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ABSTRACT

The success of clinical trials of longevity drugs relies heavily on identifying in-
tegrative health and aging biomarkers, such as biological age. Epigenetic aging
clocks predict the biological age of an individual using their DNA methylation
profiles, commonly retrieved from blood samples. However, there is no standard-
ized methodology to validate and compare epigenetic clock models as yet. We
propose ComputAgeBench, a unifying framework that comprises such a method-
ology and a dataset for comprehensive benchmarking of different clinically rel-
evant aging clocks. Our methodology exploits the core idea that reliable aging
clocks must be able to distinguish between healthy individuals and those with
aging-accelerating conditions. Specifically, we collected and harmonized 66 pub-
lic datasets of blood DNA methylation, covering 19 such conditions across differ-
ent ages and tested 13 published clock models. We believe our work will bring
the fields of aging biology and machine learning closer together for the research
on reliable biomarkers of health and aging.

1 INTRODUCTION

Longevity drugs (a.k.a., geroprotectors) appear to be on the brink of entering clinical practice to
slow down or reverse the features of aging (Moqri et al., 2024; Justice et al., 2018). The research
community is yet to identify proper biomarkers of aging and rejuvenation that could be used as
clinical trial endpoints instead of or in combination with observations on patient lifespans (Schork
et al., 2022). Biological age (BA) has been proposed as one of such surrogate biomarkers of aging,
defined as a generalized measure of human health compared to the average health of individuals at a
given age within a population (Yousefi et al., 2022; Jylhävä et al., 2017). Thus, if an individual has a
biological age of 40 at the chronological age of 30, it is assumed that their overall health corresponds
to that of an average 40-year-old in the population. This relationship can be concisely expressed as

B = C +∆ , (1)
where B represents biological age, C denotes chronological age (i.e., time since birth), and ∆
symbolizes BA acceleration (or deceleration, if negative).

In general, BA can be estimated from a set of biomarkers X with a model (algorithm) f : X →
B, also called an aging clock. However, BA is latent: it has no ground truth value that can be
measured directly and then used to train an aging clock model f in a classical supervised fashion,
making clock validation a nontrivial task (Sluiskes et al., 2024). This obstacle forces researchers to
introduce various additional assumptions about the aging clock behavior (Klemera & Doubal, 2006;
Horvath, 2013; Pierson et al., 2019; Rutledge et al., 2022), as well as to experiment with different
machine learning models (including penalized linear regressions, such as ElasticNet, support vector
machines, decision trees, transfomer-based neural networks, etc. (Rutledge et al., 2022; Urban
et al., 2023)) and underlying types of data X (Putin et al., 2016; Xia et al., 2020; Holzscheck et al.,
2021). The vast majority of aging clocks, though, rely primarily on DNA methylation data, also
called epigenetic aging clocks (Hannum et al., 2013; Levine et al., 2018; Lu et al., 2019; Galkin
et al., 2021; Ying et al., 2024). Summarizing abundant discussions about a “good” mathematical
description of BA in the literature (Moskalev, 2019; Rutledge et al., 2022; Moqri et al., 2024), we
elicited four of its defining properties, formalized as follows.

Let X ∈ Rp, where p is the number of biomarkers in data, B ∈ R, and f : X → B. Given the aging
acceleration ∆ = B − C, the following four properties hold:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Model

ComputeAgeBench

Age
accelerating

condition

Healthy
control

p-value

Ag
e 

ac
ce

le
ra

tio
n

Blood data

Chronological Age

CpG site

Dataset

Averaging 
across cells

.........

...

...

CpGN1CpG

...

Figure 1: ComputAgeBench: benchmarking various epigenetic aging clock models. For a dataset
X , obtained by profiling DNA methylation at CpG sites in bulk blood samples, an aging clock
model f is trained to distinguish healthy individuals from those with pre-defined aging-accelerating
conditions.

1. B is expressed in the same time units as C;
2. ∆ allows distinguishing between healthy individuals and individuals with aging-

accelerating or decelerating conditions (AACs or ADCs), such as severe chronic diseases;
3. B helps to predict the remaining lifespan better than C does (Moskalev, 2019);
4. B helps to predict the time to onset of chronic age-related diseases (e.g., the Alzheimer’s)

better than C does (Moskalev, 2019).

Garnered together, these properties motivated us to construct a benchmarking methodology for val-
idating the potential biological age predictors. In property #1, the model f should output age values
in a biologically meaningful range, comparable with a typical lifespan, e.g., from 0 to 120 years
for the humans. To investigate if a model f satisfies the 2nd property, we can define a panel of
aging-accelerating (or decelerating) conditions and test if the predicted ∆ allows distinguishing the
individuals with an AAC/ADC from a control group, according to an appropriate statistical test. To
validate the compliance with the 3rd and the 4th properties, one also needs data on mortality and
multi-morbidity. That is, the information about the timing of death or the onset of chronic age-
related diseases, along with a prior measurement of a set of relevant biomarkers. It is important to
note that such data are highly sensitive and are generally not publicly available.

DNA methylation (DNAm) is the most prevalent measurement employed in the construction of aging
clocks (Xia et al., 2021). From a chemical point of view, DNA methylation refers to a covalent
modification of DNA nucleotides by the methyl groups (Greenberg & Bourc’his, 2019). Specifically,
cytosine nucleotides (C) followed by guanine nucleotides (G), also referred to as cytosines in a CpG
context or simply CpG sites (CpGs), are methylated most often in the mammalian cells, making it the
most well-studied type of DNA methylation (Seale et al., 2022) (refer to Fig. 1 for visualization of
the DNA and CpGs). This epigenetic modification plays a crucial role in regulating gene expression
and is engaged in a variety of cellular events, varying significantly across different species, tissues,
and the lifespan. DNA methylation levels per site are usually reported quantitatively as beta values
that represent the methylation proportion at a specific CpG site in the range from 0 to 1, where 0
indicates no methylation, and 1 indicates complete methylation across all the cells in the sample
(Fig. 1).

Importantly, despite the numerous recent publications of various aging clocks (Xia et al., 2021; Rut-
ledge et al., 2022; Yousefi et al., 2022), including the ones built on DNA methylation, no systematic
open access benchmark, which would include standardized panel of datasets, diseases, interven-
tions, or other conditions, has been proposed to date to validate the aforementioned properties. In
this paper, we introduce such a benchmark to validate the 1st and the 2nd properties in epigenetic
aging clocks. To do this, we developed a methodology for identifying aging-accelerating conditions,
which relies on simple, yet strict and evidence-based principles for defining and selecting a panel of
aging-accelerating conditions. We collected an unprecedented number of DNA methylation datasets
for the respective conditions from dozens of published studies. We also developed a cumulative
benchmarking score that aggregates two error-based tasks and two simple, but informative tasks
based on common statistical tests. Ultimately, this cumulative score enables comparing aging clock
ability to satisfy the 1st and the 2nd properties.
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To demonstrate our methodology in a clinically relevant scenario, we specifically focused on the
blood-, saliva-, and buccal-based epigenetic biomarkers obtained via a microarray-based technology.
Such biomarkers are widespread in clinical testing and aging clock construction (Campagna et al.,
2021; Rutledge et al., 2022). We then examined 13 published epigenetic clocks and provided their
benchmarking results.

2 RELATED WORK AND BACKGROUND

2.1 AGING CLOCK CONSTRUCTION METHODOLOGY

Because the BA ground truth values cannot be measured, and, therefore, a direct validation of ag-
ing clocks is problematic, previous studies introduced various approaches to construct aging clocks
with different underlying assumptions. The most widespread one, belonging to the so-called “first-
generation aging clocks”, uses an assumption that a model f can be trained to predict chronological
age, i.e., C = Ĉ+ ε = f(X)+ ε, and its predictions will correspond to BA: B = Ĉ. The simplicity
of this approach has made it attractive for decades, and it is still used today to train new aging clocks
on new types of data (Hollingsworth et al., 1965; Voitenko & Tokar, 1983; Duggirala et al., 2002;
Varshavsky et al., 2023; Prosz et al., 2024). In fact, BA obtained by this approach can satisfy the
2nd (Horvath, 2013) and the 3rd (Kuiper et al., 2023) properties from our definition. However, using
this assumption in Eq. (1) leads us to the conclusion that ε = −∆. It then turns out that the perfect
solution of the chronological age prediction problem, i.e., minimizing the prediction error so that
ε → 0, leads to the inability of a clock to identify any aging acceleration or deceleration. Namely,
it implies that ∆ → −0, which is also known as the biomarkers paradox (Hochschild, 1989; Kle-
mera & Doubal, 2006). Supporting this concept, it has been shown that the clocks featuring strong
correlation with the chronological age poorly correlate with the population mortality (Zhang et al.,
2019) (hence they fail to satisfy the 3rd property). As a consequence, validating clock performance
in terms of accuracy of chronological age prediction becomes meaningless, because high accuracy
may not necessarily correspond to a biologically relevant clock. Despite the obvious methodological
challenges of this approach, it is worth noting that the vast majority of aging clocks belong to the
first generation (Sluiskes et al., 2024).

Seeking for a better solution, researchers experimented with survival models, which led to the de-
velopment of ”second-generation aging clocks”. In this approach, models are trained to predict
time to death (Levine et al., 2018; Lu et al., 2019; Hertel et al., 2016), and the resulting predic-
tion is rescaled to age units to represent BA, therefore addressing the 3rd and the 4th properties of
a ”good” BA estimator. However, there is no open large-scale DNA methylation data containing
time-to-death or multi-morbidity measurements, with existing studies being either available upon an
authorized request or being held completely private (see Appendix A.7).

