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Abstract
Li et al. (2023) used the Othello board game001
as a test case for the ability of GPT2 to induce002
world models, and were followed up by Nanda003
et al. (2023). We briefly discuss the original004
experiments, expanding them to include more005
language models with more detailed probing.006
Specifically, we analyze sequences of Othello007
board states and train the model to predict the008
next move based on previous moves. We evalu-009
ate six language models (GPT2, T5, Bart, Flan-010
T5, Mistral, and Llama-2) on the Othello task011
and conclude that these models not only learn012
to play Othello, but also induce the Othello013
board layout. We find that all models achieve014
up to 99% accuracy in unsupervised grounding015
and exhibit high similarity in the board features016
they learned. This provides much stronger evi-017
dence for the Othello World Model Hypothesis018
than previous works.019

1 Introduction020

Li et al. (2023) used the Othello board game to021

probe LLMs’ ability to induce world models. Their022

network had a 60-word input vocabulary, corre-023

sponding to the 64 tiles of an Othello board, except024

for the four that are already filled at the start. They025

trained the network on two datasets: one with about026

140,000 real Othello games and another with mil-027

lions of synthetic games. They then trained 64 inde-028

pendent non-linear probes (two-layer MLP classi-029

fiers) to classify each of the 64 tiles into three states:030

black, blank, and white, using internal representa-031

tions from Othello-GPT as input. The error rates032

of these non-linear probes dropped from 26.2% on033

a randomly-initialized model to only 1.7% on a034

trained model, while linear probes performed close035

to random. Li et al. (2023) saw this as evidence036

that LLMs can induce (non-linear) world models,037

at least for Othello board games, supporting the038

Othello World Model Hypothesis.039

Nanda et al. (2023) did a follow-up study in040

which they found that linear probes also work if041
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Figure 1: Experimental protocol. We train a transformer-
based model to predict the next move in Othello and
see whether the board game layout is induced (up to
isomorphism).

trained slightly differently. Rather than focus on 042

tile color, they probe the board state relative to the 043

current player at each timestep, using labels such 044

as MINE, YOURS, and EMPTY. This reduces the 045

error rate of the probes to less than 10%. They 046

speculate that world knowledge is often linearly 047

represented in language models, since ‘matrix mul- 048

tiplication can easily extract a different subset of 049

linear features for each neuron.’ 050

Now, probing as a research methodology comes 051

with several weaknesses, including: a) Probing 052

classifiers can be prone to spurious correlations 053

(Barrett et al., 2019). b) They do not tell us how in- 054

formation is arranged globally in LLMs.1 c) They 055

therefore only detect a subset of the interesting 056

properties of world models, e.g., excluding the spa- 057

tial relations that would enable analogical reason- 058

ing (Mikolov et al., 2013). 059

Contributions We therefore re-evaluate the Oth- 060

ello World Model Hypothesis by other means (see 061

Figure 1), in order to reassess the ability of LLMs 062

1Li et al. (2023) tried to compensate for this by using PCA
to plot the probing classifiers in three dimensions. The PCA
plots suggest that the induced global structure is meaningful,
but the probing paradigm cannot quantify its meaningfulness.
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to induce world models. If our results are positive,063

