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ABSTRACT
To enable effective communication between users and autonomous
robots, it is crucial to have a shared understanding of goals and
actions. This is made possible through an intelligible interface that
communicates relevant information. This intelligibility enhances
user comprehension, enabling them to anticipate the robot’s actions
and respond appropriately. However, because robots can perform a
wide variety of actions and communication resources are limited,
such as the number of available “pixels”, visualizations must be
carefully designed. To tackle this challenge, we have developed a
visual design framework. Leveraging Unity, we developed a Virtual
Reality implementation to prototype and evaluate our framework.
Within this framework, we introduce two visualization techniques
for visualizing the movement of a robotic arm, laying a foundation
for subsequent development and user testing.

CCS CONCEPTS
• Human-centered computing→ Visualization theory, con-
cepts and paradigms; Displays and imagers.

KEYWORDS
Human-Robot Interaction; Intelligibility; Visualizations; Visual De-
sign Framework
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1 INTRODUCTION
Fluent interaction between a user and an autonomous robot requires
a clear understanding of each other’s intentions, expectations, re-
quirements, and actions [10]. To a large extent, this understanding
can be achieved through an intelligible interface, which ensures
that the robot communicates information to its users effectively. As
a result, users can anticipate the robot’s actions more accurately,
leading to a more predictable and reliable interaction. However,
given the diversity of robot actions and often limited resources–in
terms of available “pixels”–to communicate with users, carefully
designed visualizations are required to inform users without in-
terfering with normal operations. One important consideration is
information density because too much information can cause infor-
mation overload [3, 8]. This can make the user feel overwhelmed
and unable to understand the message properly.

Several studies have been conducted on different visualizations
of various types of robots and their interactions. Pascher et al. [11]
conducted a survey paper on communicating robot motion intent,
highlighting some of the work done in this area. Similarly, Yu et
al. [18] tested the impact of robot intent visualizations on trust and
robot understandability. Collet and MacDonald [6] proposed visu-
alizations to externalize the internal state and robot programming
to the user. Sonawani et al. [14] studied projecting the intent of a
robotic arm on the collaborative work surface.

The literature provides valuable insights into how to visualize ro-
bot intelligibility but is less focused on determining when and how
to visualize it. Deciding when and how to visualize this intelligible
information is not easy. Nonetheless, it is of utmost importance,
especially for robot interaction developers who might not have
experience with visual design. Creating usable, intelligible visual-
izations requires two key components: when and how to show the
intelligible visualizations.

This workshop paper focuses on how to create intelligible move-
ment visualizations. We propose a visual design framework that
can be used to create intelligible visualizations for human-robot
interactions. Based on this visual design framework, we imple-
mented a Virtual Reality (VR) playground to test our intelligible
visualizations for a robotic arm. This prototype aims to help us
further develop our visual design framework and use it for user
studies. Doing our user studies in VR allows us to test a broad range
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of interaction scenarios without putting our participants in any
dangerous situations.

2 VISUAL DESIGN FRAMEWORK
We have developed a visual design framework that consists of
three main components that influence the intelligible visualizations.
These components are:

• Information Type: the type of information that the robot
system wants to communicate to the user.

• Pixel Layout: the number of available pixels and their layout
to create the visualization.

• Robot Type: The type of robot being used.
Each of these components is determined by the specific human-
robot interaction action that they belong to.

2.1 Information Type
The first component of our framework is the information type that
the robot needs to externalize to the world. We define three main
categories of information types inspired by the intent type defined
by Pascher et al. [11].

• Movement: All information related to the movement of the
robotic system.

• Interaction: All information related to interaction between
the robot(s) and the human(s).

• State: All information related to the robotic system’s inter-
nal and external state.

The information type that the robot needs to convey to the user
influences the intelligible visualizations. For example, movement
information can be visualized by indicating the path the robot will
take [4, 16]. An example of interaction information can be when
input is required, e.g., the robot waiting on the user to open a door
for them [17]. An example of an internal state information can
be an error state the robot is in [7]. The external state can be an
obstacle detected by the robot [6].

Other types of information are possible, but they can be reduced
to a combination of our three categories. For example, the per-
ception of a robot system is the combination of the internal and
external state.

