMKG, especially2339

when an entity in A-MMKG takes the form of an 2340

image, thereby transforming it into N-MMKG. 2341

Considering that the A-MMKG ontology largely 2342

mirrors standard KGs, with the primary distinction 2343

being the inclusion of visual attributes, we mainly 2344

discuss several representative N-MMKG ontolo- 2345

gies in § 3. This emphasis is due to the complex 2346

design considerations involved in integrating image 2347

entities into N-MMKGs. 2348

MMKGs prior to 2021. Notably, the earliest 2349

MMKG in a general sense could be traced back 2350

to ImageNet(Deng et al., 2009), a large-scale im- 2351

age ontology based on the WordNet (Miller, 1995) 2352

structure. Despite its rich semantic hierarchy and 2353

millions of annotated images, ImageNet, as an A- 2354

MMKG, is primarily utilized for object classifica- 2355

tion, with its knowledge components often under- 2356

utilized. NEIL (Chen et al., 2013) represents an 2357

early effort to construct visual knowledge from the 2358

Internet through a cycle of relation extraction, data 2359

labeling, and classifiers/detectors learning. How- 2360

ever, NEIL’s scalability is limited, proved by its in- 2361

tensive computational requirement to classify 400K 2362

visual instances of 2273 objects, whereas typical 2363

KGs require grounding billions of instances. Fur- 2364

ther developments (Johnson et al., 2015; Yatskar 2365

et al., 2016; Gong and Wang, 2017; Lu et al., 2016) 2366

focus on improving visual detection and object seg- 2367

mentation from complex images, with Chen et al. 2368

(2014) leveraging learned top-down segmentation 2369

priors from visual subcategories to aid in the con- 2370

struction. 2371

Visual Genome (Krishna et al., 2017) provides 2372

dense annotations of objects, attributes, and re- 2373

lations, but primarily aids scene understanding 2374

tasks like image description and question answer- 2375

ing. ImageGraph (Oñoro-Rubio et al., 2019), 2376

rooted in Freebase (Bollacker et al., 2008), and 2377

IMGpedia (Ferrada et al., 2017), linking Wikime- 2378

dia Commons (Commons, 2012) visual data with 2379

DBpedia metadata, represents further expansions 2380

into MMKGs. ImageGraph, assembled through 2381

a web crawler parsing image search results and 2382

applying heuristic data cleaning rules (e.g., dedu- 2383

plication and ranking), focuses on reasoning over 2384

visual concepts, enabling relation prediction and 2385

multi-relational image retrieval. In 2019, Liu 2386

et al. (2019b) first formally introduced the term 2387

“MMKG”, launching three A-MMKG datasets for 2388

Link Prediction and Entity Matching research, con- 2389

structed using a web crawler as the image col- 2390
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lector based on Freebase15K (FB15K) (Bordes2391

et al., 2013), averaging 55.8 images per entity.2392

Meanwhile, DBpedia15k (DBP15K) and Yago15k2393

(YG15K) were developed by aligning entities from2394

DBpedia and Yago with FB15K, enriching these2395

KGs with numeric literals, image information, and2396

sameAs predicates for cross-KG Entity Linking.2397

GAIA (2020) (Li et al., 2020a) is an MMKG extrac-2398

tion system that supports complex graph queries2399

and multimedia information retrieval. It integrates2400

Text Knowledge Extraction and Visual Knowl-2401

edge Extraction processes on identical document2402

sets, generating modality-specific KGs which are2403

then merged into a coherent MMKG. Concurrently,2404

Then, VisualSem (Alberts et al., 2020) emerges as2405

an A-MMKG, sourcing entities and images from2406

BabelNet (Navigli and Ponzetto, 2012) with metic-2407

ulous filtering to ensure data quality and diver-2408

sity. Entities in VisualSem are linked to Wikipedia,2409

WordNet synsets (Miller, 1995), and, when avail-2410

able, high-resolution images from ImageNet (Deng2411

et al., 2009). As a N-MMKG, Richpedia (Wang2412

et al., 2020) collects images and descriptions from2413

Wikipedia (Vrandecic and Krötzsch, 2014), using2414

hyperlinks and text for manual relationship identi-2415

fication among image entities, supplemented by a2416

web crawler for broader image entity collection.2417

Recent focus in the MMKG community has2418

shifted from construction to application, empha-2419

sizing areas such as MMKG Representation Learn-2420

ing (§ 4.1), Acquisition (§ 4.2), Fusion (§ 4.3), In-2421

ference (§ 4.4), and MMKG-driven Applications2422

(§ 4.5). While MMKG acquisition extends con-2423

struction efforts, it mainly addresses multi-modal2424

extraction challenges (Ma et al., 2022), highlight-2425

ing the scarcity of large-scale MMKG resources2426

and the demand for task-specific datasets to ad-2427

dress MMKG’s limitations and support novel down-2428

stream tasks. Specifically, Baumgartner et al.2429

(2020) employ multi-modal detectors and a seman-2430

tic web-informed scheme for semantic relation ex-2431

traction between movie characters and locations to2432

support Deep Video Understanding.2433

M2ConceptBase & ManipMob-MMKG. Note2434

that the nodes in M2ConceptBase and Aspect-2435

MMKG are not linked or mapped to existing public2436

KGs. Instead, their focus is on decomposing entity2437

concepts and associating them with fine-grained2438

images. As a result, most nodes within these2439

MMKGs remain isolated, rendering the graphs2440

more akin to multi-modal extensions of text-rich2441

KGs, as discussed in Appendix A.2.1. Song et al. 2442

(2023c) unveil a scene-driven MMKG construc- 2443

tion method that starts with natural language scene 2444

descriptions and employs a prompt-based scene- 2445

oriented schema generation. This approach, com- 2446

bined with traditional knowledge engineering and 2447

LLMs, streamlines the creation and refinement of 2448

the ManipMob-MMKG, a specialized MMKG tai- 2449

lored for indoor robotic tasks such as manipulation 2450

and mobility. 2451

In-MMKG Task Datasets. Exploring MMKGs’ 2452

utility in downstream tasks, Xu et al. (2022b) 2453

introduce two MMKG Link Prediction datasets, 2454

MKG-W and MKG-Y, derived from OpenEA 2455

benchmarks (Sun et al., 2020c) and integrating 2456

structured data from Wikipedia/YAGO with expert- 2457

validated images sourced from the web. Focus- 2458

ing on Multi-modal Entity Alignment tasks, Li 2459

et al. (2023l) introduce Multi-OpenEA, extend- 2460

ing the OpenEA benchmarks with 16 MMKGs and 2461

Google-sourced images. Investigating the effects 2462

of the missing visual modality, Chen et al. (2023f) 2463

randomly removed images from the DBP15K (Liu 2464

et al., 2021) and Multi-OpenEA datasets, releas- 2465

ing the MMEA-UMVM datasets. Additionally, 2466

Zhang et al. (2023b) define a new task on multi- 2467

modal analogical reasoning over KGs, which re- 2468

quires the ability to reason using multiple modali- 2469

ties and background knowledge. They also develop 2470

a dataset, MARS, and a corresponding MMKG, 2471

MarKG, for benchmarking purposes. 2472

N-MMKG Ontology Development. IMGpedia 2473

Ontology (Ferrada et al., 2017) (Fig. 3 (a)) ex- 2474

tends terms from the DBpedia Ontology and the 2475

Open Graph Protocol to represent multi-modal data 2476

in RDF. Specifically, the imo:Image denotes an 2477

abstract resource representing an image, which 2478

captures its dimensions (imo:height, imo:width), 2479

URL (imo:fileURL), and an owl:sameAs link to 2480

its corresponding resource in DBpedia Commons. 2481

imo:Descriptor defines visual descriptors linked 2482

via imo:describes, with types including imo:HOG 2483

(Histogram of Oriented Gradient), imo:CLD (Color 2484

Layout Descriptor), and imo:GHD (Gradation His- 2485

togram Descriptor). imo:ImageRelation encapsu- 2486

lates similarity links between images, detailing 2487

the descriptor type used and the Manhattan dis- 2488

tance between image descriptors, with an addi- 2489

tional imo:similar relation for k-nearest neighbor 2490

images. 2491

Richpedia ontology (Wang et al., 2020) 2492
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(Fig. 3(b)) aligns closely with the IMGpedia On-2493

tology. Here, rpo:KGEntity denotes textual KG2494

entities, while rpo:Image stands for a Richpe-2495

dia image entity characterized by a URL and di-2496

mensions (e.g., rpo:Height and rpo:Width, both2497

expressed in the xsd:float datatype for numeri-2498

cal values). Subclasses of rpo:Descriptor, like2499

rpo:GHD, capture visual traits of images. Se-2500

mantic relations like rpo:sameAs and rpo:imageOf2501

link these entities, with rpo:ImageSimilarity quan-2502

tifying image likeness between rpo:sourceImage2503

and rpo:targetImage through pixel-level compar-2504

isons. Following Richpedia (Wang et al., 2020),2505

Peng et al. (2023) explore a new MMKG ontology2506

(Fig. 3(c)) to tackle the issue of entities with mul-2507

tiple visual representations (i.e., aspects), a phe-2508

nomenon emphasized by AspectMMKG (Zhang2509

et al., 2023a) and M2ConceptBase (Zha et al.,2510

2023). The key of this paradigm is to intro-2511

duce the Mirror Entity and Picture Unit as foun-2512

dational concepts. rpo:MirrorEntity denotes a2513

particular concept, with rpo:NamedEntity point-2514

ing to a related KG entity. Its visual counter-2515

part, the rpo:ImageEntity, is sourced from the2516

rpo:PictureUnit, which might aggregate multiple2517

such image entities under the same aspect. Be-2518

sides, various rpo:PictureUnit maintain a degree2519

of similarity through rpo:similarity.An rpo:align2520

linkage is established when rpo:NamedEntity2521

and rpo:ImageEntity both reference a common2522

rpo:MirrorEntity. Further, the rpo:pictureOf re-2523

lation binds rpo:PictureUnit to rpo:NamedEntity,2524

with the rpo:TextEntity serving as a bridge, encap-2525

sulating shared descriptions. In essence, this on-2526

tology enriches the prior MMKG by offering a2527

hierarchical structure, effectively clustering and2528

associating images from diverse aspects.2529

A.3 MMKG Representation Learning2530

The current mainstream MMKG representation2531

learning approaches primarily concentrate on A-2532

MMKGs, as their similarity to traditional KGs al-2533

lows for more adaptable paradigm shifts. Those2534

methods for integrating entity modalities within2535

MMKGs generally fall into two categories, which2536

are sometimes overlap within various frameworks,2537

detailed in Fig. 9.2538

Late Fusion. (Liu et al., 2021; Lin et al., 2022; Li2539

et al., 2022c; Wang et al., 2022b; Lu et al., 2022b).2540

Recent Transformer-based methods (Chen et al.,2541

2023e,f) introduce fine-grained entity-level modal-2542

Figure 9: Differences in MMKG representation: Late
Fusion focuses on Modality Interaction, applying fu-
sion just before output, while Early Fusion centers on
complex reasoning, integrating modalities initially. The
former is more oriented towards representation itself,
while the latter is more oriented towards cross-modal
reasoning. Abbreviations: CTL (Contrastive Learning),
KGE (Knowledge Graph Embedding).

