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Abstract

Conventional Computed Tomography (CT) meth-
ods require large numbers of noise-free projec-
tions for accurate density reconstructions, limiting
their applicability to the more complex class of
Cone Beam Geometry CT (CBCT) reconstruction.
Recently, deep learning methods have been pro-
posed to overcome these limitations, with meth-
ods based on neural fields (NF) showing strong
performance, by approximating the reconstructed
density through a continuous-in-space coordinate
based neural network. Our focus is on improv-
ing such methods, however, unlike previous work,
which requires training an NF from scratch for
each new set of projections, we instead propose to
leverage anatomical consistencies over different
scans by training a single conditional NF on a
dataset of projections. We propose a novel con-
ditioning method where local modulations are
modelled per patient as a field over the input do-
main through a Neural Modulation Field (NMF).
The resulting Conditional Cone Beam Neural To-
mography (CondCBNT) shows improved perfor-
mance for both high and low numbers of available
projections on noise-free and noisy data.

1. Introduction
In inverse problems, the goal is to infer a certain quantity
of interest from indirect observations. They arise in many
scientific fields, medical imaging (Louis, 1992), biology
(Karwowski, 2009; Sridharan et al., 2022), and physics (Ro-
manov, 2018; Collaboration, 2019). Unfortunately, many
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inverse problems are inherently ill-posed, i.e., there exist
multiple solutions that agree with the measurements and
these do not necessarily depend continuously on the data
(Kabanikhin, 2008). These issues warrant further study, and
tools from machine learning and deep learning in particular
have attracted a lot of attention recently.

In this work, we focus on Computed Tomography (CT) (Old-
endorf, 1978), a medical imaging technique for reconstruct-
ing material density1 inside a patient, using the mathemati-
cal and physical properties of X-ray scanners. In CT, several
X-ray scans–or projections–of the patient are acquired from
various angles using a detector. An important variant of CT
is Cone Beam CT (CBCT), which uses flat panel detectors
to scan a large fraction of the volume in a single rotation.
Unfortunately, CBCT reconstruction is harder in compari-
son to classical (helical) CT. This is caused by the inherent
mathematical difficulty of Radon Transform inversion in
the three-dimensional setting (Tuy, 1983), physical limits of
the detector, and characteristics of the measurement process
such as noise. Traditional reconstruction methods include
FDK (Feldkamp et al., 1984), and iterative reconstruction
(Kaipio & Somersalo, 2005). FDK filters the projections and
applies other simple corrections to properly account for the
physical geometry of the acquisition system. Iterative meth-
ods use optimization to find the density that most closely
resemble the measurements once projected using a forward
operator. In addition, deep learning has seen increasing
use in the field, with algorithms such as learned primal-
dual (Adler & Öktem, 2018), invertible learned primal-dual
(Rudzusika et al., 2021) and LIRE (Moriakov et al., 2022).

Recently, reconstruction methods that employ Neural Fields
(NFs) have been proposed. NFs are a class of neural
architectures that parameterize a field f : Rd → Rn, i.e.
a quantity defined over spatial and/or temporal coordinates,
using a neural network fθ (see Xie et al. (2022) for a survey
on NFs). In CT reconstruction, these architectures have
been used to approximate the density directly over the
volume space R3 (Zang et al., 2021; Zha et al., 2022; Lin
et al., 2023). Zha et al. (2022) proposed Neural Attenuation
Fields (NAF), an approach to supervise NFs using only the

1To be precise, we try to find the attenuation coefficients, but
we may use density interchangeably, as they are strongly related
under assumptions that hold in our setting.
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Figure 1. We propose Conditional Cone Beam Neural Tomography (CondCBNT), a framework for reconstructing Cone Beam Computed
Tomography volumes using neural fields. An integral is taken over values sampled from a neural field fθ at coordinates r(t) along a ray
cast from source to sensor. The coordinates are encoded into a multiresolution hash-encoding h(r(t)) (Müller et al., 2022), and passed
through L linear layers. To leverage consistencies over anatomies of different patients, we propose to model the density for a specific
patient pi using a shared neural field fθ , whose activations al are modulated by a patient-specific Neural Modulation Field (NMF) φi.
This conditioning function learns a field of γ,β FiLM modulations (Dumoulin et al., 2018) over the input space R3 for a patient pi. The
integral −