this significantly stresses the case for the argument064

that LLMs induce world models; if not, this sug-065

gests that the evidence cited in Li et al. (2023) and066

Nanda et al. (2023) was perhaps a (spurious) ef-067

fect of the probing paradigm itself. Specifically,068

we rely on representation alignment tools from the069

literature on cross-lingual word embeddings (Sø-070

gaard et al., 2019) and evaluate six models (GPT2,071

Bart, T5, Flan-T5, Llama-2, Mistral) across the two072

datasets presented by Li et al. (2023). Our anal-073

ysis goes beyond other analyses by considering074

both pretrained and non-pretrained models, two-075

hop generation abilities, and learning curves. Our076

results show that the language models – exhibit077

solid one-hop performance when trained on large078

amount of game sequence moves. We find that079

in some cases, all models can achieve up to 99%080

accuracy in unsupervised grounding, which means081

that absent any cross-modal supervision, a model082

trained to play Othello can identify the right posi-083

tions on a board. More importantly, the alignment084

similarity score of the board features learned by085

these models is surprisingly high. This provides086

a direct counter-example to previous claims that087

mono-modal models cannot solve visual question088

answering problems (Bender and Koller, 2020) – or,089

more generally, symbol grounding problems (Har-090

nad, 1990). These results are significantly stronger091

than those in Li et al. (2023); Nanda et al. (2023)092

and, in our view, provide more direct evidence of093

the Othello World Model Hypothesis.094

2 Method095

Modeling Following previous works (Liskowski096

et al., 2018; Li et al., 2023; Nanda et al., 2023), we097

formulate the problem of playing the board game098

as a sequence generation problem. Specifically, we099

fine-tune generative pretrained models in an au-100

toregressive manner to predict the next move given101

the current board state. Each game is a sequence,102

with each move represented as a token, and in each103

round, we predict the next move. Our vocabulary104

consists of 60 words, each corresponding to one of105

the 60 tiles, where players place discs, excluding106

the 4 center tiles, which are already filled when107

the game begins. See Figure 1 for an example108

move. Our modeling of Othello, in brief, can be109

represented as:110

pθ(xi|X<i) = softmax (fi(x1, x2, ..., xi−1)) (1)111

where x1, x2, ..., xi−1 represent history moves.112

Probing To evaluate the Othello World Model 113

Hypothesis, we depart from previous work and de- 114

vice a new test, more directly evaluating the inter- 115

nal representation of the Othello board in language 116

models. Specifically, during inference, we input the 117

previously generated game moves X<i at step i into 118

the model and prompt it to generate the next step. 119

We then extract the representation from the last 120

hidden layer of Decoder from all steps, denoted as 121

hθ(xi) ∈ Ds×l as a pivot comparison target, where 122

s is the number of steps of a game, and l is the size 123

of hidden layer features. We consider the outputs 124

of different models as different source and target 125

spaces. Using the representations from different 126

models with the same input sequence as parallel 127

data, we perform mapping training under both su- 128

pervised and unsupervised scenarios (details see 129

Section 3.3). For example, the ith step given the 130

input sequence of two models can be seen as a 131

pair, denoted as hθ1(xi) and hθ2(xi), respectively. 132

For supervised training, we use the pairwise data 133

to learn a mapping from the source to the target 134

space using iterative Procrustes alignment (Gower 135

and Dijksterhuis, 2004). For unsupervised training, 136

without any parallel data or anchor points, we learn 137

the mapping through a combination of adversarial 138

training and iterative Procrustes refinement (Lam- 139

ple et al., 2018). 140

3 Experiments 141

3.1 Experimental Setup 142

We use two datasets in our experiments, CHAMPI- 143

ONSHIP and SYNTHETIC. Both of them were 144

collected by Li et al. (2023). CHAMPIONSHIP 145

comes from real online Othello gaming sources, 146

whereas SYNTHETIC is artificially generated ac- 147

cording to the rules of Othello game play. Detailed 148

statistics see Appendix B. We use the last 20,000 149

games from each dataset for testing and validation 150

(10,000 games each). 151

Following Li et al. (2023), we report the top-1 152

error rate, including both 1-hop and 2-hop gener- 153

ation. This involves verifying whether the top-1 154

prediction is legal when the model is prompted to 155

generate 1 and 2 moves at a time. We present the 156

average error rate across all game sequences. 157

We perform our experiments using several ex- 158

isting baselines, with both Encoder-Decoder or 159

Decoder-only structures. We first adopt some pop- 160

ular PLMs such as GPT2 (Radford et al., 2019), 161

T5 (Raffel et al., 2019), Bart (Lewis et al., 2019). 162
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Method Type P
CHAMPIONSHIP SYNTHETIC