ity preference for entity representation in Multi- 2543

modal Entity Alignment. 2544

Early Fusion. (Fang et al., 2023b; Liang et al., 2545

2023a; Wei et al., 2023b; Chen et al., 2022c; Zhang 2546

et al., 2023b) Recent studies (Chen et al., 2022c; 2547

Liang et al., 2023a; Zhang et al., 2023b; Lee et al., 2548

2023) utilize (V)PLMs like BERT and ViT for 2549

multi-modal data integration. 2550

A.4 MMKG Acquisition 2551

MMKG Acquisition (or Extraction) involves cre- 2552

ating an MMKG by integrating multi-modal data 2553

such as text, images, audio, and video. This pro- 2554

cess utilizes multi-modal information from other 2555

sources, such as Internet search engines or pub- 2556

lic databases, either to enhance an existing KG 2557

or to develop a new MMKG, thereby enabling a 2558

comprehensive understanding of complex, inter- 2559

connected concepts. The resulting MMKG lever- 2560

ages the unique strengths of each modality to pro- 2561

vide a more cohesive and detailed knowledge rep- 2562

resentation. 2563

A.4.1 Supplementary Information for MNER 2564

& MMRE 2565

MNER Definition. MNER is typically consid- 2566

ered as a sequence labeling problem, where a 2567

model takes a sentence xl = {w1, w2, . . . , wL} 2568

along with an associated image xv as input to de- 2569

termine the presence and types of named entities 2570
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in the text. The goal of MNER is to predict a label2571

sequence Y = {y1, . . . , yn}, where each label yi2572

corresponds to a named entity category for each2573

token wi in the sentence. This process, including2574

the probability calculation for the label sequence,2575

follows foundational sequence labeling techniques2576

in NER (Lample et al., 2016).2577

As shown in Fig. 5 (left), suppose there is a so-2578

cial media post with a photo of Elon Musk standing2579

in front of a SpaceX signboard, accompanied by2580

a caption: “Great day at the launch site!”. An2581

MNER model would not only use the textual cues2582

(“Elon Musk”, “SpaceX”) but also recognize the2583

entities in the image. This visual information rein-2584

forces the identification of “Elon Musk” as a person2585

and “SpaceX” as an organization.2586

MMRE Definition. MMRE analyzes a sentence2587

xl = {w1, w2, . . . , wL} alongside a corresponding2588

image xv, focusing on an entity pair (e1, e2) within2589

the sentence. The task involves classifying the2590

relationship between these entities, leveraging both2591

textual and visual cues such as object interactions2592

depicted in the image. For each potential relation2593

ri ∈ R, a confidence score p(ri|e1, e2, xl, xv) is2594

assigned. The relation set R = {r1, . . . , rC , None}2595

includes pre-defined relation types, with “None”2596

indicating the absence of a specific relation.2597

As shown in Fig. 5 (right), consider a sports arti-2598

cle with a photo of LeBron James and Stephen2599

Curry during an NBA game, with the caption:2600

“Epic showdown in tonight’s game!” In this sce-2601

nario, an MMRE model analyzes the text and vi-2602

sual content, interpreting visual cues like their com-2603

petitive stances and team logos, to infer a opponent2604

and competitive relationship between them as op-2605

ponents in the game.2606

Overlap Between MNER & MRE: Typically,2607

both MNER and MMRE enhance text analysis by2608

incorporating visual information, yet they focus on2609

different aspects: MNER on identifying entities,2610

and MMRE on classifying relationships between2611

these entities. In MMKG construction frameworks,2612

MMRE can be considered as a subsequent task to2613

MNER. Despite these differences, the development2614

methods for these tasks are increasingly converg-2615

ing, with many studies employing similar model2616

designs for both MNER and MMRE (Wang et al.,2617

2022e; Chen et al., 2022d; Hu et al., 2023a). There-2618

fore, we discuss them jointly.2619

MNER Method Details: Advancements in2620

MNER can be marked by diverse approaches to2621

integrating visual and textual information. 2622

• BiLSTM-based Methods (Moon et al., 2018b; 2623

Lu et al., 2018; Wu et al., 2020b; Sun et al., 2624

2020a; Chen et al., 2021b). 2625

• PLM-based Methods (Yu et al., 2020; Wang 2626

et al., 2022g, 2023d; Zhang et al., 2021a; Lu 2627

et al., 2022a; Xu et al., 2022a; Wang et al., 2628

2022j,f). For example, FMIT (Lu et al., 2022a) 2629

leverages flat lattice structure and relative po- 2630

sition encoding to enable direct interaction be- 2631

tween fine-grained semantic units across differ- 2632

ent modalities. MAF (Xu et al., 2022a) includes 2633

a cross-modal matching module that calculates 2634

the similarity score between text and image, us- 2635

ing this score to adjust the amount of visual 2636

information integrated. Additionally, a cross- 2637

modal alignment module aligns the represen- 2638

tations of both modalities, creating a unified 2639

representation that bridges the semantic gap 2640

and facilitates better text-image connections. 2641

ITA (Wang et al., 2022g) transforms images 2642

into textual object tags and captions for cross- 2643

modal input, enabling a text-only PLM to ef- 2644

fectively model interactions between modalities 2645

and improve robustness against image-related 2646

noise. UMGF (Zhang et al., 2021a) leverages 2647

graph fusion techniques to effectively combine 2648

information from various modalities. Wang 2649

et al. (2023d) further propose a Transformer- 2650

based bottleneck fusion mechanism that limits 2651

noise spread by allowing modalities to inter- 2652

act only through trainable bottleneck tokens. 2653

CAT-MNER (Wang et al., 2022j) utilizes en- 2654

tity label-derived saliency scores to refine at- 2655

tention mechanisms, addressing complexities 2656

in cross-modal exchanges. MoRe (Wang et al., 2657

2022f) utilizes a multi-modal retrieval frame- 2658

work with distinct textual and image retriev- 2659

ers to gather relevant paragraphs and related 2660

images, respectively. This data trains sepa- 2661

rate models for NER and RE tasks, followed 2662

by a Mixture of Experts (MoE) module that 2663

synergizes their predictions. TISGF (Cheng 2664

et al., 2023a) creates visual and textual scene 2665

graphs, encoding them to extract object-level 2666

and relationship-level features across modali- 2667

ties. It then employs a text-image similarity 2668

module to determine the fusion extent of vi- 2669

sual information. Finally, multi-modal features 2670

are integrated using a fusion module, with a 2671

Conditional Random Fields (CRF) determining 2672
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entity types. PromptMNER (Wang et al., 2022i)2673

utilizes entity-related prompts to extract visual2674

clues by assessing their match with an image2675

using the CLIP (Radford et al., 2021). MG-2676

ICL (Guo et al., 2023a) analyzes data at varying2677

granularities, including sentence and word to-2678

ken levels for text, and image and object levels2679

for visuals. Its cross-modal contrast approach2680

enhances text analysis with visual features, sup-2681

plemented by a visual gate mechanism to filter2682

out noise.2683

• Special Cases: Liu et al. (2023c) propose inte-2684

grating uncertainty estimation in MNER to im-2685

prove prediction reliability. Encoder-Decoder-2686

based PLMs like T5 (Raffel et al., 2020) and2687

BART (Lewis et al., 2020), known for their2688

strengths in NLU and NLG, have gained pop-2689

ularity in recent MNER studies. Wang et al.2690

(2023a) introduces a Fine-grained NER and2691

Grounding (FMNERG) task, which involves2692

extracting named entities in text, their detailed2693

types, and corresponding visual objects in im-2694

ages. Here, (entity, type, object) triples are con-2695

verted into a target sequence, and T5 is used to2696

generate this sequence, incorporating a linear2697

transformation layer to adapt the visual object2698

representations into T5’s semantic space.2699

MMRE Method Details: For those PLM-based2700

methods, HVPNet (Chen et al., 2022d) introduces2701

object-level visual information, employing hier-2702

archical visual features and visual prefix-guided2703

fusion for deeper multi-modal integration; DGF-2704

PT (Li et al., 2023g) implements a dual-gated fu-2705

sion module, using local and global visual gates to2706

filter unhelpful visual data, followed by a genera-2707

tive decoder which leverages entity types to refine2708

candidate relations, thus capturing meaningful vi-2709

sual cues.2710

• BiLSTM-based Methods:2711

• PLM-based Methods:2712

• Special Cases:2713

Resources & Benchmarks: (i) Twit-2714

ter2015 (Zhang et al., 2018) and Twitter2017(Lu2715

et al., 2018): Key MNER datasets featuring2716

diverse multi-modal content from Twitter, covering2717

2015-2017. They include image-text pairs cate-2718

gorized into Location, Person, Organization, and2719

Miscellaneous. Each record is annotated by experts2720

for named entities. (ii) Twitter-FMNERG (Wang2721

et al., 2023a): Accompanying the Fine-grained2722

NER and Grounding (FMNERG) task, this dataset 2723

provides annotations for named entities in text 2724

and their corresponding visual objects, including 2725

bounding box coordinates. (iii) MNRE (Zheng 2726

et al., 2021a): The main dataset for MMRE 2727

sourced from Twitter. The brevity of tweets and 2728

the varied nature of social media content make 2729

MNRE a challenging benchmark for assessing 2730

the representation, fusion, and reasoning in 2731

multi-modal techniques. (iv) JMERE (Yuan 2732

et al., 2023): A joint Multi-modal Entity-Relation 2733

Extraction dataset that combines MNER and 2734

MMRE. 2735

Table 2: Comparison of MNER performance on the
Twitter-2015 (Zhang et al., 2018) and Twitter-2017 (Lu
et al., 2018) datasets, evaluated using precision (P), re-
call (R), and F1 score as metrics. Results for CLIP (Rad-
ford et al., 2021) and BLIP (Li et al., 2022a) are sourced
from Hu et al. (Hu et al., 2023a).

Models
Twitter-2015 Twitter-2017

P R F1 P R F1

Zhang et al. (2018) 72.75 68.74 70.69 - - -
OCSGA (Wu et al., 2020b) 74.71 71.21 72.92 - - -
Lu et al. (Lu et al., 2018) - - - 81.62 79.90 80.75
RpBERT (Sun et al., 2021a) 71.15 74.30 72.69 82.85 84.38 83.61
MEGA (Zheng et al., 2021a) 70.35 74.58 72.35 84.03 84.75 84.39
VisualBERT (Li et al., 2019) 68.84 71.39 70.09 84.06 85.39 84.72
IAIK (Chen et al., 2021b) 74.78 71.82 73.27 - - -
RIVA (Sun et al., 2020a) 75.02 71.94 73.45 - - -
UMT (Yu et al., 2020) 71.67 75.23 73.41 85.28 85.34 85.31
CLIP (Radford et al., 2021) 74.25 74.64 74.44 85.34 85.29 85.31
UMGF (Zhang et al., 2021a) 74.49 75.21 74.85 86.54 84.50 85.51
BFCL (Wang et al., 2023d) 74.02 75.07 74.54 85.99 85.42 85.70
MGCMT (Liu et al., 2024b) 73.57 75.59 74.57 86.03 86.16 86.09
UAMNer (Liu et al., 2022b) 73.02 74.75 73.87 86.17 86.23 86.20
MAF (Xu et al., 2022a) 71.86 75.10 73.42 86.13 86.38 86.25
SMVAE (Zhou et al., 2022) 74.40 75.76 75.07 85.77 86.97 86.37
GEI (Zhao et al., 2022b) 73.39 75.51 74.43 87.50 86.01 86.75
FMIT (Lu et al., 2022a) 75.11 77.43 76.25 87.57 86.26 86.79
DebiasCL (Zhang et al., 2023e) 74.45 76.13 75.28 87.59 86.11 86.84
MRC-MNER (Jia et al., 2022) 78.10 71.45 74.63 88.78 85.00 86.85
HVPNeT (Chen et al., 2022d) 73.87 76.82 75.32 85.84 87.93 86.87
DCM-GCN (Zhang et al., 2023k) 73.41 75.88 74.63 86.09 87.93 87.00
R-GCN (Zhao et al., 2022a) 73.95 76.18 75.00 86.72 87.53 87.11
MPMRC (Bao et al., 2023) 77.15 75.39 76.26 87.10 87.16 87.13
TISGF (?) 71.15 75.35 73.19 86.48 87.78 87.18
MNER-QG (Jia et al., 2023) 77.76 72.31 74.94 88.57 85.96 87.25
MKGformer (Chen et al., 2022c) - - - 86.98 88.01 87.49
DGCF (Mai et al., 2023) 74.76 75.50 75.13 88.50 87.65 88.07
MMIB (Cui et al., 2023b) 74.44 77.68 76.02 87.34 87.86 87.60
ITA (Wang et al., 2022g) 78.93 78.14 78.53 88.52 90.16 89.33
BLIP (Li et al., 2022a) 77.73 76.58 77.15 88.92 88.67 88.79
PromptMNER (Wang et al., 2022i) 78.03 79.17 78.60 89.93 90.60 90.26
CAT-MNER (Wang et al., 2022j) 78.75 78.69 78.72 90.27 90.67 90.47
MoRe (Wang et al., 2022e) 79.33 79.11 79.22 90.74 90.53 90.63
MGICL (Guo et al., 2023a) 80.31 80.06 80.18 91.07 90.61 90.94
PGIM (Li et al., 2023c) 79.21 79.45 79.33 90.86 92.01 91.43
PROMU (Hu et al., 2023a) 80.03 80.97 80.50 91.97 91.33 91.65

A.4.2 Multi-modal Event Extraction 2736

Event Extraction (EE) differs from NER and RE 2737

by focusing on the dynamic and temporal aspects 2738

of events within data: (i) Dynamic Nature: While 2739

NER and RE focus on static aspects of text (i.e., 2740

identifying entities and their relationships), EE cap- 2741

tures the unfolding and context of events. It in- 2742
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Table 3: Comparison of MMRE performance on
MNRE (Zheng et al., 2021a).