∑N
c=1 fθ(r(tc))∆rc is supervised at the sensor using the corresponding observed projection value.

measured attenuated photon counts at the detector. Despite
showing promising results, this method requires training
a NF from scratch for each volume, prohibiting transfer
of learned features across volumes through weight sharing.
Instead, Lin et al. (2023) propose encoding a set of projec-
tions into a latent space shared over all training volumes,
and decoding this into a density modelled as a NF. However,
encoding of all available projections is only feasible when
a small number of them is used, as it would otherwise result
in prohibitive compute and memory requirements.

In this work, we instead aim to remove the need for an ex-
plicit decoder. We leverage the work of Park et al. (2019),
who propose to learn latent codes for a dataset of 3D shapes
using auto-decoding, where randomly initialized latent
codes are optimized during training. Dupont et al. (2022) ex-
pand on by using these learned latent codes as modulations
for a shared NF. Bauer et al. (2023) show that the use of a
single global code per signal limits reconstruction quality,
and instead use a spatially structured grid of codes. Their ap-
proach greatly increases reconstruction quality, but requires
interpolating a grid of modulations, increasing computa-
tional requirements for signals over higher-dimensional do-
mains. We introduce the Neural Modulation Field (NMF)
which models a continuous field of modulations over the sig-
nal domain. We propose the Conditional Cone Beam Neu-
ral Tomography (CondCBNT) framework, which incorpo-
rates this local conditioning function to speed up reconstruc-
tion, while still processing all available projections, reliev-
ing restrictions on projection counts used in the reconstruc-
tion process. In doing so, we show considerable improve-
ments in scenarios with both sufficient or limited projections,
as well as in the presence of both noisy and noise-free data.

2. Method
Beer-Lambert’s law relates the attenuation of electromag-
netic radiation such as visible light or X-rays to the proper-
ties of the material it is traveling through (Swinehart, 1962).
Let r : [T0, T1] −→ R3 be the straight path taken by radia-
tion through the medium. The radiation intensity I(r(T1))
at position r(T1) is the line integral

I(r(T1)) = I0 exp

[
−
∫ T1

T0

µ(r(t))
∣∣r′(t)∣∣ dt], (1)

where µ : R3 −→ R+ is the attenuation coefficient of the
medium and I0 = I(r(T0)) is the initial intensity. The
integral in (1) can be approximated by the sum

I(r(T1)) ≈ I0 exp

[
−

N∑
c=1

µ(r(tc))
∣∣r′(tc)∣∣∆t

]
, (2)

where tc ∈ [T0, T1] and |r′(tc)|∆t = ∆rc =
|r(tc+1)− r(tc)|. Given a set of 2D CBCT projections
vα ∈ RH×W with H,W the height and width of the sensor
and α the angle under which the projection was taken, we
are trying to estimate density values along rays cast from
source to sensor. Each ray is the straight path r which con-
nects the source to pixels in the detector. For simplicity,
we bound the patient volume with a box and assume zero
attenuation outside the box. Therefore, for every path, we
compute the sum in (2) with only those r(tc) that are con-
tained in the bounding box. By taking the logarithm we
can avoid the computationally tedious exponential and use
log I(r(T1)) ≈ −

∑N
c=1 µ(r(tc))∆rc + log I0 and discard

the constant that depends on the initial intensity, which we
assume is the same for all projections. We use a neural field
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fθ : R3 −→ R+ to approximate the density µ such that the
intensity I(r(T1)) coincides with the intensity recorded by
the detector at the position r(T1):

log I(r(T1)) ≈ −
N∑
c=1

fθ(r(tc))∆rc. (3)

Coordinate embedding. Tancik et al. (2020) showed that
ReLU MLPs suffer from spectral bias, limiting their capac-
ity to model high frequency functions on low-dimensional
domains. As a solution, they note that it is possible to em-
bed coordinates r(tc) ∈ R3 into a higher-dimensional space
Re with e ≫ 3 before passing them through the MLP. We
choose to follow Müller et al. (2022) and use the multires-
olution hash-encoding, denoted h(r(ti)), as it empirically
shows fastest convergence in our experiments. See Appx. A
for a full description of this embedding.