2k 20k full 2k 20k 200k 2M full
GPT2 D % 49.8 | 78.5 17.7 | 34.7 5.6 | 28.1 49.2 | 76.3 26.8 | 70.8 13.6 | 43.6 10.4 | 29.0 <0.1 | 5.2
Bart E-D % 25.2 | 54.2 16.6 | 31.1 4.7 | 23.4 73.6 | 86.5 31.7 | 67.2 14.2 | 44.8 16.3 |35.7 <0.1 | 4.2
T5 E-D % 20.9 | 48.8 15.2 | 28.7 4.3 | 24.4 65.8 | 88.2 28.7 | 67.7 15.7 | 46.9 10.1 | 35.9 <0.1 | 3.4
Flan-T5 E-D % 23.4 | 51.8 4.8 | 20.8 3.6 | 21.9 35.6 | 79.6 23.7 | 63.1 21.2 | 48.6 7.7 | 26.7 <0.1 | 2.8
Llama-2 D % 27.8 | 60.9 16.5 | 36.3 5.7 | 26.4 57.1 | 87.3 35.4 | 67.8 16.9 | 45.2 10.2 | 36.3 <0.1 | 5.5
Mistral D % 22.1 | 51.4 14.8 | 31.7 4.2 | 22.3 48.2 | 71.2 34.4 | 77.1 17.7 | 47.9 8.3 | 26.4 <0.1 | 3.0
GPT2 D ! 52.6 | 92.2 19.7 | 43.4 13.6 | 37.2 74.4 | 99.6 32.4 | 72.6 19.9 | 45.5 14.1 | 34.4 <0.1 | 6.2
Bart E-D ! 54.0 | 87.0 14.6 | 34.5 13.7 | 27.1 77.2 | 97.8 35.8 | 76.9 24.4 | 64.0 16.6 | 44.5 <0.1 | 5.1
T5 E-D ! 45.5 | 86.5 19.6 | 36.4 3.8 | 27.0 69.4 | 99.6 36.9 | 78.8 32.6 | 59.9 13.9 | 46.9 <0.1 | 4.6
Flan-T5 E-D ! 31.7 | 67.9 4.8 | 31.8 3.7 | 26.5 70.3 | 98.6 25.4 | 80.8 45.0 | 79.7 8.7 | 35.3 <0.1 | 3.9
Llama-2 D ! 43.1 | 66.9 14.7 | 33.4 7.0 | 33.0 74.6 | 94.2 41.5 | 77.6 33.4 | 62.1 7.6 | 33.2 <0.1 | 5.2
Mistral D ! 16.8 | 52.0 15.0 | 40.8 3.3 | 25.4 33.8 | 80.3 30.6 | 76.0 18.2 | 42.3 7.7 | 35.0 <0.1 | 3.8

Table 1: The error rate of 1-hop and 2-hop game state generation in terms of different size of training data. ‘Type’
refers to the model type, ‘P’ denotes if the model is pretrained or not. All the numbers are shown in precentage.

Src. Trg. Supervised Unsupervised
CHAM. SYN. CHAM. SYN.

GPT2 Bart 81.4 93.1 80.3 91.3
GPT2 T5 83.0 85.0 76.4 80.1
Bart T5 69.2 84.5 85.2 81.1

GPT2 Mistral 90.3 77.2 80.3 82.6
Bart Mistral 88.0 79.1 96.1 97.2

Llama-2 Mistral 80.1 74.2 76.2 72.6

Table 2: Representation alignment cosine similarity (%)
results. Src. and Trg. represent source and target space.

We adopt several LLMs to see the their perfor-163

mance on this task, including Flan-T5 (Chung et al.,164

2022), Llama-2 (Touvron et al., 2023), and Mis-165

tral (Jiang et al., 2023). Details see Appendix C.166

3.2 Experimental Results167

We perform experiments on different methods and168

report the results in Table 1. We observe that:169

firstly, there is no clear superiority between models170

with an Encoder-Decoder structure and those with171

a Decoder-only structure for this task. However,172

it is evident that increasing the amount of training173

data positively impacts overall performance. Com-174

pared with language models with a smaller size,175

LLMs such as Mistral, Flan-T5 show superiority in176

the task. This suggests that model size and capac-177

ity play a crucial role in understanding the Othello178

game step generation. We also find that pretrained179

language knowledge sometimes negatively affects180

the ability to understand the game steps, as the pre-181

trained versions of most models generally perform182

worse than their non-pretrained counterparts. Addi-183

tionally, even though using a large amount of data184

to fine-tune the model results in a reasonable 1-hop185

performance, it’s still challenging for the model to186

generate more than 1 step at a time.187

Figure 2: PCA visualization of the 60 steps from various
models within one game.