Models P R F1

MEGA (Zheng et al., 2021a) 64.51 68.44 66.41
MoRe (Wang et al., 2022e) 66.66 70.58 68.56
HVPNet (Chen et al., 2022d) 83.64 80.78 81.85
MKGformer (Chen et al., 2022c) 82.67 81.25 81.95
Wu et al. (Wu et al., 2023a) 84.69 83.38 84.03
DGF-PT (Li et al., 2023g) 84.35 83.83 84.47
Hu et al. (Hu et al., 2023b) 85.03 84.25 84.64
PROMU (Hu et al., 2023a) 84.95 85.76 84.86

volves understanding not just who or what is in-2743

volved, but also what is happening, when, where,2744

and other event-related details. (ii) Integration2745

of Components: EE integrates aspects of NER2746

and RE, linking identified entities and their rela-2747

tionships to specific events, thus providing a more2748

complete narrative. (iii) Contextual Richness: EE2749

delves into the subtleties surrounding event triggers2750

and arguments, offering insights into how events2751

develop and affect the involved entities.2752

Typically, EE focuses on identifying event trig-2753

gers and arguments, capturing the dynamic as-2754

pects of events. For example, in the sentence “The2755

company launched a new product”, “launched” is2756

the event trigger, with “company” and “product”2757

as arguments, indicating the key participants and2758

elements of the event. This concept contrasts with2759

relation and entity in KGs, which primarily repre-2760

sent static entities and their relationships without2761

delving into the evolving nature of events. EE’s2762

emphasis on the temporal and contextual aspects2763

of events distinguishes it from the static, entity-2764

focused nature of KGs, highlighting its unique role2765

in dynamic data analysis and knowledge represen-2766

tation.2767

Early text-based EE methods leverage tech-2768

niques like CNNs (Nguyen and Grishman, 2015)2769

and RNNs (Nguyen et al., 2016; Liu et al., 2019a,2770

2020), with subsequent models adopting GNNs (Li2771

et al., 2017) to better understand event-context de-2772

pendencies. The advent of PLMs further improve2773

EE capabilities (Wadden et al., 2019; Wang et al.,2774

2022a; Lu et al., 2022c). In CV field, EE aligns2775

with situation recognition (Pratt et al., 2020; Khan2776

et al., 2022), focusing on identifying visual events2777

in images or videos. This progression reflects a2778

broader shift towards a more holistic understand-2779

ing of events in diverse contexts, paving the way for2780

the development of Multi-modal Event Extraction2781

(MMEE).2782

Definition 2 Multi-modal Event Extraction.2783

MMEE simultaneously analyze textual data (e.g., 2784

sentences or paragraphs) xl = {w1, w2, ..., wn} 2785

and visual data (e.g., images or videos) xv, both 2786

potentially annotated with predefined event types 2787

Ye and argument types Ya. In a multi-modal 2788

document D = {X l,X v}, an event mention m is 2789

classified under an event type ye and is identified 2790

by a trigger, which can be a word w, an image 2791

xv, or both. The task extends to extracting and 2792

classifying all event participants (i.e., arguments) 2793

within D, assigning each to a specific argument 2794

type ya. Arguments are based on textual spans or 2795

object bounding boxes in the image, with their 2796

positions explicitly identified. 2797

Methods: Some works (Li et al., 2020b; Chen 2798

et al., 2021a; Du et al., 2023b) focus on region fea- 2799

ture refinement for MMEE. Specifically, WASE (Li 2800

et al., 2020b) utilizes graphical representations 2801

of multi-modal documents for cross-modal event 2802

co-reference and image-sentence matching, target- 2803

ing the challenge of limited multi-modal event 2804

annotations with a weakly supervised approach 2805

which leverages annotated uni-modal corpora and 2806

an image-caption alignment dataset. JMMT (Chen 2807

et al., 2021a) employs multi-instance learning to 2808

assess region and sentence combinations, identify- 2809

ing key areas for multi-modal event co-reference 2810

and linking events across visual and textual modal- 2811

ities. CAMEL (Du et al., 2023b) enhances object 2812

representation in images by focusing on three spe- 2813

cific areas within each object’s bounding box and 2814

averages the encoded embeddings to aid argument 2815

extraction. 2816

Recent advances emphasize refining represen- 2817

tations via Contrastive Learning (CL) (Li et al., 2818

2022b; Wang et al., 2023e; Li et al., 2023a). Con- 2819

cretely, CLIP-EVENT (Li et al., 2022b) contrasts 2820

images with event-aware text descriptions to train- 2821

ing the VLMs; CoCoEE (Wang et al., 2023e) em- 2822

ploys CL with weighted samples according to event 2823

frequency; TSEE (Li et al., 2023a) aligns optical 2824

flow with event triggers and types, observing a 2825

strong correlation between similar motion patterns 2826

and identical triggers with multi-level CL. 2827

Moreover, emerging research explores zero- 2828

shot (Liu et al., 2022a) and few-shot (Moghimifar 2829

et al., 2023) approaches to MMEE, potentially en- 2830

hancing model adaptability to new or sparse data 2831

scenarios. 2832

Resources & Benchmarks: (i) M2E2 (Li et al., 2833

2020b): Comprising multi-media news articles 2834
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Table 4: Comparative analysis of MMEE results across
diverse datasets. M2E2 (Li et al., 2020b) utilizes image
and text inputs. Both TVEE (Chen et al., 2021a) and
VM2E2 (Wang et al., 2023e) employ video and text
inputs.

Dataset Models
Trigger Argument

P R F1 P R F1

M2E2

Flat (Li et al., 2020b) 33.9 59.8 42.2 12.9 17.6 14.9
WASE (Li et al., 2020b) 38.2 67.1 49.1 18.6 21.6 19.9
CLIP-EVENT (Li et al., 2022b) 41.3 72.8 52.7 21.1 13.1 17.1
UniCL (Liu et al., 2022a) 44.1 67.7 53.4 24.3 22.6 23.4
CAMEL (Du et al., 2023b) 55.6 59.5 57.5 31.4 35.1 33.2

TVEE
JMMT (Chen et al., 2021a) 74.3 80.2 77.1 50.1 54.9 52.3
CoCoEE (Wang et al., 2023e) 80.7 76.4 78.5 65.6 45.4 53.6
TSEE (Li et al., 2023a) 82.6 80.5 81.5 67.0 49.3 56.8

VM2E2
JMMT (Chen et al., 2021a) 39.7 56.3 46.6 17.9 24.3 20.6
CoCoEE (Wang et al., 2023e) 47.3 47.7 47.5 26.7 18.5 21.8
TSEE (Li et al., 2023a) 49.2 53.5 51.6 24.5 27.4 25.9

from the Voice of America website (2016-2017),2835

M2E2 covers a wide range of topics like military2836

affairs, economy, and health. (ii) VOANews (Li2837

et al., 2022b): Constructed with image captions2838

from various news websites, selected for their2839

event-rich content, VOANews aims to provide a2840

challenging benchmark for image retrieval tasks.2841

(iii) VM2E2 (Chen et al., 2021a): This first text-2842

video dataset for MMEE is curated using YouTube2843

searches with event types and news source names,2844

focusing on sources like VOA, BBC, and Reuters.2845

(iv) TVEE (Wang et al., 2023e): TVEE features in-2846

ternational news videos with captions from the On2847

Demand News channel, aligning with the ACE20052848

benchmark’s partial event types.2849

Metrics: Precision (P), recall (R), and F1 score2850

are pivotal in evaluating these tasks. Precision is2851

the ratio of correctly identified entities (or relations)2852

to the total identified. E.g., in MNER, it reflects the2853

proportion of accurately identified named entities2854

from text and associated multi-modal data. Recall2855

is the ratio of correctly identified entities (or rela-2856

tions) to the total relevant entities (or relations) in2857

the dataset. E.g., in MMEE, it gauges the accuracy2858

of extracting entities from text and multi-modal2859

content. The F1 score, harmonizing precision, and2860

recall, offers a comprehensive measure of both met-2861

rics. E.g., in MMRE, it provides an equilibrium,2862

assessing the system’s performance in discerning2863

text-based entity relationships, integrating preci-2864

sion and recall considerations.2865

Discussion 1 Recent advancements for these tasks2866

show a trend towards unified model designs, as evi-2867

denced by a range of studies (Wang et al., 2022e;2868

Chen et al., 2022d; Hu et al., 2023a; Cui et al.,2869

2023a; Sun et al., 2024). In certain MMEE datasets2870

such as VM2E2 (Chen et al., 2021a), the visual 2871

modality lacks direct event and argument anno- 2872

tations, positioning visual features as supportive 2873

elements in benchmarking. However, the preva- 2874

lent multi-modal F1 score, focusing mainly on text- 2875

based event type classification, overlooks the con- 2876

tribution evaluation of visual elements. This sce- 2877

nario highlights the need for future research to 2878

devise more balanced multi-modal evaluation met- 2879

rics that thoroughly integrate visual and textual 2880

components. Looking forward, the emergence of 2881

MLLMs and their zero-shot extraction capabili- 2882

ties (Wei et al., 2022; Li et al., 2023d) heralds a 2883

pivot towards generative-based approaches. This 2884

shift implies a broader horizon for MNER, MMRE, 2885

and MMEE, urging the expansion into more in- 2886

tricate, specialized, and inherently comprehensive 2887

multi-modal extraction tasks. 2888

A.5 MMKG Fusion 2889

This process involves various tasks, including 2890

Multi-Modal Entity Alignment (MMEA), Entity 2891

Linking (MMEL), and Entity Disambiguation 2892

(MMED). 2893

A.5.1 Supplementary Information for MMEA 2894

A MMKG is denoted as G = {E ,R,A, T ,V} 2895

with T = {TA, TR}. Given two aligned A- 2896

MMKGs G1 = {E1,R1,A1,V1, T1} and G2 = 2897

{E2,R2,A2,V2, T2}, the goal of MMEA is to iden- 2898

tify pairs of entities (e1i , e2i ) from E1 and E2 respec- 2899

tively, that represent the same real-world entity 2900

ei. A set of pre-aligned entity pairs serves as a 2901

reference, divided into a training set (seed align- 2902

ments S) and a test set Ste, proportioned by a pre- 2903

defined seed alignment ratio Rsa. The available 2904

modalities associated with an entity are denoted 2905

by M = {g, r,a,v, s}, which represent the graph 2906

structure, relation, attribute, vision, and surface 2907

(i.e., entity name) modalities, respectively. 2908

Traditional Entity Alignment (EA). Specifi- 2909

cally, symbolic logic approaches (Qi et al., 2021) 2910

apply manually defined rules, such as logical infer- 2911

ence and lexical matching, to guide the alignment. 2912

Embedding-based methods (Sun et al., 2023e) uti- 2913

lize learned entity embeddings to expedite the align- 2914

ment, without predefined heuristics. 2915

MMEA Considerations. While both relation, at- 2916

tribute, and surface modalities can be categorized 2917

under language modalities, they are frequently dis- 2918

tinguished as separate modalities in MMEA com- 2919
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munities (Liu et al., 2021; Lin et al., 2022; Cheng2920