2.2 Pixel Layout
The Pixel Layout represents the visualizations that abstract away
the underlying visualization technologies that might change in the
future. We define three categories of pixel layout:

• One Dimensional (1D): A single pixel or a single row of pix-
els. Examples are a brake light, a turn signal, or a progress
bar.

• Two Dimensional (2D): A matrix of pixels, i.e., a screen,
which can be any size, from a digital number display up to
a high-resolution TV screen or a projection.

• Three Dimensional (3D): A display that utilizes Augmented
or Mixed Reality technologies to utilize the complete envi-
ronment.

Since the pixel layout determines how much information can be
shown, it influences the visual design. Examples of visualization
with a 1D pixel layout include signals in a car or mobile robots [9],

an expressive light to communicate the robot state [1], or direc-
tionality in flying robots [15]. Example visualizations with a 2D
pixel layout are screen-based visualizations [13] or projections in
the human-robot interaction surface [14, 17]. Examples of visual-
izations with a 3D pixel layout are Augmented Reality (AR) based
visualizations of robot path [2, 12] or robot programming using
AR [5].

It is important to decide the appropriate type of pixel layout for a
specific human-robot action. We theorize that there are three main
factors to consider: the criticality of the action, the role of the human
during the action, and the robot’s proximity to the human. The aim
is to maximize the information transfer rate between the robot and
the human while minimizing information overload. Depending on
the scenario, the most suitable pixel layout should be selected based
on the best visualization options available.

2.3 Robot Type
The last component is the type of robot used in the human-robot
interaction. The abstraction represents a broader set of robot sys-
tems while focusing on the key aspects of each robot type. Robot
systems can exist out of a combination of these robot types.

• Mobile Robot: All variants of robot systems that can move
around their environment with direct contact with a sur-
face. From automated guided vehicles (AGV) to self-driving
vehicles.

• Robotic Arm: Any robot manipulator with at least two de-
grees of freedom. From a pick-and-place robot to a 7-DOF
robotic arm or up to a mechanical human arm.

• Flying Robot: All types of robots that can move around their
environment without direct contact with a surface, e.g., a
drone.

The robot type affects where the visual designs can be displayed
on the robot and in the environment. A mobile robot requires an
integrated visualization system for mobility, whereas a stationary
robotic arm can utilize a fixed visualization setup within its op-
erating environment. The placement of the visualization on the
robot is another factor to consider. For instance, on a quadcopter,
the weight constraints impact the type of visualization devices that
can be used. Similarly, the end effector of a robotic arm has limited
space for visualization devices, especially with a higher pixel layout.
Large mobile robots, such as AGVs or self-driving vehicles, have
more space to put visualization devices of higher degrees of pixel
layout. Some already contain these devices, such as turn signals or
brake lights.

3 ONE DIMENSIONAL MOVEMENT
VISUALIZATIONS FOR ROBOTIC ARMS

For this workshop paper, we focus on further developing the 1D
pixel layout movement visualizations for robotic arms. We do this
by creating VR prototypes of the robot and visualizations in Unity.
It allows us to quickly iterate and develop the visualizations them-
selves and reuse the same environment for future VR user studies.

We first focus on implementing movement for robotic arms in-
stead of mobile or flying robots, as we believe robotic arms are
the most interesting use case. Mobile and flying robots can reuse
a system very similar to that of car direction indicators. It is a
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well-known and broadly used way of representing movement in-
formation that can be reused for our design case. For robotic arms,
there is no clear preexisting movement visualization.

3.1 Designing the Pixel Visualization
In the case of a robotic arm, each joint of the robot influences the
movement of the robotic arm. Therefore, we want to be able to
visualize information for each joint of the robotic arm indepen-
dently. Secondly, the robotic arm can move in any direction, so the
visualization should be visible from as many directions as possible.
Therefore, we mount pixels around the joints of the robot itself.

This results in a robotic arm with a band of pixels added to every
joint. These are mounted as close as possible to the rotation point
to mirror the movement of the joint. Figure 1 shows a virtual KUKA
LBR iiwa1 robot with the pixel bands added to it.

Figure 1: An example of a virtual robotic arm with the 1D
pixel layout visualization added. For each joint, a pixel band
is added.