3.3 Representation Alignment 188

We probe different models by aligning their repre- 189

sentations into one joint vector space. We report 190

the MUSE2 cosine similarity of the aligned features 191

score under both supervised (Conneau et al., 2018) 192

and unsupervised (Lample et al., 2018) settings in 193

Table 23(more details see Appendix D). In order to 194

vividly show such alignment, we also demonstrate 195

the PCA coordinate of the 60 step features hθ(x) 196

within one random game in Figure 2. From the 197

results we observe high similarity scores across dif- 198

ferent language models. For instance, despite hav- 199

ing different model structures (Decoder-only v.s. 200

Encoder-Decoder), the SYNTHETIC supervised 201

similarity score between GPT2 and Bart reaches 202

93.1%. We also observe highly similar step repre- 203

sentations across different models in Figure 2. This 204

indicates that the models share common knowledge 205

when modeling the Othello task. 206

2https://github.com/facebookresearch/MUSE
3We use the non-pretrained version based on 20k training

data for all models.
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Figure 3: Othello 1-hop generation performance under
different model sizes. All models are non-pretrained
version fine-tuned with 20k game sequences.

4 Extensive Analysis207

4.1 Model Size Analysis208

To further investigate the impact of model size,209

we report the performance of each model in dif-210

ferent size versions, as shown in Figure 5. For211

each model, we report the performance under the212

small, medium, and large sizes. The figure shows213

that the error rate decreases as the model size in-214

creases in both datasets, with this improvement be-215

ing more pronounced in the SYNTHETIC dataset.216

This suggests that larger models are more effective217

at capturing and generalizing from synthetic data.218

These findings underscore the importance of model219

scaling in achieving better performance in this task.220

4.2 Relevant Position Analysis221

We visualize the Othello game steps of two models222

in Figure 4. It shows that both models success-223

fully predict legal moves given a game sequence.224

Moreover, other legal moves are also assigned high225

prediction scores (tiles with lighter blue) by the226

models. This proves that with a large amount of227

game sequence data, the model learns the policy of228

the game. To further investigate whether the mod-229

els can capture the physical position of each tile,230

we use shadow marks to highlight the tiles with the231

closest embedding distance to the tile in the black232

box. The intensity of the shadow reflects the degree233

of similarity. We observe that the top-1 tile with the234

highest similarity (F2 in T5, G4 in Mistral) is the235

one adjacent to the black box tile in both models.236

This indicates that the models not only understand237

the game mechanics but also capture the spatial238

relationships between tiles.239

4.3 Data Scale Analysis240

In Table 1, we observe a sharp decrease in model er-241

ror rates as the dataset size increases from 2k to 20k.242

To investigate this further, we conduct an analysis243

by gradually enlarging the SYNTHETIC dataset244
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Figure 4: Othello visualization result from two best
performed models. Colors indicate the likelihood of
the position of the next step. Shadows highlight the top
three tiles with embeddings closest to the top candidate,
with the darkest color in the black box.
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Figure 5: Analysis of 1-hop error rates on the SYN-
THETIC dataset with varying data scales.

from 2k to 22k. According to Figure 5, the per- 245

formance of all models improves gradually as the 246

dataset size increases. Pretrained models exhibit 247

a more consistent decrease in error rate compared 248

to non-pretrained ones. For non-pretrained models, 249

the error rate reduction is more pronounced within 250

the 2k to 12k data size interval. This indicates 251

that while pretrained models benefit steadily from 252

larger datasets, non-pretrained models experience 253

significant initial gains. 254

5 Conclusion 255

We conduct a detailed probing of language models’ 256

ability to predict legal moves in the Othello board 257

game, based on the settings in (Li et al., 2023). 258

We evaluate six language models, training them 259

to predict the next move based on previous moves. 260

All six models achieve almost ‘perfect’ one-hop 261

move prediction performance when trained with 262

large amount of data. We then adopt representation 263

alignment tools to align the learned game state 264

features from different models into one joint space. 265

We observe high similarity in the board features 266

they learned. These results, in our view, provide the 267

most solid evidence to date of the Othello World 268

Model Hypothesis presented in previous works. 269
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Limitation270