et al., 2022; Chen et al., 2023e,f; Guo et al., 2023b;2921

Su et al., 2023; Zhu et al., 2023d). Besides, re-2922

search shows a variety of modal usage patterns:2923

some studies focus solely on the types of attributes2924

and relations during the alignment process (Chen2925

et al., 2023e,f), while others incorporate their tex-2926

tual content into entity representations via using2927

PLM (e.g., BERT (Devlin et al., 2019)) (Wu et al.,2928

2022; Zhu et al., 2023a,b; Li et al., 2023i; Ge et al.,2929

2021; Congcong Ge and Xiaoze Liu and Lu Chen2930

and Baihua Zheng and Yunjun Gao, 2021) or word2931

embeddings (e.g., Glove (Pennington et al., 2014))2932

(Liu et al., 2021; Lin et al., 2022; Chen et al.,2933

2023e,f, 2022b). Additionally, some methods are2934

proposed for entities that have only one image (Liu2935

et al., 2021; Lin et al., 2022), while others are pre-2936

pared to handle cases where the number of images2937

per entity can be multiple (Li et al., 2023l) or even2938

missing (Chen et al., 2023f).2939

MMEA Method Details:2940

• Exploring better cross-KG modality feature2941

fusion: Specifically, MMEA (Chen et al., 2020)2942

is first introduced in 2020 as a method that2943

merges knowledge representations from multi-2944

ple modalities and aligns entities by minimizing2945

the distance between their holistic embeddings;2946

HMEA (Guo et al., 2021) expands MMKG rep-2947

resentation from the Euclidean space to the hy-2948

perbolic manifold, offering a more refined ge-2949

ometric interpretation. EVA (Liu et al., 2021)2950

assigns different importance to each modality2951

via an attention mechanism. It further intro-2952

duces an unsupervised MMEA approach that2953

leverages visual similarities between entities to2954

create a pseudo seed dictionary, thus reducing2955

dependence on gold-standard labels. MSNEA2956

(Chen et al., 2022b) leverages visual cues to2957

guide relational feature learning and weights2958

valuable attributes for alignment. MCLEA (Lin2959

et al., 2022) applies KL divergence to bridge2960

the modality distribution gap between joint2961

and uni-modal embedding. ACK-MMEA (Li2962

et al., 2023h) presents an attribute-consistent2963

KG representation learning method to solve the2964

contextual gap caused by different attributes.2965

PathFusion (Zhu et al., 2023b) combines in-2966

formation from different modalities using the2967

modality similarity path as an information car-2968

rier. DFMKE (Zhu et al., 2023d) employs2969

a late fusion approach with modality-specific2970

low-rank factors that enhance feature integra- 2971

tion across various knowledge spaces, comple- 2972

menting early fusion output vectors. Consider- 2973

ing that the surrounding modality of each en- 2974

tity is inconsistent, MEAformer (Chen et al., 2975

2023e) dynamically adjusts the mutual modal- 2976

ity preference for entity-level modality fusion. 2977

Recent works like MoAlign (Li et al., 2023i), 2978

UMAEA (Chen et al., 2023f) PCMEA (Wang 2979

et al., 2024a) and DESAlign (Wang et al., 2980

2024b) follow similar settings. XGEA (Xu 2981

et al., 2023a) leverages the information from 2982

one modality as complementary relation infor- 2983

mation to enrich entity embeddings by comput- 2984

ing inter-modal attention within the GAT layers. 2985

• Analyzing the practical limitations and chal- 2986

lenges in MMKG alignment: Wang et al. 2987

(2023c) tackled the issue of image-type mis- 2988

matches in aligned multi-modal entities by 2989

filtering out incongruent images using pre- 2990

defined ontologies and an image type classi- 2991

fier. The inherent incompleteness of visual data 2992

in MMKGs poses another challenge, where 2993

many entities lack images (e.g., 67.58% in 2994

DBP15KJA-EN (Liu et al., 2021)). Further- 2995

more, the intrinsic ambiguity of visual images 2996

also impacts the alignment quality (i.e., each en- 2997

tity has multiple visual aspects as elaborated in 2998

§ 2). Chen et al. (2023f) introduces the MMEA- 2999

UMVM dataset to study the impact of training 3000

noise and performance degradation at high rates 3001

of missing modalities. They further propose 3002

UMAEA, which employs a multi-scale modal- 3003

ity hybrid approach with a circularly missing 3004

modality imagination module equipped. Con- 3005

sidering that many entities in the source KG 3006

may not have aligned entities in the target KG 3007

(i.e., the dangling entities (Sun et al., 2021b; 3008

Luo and Yu, 2022)), Guo et al. (2023b) in- 3009

troduce the entity synthesis task to generate 3010

new entities either conditionally or uncondition- 3011

ally, and propose the GEEA framework, which 3012

employs a mutual variational autoencoder (M- 3013

VAE) for entity synthesis. To overcome the 3014

costly and time-intensive process of acquiring 3015

initial seeds, Ni et al. (2023) developed the 3016

Pseudo-Siamese Network (PSNEA), comple- 3017

mented by an Incremental Alignment Pool that 3018

labels probable alignments, reducing reliance 3019

on data swapping and sample re-weighting. 3020

Discussion 2 Adopting strategies beyond model ar- 3021
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chitecture is recognized for boosting performance.3022

Iterative training (Lin et al., 2022; Liu et al., 2021),3023

for example, incrementally refines model perfor-3024

mance by identifying and adding cross-KG entity3025

pairs as mutual nearest neighbors in the embedding3026

space every Ke epochs (e.g., 5), with pairs con-3027

firmed for inclusion in the training set after remain-3028

ing mutual nearest neighbors across Ks successive3029

iterations (e.g., 10). Similarly, the STEA framework3030

(Liu et al., 2023a) can be utilized to generate ad-3031

ditional pseudo-aligned pairs, thereby expanding3032

the training data. Additionally, the CMMI module3033

(Chen et al., 2023f) can be integrated into models3034

to create synthetic visual embeddings, mitigating3035

the impact of missing images. For fair evaluation,3036

models employing these strategies should be as-3037

sessed separately from those that do not. Moreover,3038

considerations like the use of entity names (surface3039

forms), computational complexity, textual encod-3040

ing methods, and the integration of additional data3041

warrant careful attention in comparing methodolo-3042

gies in future research.3043

Resources & Benchmarks: (i) The first MMEA3044

dataset includes FB15K-DB15K (FBDB15K)3045

and FB15K-YAGO15K (FBYG15K) (Liu3046

et al., 2019b) with three data splits: Rsa ∈3047

{0.2, 0.5, 0.8}. (ii) Multi-modal DBP15K (Liu3048

et al., 2021): An extension of the DBP15K (Sun3049

et al., 2017) which attaches entity-matched im-3050

ages from DBpedia (Auer et al., 2007) and3051

Wikipedia (Denoyer and Gallinari, 2006) to the3052

original cross-lingual EA benchmark. It in-3053

cludes four language-specific KGs from DBpe-3054

dia, with three bilingual settings (Rsa = 0.3),3055

namely DBP15KZH-EN , DBP15KJA-EN , and3056

DBP15KFR-EN . Each setting contains approxi-3057

mately 400K triples and 15K pre-aligned entity3058

pairs. We benchmark those recent MMEA meth-3059

ods using this series of datasets as outlined in Table3060

5. (iii) Multi-OpenEA (Li et al., 2023l): A multi-3061

modal expansion of the OpenEA benchmarks (Sun3062

et al., 2020c) which links entities with their top-33063

related images sourced through Google search. (iv)3064

MMEA-UMVM(Chen et al., 2023f): It contains3065

two bilingual datasets (EN-FR-15K, EN-DE-15K)3066

and two monolingual datasets (D-W-15K-V1, D-3067

W-15K-V2) derived from Multi-OpenEA datasets3068

(Rsa = 0.2) (Li et al., 2023l) and all three bilingual3069

datasets from DBP15K (Liu et al., 2021). It intro-3070

duces variability in visual information by randomly3071

removing images, resulting in 97 distinct dataset3072

splits.

Table 5: Comparison of MMEA results with (w/o)
and without (w/o) surface forms (SF) on the DBP15K
dataset (Liu et al., 2021), where “iter.” signifies itera-
tive learning applied. The symbol † indicates that the
PLMs were applied for generating surface or attribute
embeddings. ∗ marks the results reproduced in (Chen
et al., 2023f,e; Xu et al., 2023a).

Models
DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN

H@1 MRR H@1 MRR H@1 MRR

w
/o

SF

HMEA (Guo et al., 2021) .540 - .531 - .484 -
EVA (Liu et al., 2021) .720 .793 .716 .792 .715 .795
MCLEA* (Lin et al., 2022) .726 .796 .719 .789 .719 .792
GEEA (Guo et al., 2023b) .761 .827 .755 .827 .776 .844
MEAformer (Chen et al., 2023e) .772 .835 .769 .840 .771 .841
UMAEA (Chen et al., 2023f) .800 .860 .801 .862 .818 .877
DESAlign (Wang et al., 2024b) .810 .865 .811 .869 .826 .885

w
/o

SF
(i

te
r.)

EVA (Liu et al., 2021) .761 .814 .762 .817 .793 .847
MSNEA* (Chen et al., 2022b) .821 .877 .805 .849 .822 .859
PSNEA (Ni et al., 2023) .811 .858 .807 .846 .843 .871
MCLEA (Lin et al., 2022) .816 .865 .812 .865 .834 .885
MEAformer (Chen et al., 2023e) .847 .892 .842 .892 .845 .894
SKEA (Su et al., 2023) .849 .897 .844 .895 .878 .921
UMAEA (Chen et al., 2023f) .856 .900 .857 .904 .873 .917
DESAlign (Wang et al., 2024b) .868 .909 .871 .913 .882 .924
XGEA (Xu et al., 2023a) .876 .910 .878 .914 .889 .924

w
/S

F

CLEM† (Wu et al., 2022) .854 .879 .885 .904 .936 .952
MSNEA* (Chen et al., 2022b) .887 .913 .938 .955 .969 .980
EVA* (Liu et al., 2021) .929 .951 .964 .976 .990 .994
MCLEA* (Lin et al., 2022) .926 .946 .961 .973 .987 .992
MEAformer (Chen et al., 2023e) .949 .965 .978 .986 .991 .995

w
/S

F
(i

te
r.)

MSNEA* (Chen et al., 2022b) .896 .922 .942 .958 .971 .982
EVA (Liu et al., 2021) .956 .969 .979 .987 .995 .997
SKEA (Su et al., 2023) .913 .938 .923 .948 .978 .985
MCLEA (Lin et al., 2022) .972 .981 .986 .991 .997 .998
XGEA (Xu et al., 2023a) .968 .978 .985 .991 .994 .996
MEAformer (Chen et al., 2023e) .973 .983 .991 .995 .996 .998