2.2 ATTEMPTS TO COMPARE EPIGENETIC AGING CLOCKS

Despite reported attempts to compare the performance of different aging clocks, a benchmark with
a standardized panel of datasets, diseases, interventions, or other conditions has not been proposed
yet. As a result, different comparative studies employ widely varying validation data and approaches
(Moqri et al., 2024; Ying et al., 2024; Kuiper et al., 2023; Mei et al., 2023; Wang et al., 2021; Huan
et al., 2022; Chervova et al., 2022; Liu et al., 2020; Maddock et al., 2020; McCrory et al., 2021).
As highlighted in a recent review on biomarker validation by Moqri et al. (2024), “for a reliable
comparison across studies, . . . biomarker formulations should be established ‘a priori’ and not be
further modified during validation”. In the same line of thought, we propose to define a standardized
and a justified procedure for clock benchmarking before constructing any predictive model.

Two approaches we propose as essential tasks in our benchmark entail related prior art. For example,
Porter et al. (2021) and Mei et al. (2023) used one-sample or two-sample aging acceleration tests for
clock validation. Ying et al. (2024) employed two-sample tests across multiple aging clocks. These
authors implicitly tested the 2nd property of “good” aging clocks discussed above. Likewise, there
were also attempts to test the 3rd and the 4th properties separately. In other works, including the
recently updated pre-print of Biolearn (Ying et al., 2023), a Python-based framework for aging clock
training and testing in ongoing development, authors performed Cox Proportional Hazards analysis
and calculated hazard ratios with statistical significance to test if BA estimates of selected clocks are
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capable of predicting all-cause mortality or the onset of age-related diseases (e.g., cardiovascular
events) (Kuiper et al., 2023; Wang et al., 2021; McCrory et al., 2021; Huan et al., 2022; Chervova
et al., 2022; Ying et al., 2023). However, these prior studies are either small-scale (Ying et al., 2024),
limited to predicting the chronological age (Liu et al., 2020), or miss standardized datasets and
compare only a small number of models (Porter et al., 2021; Mei et al., 2023), or rely on mortality
and disease data that are under restricted access (Ying et al., 2023). Therefore, while developing our
methodology, we attempted to mitigate all mentioned drawbacks.

3 BENCHMARKING METHODOLOGY

An infographic overview of the proposed benchmarking of aging clocks is shown in Fig. 2.

3.1 CRITERIA FOR SELECTING AGING-ACCELERATING CONDITIONS

In the context of clock benchmarking, we propose to define an aging-accelerating condition (AAC)
as a biological condition that satisfies the following three criteria (Fig. 2B). First, having an AAC
must lead to decreased life expectancy (LE) compared to the general population, even when treated
with existing therapies. Second, an AAC must be chronic (to safely assume that it has sufficient
time to drive observable changes in DNAm). And third, an AAC must manifest itself systemically,
so that it can be expected to affect DNAm in blood, saliva, and buccal cells (hereafter referred to as
BSB).

Importantly, the decrease in LE and the corresponding increase in mortality must result mainly from
intrinsic organismal causes rather than from socioeconomic factors and self-destructive behaviors
related to a given condition. The second criterion is aimed at excluding short-term conditions such
as acute infectious diseases, stressful events, and other confounding DNAm-alternating accidents,
whose effects might not induce significant changes in DNAm data obtained from BSB, or, on the
contrary, might last too briefly to be reliably detected. The third part of the AAC definition pre-
cludes us from considering events with long-lasting and life-threatening consequences that might be
difficult to observe in BSB-derived data. For instance, a bone fracture (unless it is a critical bone
marrow reserve) or some types of malignancies.

Conversely, an aging-decelerating condition (ADC) is defined as a condition that increases LE,
compared to the general population, and features the same second and third criteria as an AAC.
With human data, however, the ADCs are difficult to determine, as the human lifespan-increasing
interventions are yet to emerge. To avoid ambiguous interpretation, we omitted such conditions in
our benchmarking of human aging clocks (see Appendix A.5 and Table A2 for more details).

3.2 CRITERIA FOR DATASET SELECTION

Aiming to provide a comprehensive, easily accessible, and clinically relevant toolbox for the ongo-
ing research on human epigenetic clocks, we relied on the following five criteria while performing
the datasets aggregation (Fig. 2C). First, all datasets in the benchmark must feature open access
to pre-processed data, without any data access requests or raw data processing required. Second,
we only used data obtained from the BSB samples. Third, chronological ages must be annotated
with, at most, one year intervals (e.g., without age binning by decades), including only samples
from the age range of 18–90 years1. The only exception to this requirement are the individuals
with certain progeroid conditions, such as the Hutchinson-Gilford progeria syndrome, who survive
approximately 12 to 13 years on average: these conditions resemble premature aging so strikingly
(Schnabel et al., 2021) that we included patients aged under 18 years into the benchmark. Fourth, we
employ data obtained only with the Illumina Infinium BeadChip (27K, 450K, and 850K) methyla-
tion microarrays, as they remain to be the most popular technologies for human DNAm profiling and
clock construction. Fifth, we applied thresholds of at least 10 samples per dataset, 5 samples with
an AAC per dataset, and 10 samples with an AAC across all datasets to attain sufficient statistical
power.

1Reporting increased or decreased biological age for people outside of this range is debatable.
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1. Open access to pre-processed data
2. Sample sources: blood, saliva, and buccal cells (BSB)
3. Annotated ages: 18-90 yo (except progeroid)
4. Data type: DNA methylation microarrays (27K/450K/850K)
5. 10+ samples per dataset, 10+ samples per condition

1. Decreases life expectancy, even if treated
2. Сhronic          
         has su�cient time to drive changes in DNAm
3. Manifests systemically
         a�ects DNAm in blood, saliva, or buccal cells

Dataset
of aging-accelerating conditions (ACCs)

Assumption:
AAC increases BA

Low

High
Clock training BenchScore Applying the clock for 

BA estimation
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Neurodegenerative
diseases (NDD)

Musculoskeletal
diseases (MSD)

Respiratory
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Immune system
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Progeroid
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Figure 2: ComputAgeBench methodology. A) The proposed pipeline for constructing aging clocks
features an important step of validating the model on pre-defined aging-acceleration conditions that
satisfy criteria (B) and are collected into datasets that meet criteria (C) for individual study design.
D) Major classes that include putative aging-accelerating conditions. E) Aggregated dataset panel
for benchmarking aging clocks, comprising 66 unique data sources (labeled by their Gene Expres-
sion Omnibus dataset identification numbers and conditions) from more than 50 studies. See Table
A2 for the full names and Table A3 for the population-based evidence for including each condition.

3.3 COLLECTING AAC DATASETS FOR BENCHMARKING

To cover as many organismal systems affected by age-related conditions as possible, we split the
aggregated data into nine broad categories (Fig. 2D): cardiovascular diseases (CVD), immune sys-
tem diseases (ISD), kidney diseases (KDD), liver diseases (LVD), metabolic diseases (MBD), mus-
culoskeletal diseases (MSD), neurodegenerative diseases (NDD), respiratory diseases (RSD), and
progeroid syndromes (PGS). In each class, we identified several AACs relying on the established
lists of age-related diseases and on the leading causes of death (Mei et al., 2023; Li et al., 2021;
Ferrari et al., 2024), including closely associated conditions and other conditions mentioned in a
variety of epigenetic clock studies (Horvath, 2013; Levine et al., 2018; Ying et al., 2024; Mei et al.,
2023; Horvath et al., 2018). The corresponding AACs with their abbreviations and population-based
evidence for their inclusion are provided in Appendix (Tables A2 and A3, respectively).

Dataset search was performed using the NCBI Gene Expression Omnibus (GEO) database, an
omics data repository with unrestricted access (https://www.ncbi.nlm.nih.gov/geo/).
We applied filters to include the Homo sapiens species and all types of methylation-related stud-
ies: methylation profiling by single-nucleotide polymorphism (SNP) array, methylation profiling by
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array, methylation profiling by genome tiling array, and methylation profiling by high throughput
sequencing (methylation microarray data can be found in any of these study types).

Upon performing the dataset search, only a portion of AACs from seven condition classes were
retained (see Appendix and Table A3). All five dataset selection criteria were met by none of the
found kidney- and liver-related AAC datasets. The resulting list of 66 datasets (Reynolds et al.,
2014; Nazarenko et al., 2015; Soriano-Tárraga et al., 2016; Istas et al., 2017; Cullell et al., 2022;
Harris et al., 2012; Horvath & Levine, 2015; Gross et al., 2016; Zhang et al., 2016; Li Yim et al.,
2016; Ventham et al., 2016; Zhang et al., 2017; 2018; Oriol-Tordera et al., 2020; DiNardo et al.,
2020; Oriol-Tordera et al., 2022; Esteban-Cantos et al., 2023; Liu et al., 2013; Fernandez-Rebollo
et al., 2018; Rhead et al., 2017; Clark et al., 2020; Tao et al., 2021; de la Calle-Fabregat et al.,
2021; Julià et al., 2022; Chen et al., 2023; Day et al., 2013; Rakyan et al., 2011; Lunnon et al., 2015;
Ramos-Molina et al., 2019; Noronha et al., 2022; Marabita et al., 2013; Lunnon et al., 2014; Horvath
& Ritz, 2015; Castro et al., 2019; Kular et al., 2018; Chuang et al., 2017; 2019; Ntranos et al., 2019;
Ewing et al., 2019; Carlström et al., 2019; Roubroeks et al., 2020; Go et al., 2020; Dabin et al., 2020;
Bingen et al., 2022; Esterhuyse et al., 2015; Chen et al., 2021; 2020; Maierhofer et al., 2019; Bejaoui
et al., 2022; Qannan et al., 2023) comprises 65 blood studies and 1 saliva study, and is visualized in
Fig. 2E. An overview of all datasets, dataset sizes, and their age distributions is provided in Fig. A1.
Descriptive statistics for all datasets are provided in Fig. A2.