Conditioning with Neural Modulation Fields. Condi-
tioning in neural fields consists of modulating the weights θ
or activations a of a NF fθ with a conditioning variable z
to vary the NF’s output (Xie et al., 2022), a method often
used to encode different samples xi from a single dataset
X through a set of latents {zi|xi ∈ X}. Intuitively, in the
setting of CT reconstruction, we could fairly assume the den-
sities for patients pi ∈ P share a lot of anatomical structure.
A conditional NF that is tasked with reconstructing a dataset
of multiple volumes would be able to leverage this consis-
tency in anatomical information in its reconstruction (e.g.
inferring from noisy or missing data), with patient-specific
characteristics being refined with the conditioning variable
zi. To this end, we could in principle use the aforemen-
tioned auto-decoding approach with a global conditioning
latent zi. However, global conditioning has been shown to
result in reconstructions with limited detail (Dupont et al.,
2022; Bauer et al., 2023). This limitation is significant be-
cause patient-specific fine-grained details in scans contain
information crucial for medical purposes. We instead opt
for local conditioning, where the conditioning variable zi

depends on the input coordinate r(t). In previous works,
this is done through interpolation of a trainable discrete
data structure, e.g. a grid of latent codes (Shaham et al.,
2021; Yu et al., 2021; Bauer et al., 2023). Instead, to fur-
ther increase expressivity of the resulting modulation and
forego modelling choices such as code grid resolution and
interpolation method, we propose to abstract the learning of
modulations away from a discrete data structure and model
the modulations themselves as a continuous field through a
patient-specific Neural Modulation Field (NMF) we denote
φi. During training, parameters θi of the patient-specific
NMFs φθi are optimized alongside the weights of the shared
NF fθ, during inference - for a novel set of projections - only
the parameters for θi are optimized.

For the activation modulation, we use feature-wise linear
modulations (FiLM) (Dumoulin et al., 2018), such that ac-
tivations al at a layer l with weights W l and bias bl are
transformed with patient-specific local scaling and shifting
modulations γi,βi, as follows:

al
i = ReLU((W lal−1

i + bl)⊙ γi + βi), (4)

where γi,βi are obtained from the NMF φθi : R3 →
Rdim(γ)+dim(β). For specific architectural choices of the
NMF and shared NF, see Appx. C. We term the resulting
model Conditional Cone Beam Neural Tomography (Cond-
CBNT). See Fig. 1 for an overview of the framework.

Dataset. The dataset used is derived from the LIDC-IDRI
(Armato III et al., 2015). This is a collection of diagnostic
lung cancer screening thoracic CT scans. A random selec-
tion of 250 cases was chosen and the CT scan resampled
to 2mm resolution. Then, each volume is projected using
256× 256 pixel, 2mm resolution detectors. Angles equally
spaced between 0◦ and 205◦ are used. 400 projections are
created, first without any noise, then with Poisson noise,
used to simulate measurement noise with 5× 105 photons.
A subset of 50 equally-spaced projections is obtained
from both. The 250 volumes are split into 200/25/25 for
training, validation, and testing. The resulting dataset will
be made publicly available upon acceptance.

Metrics. For quantitve evaluation we rely on the Peak
Signal to Noise Ratio (PSNR), a classical measure of signal
quality, and the Structural Similarity Index Measure (SSIM),
which captures the perceptive similarity between two images
by analyzing small local chunks (Wang et al., 2004). His-
torically, both metrics have been defined for images, but we
compute them over full volumes. Finally, we track the GPU
memory used and the time required to reconstruct a volume.