3073

A.5.2 Multi-modal Entity Linking 3074

Entity Linking (EL) serves as a crucial component 3075

in various applications (Shen et al., 2014, 2021; 3076

Sevgili et al., 2022), including Question Answer- 3077

ing, Relation Extraction, and Semantic Search. The 3078

main target of EL is to associate textual mentions 3079

within documents with their respective entities in 3080

a KG (e.g., Freebase (Bollacker et al., 2008)). No- 3081

tably, mentions extend beyond textual forms, in- 3082

cluding images, audio, and video content, all of 3083

which can be linked to KG entities. Recent stud- 3084

ies in Multi-Modal Entity Linking (MMEL) find 3085

that leveraging the multi-modal information can 3086

significantly enhance the efficacy of conventional 3087

EL methods. 3088

Definition 3 Multi-modal Entity Linking. A 3089

MMKG is denoted as G = {E ,R,A, T ,V}, where 3090

E = {e1, e2, ..., ei} are the entity set. M = 3091

{g, r,a,v, s} are the graph structure, relation, at- 3092

tribute, vision, and surface information, respec- 3093

tively. For example, xse1 , xve1 denotes the name 3094

and visual information of e1, respectively. The 3095
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mention set is defined as N = {m1, ...,mi}3096

with {xsm1
, ..., xsmi

}, {xvm1
, ..., xvmi

} being the cor-3097

responding name and visual information. The3098

objective of MMEL is to determine the link-3099

age between entities and mentions, denoted by3100

(ei,mi), based on the multi-modal information3101

(xse1 , ..., x
v
e1 , x

s
m1

, ..., xvm1
).3102

Method: Early MMEL research (Moon et al.,3103

2018a; Adjali et al., 2020; Zhang et al., 2021b) fo-3104

cuses on fusing and expanding multi-modal data,3105

such as merging visual and textual elements from3106

media posts, to enhance textual mentions and3107

predict corresponding KB entities. For example,3108

DZMNED (Moon et al., 2018a) utilizes KG em-3109

beddings along with a blend of word-level and3110

char-level lexical embeddings, a strategy crafted to3111

adeptly manage the challenge of identifying previ-3112

ously unseen entities during testing. Zhang et al.3113

(2021b) focus on the removal of noisy images to en-3114

hance performance. Subsequent research extends3115

these methods, exploring strategies for integrat-3116

ing diverse multi-modal contexts and developing3117

more reasonable multi-modal datasets (Gan et al.,3118

2021; Zheng et al., 2022a,b; Wang et al., 2022d;3119

Yang et al., 2023; Luo et al., 2023; Yao et al.,3120

2023a). GHMFC (Wang et al., 2022d), for ex-3121

ample, employs gated fusion and contrastive train-3122

ing for improved mention representations, while3123

MIMIC (Luo et al., 2023) introduces a multi-3124

grained interaction network for universal feature3125

extraction. AMELI (Yao et al., 2023a) implements3126

an entity candidate retrieval pipeline, enhancing3127

MMEL models using attribute information.3128

Recent explorations in MMEL mainly employ3129

(V)PLMs for feature representation. BERT (Devlin3130

et al., 2019) is frequently used for textual process-3131

ing (Yang et al., 2023; Wang et al., 2023f), while3132

CLIP (Radford et al., 2021) is preferred for vi-3133

sual encoding (Song et al., 2023b; Shi et al., 2023).3134

Typically, most parameters of these (V)PLMs re-3135

main frozen, complemented by focused fine-tuning3136

strategies. Among them, GEMEL (Shi et al.,3137

2023) effectively combines LLaMA (Touvron et al.,3138

2023) for language processing and CLIP for vi-3139

sual encoding, showing the potential of GPT 3.53140

in MMEL. Yang et al. (2023) introduce a multi-3141

mention MMEL task that considers different men-3142

tions within the same context as a single sample,3143

employing a multi-mention collaborative ranking3144

method for testing to uncover potential connec-3145

tions between mentions. Pan et al. (2022a) present3146

Multi-modal Item-aspect Linking, focusing on link- 3147

ing short videos to related items in a short-video 3148

encyclopedia. GDMM (Wang et al., 2023f) ap- 3149

proaches MMEL by incorporating all three modal- 3150

ities: text, image, and table, adhering to a multi- 3151

modal encoder-decoder paradigm. DWE (Song 3152

et al., 2023b) augments visual features with de- 3153

tailed image attributes, like facial characteristics 3154

and scene features, enhancing textual representa- 3155

tions using Wikipedia descriptions which bridges 3156

the gap between text and KG entities. 3157

Resources & Benchmarks: (i) SnapCaption- 3158

sKB (Moon et al., 2018a): A MMEL dataset 3159

featuring 12,000 manually labeled image-caption 3160

pairs, designed to capture diverse multi-modal in- 3161

teractions. Currently unavailable due to the Gen- 3162

eral Data Protection Regulation (GDPR). In re- 3163

sponse, Adjali et al. (2020) develop an automated 3164

MMEL dataset construction tool from Twitter. (ii) 3165

M3EL (Gan et al., 2021): A dataset comprising 3166

181,240 textual mentions and 45,297 images re- 3167

lated to movies, offering fine-grained annotations. 3168

(iii) NYTimes-MEL (Yang et al., 2023): Origi- 3169

nates from the New York Times’ (Tran et al., 2020; 3170

Zhao et al., 2021) images and captions, focusing 3171

on PERSON entities. StanfordNLP tool (Qi et al., 3172

2018) is used for NER in captions, where some 3173

entities were replaced with nicknames for mention 3174

construction. Similar to (Wang et al., 2022d), it is 3175

enriched with images and 14 properties for each 3176

entity from Wikidata (Xu et al., 2023f), excluding 3177

samples with invalid entities or those without corre- 3178

sponding images. (iv) WikiData-Based Datasets: 3179

Including WikiDiverse (Wang et al., 2022h) and 3180

WikiMEL (Wang et al., 2022d), these datasets of- 3181

fer human-annotated mentions spanning diverse 3182

topics and entity types. WikiDiverse includes data 3183

from WikiNews categories like sports and tech- 3184

nology, while WikiMEL collates mentions from 3185

Wikipedia and WikiData. 3186

Discussion 3 Evaluation metrics commonly used 3187

in this field include Hits@k (e.g., Hits@1, 3, 5), 3188

MRR, and MR. These metrics necessitate calculat- 3189

ing the similarity or probability between a men- 3190

tion and all entities in the KG. Typically, encoders’ 3191

parameters are not trained from scratch; instead, 3192

employing existing LLMs and vision encoders is 3193

standard practice. While many methods permit gra- 3194

dient updates for these parameters, recent findings 3195

suggest that maintaining them in a frozen state can 3196

markedly decrease training costs while still achiev- 3197
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Table 6: Comparison of MMEL results on the WikiMEL
(Wang et al., 2022d) and Wikidiverse (Wang et al.,
2022h) dataset.

Models
WikiMEL Wikidiverse

H@1 H@5 MRR H@1 H@5 MRR

Te
xt

BLINK (Wu et al., 2020a) .747 .906 .817 .571 .853 .692
BERT (Devlin et al., 2019) .748 .905 .818 .558 .831 .674
RoBERTa (Liu et al., 2019c) .738 .898 .809 .595 .851 .705
GENRE (Cao et al., 2021) .601 - - .601 - -
GPT 3.5 Turbo .727 - - .738 - -

Te
xt

+
V

is
io

n

JMEL (Adjali et al., 2020) .647 .834 .734 .374 .610 .482
DZMNED (Moon et al., 2018a) .788 .926 .850 .569 .814 .676
GHMFC (Wang et al., 2022d) .765 .920 .834 .603 .847 .710
CLIP (Radford et al., 2021) .832 .945 .882 .612 .852 .717
ViLT (Kim et al., 2021) .726 .879 .795 .344 .578 .452
MMEL (Yang et al., 2023) .715 .917 - - - -
GEMEL (Shi et al., 2023) .826 - - .863 - -
ALBEF (Li et al., 2021) .786 .918 .846 .606 .813 .699
METER (Dou et al., 2022) .725 .882 .795 .531 .776 .637
MIMIC (Luo et al., 2023) .880 .964 .918 .635 .864 .734

ing, or even surpassing, competitive performance3198

levels.3199

A.5.3 Multi-modal Entity Disambiguation3200

In many studies, EL and Entity Disambiguation3201

(ED) are often treated synonymously due to their3202

methodological and task-setting similarities (Moon3203

et al., 2018a; Luo et al., 2023). However, it is3204

crucial to distinguish between the two. While EL3205

includes the broader process of identifying and link-3206

ing named entities in text to their corresponding3207

entities in a KG, ED specifically focuses on resolv-3208

ing cases where a named entity might correspond to3209

multiple potential candidates. In ED, each dataset3210

sample typically includes a named entity alongside3211

a set of candidates that bear close resemblance,3212

highlighting the task’s emphasis on disambiguating3213

among these options (Moon et al., 2018a).3214

Although EL and Entity Disambiguation (ED)3215

are often treated synonymously in many studies3216

due to their methodological and task-setting paral-3217

lels (Moon et al., 2018a; Luo et al., 2023), distin-3218

guishing between them is still vital. EL includes the3219

broader process of identifying and linking named3220

entities in text to their corresponding entries in a3221

KG. In contrast, ED specifically targets resolving3222

ambiguities when a named entity could match mul-3223

tiple candidates. ED emphasizes disambiguating3224

among these potential candidates, often presented3225

with a named entity and a closely related set of3226

options in each dataset sample.3227

In Multi-modal Entity Disambiguation3228

(MMED), methods leverage not just textual but3229

also visual information to refine disambiguation.3230

For example, DZMNED (Moon et al., 2018a)3231

utilizes a convolutional LSTM for integrating 3232

multi-modal data. ET (Adjali et al., 2020) applies 3233

an Extra-Tree Classifier to effectively distinguish 3234

among ambiguous candidates. IMN (Zhang 3235

and Huang, 2022) adopts meta-learning for 3236

multi-modal knowledge acquisition and a 3237

knowledge-guided transfer learning strategy, facili- 3238

tating the extraction of cohesive representations 3239

across modalities. 3240

A.6 MMKG Inference 3241

This stage, following extraction and fusion within 3242

the MMKG construction cycle, aims to bolster the 3243

model’s reasoning abilities and deepen its under- 3244

standing of the KG’s overall knowledge. 3245

A.7 Supplementary Information for MKGC 3246

Multi-modal Knowledge Graph Completion 3247

(MKGC) plays a vital role in mining missing 3248

triples from existing KGs. This process involves 3249

three sub-tasks: Entity Prediction, Relation 3250

Prediction, and Triple Classification. 3251

Definition 4 MMKG Completion. A MMKG is de- 3252

noted as G = E ,R,A, T ,V , where T = TA, TR. 3253

The goal of MKGC is to enrich the relational triple 3254

set TR in A-MMKGs by identifying missing rela- 3255

tional triples among existing entities and relations, 3256

potentially leveraging attribute triples TA. Specifi- 3257

cally, Entity Prediction determines missing head/- 3258

tail entities in queries (h, r, ?) or (?, r, t); Relation 3259

Prediction identifies missing relations in (h, ?, t); 3260

and Triple Classification assesses the validity of 3261

given triples (h, r, t) as true or false. 3262

Methods: Mainstream MKGC approaches pri- 3263

marily follow two paths: embedding-based and 3264

fine-tuning (FT) based methods. Considering the 3265

intersection between MKGC and KGC methods, 3266

this section also discusses several typical KGC 3267

techniques to offer deeper insights into MKGC. 3268

Embedding-based Approaches evolve from tra- 3269

ditional KGE techniques (Bordes et al., 2013; Sun 3270

et al., 2019), adapting them to include multi-modal 3271

data, thus forming multi-modal entity embeddings. 3272

They’re divided into modal fusion, modal ensem- 3273

ble, and negative sampling approaches: 3274

(i) Modality Fusion methods (Wilcke et al., 3275

2023; Wang et al., 2022b; Huang et al., 2022) in- 3276

tegrate multi-modal embeddings of entities with 3277

their structural embeddings for triple plausibility 3278

estimation. Early efforts, like IKRL (Xie et al., 3279
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2017), use multiple TransE-based scoring func-3280