We unified the metadata of all datasets by retrieving only the relevant metadata columns and format-
ting them into the appropriate data types, similarly to what was proposed by the authors of Biolearn
(Ying et al., 2023), another recent effort in the clock community. We also added the condition and
condition class annotation, thus obtaining a single metadata file with 10,410 rows (samples) and the
following columns: SampleID, DatasetID (dataset GEO accession number), PlatformID (sequenc-
ing platform), Tissue (blood or saliva), CellType (whole blood or cell type after sorting), Gender,
Age, Condition, and Class (see also Appendix A.9 for details on data processing).

3.4 EPIGENETIC AGE PREDICTORS

Any blood-based epigenetic aging clock that predicts BA in age units (or can be re-scaled to them)
can be validated in our benchmark. We tested 13 publicly available epigenetic clock models trained
on adult human data to evaluate sample age (Table A4), with the model coefficients retrieved from
the corresponding studies. Among the collected first-generation clocks, 6 were trained purely on
blood samples (Hannum et al., 2013; Ying et al., 2024; Lin et al., 2016; Vidal-Bralo et al., 2016),
and 3 models were trained on multiple tissues (Horvath, 2013; Zhang et al., 2019; Horvath et al.,
2018). Among the second-generation clocks, all were blood-based, and 2 models relied entirely on
CpG sites as predictive features (Levine et al., 2018; Higgins-Chen et al., 2022), while the other 2
required additional information about gender and chronological age as inputs (Lu et al., 2019; 2022).
Because the extracted datasets contained missing values, we imputed them with the ”gold standard”
beta values averaged for each CpG site retrieving them from the R ”SeSAMe” package (Zhou et al.,
2018) (for the results on comparing imputation methods, see Appendix A.3). We also ensured that
no data in the benchmark was used to train any of the selected clocks, and that all clock input and
output structures are consistent with each other (”harmonized”, as described by Ying et al. (2023)).
The clock models evaluated by us are described in Table A4.

3.5 BENCHMARKING TASKS FOR EVALUATING AGING CLOCKS

To benchmark aging clock models, we propose four tasks: relative aging acceleration prediction
(Fig. 3A), absolute aging acceleration prediction (Fig. 3B), chronological age prediction accuracy
(Fig. 3C), and systematic chronological age prediction bias (Fig. 3D). In the first two tasks, the
clocks are tested if they can correctly predict aging acceleration in the predefined panel of AAC
datasets.

In the relative aging acceleration prediction task (AA2 task), we test aging clock ability to distin-
guish AAC from healthy control (HC) samples in a dataset containing both sample groups. After
predicting ages in each dataset corresponding to this task using various clock models, we apply a
two-sample Welch’s test per dataset and calculate a one-sided P-value (i.e., HA : ∆AAC > ∆HC) to
determine if mean aging acceleration in the AAC cohort is significantly greater than that in the HC
cohort (Fig. 3A). Next, we apply the Benjamini-Hochberg correction procedure for controlling the
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false discovery rate (FDR) of predictions across all datasets, with an adjusted P-value less than 0.05
considered indicative of statistical significance. We selected a parametric test due to the assump-
tion of normal distribution of ∆, a fundamental trait of the multivariate linear regression models
commonly used in aging clock construction.

In the absolute aging acceleration prediction task (AA1 task), we test clock ability to correctly
predict positive aging acceleration for an AAC in the absence of the HC cohort. For each dataset
in this task, we predict ages using various clock models, apply a one-sample Student’s t-test and
calculate a one-sided P-value (i.e., HA : ∆AAC > 0) to determine if mean aging acceleration in
the AAC cohort is significantly greater than zero (Fig. 3B). As before, we apply the Benjamini-
Hochberg correction procedure for controlling FDR with the same adjusted P-value threshold.

Clearly, the first task (AA2) provides a more rigorous way to test aging clocks compared to AA1,
because it helps to control potential covariate shifts, but the second task (AA1) deserves its place
in the list, as it allows including more data into the panel to overcome data scarcity. The third
task is aimed at distinguishing good predictors of chronological age from predictors of biological
age. Due to the paradox of biomarkers mentioned above, it is highly unlikely that the same model
could combine both these properties. Yet, the good predictors of chronological age are believed to be
useful in forensics (Paparazzo et al., 2023) or data labeling, where the chronological age information
is lacking. We chose median absolute aging acceleration (Med(|∆|)), a full equivalent of median
absolute error, for testing clock performance. We calculate it across HC samples from the whole
dataset panel and report it as a single number expressed in years.

We introduced the fourth task, a prediction bias task, to evaluate the robustness of a given aging
clock model to covariate shift between the original clock training dataset and the datasets from the
proposed benchmark. Covariate shift, also referred to as batch effect in bioinformatics, denotes the
shift between covariate distributions in two datasets. For instance, the distribution of methylation
values for a given CpG site could be centered around 0.45 in one dataset and around 0.55 in the
other one—a common scenario in DNAm and other omics data. Because each clock is trained on
healthy controls, we expect age deviation of HC samples to be zero on average (i.e., E(∆HC) = 0).
In practice, however, due to the presence of a covariate shift between the training and testing data,
a clock might produce biased predictions, resulting in a systemic bias and adding or subtracting
extra years for a healthy individual coming from an external dataset. The goal of the fourth task
is to control for such systemic bias in clock predictions. Therefore, as a benchmarking metric for
this task, we calculated median aging acceleration (Med(∆)) across HC samples from the entire
dataset panel, which reflects the systematic shift in clock predictions caused by differences between
datasets.

3.6 CUMULATIVE BENCHMARKING SCORE

We define cumulative benchmarking score such that it would account for the main drawback of AA1
task, namely, the sensitivity to positive model bias. Let SAA2 denote total score of a model in AA2
task and SAA1 from the AA1 task (both SAA2 and SAA1 represent the number of datasets evaluated
correctly by a model in the respective task), then the cumulative benchmarking score is:

BenchScore = SAA2 + SAA1 ·
(
1− max(0,Med(∆))

Med(|∆|)

)
. (2)

Consequently, if a model is positively biased, its performance in the AA1 task will be penalized by
the bracketed coefficient by the SAA1, the largest when the model bias Med(∆) is zero. Because
Med(∆) ≤ Med(|∆|), this coefficient is limited to the [0, 1] interval.

While designing our metric, we aimed for simplicity and interpretability. At the same time, we
sought to include more data in the benchmark to address data scarcity caused by the underrepresen-
tation of certain AACs. Admittedly, there could be a more optimal solution for the metric, but we
also believe that such a solution must be proposed by a continuous collaborative discussion between
the aging clock and machine learning communities, which we are eager to establish.
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Figure 3: ComputAgeBench tasks and performance of aging clock models. A-D) The four bench-
marking tasks. (C) illustrates that chronological age prediction accuracy is measured by median
absolute error (Med(|∆|)) across all predictions. For a limiting case of prediction bias sketched in
(D), all samples were predicted with positive age acceleration, leading to a strictly positive value
of Med(∆), graphically represented as a red arrow pointing to a cross. E) AA2 task results split
into columns by condition class, where scores demonstrate the number of datasets per class, where
a given clock model detected significant difference between the HC and AAC cohorts. F) AA1 task
results: same as (E), but the statistics are calculated for datasets containing the AAC cohort alone.

4 RESULTS

The most rigorous of the four, AA2 task demonstrates that second-generation aging clocks (Phe-
noAgeV2 (Higgins-Chen et al., 2022), GrimAgeV1 (Lu et al., 2019), GrimAgeV2 (Lu et al., 2022),
and PhenoAgeV1 (Levine et al., 2018)) appear on top, particularly at predicting aging accelera-
tion for the ISD class (Fig. 3E, Supplementary Materials Fig. A5). Nevertheless, all clocks failed
to detect aging acceleration in patients with cardiovascular and metabolic diseases, at least at the
statistically significant level (see Figs. A3 and A4 for results without FDR correction). Modest
scores (<50% datasets in total) on the AA2 task across all models are expected, as no clocks had
specifically been calibrated to pass this benchmarking task.

In contrast, the first-generation aging clocks by Zhang et al. (2019) and Hannum et al. (2013) pop-
ulated the top of the AA1 leaderboard, in addition to the GrimAge, exhibiting good scores across
multiple condition classes (Fig. 3F, Supplementary Materials Fig. A6). Notably, combining the
results of this task with the model bias task exposes the potential source of the exceptional “robust-
ness” in predicting accelerated aging in datasets without healthy controls.

The task of chronological age prediction accuracy reveals two undeniable leaders: HorvathV2 (Hor-
vath et al., 2018) and HorvathV1 (Horvath, 2013) clocks (Table 1), specifically tuned for this task
on large multi-tissue datasets. Notably, clocks predicting chronological age with Med(|∆|) ≥ 18
years would be inferior to a constant model yielding a 50 y.o. prediction (average age across all HC
samples in the benchmark). Unless scaled, such clocks can hardly be used for inferring accelerated
aging.