Although this work demonstrates the ability of dif-271

ferent language models to understand Othello game272

rules, certain limitations persist. Firstly, while lan-273

guage models perform reasonably well in 1-hop274

game state generation, generating sequences of275

more than one step remains challenging. In our276

initial experiments, we attempted to train the mod-277

els to generate entire game sequences, but they278

achieved nearly zero accuracy, even with a substan-279

tial amount of training data. Another limitation280

is that our experiments show achieving ‘perfect’281

generation ability (i.e., the 1-hop error rate less282

than 1%) requires a large amount of data for model283

training. Given the size of LLMs, this also presents284

significant computational and resource challenges.285

Therefore, while we provide strong evidence sup-286

porting the Othello World Model Hypothesis, fur-287

ther experiments are necessary to demonstrate that288

language models can serve as a true world model.289

References290

Maria Barrett, Yova Kementchedjhieva, Yanai Elazar,291
Desmond Elliott, and Anders Søgaard. 2019. Adver-292
sarial removal of demographic attributes revisited. In293
Proceedings of the 2019 Conference on Empirical294
Methods in Natural Language Processing and the295
9th International Joint Conference on Natural Lan-296
guage Processing (EMNLP-IJCNLP), pages 6330–297
6335, Hong Kong, China. Association for Computa-298
tional Linguistics.299

Emily M. Bender and Alexander Koller. 2020. Climbing300
towards NLU: On meaning, form, and understanding301
in the age of data. In Proceedings of the 58th Annual302
Meeting of the Association for Computational Lin-303
guistics, pages 5185–5198, Online. Association for304
Computational Linguistics.305

Naiyuan Chang, Chih-Hung Chen, Shun-Shii Lin, and306
Surag Nair. 2018. The big win strategy on multi-307
value network: An improvement over alphazero ap-308
proach for 6x6 othello. Proceedings of the 2018309
International Conference on Machine Learning and310
Machine Intelligence.311

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph,312
Yi Tay, William Fedus, Eric Li, Xuezhi Wang,313
Mostafa Dehghani, Siddhartha Brahma, Albert Web-314
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-315
gun, Xinyun Chen, Aakanksha Chowdhery, Dasha316
Valter, Sharan Narang, Gaurav Mishra, Adams Wei317
Yu, Vincent Zhao, Yanping Huang, Andrew M.318
Dai, Hongkun Yu, Slav Petrov, Ed Huai hsin Chi,319
Jeff Dean, Jacob Devlin, Adam Roberts, Denny320
Zhou, Quoc V. Le, and Jason Wei. 2022. Scal-321
ing instruction-finetuned language models. ArXiv,322
abs/2210.11416.323

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ran- 324
zato, Ludovic Denoyer, and Hervé Jégou. 2018. 325
Word translation without parallel data. The Sixth 326
International Conference on Learning Representa- 327
tions. 328

John C Gower and Garmt B Dijksterhuis. 2004. Pro- 329
crustes problems, volume 30. OUP Oxford. 330

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, 331
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023. 332
Reasoning with language model is planning with 333
world model. ArXiv, abs/2305.14992. 334

Stevan Harnad. 1990. The symbol grounding problem. 335
Physica D, 42:335–346. 336

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan- 337
deharioun. 2023. Does localization inform editing? 338
surprising differences in causality-based localization 339
vs. knowledge editing in language models. ArXiv, 340
abs/2301.04213. 341

Dean S. Hazineh, Zechen Zhang, and Jeffery Chiu. 2023. 342
Linear latent world models in simple transformers: A 343
case study on othello-gpt. ArXiv, abs/2310.07582. 344

John Hewitt and Christopher D. Manning. 2019. A 345
structural probe for finding syntax in word representa- 346
tions. In North American Chapter of the Association 347
for Computational Linguistics. 348

Tianze Hua, Tian Yun, and Ellie Pavlick. 2024. moth- 349
ello: When do cross-lingual representation alignment 350
and cross-lingual transfer emerge in multilingual 351
models? ArXiv, abs/2404.12444. 352

Minyoung Huh, Brian Cheung, Tongzhou Wang, and 353
Phillip Isola. 2024. The platonic representation hy- 354
pothesis. 355

Michael I. Ivanitskiy, Alex F Spies, Tilman Rauker, 356
Guillaume Corlouer, Chris Mathwin, Lucia Quirke, 357
Can Rager, Rusheb Shah, Dan Valentine, Cecilia 358
G. Diniz Behn, Katsumi Inoue, and Samy Wu Fung. 359
2023. Structured world representations in maze- 360
solving transformers. ArXiv, abs/2312.02566. 361