tions (Bordes et al., 2013) for modal interaction.3281

Subsequent developments, like TBKGC (Sergieh3282

et al., 2018), TransAE (Wang et al., 2019), and3283

MKBE (Pezeshkpour et al., 2018) further incorpo-3284

rate modalities such as textual numerical attributes.3285

RSME (Wang et al., 2021b) introduces gates for3286

adaptive modal information selection. OTKGE3287

(Cao et al., 2022b) applies optimal transport for3288

multi-modal fusion, while CMGNN (Fang et al.,3289

2023a) implements a multi-modal GNN with cross-3290

modal contrastive learning. HRGAT (Liang et al.,3291

2023b) builds a hyper-node relational graph for3292

multi-modal entity representation. CamE (Xu et al.,3293

2023c) introduces a triple co-attention module for3294

biological KGs, and VISITA (Lee et al., 2023) de-3295

velops a transformer-based framework which uti-3296

lizes relation and triple-level multi-modal informa-3297

tion for MKGC.3298

(ii) Modality Ensemble methods train separate3299

models using distinct modalities, combining their3300

outputs for final predictions. For example, MoSE3301

(Zhao et al., 2022c) utilizes structural, textual, and3302

visual data to train three KGC models, using ensem-3303

ble strategies for joint predictions. Similarly, IMF3304

(Li et al., 2023k) proposes an interactive model to3305

achieve modal disentanglement and entanglement3306

to make robust predictions.3307

(iii) Modality-aware Negative Sampling in-3308

volves generating false triples to enhance a model’s3309

ability to differentiate between accurate and poten-3310

tially erroneous KG triples. During KG Embedding3311

training, models map entities and relations to vec-3312

tors, guided by both positive and negative samples,3313

with their efficacy relying on the strategic selection3314

and quality of negative samples to balance scoring3315

between positive and negative instances. Multi-3316

modal data in KGs enhance traditional negative3317

triple sampling (Bordes et al., 2013) by providing3318

additional context for selecting higher-quality nega-3319

tive samples, thereby addressing a key performance3320

bottleneck in KGC model training. Concretely,3321

MMKRL (Lu et al., 2022b) introduces adversarial3322

training to MKGC, adding perturbations to modal3323

embeddings. This pioneers the use of adversarial3324

methods for augmenting MKGC models. Follow-3325

ing this, VBKGC (Zhang and Zhang, 2022) and3326

MANS (Zhang et al., 2023f) develop fine-grained3327

visual negative sampling to better align visual with3328

structural embeddings for more nuanced compari-3329

son training. MMRNS (Xu et al., 2022c) introduces3330

a relation-enhanced negative sampling method, uti-3331

lizing a differentiable strategy to adaptively select 3332

high-quality negative samples. 3333

FT-based Approaches leverage pre-trained 3334

Transformer models such as BERT (Devlin et al., 3335

2019) and VisualBERT (Li et al., 2019), capital- 3336

izing on their profound multi-modal comprehen- 3337

sion for MKGC. These methods transform MMKG 3338

triples into token sequences, feeding them into 3339

PLMs (Liang et al., 2022). 3340

(i) Discriminative strategies model KGC tasks 3341

as classification problems, with PLMs encoding 3342

textual information. KG-BERT (Yao et al., 2019), 3343

a forerunner in this field, fine-tunes BERT for triple 3344

classification, assessing triple plausibility based 3345

on the model’s positive probability. Subsequent 3346

methods introduce additional tasks like relation 3347

classification and triple ranking (Kim et al., 2020; 3348

Wang et al., 2021a; Safavi et al., 2022), or explore 3349

prompt tuning in KGC (Lv et al., 2022; Chen et al., 3350

2023a; Geng et al., 2023). FT-based MKGC meth- 3351

ods emphasizes modal fusion over traditional KGC. 3352

Among them, MKGformer (Chen et al., 2022c) em- 3353

ploys a hybrid Transformer for multi-level multi- 3354

modal fusion, treating MKGC as an MLM task and 3355

predicting masked entities by combining entity de- 3356

scriptions, relations, and images SGMPT (Liang 3357

et al., 2023a) extends MKGformer’s capabilities by 3358

adding structural data integration through a graph 3359

structure encoder and a dual-strategy fusion mod- 3360

ule. 3361

(ii) Generative models frame KGC as a 3362

sequence-to-sequence task (Saxena et al., 2022; 3363

Xie et al., 2022; Chen et al., 2022a), employing 3364

PLMs for text generation. KGLLaMA (Yao et al., 3365

2023b) and KoPA (Zhang et al., 2023i) explore the 3366

application of LLMs with instruction tuning for 3367

generative KGC, a relatively unexplored approach 3368

in MKGC, presenting a vast area for further explo- 3369

ration. 3370

Discussion 4 In MKGC, extracting modal informa- 3371

tion using pre-trained encoders like VGG or BERT 3372

is essential. Embedding-based approaches gener- 3373

ally freeze these encoders during training and use 3374

the extracted data to initialize modal embeddings, 3375

while FT-based methods optimize them, aligning 3376

more closely with the model’s inherent knowledge 3377

and memory. This leads to the underutilization of 3378

modal information in embedding-based methods, 3379

while FT-based methods struggle with complex KG 3380

structural information. Furthermore, the challenge 3381

of missing modal information in real-world KGs is 3382
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significant. Initial solutions involved random ini-3383

tialization of missing modal embeddings, as seen in3384

early works (Xie et al., 2017; Sergieh et al., 2018).3385

Recently, MACO (Zhang et al., 2023h) introduce3386

adversarial training to address this issue, but these3387

methods remain basic, with a need for more inno-3388

vative approaches.3389

Resources & Benchmarks: (i) Initial MKGC3390

Datasets: Early MKGC research primarily uti-3391

lize established KG benchmarks such as WordNet3392

(WN9-IMG (Xie et al., 2017), WN18-IMG (Wang3393

et al., 2021b)), MovieLens100K (Pezeshkpour3394

et al., 2018), YAGO-10 (Pezeshkpour et al., 2018),3395

and FreeBase (FB) (Sergieh et al., 2018), extended3396

with multi-modal information. For example, WN9-3397

IMG incorporates images from ImageNet. (ii)3398

Systematic MKGC Datasets: Liu et al. (2019b)3399

transforms FB15K, DB15K, and YAGO15K into3400

MMKGs by adding web-crawled images and nu-3401

meric modal data. We benchmark those (M)KGC3402

methods using this series of datasets as outlined3403

in Table 7. Xu et al. (2022c) construct MKG-W3404

and MKG-Y based on WikiData and YAGO, where3405

the images are obtained through web search en-3406

gines. (iii) Multi-faceted MKGC Datasets: Re-3407

cent MMKGs include a broader range of modal3408

information, represent the evolution towards more3409

sophisticated datasets. For example, MMpedia (Wu3410

et al., 2023b) is a scalable, high-quality MMKG3411

developed using a novel pipeline based on DBpedia3412

(Auer et al., 2007), designed to filter out non-visual3413

entities and refine entity-related images through3414

textual and type information. TIVA-KG (Wang3415

et al., 2023h) spans text, image, video, and audio3416

modalities, built upon ConceptNet (Speer et al.,3417

2017). It introduces triplet grounding, aligning3418

symbolic knowledge with tangible representations.3419

In a similar vein, VTKG (Lee et al., 2023) attaches3420

entities and triplets with images, supplemented by3421

textual descriptions for each entity and relation.3422

A.7.1 Multi-modal Knowledge Graphs3423

Reasoning3424

MKGC methods typically focus on single-hop3425

reasoning in MMKGs, which may limit the ex-3426

ploitation of KGs for multi-hop knowledge infer-3427

ence (Das et al., 2018). Multi-modal knowledge3428

graph reasoning (MKGR) aims to enable complex3429

multi-hop reasoning on MMKGs, an area still in3430

the early stages of research.3431

Table 7: Comparison of MKGC results on FB15K-237
and DB15K datasets (Liu et al., 2019b), with methods
marked by † utilizing only text information for KGC
with PLMs.

Models
FB15K-237 DB15K

H@1 H@10 MRR H@1 H@10 MRR

E
m

be
dd

in
g-

ba
se

d

IKRL (Xie et al., 2017) .232 .493 .309 .111 .426 .222
TBKGC (Sergieh et al., 2018) .229 .494 .297 .108 .419 .208
MKBE (Pezeshkpour et al., 2018) .258 .532 .347 .235 .513 .332
VBKGC (Zhang and Zhang, 2022) .239 .478 .332 - - -
MANS (Zhang et al., 2023f) - - - .204 .550 .332
MoSE (Zhao et al., 2022c) - .565 .281 - - -
MMRNS (Xu et al., 2022c) - - - .231 .510 .327
HRGAT (Liang et al., 2023b) .271 .542 .366 .597 .694 .630
IMF (Li et al., 2023k) .287 .593 .389 .427 .604 .485
VISITA (Lee et al., 2023) .287 .572 .381 - - -

FT
-b

as
ed

MTL-KGC† (Kim et al., 2020) .172 .458 .267 - - -
StAR† (Wang et al., 2021a) .205 .482 .269 - - -
SimKGC† (Wang et al., 2022c) .249 .511 .336 . - .
KGT5† (Saxena et al., 2022) .210 .414 .276 - - -
GenKGC† (Xie et al., 2022) .192 .439 - - - -
KG-S2S† (Chen et al., 2022a) .257 .498 .336 - - -
CSProm-KG† (Chen et al., 2023a) .269 .538 .358 - - -
MKGformer (Chen et al., 2022c) .256 .504 - - - -
SGMPT (Liang et al., 2023a) .252 .510 - - - -

Definition 5 MMKG Reasoning. MKGR predicts 3432

a missing query element in one of three forms: 3433

(h, r, ?), (h, ?, t), or (?, r, t), where “?” denotes 3434

the missing element. The objective is to infer this 3435

element through a multi-hop reasoning path in TR 3436

of an A-MMKG, where the path length is shorter 3437

or equal to k hops, and k is an integer greater than 3438

or equal to 1. 3439

MMKGR (Zheng et al., 2023a) combines a gate- 3440

attention network with feature-aware reinforce- 3441

ment learning for multi-hop reasoning in MMKGs, 3442

guided by analogical examples. TMR (Zheng et al., 3443

2023b) aggregates query-related topology features 3444

through an attentive mechanism to generate entity- 3445

independent features for effective MMKG reason- 3446

ing under both inductive and transductive settings. 3447

MarT (Zhang et al., 2023b) introduces the concept 3448

of multi-modal analogical reasoning, akin to cross- 3449

modal link prediction but without explicitly defined 3450

relations. This task, framed as (eh, et) : (eq, ?), 3451

leverages a background MMKG for missing el- 3452

ement (?) prediction. Its categorization under 3453

MKGR stems from its reliance on another triplet 3454

for tail (or head) entity prediction, differing from 3455

traditional MKGR in not requiring an explicit rea- 3456

soning path. To facilitate this task, MarT presents 3457

a dedicated dataset (MARS) and an accompany- 3458

ing MMKG, MarKG. Additionally, they develop a 3459

model-agnostic baseline method inspired by struc- 3460

ture mapping theory to address this unique reason- 3461

ing challenge. 3462

As this domain continues to evolve, it promises 3463
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to become a pivotal direction in MMKG Inference,3464