Finally, to prove the validity of AA1 performance, a clock should also pass the task for being un-
biased. We show that the AA1 leader, GrimAgeV2 clock (Lu et al., 2022), is also characterized by

8
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Table 1: Benchmarking results.
Model name AA2 score AA1 score Med(|∆|), years Med(∆), years BenchScore

PhenoAgeV2 20 9 7.6 ±0.1 -2.6 ±0.1 29.0
GrimAgeV1 14 15 7.5 ±0.1 5.7 ±0.1 17.4
PhenoAgeV1 9 7 8.0 ±0.1 -4.2 ±0.2 16.0
GrimAgeV2 14 20 9.8 ±0.1 9.3 ±0.1 15.1
HorvathV1 3 12 5.4 ±0.1 -0.1 ±0.1 15.0
HorvathV2 5 12 4.1 ±0.1 1.1 ±0.1 13.9
VidalBralo 0 13 9.1 ±0.1 0.1 ±0.2 12.8
Lin 5 9 7.5 ±0.1 2.1 ±0.2 11.4
YingAdaptAge 5 11 20.0 ±0.2 12.5 ±0.5 9.1
YingCausAge 6 2 9.0 ±0.1 1.3 ±0.2 7.7
YingDamAge 0 6 19.5 ±0.3 -14.5 ±0.5 6.0
Zhang19 EN 2 19 10.5 ±0.2 9.6 ±0.2 3.7
Hannum 1 17 7.5 ±0.1 6.3 ±0.1 3.7

a large prediction bias for the HC samples (Table 1), warning us against considering its AA1 task
score reliable. On the other hand, the top-2 unbiased HorvathV1 clock (Horvath, 2013) and Vidal-
Bralo clock (Vidal-Bralo et al., 2016) have low prediction bias, rendering their AA1 performance as
more trustworthy.

To account for the discrepancies of AA1 task interpretation regarding the prediction bias, we devised
cumulative benchmarking score (Table 1) which penalizes AA1 score by the magnitude of prediction
bias (see Eq. 2). With such a metric, a second-generation aging clock PhenoAgeV2 (Higgins-Chen
et al., 2022) becomes the most robust model in terms of distinguishing individuals with aging-
accelerating conditions from the healthy cohort. This model is a leader, according to the cumulative
benchmarking score and the AA2 task score. Closely behind it, are the other second-generation
clocks: GrimAgeV1 (Lu et al., 2019), PhenoAgeV1 (Levine et al., 2018), and GrimAgeV2 (Lu
et al., 2022). On the other hand, our results indicate that even the classic first-generation aging
clocks, such as HorvathV1 (Horvath, 2013) and HorvathV2 (Horvath et al., 2018), can perform
quite reliably in predicting biological age, at least for some condition classes. It is noteworthy that
in both AA1 and AA2 tasks, many aging clocks perform well in detecting accelerated aging caused
by immune system diseases, which are mostly represented by human immunodeficiency virus (HIV)
infection in our dataset, while the other disease classes are only captured by some clocks, allegedly
indicating that they were implicitly and unintentionally trained for certain subset of diseases. These
results generalize previous findings (Mei et al., 2023) and show that comprehensive benchmarking
of aging clocks can resolve the controversy regarding their robustness and utility.

5 DISCUSSION

Biological age is an elusive concept that cannot be measured and validated directly, which necessi-
tates careful choice of model assumptions to avoid methodological errors and false discoveries while
estimating it. While maintaining some degree of correlation between predicted and chronological
age is desirable, the biomarkers paradox (Klemera & Doubal, 2006) precludes one from automati-
cally accepting a BA estimation as acceptable (via the classic performance metrics of chronological
age prediction accuracy). From a methodological perspective, training BA predictors to estimate
time to death or a disease onset remains the most rigorous approach to aging clock validation, as
these events can be measured directly. However, obtaining such data is challenging due to various
ethical and financial constraints. At present, no open access data of DNA methylation with mortality
labels are available for public clock benchmarking (see Appendix A.7).

While mortality data remain unavailable, we propose to validate clocks by their ability to demon-
strate BA acceleration in a fixed pre-determined panel of datasets for established aging-accelerating
diseases or predict decelerated aging in the datasets of lifespan-prolonging interventions. For that,
we developed our benchmark, where each aging clock could be tested across 4 distinct tasks. We
gathered an unprecedented number of DNA methylation datasets from more than 50 studies,
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covering 19 putative aging-accelerating conditions. Notably, no aging-decelerating conditions
have been confirmed for the benchmark study (see Appendix A.5). It should be taken into account
that in vitro cell reprogramming cannot serve as validation data for the deceleration effect, because,
as has previously been shown (Kriukov et al., 2023), such data are essentially out-of-domain with
regard to blood DNA methylation across aging.

To showcase our benchmark, we tested 13 different published models and revealed that the second-
generation aging clocks, namely, PhenoAge (Levine et al., 2018), GrimAge (Lu et al., 2019), and
their upgraded variants (Higgins-Chen et al., 2022; Lu et al., 2022), were the most successful, ac-
cording to the cumulative benchmarking score. As these clocks had initially been designed to predict
all-cause mortality, they were expected to be robust in distinguishing aging-accelerating conditions.
Yet, our findings reinforce the growing trends in training BA predictors based on mortality rather
than chronological age (Yousefi et al., 2022; Moqri et al., 2024).

As blood DNA methylation generally comes from the immune cells, which would be directly af-
fected by the HIV, it is not surprising that the majority of clocks managed to discern accelerated
aging in the immune system-related conditions (featured predominantly by the HIV infection in our
dataset). This result supports the notion that the blood-based clocks might be implicitly attuned to
such conditions, while only a few clocks are capable of successfully capturing accelerated aging in
the other disease classes.

Remarkably, some datasets were evaluated incorrectly by all models, which may have several pos-
sible explanations apart from the poor clock performance. First, a strong covariate shift between
these data and the training data might impede model performance on some datasets. Second, some
selected conditions might not induce accelerated aging in blood, either by itself or by the design of
the original study (see Limitations in Appendix A.1). Third, the multidimensionality of aging as a
biological phenomenon might not allow for correct prediction of all aging-accelerating conditions
by such univariate measures as the blood-based epigenetic clocks. In favor of this notion, it has
recently been shown that different organ systems have different aging trajectories (Schaum et al.,
2020; Oh et al., 2023), suggesting several directions for the future research, outlined in Appendix
A.2.

6 CONCLUSION

In this work, we developed the first systematic benchmark for evaluating blood-based epigenetic
aging clocks. We believe it will help longevity researchers and data scientists to better gauge the
power of existing biomarkers of aging, quantitatively assessing their role, limitations, and reliability.
We anticipate that, as a result of such computational paradigm, rapid and reliable clinical trials of
lifespan-extending therapies will become an attainable reality in a not-so-distant future.

7 REPRODUCIBILITY STATEMENT

We assured the reproducibility of our pipeline by providing a Google Colab notebook (https://
colab.research.google.com/drive/1_nrGMUd8oH8ADNWUPNeXHr4ZAJlZOQhm),
which allows to download all datasets and benchmark all clocks considered in this article.
References to our code and dataset repositories will become available after the double-blind review.
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Jose I Bernardino, Rocı́o Montejano, Julen Cadiñanos, Cristina Marcelo, Lucı́a Gutiérrez-Garcı́a, Patri-
cia Martı́nez-Martı́n, Cédrick Wallet, François Raffi, Berta Rodés, José R Arribas, and NEAT001/ANRS143
study group. Effect of HIV infection and antiretroviral therapy initiation on genome-wide DNA methylation
patterns. EBioMedicine, 88(104434):104434, February 2023.

Maria M Esterhuyse, January Weiner, 3rd, Etienne Caron, Andre G Loxton, Marco Iannaccone, Chandre Wag-
man, Philippe Saikali, Kim Stanley, Witold E Wolski, Hans-Joachim Mollenkopf, Matthias Schick, Ruedi
Aebersold, Heinz Linhart, Gerhard Walzl, and Stefan H E Kaufmann. Epigenetics and proteomics join
transcriptomics in the quest for tuberculosis biomarkers. MBio, 6(5):e01187–15, September 2015.

Ewoud Ewing, Lara Kular, Sunjay J Fernandes, Nestoras Karathanasis, Vincenzo Lagani, Sabrina Ruhrmann,
Ioannis Tsamardinos, Jesper Tegner, Fredrik Piehl, David Gomez-Cabrero, and Maja Jagodic. Combin-
ing evidence from four immune cell types identifies DNA methylation patterns that implicate functionally
distinct pathways during multiple sclerosis progression. EBioMedicine, 43:411–423, May 2019.

Eduardo Fernandez-Rebollo, Monika Eipel, Lothar Seefried, Per Hoffmann, Klaus Strathmann, Franz Jakob,
and Wolfgang Wagner. Primary osteoporosis is not reflected by disease-specific DNA methylation or accel-
erated epigenetic age in blood. J. Bone Miner. Res., 33(2):356–361, February 2018.

Alize J Ferrari, Damian Francesco Santomauro, Amirali Aali, Yohannes Habtegiorgis Abate, Cristiana Ab-
bafati, Hedayat Abbastabar, Samar Abd ElHafeez, Michael Abdelmasseh, Sherief Abd-Elsalam, Arash Ab-
dollahi, et al. Global incidence, prevalence, years lived with disability (ylds), disability-adjusted life-years
(dalys), and healthy life expectancy (hale) for 371 diseases and injuries in 204 countries and territories and
811 subnational locations, 1990–2021: a systematic analysis for the global burden of disease study 2021.
The Lancet, 403(10440):2133–2161, 2024.

Fedor Galkin, Polina Mamoshina, Kirill Kochetov, Denis Sidorenko, and Alex Zhavoronkov. Deepmage: a
methylation aging clock developed with deep learning. Aging and disease, 12(5):1252, 2021.