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur 362
Mensch, Chris Bamford, Devendra Singh Chap- 363
lot, Diego de Las Casas, Florian Bressand, Gi- 364
anna Lengyel, Guillaume Lample, Lucile Saulnier, 365
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre 366
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, 367
Timothée Lacroix, and William El Sayed. 2023. Mis- 368
tral 7b. ArXiv, abs/2310.06825. 369

Adam Karvonen. 2024. Emergent world models and 370
latent variable estimation in chess-playing language 371
models. ArXiv, abs/2403.15498. 372

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, 373
and Marc’Aurelio Ranzato. 2018. Unsupervised ma- 374
chine translation using monolingual corpora only. 375
The Sixth International Conference on Learning Rep- 376
resentations. 377

5

https://doi.org/10.18653/v1/D19-1662
https://doi.org/10.18653/v1/D19-1662
https://doi.org/10.18653/v1/D19-1662
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://api.semanticscholar.org/CorpusID:54461634
https://api.semanticscholar.org/CorpusID:54461634
https://api.semanticscholar.org/CorpusID:54461634
https://api.semanticscholar.org/CorpusID:54461634
https://api.semanticscholar.org/CorpusID:54461634
https://api.semanticscholar.org/CorpusID:253018554
https://api.semanticscholar.org/CorpusID:253018554
https://api.semanticscholar.org/CorpusID:253018554
https://api.semanticscholar.org/CorpusID:258865812
https://api.semanticscholar.org/CorpusID:258865812
https://api.semanticscholar.org/CorpusID:258865812
https://api.semanticscholar.org/CorpusID:255595518
https://api.semanticscholar.org/CorpusID:255595518
https://api.semanticscholar.org/CorpusID:255595518
https://api.semanticscholar.org/CorpusID:255595518
https://api.semanticscholar.org/CorpusID:255595518
https://api.semanticscholar.org/CorpusID:263834692
https://api.semanticscholar.org/CorpusID:263834692
https://api.semanticscholar.org/CorpusID:263834692
https://api.semanticscholar.org/CorpusID:106402715
https://api.semanticscholar.org/CorpusID:106402715
https://api.semanticscholar.org/CorpusID:106402715
https://api.semanticscholar.org/CorpusID:106402715
https://api.semanticscholar.org/CorpusID:106402715
https://api.semanticscholar.org/CorpusID:269282665
https://api.semanticscholar.org/CorpusID:269282665
https://api.semanticscholar.org/CorpusID:269282665
https://api.semanticscholar.org/CorpusID:269282665
https://api.semanticscholar.org/CorpusID:269282665
https://api.semanticscholar.org/CorpusID:269282665
https://api.semanticscholar.org/CorpusID:269282665
https://api.semanticscholar.org/CorpusID:269757765
https://api.semanticscholar.org/CorpusID:269757765
https://api.semanticscholar.org/CorpusID:269757765
https://api.semanticscholar.org/CorpusID:265659365
https://api.semanticscholar.org/CorpusID:265659365
https://api.semanticscholar.org/CorpusID:265659365
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:268681535
https://api.semanticscholar.org/CorpusID:268681535
https://api.semanticscholar.org/CorpusID:268681535
https://api.semanticscholar.org/CorpusID:268681535
https://api.semanticscholar.org/CorpusID:268681535


Mike Lewis, Yinhan Liu, Naman Goyal, Marjan378
Ghazvininejad, Abdel rahman Mohamed, Omer Levy,379
Veselin Stoyanov, and Luke Zettlemoyer. 2019. Bart:380
Denoising sequence-to-sequence pre-training for nat-381
ural language generation, translation, and compre-382
hension. In Annual Meeting of the Association for383
Computational Linguistics.384

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. 2021.385
Implicit representations of meaning in neural lan-386
guage models. In Annual Meeting of the Association387
for Computational Linguistics.388

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda389
Viégas, Hanspeter Pfister, and Martin Wattenberg.390
2023. Emergent world representations: Exploring391
a sequence model trained on a synthetic task. In392
The Eleventh International Conference on Learning393
Representations.394

Paweł Liskowski, Wojciech Jaśkowski, and Krzysztof395
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CHAMPIONSHIP SYNTHETIC
Num. of Games 132,588 23,796,010

Avg. length 59.8 ± 1.5 60.0 ± 0.8
Min. length 4 9

Full length portion(%) 95.0 99.1

Table 3: Dataset statistics of the two Othello datasets.