offering rich opportunities for groundbreaking dis-3465

coveries and advancements.3466

A.8 MMKG-driven Tasks3467

Retrieval. As discussed in § 2, several MMKGs3468

could naturally support retrieval related tasks: Im-3469

ageGraph (Liu et al., 2017) connects a query to3470

its top-K nearest neighbors, expanding via Bayes3471

similarity-weighted edges up to a certain graph3472

depth; IMGpedia (Ferrada et al., 2017), format-3473

ted in RDF, links visual descriptors and similar-3474

ity relations with image metadata from DBpedia3475

Commons, supporting SPARQL-based retrieval3476

based on visual similarity, metadata, or DBpedia3477

resources; VisualSem (Alberts et al., 2020) use a3478

neural multi-modal retrieval model that processes3479

both images and sentences to retrieve entities in the3480

KG with pre-trained CLIP (Radford et al., 2021) as3481

the encoder. Chen et al. (2021b) enhance MNER by3482

searching the entire MMKG to acquire knowledge3483

about poster images, using (mention, candidate3484

entity) pairs from post text and MMKG for effi-3485

cient image knowledge retrieval through iterative3486

breadth-first traversal.3487

Cross-modal Retrieval. Zeng et al. (2023)3488

provide a multi-modal knowledge hypergraph3489

(MKHG) for linking diverse data in MMKGs and3490

retrieval databases. a hyper-graph construction3491

module with varied hyper-edges, multi-modal in-3492

stance bagging for instance selection, and a diverse3493

concept aggregator for sub-semantic adaptation,3494

thus advancing representation learning in image3495

retrieval. Huang et al. (2022) propose a unified3496

continuous learning framework, iteratively updat-3497

ing the MMKG with MKGC as the target task and3498

subsequently pre-training an MMKG-based VLM,3499

using image-text matching as the core pre-training3500

task without the need for paired image-text training3501

data.3502

Reasoning & Generation. Zhao et al. (2021) in-3503

troduce an Image Captioning method utilizing an3504

MMKG that associates visual objects with named3505

entities, leveraging external multi-modal knowl-3506

edge from Wikipedia and Google Images for sup-3507

plementary. The MMKG, after processing through3508

a GAT (Velickovic et al., 2018), feeds its final layer3509

output into a Transformer decoder, enhancing the3510

precision of entity-aware caption generation. Jin3511

and Chen (2023) involve the MMKG into multi-3512

modal summarization in a similar manner.3513

MMKG Pre-training. (ii) Graph-level Gong 3514

et al. (2023) aggregate various knowledge-view of 3515

the entities in MMKG (i.e., embeddings of neigh- 3516

bors connected by specific relations) to obtain their 3517

knowledge representation. These, combine with 3518

the entities’ textual and visual embeddings, are 3519

integrated into CLIP’s similarity computation pro- 3520

cess for multi-modal knowledge pre-training. Li 3521

et al. (2023j) introduce GraphAdapter for CLIP, 3522

a method that leverages dual-modality structure 3523

knowledge through a unique dual knowledge graph, 3524

comprising textual and visual knowledge sub- 3525

graphs which represent semantics and their interre- 3526

lations in both modalities. GraphAdapter enables 3527

textual features of prompts to utilize task-specific 3528

structural knowledge from both textual and visual 3529

domains, enhancing CLIP’s classifier performance 3530

in downstream tasks. 3531

AI for Science. AI for science refers to the appli- 3532

cation of AI techniques into scientific disciplines 3533

to drive discovery, innovation, and understanding. 3534

It employs AI to analyze, interpret, and predict 3535

complex scientific data, effectively supplementing 3536

traditional scientific methods with advanced com- 3537

putational tools. Within this domain, the concept 3538

of MMKGs is broadened beyond the conventional 3539

text and image modality to incorporate a diverse ar- 3540

ray of scientific data, including molecules, proteins, 3541

genes, drugs, and disease information (MacLean, 3542

2021). This broader definition of “multi-modality” 3543

not only enriches the scope and depth of scientific 3544

research with varied data sources but also intro- 3545

duces new vitality and potential application value 3546

into the MMKG field. 3547

In biology, MMKGs effectively integrate 3548

domain-specific data sources (Bonner et al., 2022) 3549

like Uniprot for proteins (Consortium, 2019), 3550

ChEMBL for small molecule-protein interac- 3551

tions (Gaulton et al., 2012), SIDER for side ef- 3552

fects (Kuhn et al., 2016), and Signor for protein- 3553

protein interactions (Lo Surdo et al., 2023). These 3554

well-curated sources provide robust information 3555

to MMKGs. Additionally, data mined from ex- 3556

tensive literature using NLP methods (Kilicoglu 3557

et al., 2012; Percha and Altman, 2018) further en- 3558

rich MMKGs with diverse scientific insights. In 3559

those MMKGs, entities represent specific biolog- 3560

ical elements such as drugs or proteins, with rela- 3561

tions depicting their experimentally verified interac- 3562

tions. These links, often augmented with additional 3563

attributes like molecular structures or external iden- 3564
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tifiers, can be directional to indicate causality, such3565

as a drug causing a side effect (Ioannidis et al.,3566

2020).3567

However, in the process of modeling complex3568

biological systems, these MMKGs face challenges3569

in MKGC due to data incompleteness, which hin-3570

ders downstream applications. To address this, Xu3571

et al. (2023d) create a co-attention-based multi-3572

modal embedding framework, merging molecular3573

structures and textual data. It features a Triple Co-3574

Attention (TCA) fusion module for unified modal-3575

ity representation and a relation-aware TCA for de-3576

tailed entity-relation interactions, enhancing miss-3577

ing link inference. Moreover, biological MMKGs3578

have also broadened their applications in drug dis-3579

covery, extending beyond KGC to facilitate ad-3580

vanced tasks by leveraging rich graph knowledge.3581

Lin et al. (2020) convert DrugBank data into an3582

RDF graph using Bio2RDF, linking various biolog-3583

ical entities and extracting triples for their KGNN3584

framework. This framework predicts drug-drug in-3585

teractions, adapting spatial-based GNN approaches3586

to MMKGs by aggregating neighborhood infor-3587

mation, which efficiently maps drugs and their3588

potential interactions within the MMKG. Fang3589

et al. (2022, 2023c) develop a chemical-oriented3590

MMKG to summarize elemental knowledge and3591

functional groups. They introduce an element-3592

guided graph augmentation strategy for contrastive3593

pre-training, exploring atomic associations at a mi-3594

croscopic level. Their approach, integrating func-3595

tional prompts during fine-tuning, significantly im-3596

proves molecular property prediction and yields3597

interpretable results. Zhang et al. (2022a) con-3598

struct a large-scale MMKG containing the Gene3599

Ontology and related proteins. They implement3600

a contrastive learning approach with knowledge-3601

aware negative sampling to optimize MMKG and3602

protein embeddings, enhancing protein interaction3603

and function prediction. Cheng et al. (2023b) cre-3604

ate an MMKG for protein science, integrating the3605

Gene Ontology and Uniprot knowledge base. They3606

develop a system for protein analysis, aiding pre-3607

dictions related to protein structure, function, and3608

drug molecule binding, and supporting biological3609

question answering. MMKGs thus serve not only3610

as tools for direct query and pattern discovery but3611

also as invaluable resources for augmenting and3612

refining the performance of diverse computational3613

tasks in drug discovery.3614

Remark 1 Creating standardized benchmarks for3615

biological MMKGs presents a challenge due to the 3616

varying sizes of these graphs and the diverse nature 3617

of the data they encompass. Despite these obsta- 3618

cles, several benchmarks have been developed to 3619

gauge progress in the field. OpenBioLink (Breit 3620

et al., 2020), for instance, is a benchmark specif- 3621

ically designed for large-scale biomedical link 3622

prediction. It provides a clear and transparent 3623

framework that facilitates the evaluation of new 3624

algorithmic approaches in this area. Additionally, 3625

PharmKG (Zheng et al., 2021c) has emerged as 3626

a dedicated benchmark specifically tailored for 3627

biomedical knowledge graph mining. Its intro- 3628

duction marks a significant step in advancing the 3629

field, providing researchers with specialized tools 3630

to evaluate and enhance data mining techniques in 3631

biomedical research. These benchmarks are cru- 3632

cial for the ongoing development and validation 3633

of computational methods, ensuring that innova- 3634

tions in MMKGs are both effective and relevant for 3635

practical applications in drug discovery. Zheng 3636

et al. (2021d) propose an MMKG attention em- 3637

bedding method for COVID-19 diagnosis, utilizing 3638

an image subset from public radiology reports and 3639

patient records, which contains three medical imag- 3640

ing modalities: X-ray, CT, and ultrasound. This 3641

offers a wider avenue for the future advancement 3642

of MMKG applications. 3643

Industry Application. Wang et al. (2023g) intro- 3644

duce FashionKLIP, a VLM enhanced by MMKG 3645

for E-commerce, incorporating FashionMMKG 3646

into a CLIP-style model for image-text retrieval. 3647

This approach uses contrastive learning for modal 3648

alignment and conceptual matching through visual 3649

prototypes from FashionMMKG for training. 3650

MKGAT (Sun et al., 2020b) applies MMKGs to 3651

movie and restaurant recommendation systems, 3652

using a Collaborative MMKG (CMMKG) that 3653

merges user behavior with multi-modal item data. 3654

This model adopts entity-specific encoders and a 3655

GAT for entity representation, leveraging TransE 3656

for knowledge space learning. CKGC (Cao et al., 3657

2022a) further categorizes traditional relations in 3658

MMKG into two types: descriptive attributes and 3659

structural connections, employing cross-modal con- 3660

trastive learning for more effective node represen- 3661

tation in recommendation. 3662

B Future Directions 3663

(i) As outlined in § 2, MMKG construction pri- 3664

marily involves two paradigms: annotating images 3665
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with KG symbols or grounding KG symbols to im-3666

ages. Recent developments, as highlighted in (Lee3667

et al., 2023), start to explore a new path, aligning3668

locally extracted triples from multiple images3669

with large-scale KGs, which can be regarded as3670

a mixture of MMKG and hyper-MMKG. The ad-3671

vantage of this hybrid approach is twofold: it not3672

only extends the coverage of image quantity, as3673

seen in the first paradigm, but also incorporates3674

the extensive knowledge scale characteristic of the3675

second. It promotes the generation of large-scale,3676

triple-level multimodal information, posing both3677

opportunities and challenges for future work in3678

Multi-modal Entity Alignment and MMKG-driven3679

applications like MLLM Pre-training and VQA.3680

(ii) Refining and aligning fine-grained knowl-3681

edge within MMKGs is crucial. An ideal MMKG3682

should be hierarchical, possessing deep levels with3683

detailed and abstract multi-modal knowledge. Such3684

a structure allows for the automatic decomposition3685

of large-scale cross-modal data, enabling a single3686

image to ground multiple concepts (Huang et al.,3687

2023b). Moreover, segmentation represents an ad-3688

vanced requirement for grounding. With technolo-3689

gies like Segment Anything (Kirillov et al., 2023)3690

already in place, such approaches can significantly3691

reduce background noise impact in visual modali-3692

ties. Thus, evolving towards segmentation-level,3693

hierarchical, and multi-grained MMKGs marks3694

a significant future direction.3695

(iii) In visual modalities, we hold that abstract3696

concepts should correspond to abstract visual rep-3697

resentations, while concrete concepts align with3698

specific visuals. For example, general concepts like3699

cats and dogs manifest in the brain as generic, aver-3700

aged visual animal images, whereas specific quali-3701

fiers, such as "Alaskan sled dogs", provide clarity,3702

similar to route-based image retrieval in MMKGs.3703

Additionally, we also posit that every concept, vi-3704

sualizable or not, can be associated with certain3705

modal representations. The abstract concept of3706

“mind”, for example, may evoke images of “brains”3707

or “people thinking”, still showing MMKGs’ abil-3708

ity to represent NVCs. This perspective contrasts3709

with previous views (Jiang et al., 2022; Peng et al.,3710

2023). Interestingly, in human cognition, rarer con-3711

cepts, such as “unicorns”, are often more vividly3712

depicted. If we know a unicorns only as a horned3713

horse, this specific image is what we remember,3714

rather than a horned seal or lion. This mirrors3715

MMKG data structuring: concepts with fewer im-3716

ages are represented more distinctly, while those3717

with more images are generalized and blurrier. 3718

(iv) Efficiency in MMKG storage and utiliza- 3719

tion remains a concern. Despite traditional KGs’ 3720

lightweight nature and vast knowledge storage with 3721

minimal parameters, MMKGs demand more space, 3722

challenging efficient data storage and application 3723

across tasks. Enhancing efficiency might involve 3724

embedding multi-modal information into dense 3725

spaces as a temporary solution. Future research 3726

should strive to improve usage and storage effi- 3727

ciency without sacrificing MMKG’s interpretabil- 3728

ity and structural integrity, a delicate balance that 3729

presents a continuing challenge. 3730

(v) Quality control in MMKGs introduces 3731

unique challenges with multi-modal (e.g., visual) 3732

content such as incorrect, missing, or outdated im- 3733

ages. Limited fine-grained alignment between im- 3734

ages and text in existing MMKGs and the noise 3735

from automated MMKG construction methods ne- 3736

cessitate developing quality control techniques, 3737

possibly by assigning scores based on modal in- 3738

formation quality. Given the dynamic nature of 3739

world knowledge, regularly updating MMKGs is 3740

essential. An important research direction lies in 3741

efficiently implementing multi-modal knowledge 3742

conflict detection and updates. The development 3743

of dynamic, temporal, and even spatiotemporal 3744

MMKGs (Liu et al., 2023d) is also crucial, enhanc- 3745

ing their adaptability to diverse environments and 3746

user needs. Moreover, cross-lingual MMKGs can 3747

facilitate intercultural communication by enabling 3748

understanding and collaboration across languages 3749

and cultures, overcoming understanding barriers 3750

and supporting global cultural sharing. 3751

MMKG for Tasks. Challenges in Scaling 3752

MMKG for Multi-modal Tasks: MMKG-driven 3753

tasks often emphasize retrieval-related activities, 3754

leveraging the natural database-like capabilities of 3755

MMKGs. However, the utilization of large-scale 3756

MMKGs in varied tasks, especially reasoning, is 3757

still nascent with limited exploratory studies. For 3758

example, Zha et al. (2023) enhance knowledge- 3759

based VQA by employing multi-modal concept 3760

descriptions and integrating MLLMs for refined 3761

answers. Nevertheless, these methods only use 3762

MMKGs as “key:value” based retrieval databases, 3763

not fully leveraging their multi-modal structured 3764

capabilities. 3765

The constrained utilization of MMKGs in di- 3766

verse tasks can be attributed to several factors. 3767

(i) Non-Uniform Organization and Ontology 3768
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of MMKGs: Current MMKGs, lacking a stan-3769