Each pixel band is subdivided into eight pixels corresponding
to the cardinal directions (see Figure 2). It allows us to link the
robot’s movement in a specific direction with the visualization of
the pixel bands. As a robotic arm joint can rotate around a horizontal
or a vertical axis, the Unity axis that corresponds with the north
direction changes. A horizontal joint rotates around the Y-axis with
minus Z as the north direction (Figure 2a). A vertical joint rotates
around the Z-axis with Y as the north direction (Figure 2b).

1Kuka LBR iiwa website

(a) The horizontal joint. (b) The vertical joint.

Figure 2: The subdivision of a pixel band into eight pixels
linked to the cardinal directions shown for a horizontal and
vertical joint. The axes represent the corresponding Unity
axis.

3.2 Movement Information Visualization
To create the intelligible movement visualization, we must know
the robot’s future movement. Based on this information the visual-
ization can determine where the robot will move to and visualize
this movement accordingly. We identified two options to visualize
the movement information: angle-based and direction-based.

The angle-based visualization lights up the pixel for each joint
corresponding to the angle in which the joint will rotate (see Fig-
ure 3). The joints that do not change their rotation during the
movement light up the pixel corresponding to their current rota-
tion angle. Each joint visualizes its movement independently from
each other.

Figure 3: Storyboard example of the angle-based movement
visualization. Four steps of the robot moving towards the
user are shown.

3
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The direction-based visualization lights up the pixel on each
joint that corresponds to the direction the robot will move to (see
Figure 4). This results in the pixels working in unison to create a
vertical direction indicator on the robotic arm corresponding to the
robot’s movement direction.

Figure 4: Storyboard example of the direction-based move-
ment visualization. Four steps of the robot moving towards
the user are shown.

Based on our Unity implementation of the visualizations, we
can already see that the angle-based visualization is more prone
to obstructions from the robot. On the other hand, direction-based
visualization allows us to see the visualization from all directions
because when no visible pixels light up, we can deduce that the
robot is moving away from the user.

A possible improvement to the angle-based visualization is only
to light up the pixel on a joint if it changes its rotation. In this way,
the amount of visual information provided to the user is reduced.
A light appearing on a joint indirectly signals that the joint will
move.

We theorize that the angle-based visualizations are more chal-
lenging to interpret as each joint has to be interpreted individually
by the user. One change in orientation of a single joint of the robot
also moves all joints down the chain of joints in the robot. This can
create situations where predicting the robot’s movement based on
the rotation of a single joint requires additional reasoning by the
user. Further development and user testing of this hypothesis is
required before we can make concrete statements about this.

4 DISCUSSION
In this workshop paper, we explored one-dimensional movement
visualizations for robotic arms as part of developing our visual

design framework for intelligible human-robot interaction visual-
izations. We focus on developing a Unity implementation of this
visual design framework as a basis for our future research and user
testing. The Unity environment enables quick prototyping and VR
user testing of our visual design framework.

In a future iteration, we want to add pixel bands to a broader set
of robotic arms. We chose the Kuka iiwa robot as a starting point
due to its seven degrees of freedom, providing a large number of
joints to visualize. Secondly, it also has a specific design focused
on minimizing possible pinching points on the robot. This design
can cause more visual obstructions by the robot itself. The sec-
ond robot we want to add to our implementation is the Universal
Robots UR10e2. It is a robotic arm with six degrees of freedom with
a straightforward design, often used in human-robot interaction
research.

Our visual design framework aims to support all three types of
information, and thus not only movement. We envision reusing
the same pixel bands but using different colors to represent state
and interaction information. For the end effector itself, we can add
extra pixels based on the end effector in use, enabling us to relay
information specific to the end effector. For example, indicating the
opening or closing of the end effector or when the robot is ready
to hand over an object.

To finalize our research, we plan to conduct user studies in VR.
It enables us to reuse our existing prototypes with the main benefit
of the allowance to test out potentially dangerous scenarios. For
example, scenarios where a robotic arm moves in close approxima-
tion with the user but where it is important that the user still feels
safe. The central hypothesis we want to test is which visualization
is the easiest to interpret and creates the highest trust between
the user and the robot. To do this, we will compare the angle and
direction-based visualization with different robots and in different
scenarios.

We show how simple pixels can be mounted on a robotic arm and
how they can potentially convey the robot’s movement information
without the need for a projection or Augmented Reality system.
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