Othello player with LLMs. Motivated by Toshni-487

wal et al. (2021), Li et al. (2023) shift the focus to488

treating the game as a diagnostic tool for inducing489

world models from text. Following this, Nanda et al.490

(2023) provide evidence of a closely related linear491

representation of the board and propose a simple492

yet powerful way to interpret the model’s internal493

state. Takizawa (2024) recently presents a provably494

optimal strategy for playing Othello, exploring the495

complexity of these strategies and whether LLMs496

adopt similar ones. Hua et al. (2024) adopt the497

idea of Othello sequence generation and introduce498

a Multilingual Othello task to aid in cross-lingual499

representation alignment.500

World models The success of language mod-501

els in NLP tasks has extended their application502

to world modeling, where the models simulate, pre-503

dict, and reason about dynamic environments de-504

scribed by text (Hao et al., 2023; Huh et al., 2024;505

Patel and Pavlick, 2022; Xiang et al., 2023). For506

example, Li et al. (2021) fine-tune sequence mod-507

els on synthetic NLP tasks to find evidence that508

the world state is weakly encoded in the network’s509

activations. Hase et al. (2023) edit weights in510

different locations to change how a fact is stored511

in a model. Hewitt and Manning (2019) develop512

structural probes to reveal syntactic structures in513

word embeddings. Wang et al. (2024) evaluate how514

well LLMs can serve as text-based world simula-515

tors with a benchmark. Inspired by Othello-GPT,516

research have explored more detailed probing (Yun517

et al., 2023; Hazineh et al., 2023) and more com-518

plex scenarios to assess LLMs’ ability to under-519

stand board states, including games like chess and520

maze navigation (Karvonen, 2024; Ivanitskiy et al.,521

2023). Our work aims to revisit the Othello World522

Hypothesis using a novel probing method that in-523

corporates various LLMs.524

B Dataset Statistics525

The details of the two datasets are listed in Table 3.526

527

C Experimental Methods 528

We implement all of the baselines under the Py- 529

torch framework and the HuggingFace model 530

repository. We conduct all of our experiments using 531

8 A100 GPUs. We use all the default parameters in 532

the repository when fine-tuning. We first fine-tune 533

several PLMs to generate the game moves: 534

• GPT2. We fine-tune GPT2 to generate the 535

whole game sequence step by step. Specifi- 536

cally, we use the smallest version of GPT-2. 537

• Bart. We use Bart-base to generate the se- 538

quence by feeding the first token into the En- 539

coder and fine-tuning the model to generate 540

the remaining tokens. 541

• T5. Similar as Bart, we adopt T5-base in our 542

experiment. 543

We then adopt several LLMs for the task: 544

• Flan-T5. We adopt Flan-T5-XL, which con- 545

tains 3B parameters in our experiment. 546

• Llama-2. We use Llama-2 7B and only fine- 547

tune the LoRA adapter in our experiment. 548

• Mistral. We use Mistral-7B in our experi- 549

ments. Similar to Llama-2, we also only fine- 550

tune the LoRA adapter but keep the rest of 551

parameters fixed. 552

D Alignment Details 553

We use MUSE, a widely-used multilingual feature 554

alignment tool, to generate alignment features from 555

two models as training pairs. Specifically, the fea- 556

ture of the ith step within the same game from 557

the two models is considered a pair, denoted as 558

hθ1(xi) and h(xi), respectively. These features are 559

extracted from the last hidden layer of the Decoder. 560

For supervised training, we randomly select 1,000 561

game sequences from the validation set, resulting 562

in 60,000 training pairs. We report the average co- 563

sine similarity of the aligned features on the test 564

set. In the unsupervised setting, we directly re- 565

port the average cosine similarity score on the test 566

set. For the PCA visualization, we randomly se- 567

lect a game sequence from the test set and map the 568

model-learned features of 60 steps to coordinates 569

for visualization. 570
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