Baselines. FDK reconstruction (Feldkamp et al., 1984)
was performed using Operator Discretization Library (Adler
et al., 2017). As an iterative reconstruction baseline, we
implemented Landweber iteration with Total Variation regu-
larization (Kaipio & Somersalo, 2005), where parameters
such as step size, iteration count and the amount of regu-
larization were chosen via grid search on the validation set.
As a deep learning reconstruction baseline, we use LIRE-
32(L) architecture from Moriakov et al. (2022), which is a
dedicated lightweight, memory-efficient variant of learned
primal-dual method from Adler & Öktem (2018) for CBCT
reconstruction. From the NF class of models, we compare
with Zha et al. (2022); we do not compare with Lin et al.
(2023) due to their prohibitive computational costs.
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Table 1. Mean ± standard deviation of metrics over test set for
FDK (Feldkamp et al., 1984), Iterative (Kaipio & Somersalo,
2005), LIRE-L (Moriakov et al., 2022), NAF (Zha et al., 2022),
and CondCBNT (ours). LIRE-L slightly outperforms CondCBNT
but requires more GPU memory. Our method excels with less
memory and comparable runtime.

Noisy Noise-free

P. Method PSNR (↑) SSIM (↑)
Time
(s/vol) PSNR (↑) SSIM (↑)

Time
(s/vol)

Mem.
(MiB)

50 FDK 14.54 ± 2.90 .20 ± .07 0.8 16.09 ± 3.22 .43 ± .09 0.8 100
Iterative 26.36 ± 2.11 .70 ± .08 7.7 27.13 ± 2.80 .71 ± .08 30.8 300
LIRE-L 29.48 ± 2.07 .83 ± .05 3.9 - - - 2.1k
NAF 22.83 ± 2.24 .58 ± .10 161 24.26 ± 2.52 .72 ± .08 582 18
CondCBNT 28.31 ± 1.22 .80 ± .05 124 30.21 ± 1.42 .86 ± .05 647 96

400 FDK 16.43 ± 3.38 .45 ± .12 7 16.71 ± 3.47 .65 ± .09 7 100
Iterative 28.38 ± 3.27 .78 ± .11 87.4 31.40 ± 6.22 .91 ± .07 174 600
LIRE-L 30.70 ± 2.25 .88 ± .05 12.8 - - - 4k
NAF 25.93 ± 2.45 .75 ± .08 275 25.04 ± 2.91 .77 ± .08 580 205
CondCBNT 29.89 ± 1.39 .86 ± .05 763 30.63 ± 1.43 .88 ± .04 595 96
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Figure 2. Using noisy projections, the percentage of the best PSNR
(↑) that a model can reach over the number of steps required to
achieve it. CondCBNT converges significantly faster.

3. Experiments
Hyperparameter search for NAF, CondCBNT, and the Itera-
tive method was carried out on the validation set. With noisy
projections, early stopping was used to avoid overfitting the
noise. Instead, with noise-free projections, we decided to
stop after about 10 minutes of training. Although more
time would have improved performance further, it would
not have provided any additional insights. It is worth noting
that individual volume optimization was not conducted to
reflect the constraints of a realistic scenario.

During training, we followed Lin et al. (2023) and directly
supervised the neural field with density values, as we
observed this greatly improved stability. During inference
on validation and test sets, we kept the shared NF fixed
and only optimized the randomly initialized NMF weights
for each unseen scan (see Appx. C). We first evaluated
the model on the test set using 50 and 400 noise-free
projections respectively, results shown in Tab. 1 right.
CondCBNT greatly improves reconstruction quality both in
terms of PSNR and SSIM, compared to classical methods
and NAF. Next, we validated the model on 50 and 400
noisy projections, results for which are shown in Tab. 1 left.

Ground Truth FDK LIRE-L Iterative NAF CondCBNT

Figure 3. Ground truth and reconstructions using all the methods
applied to noisy projections. Top 50, bottom 400 projections.
Grayscale with density in [0− 0.04]. Our method does not overfit
the noise and maintains tissue contrast. High-res in Appx. D.

Again, we see considerable improvements in our method
over all baseline approaches. LIRE-L is the exception,
achieving a performance slightly better than CondCBNT
with significantly faster reconstruction speed at the cost of
an increased memory footprint.

Qualitative assessment in the noisy case is possible from
Fig. 3, where it is evident that NAF overfits the noise.
The iterative method over-smooths the reconstruction and
exhibits blocky artifacts. The FDK reconstruction suffers
from artifacts caused by the detector size, noise, and the
low number of projections. LIRE-L and CondCBNT both
reconstruct the volume with better soft-tissue contrast and
without overfitting the noise.