Rodney C P Go, Michael J Corley, G Webster Ross, Helen Petrovitch, Kamal H Masaki, Alika K Maunakea,
Qimei He, and Maarit I Tiirikainen. Genome-wide epigenetic analyses in japanese immigrant plantation
workers with parkinson’s disease and exposure to organochlorines reveal possible involvement of glial genes
and pathways involved in neurotoxicity. BMC Neurosci., 21(1):31, July 2020.

Maxim VC Greenberg and Deborah Bourc’his. The diverse roles of dna methylation in mammalian develop-
ment and disease. Nature reviews Molecular cell biology, 20(10):590–607, 2019.

Andrew M Gross, Philipp A Jaeger, Jason F Kreisberg, Katherine Licon, Kristen L Jepsen, Mahdieh Khosro-
heidari, Brenda M Morsey, Susan Swindells, Hui Shen, Cherie T Ng, Ken Flagg, Daniel Chen, Kang Zhang,
Howard S Fox, and Trey Ideker. Methylome-wide analysis of chronic HIV infection reveals five-year in-
crease in biological age and epigenetic targeting of HLA. Mol. Cell, 62(2):157–168, April 2016.

Gregory Hannum, Justin Guinney, Ling Zhao, LI Zhang, Guy Hughes, SriniVas Sadda, Brandy Klotzle, Marina
Bibikova, Jian-Bing Fan, Yuan Gao, et al. Genome-wide methylation profiles reveal quantitative views of
human aging rates. Molecular cell, 49(2):359–367, 2013.

R Alan Harris, Dorottya Nagy-Szakal, Natalia Pedersen, Antone Opekun, Jiri Bronsky, Pia Munkholm,
Cathrine Jespersgaard, Paalskytt Andersen, Bela Melegh, George Ferry, Tine Jess, and Richard Kellermayer.
Genome-wide peripheral blood leukocyte DNA methylation microarrays identified a single association with
inflammatory bowel diseases. Inflamm. Bowel Dis., 18(12):2334–2341, December 2012.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Johannes Hertel, Nele Friedrich, Katharina Wittfeld, Maik Pietzner, Kathrin Budde, Sandra Van der Auwera,
Tobias Lohmann, Alexander Teumer, Henry Voolzke, Matthias Nauck, et al. Measuring biological age via
metabonomics: the metabolic age score. Journal of proteome research, 15(2):400–410, 2016.

Albert T Higgins-Chen, Kyra L Thrush, Yunzhang Wang, Christopher J Minteer, Pei-Lun Kuo, Meng Wang,
Peter Niimi, Gabriel Sturm, Jue Lin, Ann Zenobia Moore, et al. A computational solution for bolstering
reliability of epigenetic clocks: Implications for clinical trials and longitudinal tracking. Nature aging, 2(7):
644–661, 2022.

Richard Hochschild. Improving the precision of biological age determinations. part 1: a new approach to
calculating biological age. Experimental gerontology, 24(4):289–300, 1989.

James William Hollingsworth, Asaji Hashizume, and Seymour Jablon. Correlations between tests of aging in
hiroshima subjects–an attempt to define” physiologic age”. The Yale journal of biology and medicine, 38(1):
11, 1965.

Nicholas Holzscheck, Cassandra Falckenhayn, Jörn Söhle, Boris Kristof, Ralf Siegner, André Werner, Janka
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Antonio Julià, Antonio Gómez, Marı́a López-Lasanta, Francisco Blanco, Alba Erra, Antonio Fernández-Nebro,
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A APPENDIX

A.1 LIMITATIONS

The current version of our benchmark harbors several important limitations. First, some selected
conditions might not actually fulfill the suggested criteria, especially regarding their effect on blood
DNA methylation, although we did our best to identify the most unambiguous ones. From the other
hand, some conditions that fit our criteria might have escaped our attention. Second, the conditions
are not represented uniformly, with some being featured in 10+ datasets (HIV, rheumatoid arthritis),
and some present in a single dataset with few samples (ischemic heart disease, chronic obstruc-
tive pulmonary disease, congenital generalized lipodystrophy). The third limitation arises from the
known issue of hidden subgroups of patients and mislabeled instances (Varoquaux & Cheplygina,
2022). For the AAC cohorts, having hidden co-morbidities is acceptable, as they would supposedly
exaggerate aging acceleration even stronger. Conversely, having severe, but unlabeled diseases in
the HC cohort would likely substantially alter the findings of our benchmark. Unfortunately, we can
neither expand our dataset to cover all conditions equally, nor explicitly confirm if all studies at hand
comply with our requirements.

A.2 FUTURE WORK

We plan to further extend our benchmarking dataset by incorporating open access data of additional
modalities, such as clinical biochemistry, transcriptomics, proteomics, metabolomics, etc. To over-
come the aforementioned limitations, we strongly urge an open discussion on developing a panel of
conditions and datasets that would serve as the gold standard for reliable and comprehensive valida-
tion of emerging biomarkers of aging. We also believe that it is important to expand the benchmark
to animal models, since collecting the required data and developing preclinical biomarkers of ag-
ing in some animals is associated with fewer ethical and financial challenges. Hopefully, all these
issues and developments will be addressed by the efforts of a recently established Biomarkers of
Aging Consortium (https://www.agingconsortium.org/). Ultimately, the “correct” BA
estimator should satisfy all four properties we defined in the Introduction. Regardless of the clock
generation or data modality, reliable aging clock models must also be able to assess the uncertainty
of their own predictions before being integrated in clinical trials (Chua et al., 2023; Kriukov et al.,
2023). And indeed, an example of uncertainty-aware aging clocks has recently been proposed (Var-
shavsky et al., 2023). We also aim to upgrade our package to facilitate the interaction with other
clock-related resources, including Biolearn (Ying et al., 2023) and pyaging (de Lima Camillo, 2024).

A.3 COMPARISON OF DIFFERENT APPROACHES TO MISSING VALUES IMPUTATION

We ran additional experiments (see Table A1) to test different imputation methods and observed
that the method we used (Sesame450k) leads to the most accurate age predictions across all models
except the VidalBralo clock, whose MAE is 0.19% lower when using imputation by zeros. We
did not have to impute all 800k+ sites in the whole dataset, as we only imputed sites included in
each respective clock model. Importantly, the results in other benchmarking tasks remained intact,
regardless of the imputation strategies.

A.4 SOCIETAL IMPACT

The obvious positive societal impact of our work is the prospect of increased active lifespan and
that of healthy longevity. Our benchmarking methodology assists in determining the most accurate
predictors of the biological age, which, in turn, assists in delineating the crucial biomarkers and
factors that might prolong the healthy life. The potential negative impact entails the common issues
emphasized when a fundamental biological problem is tackled with the AI tools. Specific to the
subject of longevity are the issues of pre-mature excitement in the mass media when a certain factor
is hypothesized to prolong life. A relevant fraud in the pharmaceutical industry is also plausible, if
not regulated. One could also envision the depletion of resources caused by an overpopulation of the
Earth, which might happen if the longevity drug is found. These negative possibilities are not ex-
pected to be sudden and could be mitigated gradually – similarly to a plethora of other benchmarking
works established for solving important biological problems.
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Table A1: MAE results (in years) for different strategies of missing values imputation.
Model name Sesame 450k Average Zeros
HorvathV2 4.143847 4.701762 4.719477
HorvathV1 5.350622 5.475857 5.475857
GrimAgeV1 7.462245 8.102066 8.241653
Lin 7.467559 8.367630 8.429655
Hannum 7.477633 7.890421 7.907489
PhenoAgeV2 7.604413 8.439977 8.432397
PhenoAgeV1 8.009677 8.380239 8.381561
YingCausAge 8.969959 11.599078 11.551690
VidalBralo 9.124225 9.124387 9.107015
GrimAgeV2 9.796544 10.513198 10.576180
Zhang19 EN 10.534452 10.611938 10.611938
YingDamAge 19.534224 20.179561 20.211066
YingAdaptAge 19.972273 23.287544 23.353844

A.5 MOTIVATION BEHIND INCLUDING OR EXCLUDING PARTICULAR CONDITIONS

Our first criterion for selecting aging-accelerating conditions (AACs) was that having an AAC must
lead to decreased life expectancy (LE) compared to the general population, even when treated with
existing therapies. As we have mentioned earlier, this decrease in LE and the corresponding increase
in mortality must result mainly from intrinsic organismal causes rather than from socioeconomic fac-
tors and self-destructive behaviors related to a given condition. Thus, while Down syndrome (DS) is
associated with elevated prevalence of multiple chronic diseases (O’Leary et al., 2018; Landes et al.,
2020; Baksh et al., 2023), LE of DS individuals has grown dramatically by over 450% from 1960
to 2007 (Presson et al., 2013), even though no cure for DS has been developed, suggesting strong
non-biological confounding factors at play. Additionally, while some authors expect DS to display
accelerated epigenetic aging (Horvath, 2013), others anticipate deceleration when applying epige-
netic clocks to DS blood samples, as DS individuals are hypothesized to feature juvenile blood (Mei
et al., 2023). Schizophrenia (SZ) is another example of a controversial condition: while we can find
increased incidence of age-related comorbidities such as cardiovascular diseases, cancers, or chronic
obstructive pulmonary disease (Olfson et al., 2015; Oakley et al., 2018; Yung et al., 2021), the rates
of suicide and substance-induced death are also increased in people with SZ (Olfson et al., 2015).
We therefore suggest excluding such ambiguous conditions from robust clock benchmarking, as it
is currently difficult to disentangle functional organismal deterioration from external and behavioral
condition-related confounders and evaluate the degree to which the latter influence LE.