dardized format, vary significantly in their focal3770

points and the knowledge domains they cover for3771

each downstream task. Predominantly, MMKGs3772

cater to encyclopedic or trivia knowledge (Gong3773

et al., 2023; Zhang et al., 2023a; Wu et al., 2023b;3774

Zha et al., 2023), with commonsense and scien-3775

tific related MMKGs (Wang et al., 2023h; Lee3776

et al., 2023) being notably scarce. Moreover, the3777

“non-visualizable” nature of some abstract knowl-3778

edge components restricts their practical applica-3779

tion (Jiang et al., 2022; Wu et al., 2023b). (ii)3780

Storage and Processing Overheads: The sub-3781

stantial storage space requirements and extended3782

processing times for large-scale MMKGs hinder3783

their extensive adoption. Conversely, small-scale3784

MMKGs frequently offer limited value for cross-3785

task generalization. (iii) Data Timeliness and3786

Completeness Issues in MMKGs heightens the3787

risk of multi-modal hallucinations. (iv) Compara-3788

tive Advantages of LLMs and MLLMs: LLMs3789

and MLLMs excel in generalizability and AGI po-3790

tential across various domains (Zhang et al., 2024),3791

complementing the interpretability and editing flex-3792

ibility of MMKGs. While MMKGs bring unique3793

value, their development, maintenance, and appli-3794

cation also involve certain costs. The evolving3795

feedback from downstream tasks will continue to3796

shape the industry’s perspective on their respective3797

roles and potentials.3798

Unlocking the Potential of Large-Scale3799

MMKGs for Multi-Modal Tasks. (i) Integration3800

with Non-text Modalities: Future downstream3801

tasks driven by large-scale MMKGs can integrate3802

methods from current KG-driven VQA methods,3803

placing equal emphasis on non-textual modalities.3804

This may further involve using modality projection3805

or adapters for cross-modal alignment (Li et al.,3806

2023j; Long et al., 2023), along with multi-modal3807

GNN methods (Yoon et al., 2023) and modal fea-3808

ture decoupling techniques to enrich the granularity3809

and hierarchy of multi-modal information (Chen3810

et al., 2023g). (ii) Rich Semantic MMKG Con-3811

struction: MMKG data can transcend traditional3812

specialized or general formats. By developing3813

task-specific pipelines, multi-modal datasets can3814

be converted into MMKGs with enhanced seman-3815

tics, using existing KGs as foundational references3816

or bridges. This process can not only augments3817

MLLM training with structured multi-modal in-3818

put but also enriches the MMKG community with3819

valuable, semantically rich datasets. (iii) Recon-3820

struction of Multi-Modal Tasks with LLM: Com- 3821

bining LLM’s text understanding and generation 3822

capabilities, multi-modal tasks can be restructured. 3823

Transforming KG-driven multi-modal tasks into 3824

in-MMKG-tasks, such as MKGC, MMEA, can 3825

enhance domain integration. There are already 3826

some attempts in this direction (Pahuja et al., 2024), 3827

which will be discussed in-depth later. 3828

Large Language Models. The academic def- 3829

inition of LLMs, often associated with models 3830

possessing extensive parameters such as LLaMA- 3831

7B (Touvron et al., 2023), remains broad. These 3832

models’ emergent abilities and Zero-shot Learn- 3833

ing capabilities edge them closer to achieving AGI, 3834

underscoring their importance in NLP and multi- 3835

modal domains. The integration of multi-modal 3836

knowledge within LLMs, as seen in recent stud- 3837

ies, prompts the semantic web community to delin- 3838

eate their distinct value amidst evolving (MM)KG- 3839

driven multi-modal methodologies. 3840

(i) Fine-Tuning: MMKGs provide a rich source 3841

of structured multi-modal data for Supervised Fine- 3842

Tuning (SFT) of MLLMs, especially in domain- 3843

specific applications (Zheng et al., 2024; Zhang 3844

et al., 2023g). Training techniques effective for 3845

MMKGs in VLMs can also be applied to MLLMs. 3846

The challenge of extracting sufficient visual knowl- 3847

edge, as identified by Chen et al. (2023b), alongside 3848

Zhou et al.’s (2023) finding that 43% of BLIP2 (Li 3849

et al., 2023e) errors on the A-OKVQA dataset 3850

(Schwenk et al., 2022) could be addressed with 3851

proper knowledge integration, emphasizes the need 3852

for embedding explicit and especially long-tail 3853

knowledge into MLLMs (Zhang et al., 2023c). This 3854

process within MMKGs can be realized along two 3855

distinct pathways: one involves active KG rout- 3856

ing exploration for constructing specific instruc- 3857

tions (Wan et al., 2023), and the other leverages 3858

self-instructing techniques to autonomously evolve 3859

and generate multi-grained, multi-modal instruc- 3860

tional data (Wang et al., 2023i; Xu et al., 2023b; 3861

Du et al., 2023a; Yona et al., 2024). Besides, the 3862

structured multi-modal relational data inherent in 3863

MMKGs provides an essential foundation for inves- 3864

tigating the visual extrapolation abilities of purely 3865

visual LLMs, or Large Vision Models (LVMs) (Bai 3866

et al., 2023), as well as MLLMs (Sun et al., 2023d; 3867

Wei et al., 2023a). Furthermore, MMKG data can 3868

be utilized to further explore the concept of multi- 3869

modal reversal curse (Lv et al., 2023), where the 3870

ordering of knowledge entities in training data in- 3871
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fluences model comprehension, potentially limiting3872

the model’s understanding.3873

(ii) Hallucination: As LLMs rapidly advance,3874

the risk of generating seemingly authentic but fac-3875

tually inaccurate web content is increasing. This3876

phenomenon, known as hallucination (Zhang et al.,3877

2023j; Rawte et al., 2023; Agrawal et al., 2023),3878

often arises from outdated or incorrect training en-3879

countered during the model training process, or3880

from the frequent co-occurrence bindings of ob-3881

jects, affecting both LLMs and MLLMs (Huang3882

et al., 2023a; Tong et al., 2024; Liu et al., 2024a).3883

To combat this, LAMM (Yin et al., 2023) incor-3884

porates 42K KG facts from Wikipedia and lever-3885

aged the Bamboo dataset (Zhang et al., 2022c)3886

to refine commonsense knowledge in Q&A, un-3887

derscoring the role of quality (MM)KGs in miti-3888

gating LLM hallucinations (Agrawal et al., 2023;3889

Xu et al., 2023f). Developing robust hallucina-3890

tion detectors (Chen et al., 2023c; Mishra et al.,3891

2024) is crucial for identifying and curbing errors3892

in LLM outputs. Future efforts could focus on3893

pairing MMKGs with detection methods to im-3894

prove multi-modal task precision and leveraging3895

(MM)KGs for knowledge-aware statement rewrit-3896

ing to diminish factual hallucinations in LLM rea-3897

soning (Guan et al., 2023; Wang et al., 2023b).3898

(iii) Agent: Multi-agent Collaboration (Xu et al.,3899

2023e; Xiao et al., 2023; Lu et al., 2024), simulat-3900

ing human cognitive processes, can dissect VQA3901

reasoning paths and engage multiple (M)LLMs3902

in collective problem-solving (Wang et al., 2023j;3903

Qiao et al., 2024). In this framework, KGs can3904

initialize agent personalities (Mao et al., 2023; Tu3905

et al., 2023), providing a structured basis for in-3906

tuitively designing character brains, enriching the3907

interaction between agents and enhancing their col-3908

lective reasoning capabilities.3909

Chain-of-thought (CoT) reasoning (Wei et al.,3910

2022) significantly improves LLMs’ complex rea-3911

soning abilities by incorporating intermediate rea-3912

soning steps. This progress has catalyzed the emer-3913

gence of various KG-focused applications (Park3914

et al., 2023; Sun et al., 2023b). For example, Sun3915

et al. (2023b) demonstrate how LLMs can be used3916

to interactively navigate KGs to extract knowledge3917

for reasoning. Their Think-on-Graph (ToG) ap-3918

proach utilizes beam search to identify effective3919

reasoning paths within KGs. Merging these innova-3920

tions with MMKGs promises to expand the scope3921

of tasks, especially in improving the ability of mod-3922

els to interpret and interact with diverse data types,3923

such as images and text (Mondal et al., 2024). This 3924

integration moves us closer to achieving human- 3925

like multi-modal proficiency and paves the way for 3926

advanced machine intelligence. 3927

(iv) RAG: Retrieval Augmented Generation 3928

(RAG) (Ovadia et al., 2023) systems enhance 3929

(M)LLMs by incorporating long-tail knowledge 3930

beyond their parameter limits. However, excessive 3931

document retrieval can lead to contextually inap- 3932

propriate answers (Barnett et al., 2024), increas- 3933

ing hallucination risks unless carefully designed 3934

prompts are used (Wang et al., 2023k). The high 3935

information density and structured organization in 3936

KGs can mitigate this issue. Moreover, MMKGs 3937

can further aid multi-modal RAG by using various 3938

modalities as anchors (Song et al., 2023a), offering 3939

more relevant and explanatorily powerful results 3940

than vector-based searches (Wu and Xie, 2023; Yu 3941

et al., 2023). 3942

(v) MMKG Refinement: LLMs offer the capa- 3943

bility to augment MMKGs through their advanced 3944

text comprehension and generation skills. Recent 3945

work, such as (Yao et al., 2023b; Zhang et al., 3946

2023i), explores LLM-based KGC. Specifically, 3947

KoPA (Zhang et al., 2023i) integrates KG structural 3948

knowledge into LLMs to enable structure-aware 3949

reasoning. Moreover, with the continuous growth 3950

and evolution of online data, LLMs can support the 3951

continuous learning and self-updating of MMKGs, 3952

serving as active annotators (Zhang et al., 2023d). 3953

(vi) MMKG MoE: The Mixed of Expert (MoE) 3954

architecture shows outstanding performance in 3955

LLM applications. Initially, it engages input sam- 3956

ples through a GateNet or router for multi-class cat- 3957

egorization, determining the allocation of tokens to 3958

appropriate experts. This critical process, known as 3959

experts selection, is central to MoE’s concept, often 3960

characterized as sparse activation in academia (Is- 3961

mail et al., 2023; Dou et al., 2023; Team, 2023; Dai 3962

et al., 2024; Lin et al., 2024). These experts then 3963

process the inputs to formulate final predictions. 3964

Regarding domain-specific MMKGs in fields like 3965

biology, e-commerce, and world geography, an in- 3966

novative direction involves creating an extensive 3967

MMKG library (or repository). This library would 3968

house varied MMKGs, each tailored to specific 3969

domains, allowing downstream tasks to adaptively 3970

select relevant MMKG information in a manner 3971

akin to MoE’s. Exploring this conceptual approach 3972

could not only catalyze developments in MMKG- 3973

level retrieval and re-ranking but also foster the 3974

seamless integration of MMKGs into model pa- 3975

43



rameters, merging their utility with the dynamic3976

allocation efficiency of MoE architecture.3977

AI for Science. Despite the vast potential of bi-3978

ological MMKGs in drug discovery, several chal-3979

lenges exist. One of the primary hurdles is the issue3980

of data heterogeneity and quality, which demands3981

meticulous integration and standardization of data3982

from diverse sources. Another major challenge lies3983

in the choice of knowledge representation within3984

these MMKGs. The ideal representation would3985

capture the intricate details of drug discovery ob-3986

jects and relationships, such as the various protein3987

isoforms produced from a single gene and their3988

complex interactions within cellular environments.3989

However, achieving this level of detail is often hin-3990

dered by practical constraints like cost and technol-3991

ogy limitations. Furthermore, specific data sources3992

may impose additional limitations based on their3993

existing information structures. As such, the cho-3994

sen knowledge representation in MMKGs often has3995

to strike a balance between desired granularity and3996

practical feasibility, reflecting both the current state3997

of scientific knowledge and the inherent limitations3998

of data sources. This balancing act poses a signifi-3999

cant challenge and indicates the need for ongoing4000

efforts to refine and expand the scope and depth of4001

MMKGs in the field of drug discovery.4002
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