Comparing convergence speed from Tab. 1 is hard because
of diverging implementation choices and final performance
reached. Therefore, we normalized performance by maxi-
mum PSNR reached after optimization. Additionally, given
that dataset and batch size were the same, we decided to
compare using the number of iterations instead of wall-clock
time (Fig 2). This shows how CondCBNT quickly reaches
a satisfying performance with both noisy and noise-free pro-
jections. Especially interesting is that, in the 400 projection
case, CondCBNT was optimized for only half of a full epoch
and still managed to outperform NAF and be within 1 stan-
dard deviation of LIRE-L. Since our method does not require
training the whole model from scratch for a newly obtained
set of projections, the model converges considerably faster.

4. Conclusion
We improve noise resistance of neural field (NF)-based
CBCT reconstruction methods by sharing a conditional
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NF over scans taken from different patients. We pro-
pose learning a continuous, local conditioning function
expressed through a sample-specific Neural Modulation
Field which modulates activations in the conditional NF to
express volume-specific details. Conditional Cone-Beam
Neural Tomography (CondCBNT) represents an efficient
improvement over previous approaches, in terms of GPU
memory scalability and reconstruction quality on both
noise-free and noisy data and with varying numbers of
available projections.

Broader impact
This work yields significant implications for the Medical
Imaging field. By utilizing our method, it becomes possible
to diminish radiation exposure and scan duration, thereby
increasing the number of patients who can access treat-
ment. Additionally, the superior quality of the reconstruc-
tion obtained opens up avenues for enhanced performance
in subsequent tasks. This benefit extends to various imaging
modalities like MRI or PET, not solely limited to CT scans.

While the proposed method exhibits minimal susceptibility
to this concern, it is essential to acknowledge that complete
interpretability remains a challenge for all deep learning
models. Consequently, accurately identifying artifacts when
they arise could prove difficult.
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Rudzusika, J., Bajic, B., Öktem, O., Schönlieb, C.-B., and
Etmann, C. Invertible learned primal-dual. In NeurIPS
2021 Workshop on Deep Learning and Inverse Problems,
2021. URL https://openreview.net/forum?
id=DhgpsRWHl4Z.

Shaham, T. R., Gharbi, M., Zhang, R., Shechtman, E., and
Michaeli, T. Spatially-adaptive pixelwise networks for
fast image translation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 14882–14891, 2021.

Sridharan, B., Goel, M., and Priyakumar, U. D. Modern
machine learning for tackling inverse problems in chem-
istry: Molecular design to realization. 58(35):5316–5331,
2022. ISSN 1364-548X. doi: 10.1039/D1CC07035E.
URL https://pubs.rsc.org/en/content/
articlelanding/2022/cc/d1cc07035e.

Swinehart, D. F. The Beer-Lambert Law. 39(7):333,
1962. ISSN 0021-9584. doi: 10.1021/ed039p333. URL
https://doi.org/10.1021/ed039p333.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil,
S., Raghavan, N., Singhal, U., Ramamoorthi, R., Bar-
ron, J., and Ng, R. Fourier features let networks learn
high frequency functions in low dimensional domains.
Advances in Neural Information Processing Systems, 33:
7537–7547, 2020.

Tuy, H. K. An inversion formula for cone-beam recon-
struction. SIAM Journal on Applied Mathematics, 43
(3):546–552, 1983. ISSN 00361399. URL http:
//www.jstor.org/stable/2101324.

Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. Image
quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13
(4):600–612, 2004. doi: 10.1109/TIP.2003.819861.

Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan,
N., Tombari, F., Tompkin, J., Sitzmann, V., and Sridhar,
S. Neural fields in visual computing and beyond. In Com-
puter Graphics Forum, volume 41, pp. 641–676. Wiley
Online Library, 2022.

Yu, A., Ye, V., Tancik, M., and Kanazawa, A. pixelnerf:
Neural radiance fields from one or few images. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 4578–4587, 2021.

Zang, G., Idoughi, R., Li, R., Wonka, P., and Heidrich, W.
Intratomo: Self-supervised learning-based tomography
via sinogram synthesis and prediction. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp.
1940–1950, 2021. doi: 10.1109/ICCV48922.2021.00197.