Regarding cancers in general, it is difficult to formulate a pre-hoc hypothesis about the directionality
of epigenetic age changes. Even though we know that DNAm can be used to create signatures
of various cancers, and that changes in some DNAm sites are shared between aging and cancers
(Yu et al., 2020), we cannot be certain that an aging clock would indicate accelerated aging in
cancerous samples, as some cancer-specific and stem cell-like features such as telomere maintenance
might prompt a clock model to treat it as a marker of partial rejuvenation. In support of these
considerations, epigenetic age predictions were found to exhibit no correlation with multiple TCGA
cancer types (Lin & Wagner, 2015). To avoid possible speculation as far as possible, we recommend
excluding cancer from clock benchmarking, as it is difficult to hypothesize about clock performance
in such complex phenomena.

Aging-decelerating condition (ADC) is defined as a condition that increases LE compared to the
general population and features the same second and third criteria as an AAC. With respect to hu-
man data, however, the ADCs are difficult to determine, as human lifespan-increasing interventions
are yet to emerge. There are genetic mutations, such as Laron syndrome (growth hormone insen-
sitivity) or isolated growth hormone deficiency (growth hormone releasing hormone insensitivity),
that appear to protect against some age-related pathologies, but they do not feature a prolonged lifes-
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pan (Aguiar-Oliveira & Bartke, 2019). To avoid dubious interpretation, we recommend omitting the
inclusion of any condition into the ADC category when benchmarking human aging clocks.

The resulting list of condition classes and conditions selected to represent accelerated aging is listed
in Table A2. Population-based evidence for condition inclusion and the number of datasets found
and selected per condition are displayed in Table A3.
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Table A2: Aging-accelerating conditions. ICD-10: class or condition code(s) from the International
Classification of Diseases Version 10; a dash indicates lack of specific code; abbr.: abbreviation.

Condition
class

Class
ICD-10

Class
abbr.

Aging-accelerating
condition (AAC)

Condition
ICD-10

Condition
abbr.

Cardio-
vascular
diseases

I00-
I99 CVD

Atherosclerosis I70 AS

Ischemic heart disease I20-I25 IHD

Cerebrovascular accident I60-I63 CVA

Heart failure I50 HF

Myocardial infarction I21-I22 MCI

Immune
system
diseases

— ISD
Inflammatory bowel disease K50-K51 IBD

Human immunodeficiency
virus infection B20-B24 HIV

Kidney
diseases

N00-
N99 KDD Chronic kidney disease N18 CKD

Liver
diseases

K70-
K77 LVD

Nonalcoholic steatohepatitis K75.81 NASH

Primary biliary cholangitis K74.3 PBC

Primary sclerosing cholangitis K83.01 PSC

Cirrhosis
K70.3,
K74.3-
K74.6

CIR

Metabolic
diseases

E00-
E90 MBD

Extreme obesity E66.01,
E66.2 XOB

Type 1 diabetes E10 T1D

Type 2 diabetes E11 T2D

Metabolic syndrome E88.810 MBS

Musculo-
skeletal
diseases

M00-
M99 MSD

Sarcopenia M62.84 SP

Osteoporosis M80-M81 OP

Osteoarthritis M15-M19 OA

Rheumatoid arthritis M05-M06 RA

Neuro-
degenerative

diseases

G00-
G99 NDD

Alzheimer’s disease G30 AD

Parkinson’s disease G20 PD

Multiple sclerosis G35 MS

Dementia with Lewy bodies G31.83 DLB

Creutzfeldt-Jakob disease A81.0 CJD

Respiratory
diseases

J00-
J99 RSD

Chronic obstructive pulmonary disease J44 COPD

Idiopathic pulmonary fibrosis J84.112 IPF

Tuberculosis A15 TB

Progeroid
syndromes — PGS

Werner syndrome E34.8 WS

Hutchinson-Gilford progeria syndrome E34.8 HGPS

Congenital generalized lipodystrophy E88.1 CGL

Dyskeratosis congenita Q82.8 DKC
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Table A3: Population-based evidence for condition inclusion, and the number of datasets found and
selected for each condition. GEO: Gene Expression Omnibus database; abbr.: abbreviation.

CVD

AS
Chen et al. (2023a); Costa et al. (2021); Ikeda &

Ohishi (2019); Lernfelt et al. (2002); Sutton-Tyrrell
et al. (1995)

22 3

IHD Martin et al. (2024); Dai et al. (2022); Hartley et al.
(2016); Bertuccio et al. (2011) 21 1

CVA Martin et al. (2024); GBD 2019 Stroke Collaborators
(2021); Xian et al. (2012); Grysiewicz et al. (2008) 10 2

HF Martin et al. (2024); Bytyçi & Bajraktari (2015);
Shahar et al. (2004) 14 0

MCI Martin et al. (2024); Bucholz et al. (2015); Saaby
et al. (2014) 19 0

ISD

IBD
Duricova et al. (2010); Canavan et al. (2007); Dong

et al. (2020); Gyde et al. (1982); Kuenzig et al.
(2020); Selinger & Leong (2012); Card et al. (2003)

30 4

HIV
Martin et al. (2024); Trickey et al. (2023); Legarth
et al. (2016); May et al. (2014); Nakagawa et al.

(2013)
44 15

KDD CKD Ke et al. (2022); Tonelli et al. (2006); Kim et al.
(2019) 6 0

LVD

NASH Sheka et al. (2020); Younossi et al. (2019) 8 0

PBC Sayiner et al. (2019); Lleo et al. (2016) 1 0

PSC Card et al. (2008); Kornfeld et al. (1997) 2 0

CIR Martin et al. (2024); Xiao et al. (2023); Dam Fialla
et al. (2012) 68 0

MBD

XOB
Martin et al. (2024); Kitahara et al. (2014); Masters

et al. (2013); Fontaine et al. (2003); Solomon &
Manson (1997)

96 4

T1D
Ruiz et al. (2022); Heald et al. (2020); Rawshani et al.
(2018); Huo et al. (2016); Livingstone et al. (2015);

Harjutsalo et al. (2011)
14 1

T2D
Martin et al. (2024); Emerging Risk Factors

Collaboration (2023); Zhu et al. (2022b); Wright et al.
(2017); Mulnier et al. (2006); Zhu et al. (2022a)

45 1

MBS Martin et al. (2024); Käräjämäki et al. (2022); Wu
et al. (2010); Mozaffarian et al. (2008) 17 0

Class
abbr.

Condi-
tion

abbr.

Evidence of decreased
life expectancy

N items
in the
GEO
query

N
datasets

after
filtering

Continued on next page
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Table A3: Population-based evidence for condition inclusion, and the number of datasets found
and selected for each condition. GEO: Gene Expression Omnibus database; abbr.: abbreviation.
(Continued)

MSD

SP Xu et al. (2022); Brown et al. (2016); Chang & Lin
(2016) 2 0

OP Rashki Kemmak et al. (2020); Abrahamsen et al.
(2015); Center et al. (1999); Cherny et al. (2010) 5 1

OA Martin et al. (2024); Liu et al. (2022); Fu et al. (2022);
Liu et al. (2015) 26 0

RA Chiu et al. (2021); Zhang et al. (2017b); Lassere et al.
(2013); Jacobsson et al. (1993) 37 10

NDD

AD Martin et al. (2024); Li et al. (2022); Liang et al.
(2021a); Ganguli et al. (2005); Dodge et al. (2003) 43 2

PD Macleod et al. (2014); Willis et al. (2012); Posada
et al. (2011) 37 6

MS Qian et al. (2023); Lunde et al. (2017); Leray et al.
(2015) 29 8

DLB Liang et al. (2021b); Mueller et al. (2019); Price et al.
(2017) 5 0

CJD Nishimura et al. (2020); Llorens et al. (2020); Gelpi
et al. (2008) 1 1

RSD

COPD Martin et al. (2024); Park et al. (2019); Ruvuna &
Sood (2020); Lange et al. (2016) 14 1

IPF Lancaster et al. (2022); Hutchinson et al. (2014); Kolb
& Collard (2014); Fernández Pérez et al. (2010) 14 0

TB Martin et al. (2024); Menzies et al. (2021);
Lee-Rodriguez et al. (2020) 13 3

PGS

WS Schnabel et al. (2021); Oshima & Hisama (2014);
Goto (1997) 7 1

HGPS Schnabel et al. (2021); Hennekam (2006) 14 1

CGL Lima et al. (2018); Seip & Trygstad (1996) 1 1

DKC Al Nuaimi et al. (2020) 2 0

Total number of datasets 667 66

Class
abbr.

Condi-
tion

abbr.

Evidence of decreased
life expectancy

N items
in the
GEO
query

N
datasets

after
filtering

A.6 ON DATA TYPES USED FOR AGING CLOCKS CONSTRUCTION

Multiple data modalities were previously used for aging clocks construction. Some examples be-
yond DNA methylation data include also clinical blood samples (Putin et al., 2016), psycho-social
questionnaires (Zhavoronkov et al., 2020), facial images (Xia et al., 2020), urine metabolites (Hertel
et al., 2016), and different omics data, gene expression (Holzscheck et al., 2021), DNA accessibility
(Morandini et al., 2024), plasma proteins (Sathyan et al., 2020), etc. Interestingly, DNA methylation
data allow one the most accurate prediction of chronological age compared to other data modalities,
second only to facial imaging data (Xia et al., 2021), and it continues to be used most widely in
aging clock construction (Rutledge et al., 2022). It is also important to note that from a practical
point of view, in order to construct a clinically relevant aging clock, the method of obtaining the data
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should not be too invasive and heavy-handed. For this reason, many clock developers prefer using
blood, saliva, or buccal epithelial samples as data sources.