Zha, R., Zhang, Y., and Li, H. Naf: Neural attenuation
fields for sparse-view cbct reconstruction. In Medical
Image Computing and Computer Assisted Intervention–
MICCAI 2022: 25th International Conference, Singapore,
September 18–22, 2022, Proceedings, Part VI, pp. 442–
452. Springer, 2022.

https://n.neurology.org/content/28/6/517
https://n.neurology.org/content/28/6/517
https://www.degruyter.com/document/doi/10.1515/9783110926019/html
https://www.degruyter.com/document/doi/10.1515/9783110926019/html
https://openreview.net/forum?id=DhgpsRWHl4Z
https://openreview.net/forum?id=DhgpsRWHl4Z
https://pubs.rsc.org/en/content/articlelanding/2022/cc/d1cc07035e
https://pubs.rsc.org/en/content/articlelanding/2022/cc/d1cc07035e
https://doi.org/10.1021/ed039p333
http://www.jstor.org/stable/2101324
http://www.jstor.org/stable/2101324


Neural Modulation Fields for Conditional Cone Beam Neural Tomography

Figure 4. Multi-resolution hash encoding. L grids of multiple resolutions (green, red) are defined over the input domain. Each grid-point
corresponds to an entry in a hash table. Each entry in this hash table consists of a d−dim freely trainable weight vector. To encode a
coordinate (c0, c1), it is mapped to its closest grid-points on every grid (in practice a linear interpolation of the n nearest grid points is
taken), and the encoding for this coordinate is given by concatenating the grid points corresponding feature vectors, to end up with a
(L · d)- dimensional embedding.

A. Multiresolution Hash Encoding
Müller et al. (2022) propose a multi-resolution hash encoding as coordinate embedding for neural fields. Here, we briefly
describe the method in more detail.

Multi-resolution hash encoding is a parametric embedding, meaning the embedding function itself contains additional
trainable parameters. In multi-resolution hash encoding this is done through assigning freely trainable weights to grid points
from a set of multi-resolution grids defined over the input space. These parameters are then looked up and interpolated for a
specific input coordinate x. Formally, the embedding consists of a number of levels L, which correspond to the multiple
grid resolutions, a feature dimensionality d denoting the dimensionality of each trainable vector attached at a grid point, a
base resolution denoting the number of grid points for the lowest resolution grid, a per-level resolution increase factor r and
a maximum hash-table size.

To encode a coordinate (c0, c1), it is mapped to its closest grid-points on every grid (in practice a linear interpolation of the
n nearest grid points is taken), and the encoding for this coordinate is given by concatenating the grid points corresponding
feature vectors, to end up with a (L · d)- dimensional embedding. See figure 4 for an illustration.

B. Metrics
The metrics used to quantitatively evaluate the reconstruction quality are the Peak Signal to Noise Ratio (PSNR) and the
Structural Similarity Index Measure (SSIM). Both metrics can be adapted in the 3D setting in a straightforward way. Given
two volumes x, y ∈ RH×W×D where H,W , and D are the height, width, and depth of the volume respectively, y is the
ground truth and x is the reconstruction, the PSNR is the following

PSNR(x, y) = 10 · log10
(max y)

2

MSE(x, y)
(5)

= 20 · log10 max y − 10 · log10 MSE(x, y), (6)

where the second step improves numerically stability and the MSE is the voxel-wise Mean Squared Error:

MSE(x, y) =
1

NML

N−1∑
i=0

M−1∑
j=0

L−1∑
k=0

(x(i, j, k)− y(i, j, k))2. (7)
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The SSIM is computed over a small K ×K ×K cube within the volume. This is repeated for all pixels, padding when
necessary with zeros. Here we show the formula for the entire volume, although the original definition is for a single region:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

where µ indicates the mean, σ the covariance, c1 = (k1L)
2 and c2 = (k2L)

2 with k1 = 0.01, k2 = 0.03, and L the
difference between the maximum value and minimum value in y.

C. Experimental details
When training NAF and CondCBNT, rays are sampled at random to form a batch. Then, a number of samples are selected
along the ray to form the inputs of the model. While in NAF the batch is created using rays sampled at random from a single
projection, for ConCBNT we sampled rays from any projection.

Projection noise was added using the Poisson distribution, to simulate the effect of measurement noise. This is also called
shot noise, and it happens in all devices which measures the amount of photons that hit them. The probability of detecting
photons can be modelled using a Poisson distribution. Intuitively, a thicker and denser substance in the path of the ray will
result in a lower probability of detection and more noise in the projection. To be specific, assuming a projected value of p
and a fixed photon count π (set at 5× 105 in our experiments), the Poisson distribution’s rate is defined as λ = πe−p. Thus,
the probability of detecting a specific number of photons, q, can be expressed as:

P (q;λ) =
e−λλq

q!
=

(πe−p)qe−πe−p

q!
(8)

By sampling a value q from this distribution, the resulting projected value is then calculated as:

p̃ = − log
( q

π

)
(9)

C.1. Architectural details

Here, we describe the architectural specifications for the shared neural field and the patient-specific modulation neural fields.

The shared neural field fθ consists of a multi-resolution hash encoding, as described in A, with 16 levels of feature
dimensionality 2, a base resolution of 16 × 16 × 16, a per-level resolution increase factor of 2, and a hash-table with
maximum size of 219 parameters per level. This results in a 32-dimensional embedding, which is passed through 2 linear
layers with hidden size 128, each followed by patient-specific FiLM modulation - as described in Sec. 2 - and ReLU
activations. Each modulation neural field φθi also uses multi-resolution hash encoding to embed the input coordinate,
followed by 2 linear layers of hidden dimensionality 128 with ReLU activations, which outputs into a 2 · 128 dimensional
code z split into γ,β ∈ R128.

C.2. Hyperparameters

In this section, we describe the hyperparameters used in the experiments. for all experiments, the code was implemented in
PyTorch (Paszke et al., 2019), optimized using Adam (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999, ϵ = 10−8.

CondCBNT was trained for 15 hours on an A100 GPU using all 200 volumes from the training set. The learning rate
used for the MNF was 10−4 while 10−3 for the shared NF. During training the batch size was 16, 384. During validation
and testing, the MNFs are optimized individually for each patient, with a batch size of 1024 rays and 300 samples along the
ray. We sample only points within the bounding box of the patient, defined by the original CT scan.

NAF was optimized on each volume individually, with a learning rate of 5× 10−4, optimized through hyperparameter
search on the validation set. For the noise-free projection settings, the model used reflected the specifications from the
original paper. The hash encoding used a base resolution of 16, the maximum size of the hash table was 221, the number of
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Ground Truth FDK LIRE-L Iterative NAF CondCBNT

Figure 5. Ground truth and reconstructions using all the methods applied to noisy projections. Top 50 projections, bottom 400 projections.
Grayscale colormap with density in [0− 0.04]. The detector size causes a dense ring to appear in the FDK reconstruction. NAF overfits
the noise with both 50 and 400 projections. Iterative over-smooths the soft tissues and removes bones. LIRE-L succeeds in keeping
soft-tissue contrast and reconstructing bones. Our method succeeds in not overfitting the noise and maintaining higher tissue constrast.

levels was 16 and the size of the feature vector for each level was 2. Instead, validation revealed that a base resolution of 8,
with 8 levels and a hash table size of 219 resulted in better reconstruction, as it avoided overfitting to the noise more often.
For both settings, an MLP with LeakyReLU activations, 4 layers, and 32 neurons per layer was used. The batch size is also
1024 rays, with 300 points sampled per ray.

D. Additional experimental results
D.1. Larger-scale images of reconstructed volumes

For an improved viewing experience, we include larger-scale versions of our experimental results in Fig. 5 and Fig. 6. The
latter shows a volume with less noise in the projections.
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Ground Truth FDK LIRE-L Iterative NAF CondCBNT

Figure 6. Ground truth and reconstructions using all the methods applied to noisy projections. Top 50 projections, bottom 400 projections.
Grayscale colormap with density in [0− 0.04]. Similar behavior to the one shown in Fig. 5. Soft-tissue contrast resolution very clear for
CondCBNT and LIRE-L, thanks to less noise in the projections. NAF still overfits the noise. Less over-smoothing by the iterative method.