A.7 ON ACCESSIBILITY OF EXISTING EPIGENETIC MORTALITY DATA

Although there are some existing biobanks that aggregate sensitive human data and provide them in
an open-access manner, (e.g., NHANES: https://wwwn.cdc.gov/nchs/nhanes/), most
biobanks rely on authorized access to their data (e.g., UK Biobank: https://www.ukbiobank.
ac.uk/). The similar semi-open situation occurs with DNA methylation data. Here, we provide in-
formation about 12 cohort studies containing DNA methylation data and mortality/morbidity infor-
mation simultaneously, but all of which allow downloading their data upon a reasonable request by
contacting with the principal investigators of each cohort or by requesting data on a special platform.
These studies include the Framingham Heart Study (FHS), the Women’s Health Initiative (WHI), the
Lothian Birth Cohorts (LBC), the Atherosclerosis Risk in Communities (ARIC), the Cardiovascular
Health Study (CHS), the Normative Aging Study (NAS), the Invecchiare in Chianti (InCHIANTi),
the Cooperative Health Research in the Region of Augsburg (KORA), the Epidemiologische Studie
zu Chancen der Verhütung, Früherkennung und optimierten Therapie chronischer Erkrankungen in
der älteren Bevölkerung (ESTHER), the Danish Twin Register sample (DTR), the Rotterdam Study
(RS), and the Coronary Artery Risk Development in Young Adults (CARDIA) (Moqri et al., 2024;
Huan et al., 2022). While we recognize the risks associated with releasing sensitive patient data
into the public domain, we also want to emphasize that comprehensive independent validation of
the aging clock is difficult without this important datasets. The confidentiality of this data also does
not allow us to use it as part of this open-access benchmark. Instead, we focused on epigenetic data
from patients with AACs distributed across human lifespan, which did not contain information on
mortality, but was publicly accessible.

A.8 DNA METHYLATION DATA COLLECTION

As we have mentioned in the Methodology section, dataset search was performed using the
NCBI Gene Expression Omnibus (GEO) database, an unrestricted-access omics data repository
(https://www.ncbi.nlm.nih.gov/geo/) which shares data using the Open Database Li-
cense (ODbL). The resulting list of 66 AAC datasets (Reynolds et al., 2014; Nazarenko et al., 2015;
Soriano-Tárraga et al., 2016; Istas et al., 2017; Cullell et al., 2022; Harris et al., 2012; Horvath &
Levine, 2015; Gross et al., 2016; Zhang et al., 2016; Li Yim et al., 2016; Ventham et al., 2016;
Zhang et al., 2017a; 2018; Oriol-Tordera et al., 2020; DiNardo et al., 2020; Oriol-Tordera et al.,
2022; Esteban-Cantos et al., 2023; Liu et al., 2013; Fernandez-Rebollo et al., 2018; Rhead et al.,
2017; Clark et al., 2020; Tao et al., 2021; de la Calle-Fabregat et al., 2021; Julià et al., 2022; Chen
et al., 2023b; Day et al., 2013; Rakyan et al., 2011; Lunnon et al., 2015; Ramos-Molina et al., 2019;
Noronha et al., 2022; Marabita et al., 2013; Lunnon et al., 2014; Horvath & Ritz, 2015; Castro
et al., 2019; Kular et al., 2018; Chuang et al., 2017; 2019; Ntranos et al., 2019; Ewing et al., 2019;
Carlström et al., 2019; Roubroeks et al., 2020; Go et al., 2020; Dabin et al., 2020; Bingen et al.,
2022; Esterhuyse et al., 2015; Chen et al., 2021; 2020; Maierhofer et al., 2019; Bejaoui et al., 2022;
Qannan et al., 2023) indicated in Table A3 is visualized in Fig. 2E and includes: atherosclerosis
(AS), ischemic heart disease (IHD, also known as coronary heart disease), cerebrovascular accident
(CVA, also known as stroke), inflammatory bowel disease (IBD, including Crohn’s disease and ul-
cerative colitis), human immunodeficiency virus infection (HIV), extreme obesity (XOB, defined
by having BMI ≥ 40 kg/m2 (Purnell, 2015; Busebee et al., 2023); also known as class III obe-
sity, severe obesity, or morbid obesity), type 1 diabetes mellitus (T1D), type 2 diabetes mellitus
(T2D), rheumatoid arthritis (RA), osteoporosis (OP), Alzheimer’s disease (AD), Parkinson’s dis-
ease (PD), multiple sclerosis (MS), Creutzfeldt-Jakob disease (CJD), chronic obstructive pulmonary
disease (COPD), tuberculosis (TB), Werner syndrome (WS, including atypical Werner syndrome),
Hutchinson-Gilford progeria syndrome (HGPS, including non-classical progeroid laminopathies),
and congenital generalized lipodystrophy (CGL, also known as Berardinelli-Seip lipodystrophy).
Age distribution across conditions is demonstrated in Fig. A1. An overview of all datasets and their
age distributions is provided in Fig. A2. The information on how patient consent was obtained and
which ethics procedures were implemented can be accessed in the respective publications. As per
NCBI GEO guidelines, all submitters must ”ensure that the submitted information does not compro-
mise participant privacy” (https://www.ncbi.nlm.nih.gov/geo/info/faq.html).
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Figure A1: Distribution of dataset samples per condition across ages.

A.9 DNA METHYLATION DATA PROCESSING

After pre-processing raw output from microarrays or sequencing machines, DNA methylation levels
per site are reported quantitatively either as beta values, or as M values. Briefly, beta values represent
the ratio of methylated signal (probe intensity or sequencing read counts) to total signal per site (sum
of methylated and unmethylated probe intensities or sequencing read counts), while M value is the
log2 ratio of the methylated signal versus an unmethylated signal. A more thorough comparison of
the two measures can be found in Du et al. (2010). In the original datasets deposited on GEO, DNA
methylation values were represented either as a beta fraction (ranging from 0 to 1), beta percentages
(ranging from 0 to 100), or M-values (can be both negative and positive, equals 0 when beta equals
0.5). We converted all data to the beta-value fractions ranging from 0 to 1. The values outside
this range were treated as missing values (NaNs), as they are not biological. In each dataset, only
samples that were relevant for benchmarking (that is, were annotated by age, tissue, and condition)
were retained.

The resulting datasets meta-data contains the following fields: DatasetID (datasets GEO ID), Plat-
formID (GEO ID of a DNA methylation profiling platform), Tissue (sample source tissue: “Blood”
stands for peripheral blood samples, “Saliva”—for saliva samples, and “Buccal”—for buccal swab
samples), CellType (sample cell type: either a specific cell population, e.g., immune cell subtypes
with cell type-specific molecular markers, or broader categories such as whole blood, buffy coat,
peripheral blood mononuclear cells (PBMC), or peripheral blood leukocytes (PBL); some samples
lack this annotation), Gender (abbreviated sample donor gender: M = Male, F = Female, U = Un-
known), Age (sample donor chronological age in years; in the original datasets deposited on GEO,
it can be either rounded by the researchers to full years, or converted from months, weeks, or days;
where available, we calculated years from the smaller units), Condition (one of AACs or HC), and
Class.

As there is no gold standard for DNAm processing, each research group carries out their preferred
pipeline that does not necessarily match the processing pipeline used for training the clock model,
especially in case of applying earlier clocks (e.g., those by Hannum et al. (2013) or Horvath (2013)).
Therefore, so as to retain this typical workflow and not to put any clock model into advantage by
choosing the same processing that matches its own pipeline for every dataset, we did not perform
any post-processing, inter-dataset normalization, or batch effect correction. In doing so, we also
relied on two existing papers. First, compiling already pre-processed datasets without performing
the same processing for all of them was done by Ying et al. (2023), another notable effort in the aging
clock community. Second, we were also encouraged by a recent work by Varshavsky et al. (2023)
who managed to create an accurate clock model by combining several blood datasets—without any
additional normalization or correction procedure, using already pre-processed data from previous
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Reynolds, 2014 GSE56046 450K B CVD AS
Reynolds, 2014 GSE56581 450K B CVD AS
Nazarenko, 2014 GSE62867 27K B CVD IHD
Soriano-Tárraga, 2016 GSE69138 450K B CVD CVA
Istas, 2017 GSE107143 450K B CVD AS
Cullell, 2022 GSE203399 450K, 850K B CVD CVA
Harris, 2012 GSE32148 450K B ISD IBD
Horvath, 2015a GSE53840 450K B ISD HIV
Horvath, 2015a GSE53841 450K B ISD HIV
Gross, 2016 GSE67705 450K B ISD HIV
Horvath, 2015a GSE67751 450K B ISD HIV
Zhang, 2016 GSE77696 450K B ISD HIV
Li Yim, 2016 GSE81961 450K B ISD IBD
Ventham, 2016 GSE87640 450K B ISD IBD
Ventham, 2016 GSE87648 450K B ISD IBD
Zhang, 2017 GSE100264 450K B ISD HIV
Zhang, 2017 GSE107080 850K B ISD HIV
Zhang, 2018 GSE117859 450K B ISD HIV
Zhang, 2018 GSE117860 850K B ISD HIV
Oriol-Tordera, 2020 GSE140800 450K B ISD HIV

GSE143942 450K B ISD HIV
DiNardo, 2020 GSE145714 850K B ISD HIV+TB
Oriol-Tordera, 2022 GSE185389 450K B ISD HIV
Oriol-Tordera, 2022 GSE185390 850K B ISD HIV
Esteban-Cantos, 2023 GSE217633 850K B ISD HIV
Day, 2013 GSE49909 27K B MBD XOB
Rakyan, 2011 GSE56606 27K B MBD T1D
Lunnon, 2015 GSE62003 450K B MBD T2D
Ramos-Molina, 2019 GSE131461 850K B MBD XOB

GSE166611 450K B MBD XOB
Noronha, 2022 GSE193836 450K B MBD XOB
Liu, 2013 GSE42861 450K B MSD RA

GSE71841 450K B MSD RA
Fernandez-Rebollo, 2018 GSE99624 450K B MSD OP
Rhead, 2017 GSE131989 450K B MSD RA
Unpublished GSE134429 850K B MSD RA
Clark, 2020 GSE137593 850K B MSD RA
Clark, 2020 GSE137594 850K B MSD RA
Tao, 2021 GSE138653 850K B MSD RA
de la Calle-Fabregat, 2021 GSE175364 450K, 850K B MSD RA
Julià, 2022 GSE176168 850K B MSD RA
Chen, 2023 GSE228104 850K B MSD RA
Marabita, 2013 GSE43976 450K B NDD MS
Lunnon, 2014 GSE59685 450K B NDD AD
Horvath, 2015b GSE72774 450K B NDD PD
Horvath, 2015b GSE72776 450K B NDD PD
Castro, 2019 GSE103929 450K B NDD MS
Kular, 2019 GSE106648 450K B NDD MS
Chuang, 2017 GSE111223 450K S NDD PD
Chuang, 2017 GSE111629 450K B NDD PD
Ntranos, 2019 GSE112596 850K B NDD MS

GSE122244 850K B NDD PD
Ewing, 2019 GSE130029 450K B NDD MS
Ewing, 2019 GSE130030 450K B NDD MS
Carlström, 2019 GSE130491 850K B NDD MS
Roubroeks, 2020 GSE144858 450K B NDD AD
Go, 2020 GSE151355 450K B NDD PD
Dabin, 2020 GSE156994 450K B NDD CJD
Bingen, 2023 GSE219293 850K B NDD MS
Esterhuyse, 2015 GSE72338 450K B RSD TB
Chen, 2021 GSE118468 450K B RSD COPD
Chen, 2020 GSE118469 450K B RSD TB
DiNardo, 2020 GSE145714 850K B RSD TB
Maierhofer, 2019 GSE131752 850K B PGS WS
Bejaoui, 2022 GSE182991 850K B PGS HGPS
Qannan, 2022 GSE214297 850K B PGS CGL

Name Dataset ID Platform Tissue Class Condition N samples Age distribution
0 50 100

Condition classes included in the benchmarking dataset
HC CVD ISD MBD MSD NDD RSD PGS

339 789
66133

6
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88

121

1927

111

24

91 189
6923

117 261
2515

84156
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30
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105114
1829
2016
615
612
1014
2421
1215
97

Figure A2: Descriptive statistics of datasets included in the benchmark. B: blood, S: saliva. Ages
are indicated in years.
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Table A4: Aging clock models tested in our benchmark.

Model
name

Number
of CpGs

Gene-
ration

Extra
para-

meters

Tissues
used

for training
Reference

Hannum 71 1 — Blood Hannum et al. (2013)
HorvathV1 353 1 — Multi-tissue Horvath (2013)

Lin 99 1 — Blood Lin et al. (2016)
VidalBralo 8 1 — Blood Vidal-Bralo et al. (2016)
HorvathV2 391 1 — Blood, Skin Horvath et al. (2018)

PhenoAgeV1 513 2 — Blood Levine et al. (2018)
Zhang19 EN 514 1 — Blood, Saliva Zhang et al. (2019)
GrimAgeV1 1030 2 Age, Sex Blood Lu et al. (2019)
GrimAgeV2 1030 2 Age, Sex Blood Lu et al. (2022)
PhenoAgeV2 959 2 — Blood Higgins-Chen et al. (2022)

YingAdaptAge 999 1 — Blood Ying et al. (2024)
YingCausAge 585 1 — Blood Ying et al. (2024)
YingDamAge 1089 1 — Blood Ying et al. (2024)

studies (some of which are included in our dataset as well), and thus demonstrating that the between-
dataset normalization is not critical for this type of data.

A.10 AGING CLOCKS INCLUDED IN THE BENCHMARKING

The full list of published aging clocks used in this analysis is provided in Table A4.

A.11 BENCHMARKING RESULTS WITHOUT FDR CORRECTION

Figures A3 and A4 demonstrate benchmarking results before applying FDR correction.
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PhenoAgeV2

GrimAgeV2

GrimAgeV1

PhenoAgeV1

YingAdaptAge

Lin

YingCausAge

HorvathV2

VidalBralo

HorvathV1

Hannum

YingDamAge

Zhang19_EN

Model CVD ISD MBD MSD NDD PGS RSD Total

0/3 7/10 0/4 4/6 6/12 1/3 3/4 21/42

0/3 7/10 0/4 3/6 2/12 2/3 3/4 17/42

0/3 7/10 0/4 3/6 2/12 2/3 2/4 16/42

0/3 6/10 0/4 2/6 1/12 1/3 1/4 11/42

0/3 6/10 0/4 1/6 1/12 2/3 0/4 10/42

0/3 7/10 0/4 0/6 1/12 0/3 1/4 9/42

0/3 4/10 0/4 1/6 1/12 2/3 0/4 8/42

0/3 4/10 0/4 0/6 2/12 2/3 0/4 8/42

0/3 5/10 0/4 1/6 0/12 1/3 0/4 7/42

0/3 5/10 0/4 0/6 0/12 1/3 0/4 6/42

0/3 3/10 0/4 1/6 1/12 1/3 0/4 6/42

0/3 3/10 0/4 0/6 1/12 1/3 0/4 5/42

0/3 2/10 0/4 0/6 0/12 1/3 0/4 3/42

Figure A3: AA2 task results split into columns by condition class without FDR correction of P-
values. Scores demonstrate the number of datasets per class, in which a given clock model detected
significant (at the 0.05 level of significance) difference between the HC and AAC cohorts.

GrimAgeV2

Zhang19_EN

Hannum

GrimAgeV1

VidalBralo

HorvathV2

HorvathV1

YingAdaptAge

PhenoAgeV2

Lin

PhenoAgeV1

YingDamAge

YingCausAge

Model CVD ISD MBD MSD NDD Total

3/3 9/9 2/2 2/5 4/5 20/24

0/3 9/9 1/2 5/5 4/5 19/24

1/3 9/9 2/2 2/5 4/5 18/24

1/3 9/9 2/2 2/5 2/5 16/24

1/3 9/9 1/2 1/5 1/5 13/24

0/3 9/9 0/2 0/5 3/5 12/24

0/3 7/9 1/2 2/5 2/5 12/24

1/3 4/9 1/2 2/5 3/5 11/24

0/3 6/9 1/2 2/5 1/5 10/24

0/3 8/9 0/2 0/5 1/5 9/24

0/3 6/9 0/2 0/5 1/5 7/24

0/3 5/9 1/2 0/5 0/5 6/24

0/3 2/9 0/2 1/5 0/5 3/24

Figure A4: AA1 task results without FDR correction of P-values: same as Fig. A3, but the
statistics are calculated for datasets containing the AAC cohort only.
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nia Moreno, Tianlu Li, Sergio H Martı́nez-Mateu, Devin M Absher, Richard M Myers, Jesús Tornero Molina,
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Zéphir, Gilles Defer, Christine Lebrun-Frenay, Thibault Moreau, Pierre Clavelou, Jean Pelletier, Eric Berger,
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Carolina Soriano-Tárraga, Jordi Jiménez-Conde, Eva Giralt-Steinhauer, Marina Mola-Caminal, Rosa M
Vivanco-Hidalgo, Angel Ois, Ana Rodrı́guez-Campello, Elisa Cuadrado-Godia, Sergi Sayols-Baixeras,
Roberto Elosua, Jaume Roquer, and GENESTROKE Consortium. Epigenome-wide association study iden-
tifies TXNIP gene associated with type 2 diabetes mellitus and sustained hyperglycemia. Hum. Mol. Genet.,
25(3):609–619, February 2016.

K Sutton-Tyrrell, H G Alcorn, H Herzog, S F Kelsey, and L H Kuller. Morbidity, mortality, and antihypertensive
treatment effects by extent of atherosclerosis in older adults with isolated systolic hypertension. Stroke, 26
(8):1319–1324, August 1995.

Weiyang Tao, Arno N Concepcion, Marieke Vianen, Anne C A Marijnissen, Floris P G J Lafeber, Timothy R
D J Radstake, and Aridaman Pandit. Multiomics and machine learning accurately predict clinical response
to adalimumab and etanercept therapy in patients with rheumatoid arthritis. Arthritis Rheumatol., 73(2):
212–222, February 2021.

Marcello Tonelli, Natasha Wiebe, Bruce Culleton, Andrew House, Chris Rabbat, Mei Fok, Finlay McAlister,
and Amit X Garg. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol., 17
(7):2034–2047, July 2006.

Adam Trickey, Caroline A Sabin, Greer Burkholder, Heidi Crane, Antonella d’Arminio Monforte, Matthias
Egger, M John Gill, Sophie Grabar, Jodie L Guest, Inma Jarrin, Fiona C Lampe, Niels Obel, Juliana M Reyes,
Christoph Stephan, Timothy R Sterling, Ramon Teira, Giota Touloumi, Jan-Christian Wasmuth, Ferdinand
Wit, Linda Wittkop, Robert Zangerle, Michael J Silverberg, Amy Justice, and Jonathan A C Sterne. Life
expectancy after 2015 of adults with HIV on long-term antiretroviral therapy in europe and north america: a
collaborative analysis of cohort studies. Lancet HIV, 10(5):e295–e307, May 2023.
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