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Abstract
In this work, we introduce a novel approach based on algebraic topology to enhance graph
convolution and attention modules by incorporating local topological properties of the data.
To do so, we consider the framework of sheaf neural networks, which has been previously
leveraged to incorporate additional structure into graph neural networks’ features and
construct more expressive, non-isotropic messages. Specifically, given an input simplicial
complex (e.g. generated by the cliques of a graph or the neighbors in a point cloud), we
construct its local homology sheaf, which assigns to each node the vector space of its local
homology. The intermediate features of our networks live in these vector spaces and we
leverage the associated sheaf Laplacian to construct more complex linear messages between
them. Moreover, we extend this approach by considering the persistent version of local
homology associated with a weighted simplicial complex (e.g., built from pairwise distances
of nodes embeddings). This i) solves the problem of the lack of a natural choice of basis for
the local homology vector spaces and ii) makes the sheaf itself differentiable, which enables
our models to directly optimize the topology of their intermediate features.
Keywords: Graph, Simplicial, Sheaf, Laplacian, Homology, Topology

1. Introduction

Many works in the literature extended standard Graph Convolution Networks (GCNs) Kipf
and Welling (2016), which rely on isotropic message passing along a graph’s edges, to more
expressive message passing operators. Sheaf neural networks Hansen and Gebhart (2020)
provide a generic framework to encode more structure into the features attached to a graph’s
nodes, which can be leveraged to define more expressive messages between the feature spaces
of neighboring nodes via the sheaf’s restriction maps and the sheaf Laplacian. Briefly, a
sheaf F on a space X associates a (feature) vector space F(U) to each (open) set U ⊂ X
and a linear map F(U ⊂ V ) to each pair U ⊂ V , i.e. the restriction map. Two restrictions
F(W ⊂ U)TF(W ⊂ V ) can be combined to send messages between U and V via their
intersection W = U ∩ V : this is the idea behind the sheaf Laplacian. While a sheaf should
also satisfy locality and gluing properties, these are not necessary to construct the Laplacian
and are usually ignored in neural networks; see Apx. B for more details. In practice, sheaf
neural networks associate a feature vector space to each node in a graph and a linear map
to each edge, relating the feature spaces of connected nodes. With respect to the graph
Laplacian, this new Laplacian doesn’t enforce similarity between neighboring nodes’ features,
thereby circumventing the homophily assumption Bodnar et al. (2022).
∗ Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
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GCNs are the simplest example of sheaf neural networks: these architectures rely on
a sheaf which associates the same vector space to each node and whose restriction maps
are identities. This enables a simple weight sharing at the cost of less expressive message
passing. Other works can be interpreted under this lens: de Haan et al. (2020) constructs
a very expressive sheaf over graphs where each node has a feature dimension for each of
its neighbors and restriction maps match dimensions corresponding to the same nodes1.
Alternatively, since datasets rarely come with a sheaf structure already defined, Bodnar et al.
(2022) propose learning to predict restriction maps from input features during inference.

Contributions We use tools from algebraic topology Hatcher (2002) to construct a new
sheaf for neural networks: the Local Homology sheaf in the flag complex of a graph
Robinson et al. (2018). This sheaf catches local topological features of a space: it associates
to each node a feature vector space with a component for each "relative cycle" in its
neighborhood. Intuitively, an order k local relative cycle detects a subspace which locally
looks like a k-dimensional manifold. For this reason, the local homology sheaf is typically
used for stratification detection of triangulated spaces. Interestingly, sheaf diffusion along
the edges is sufficient to detect higher order (local and global) homological properties of the
space, with no need of higher-order simplicial message passing.

Unfortunately, the homology sheaf doesn’t prescribe a natural choice of basis for the feature
vector space, which makes constructing learnable linear and activation layers challenging. We
tackle this limitation by considering weighted graphs and leveraging persistent homology,
the standard tool in Topologial Data Analysis Carlsson (2009). Finally, this new construction
generates a sheaf whose Laplacian is differentiable with respect to the graph weights, which can
be output of another learnable module (e.g. from learnable node embeddings): this enables
our model to learn the sheaf structure or tune the weights in a topological informed way.

2. Simplicial Complexes, Homology and the Local Homology Sheaf

We first briefly review some essential concepts but see Apx. C for more details.
Simplicial Complexes Assume a finite set V of |V | = N nodes. A simplicial

complex is a collection S ⊂ 2V of subsets of V ; a subset σ ∈ S with k + 1 elements is
called a k-simplex. Simplicial complexes generalize the common notion of graph beyond
pairwise relationships. For example, if G = (V,E) is a graph, its flag (or clique) complex
is a simplicial complex S with nodes V and containing a simplex for each clique in G, i.e.
for each set of nodes in G which form a complete subgraph.

Chains and Boundaries The graph Laplacian can be constructed from the incidence
matrix ∂ ∈ R|V |×|E| as ∆0 = ∂∂T . This construction generalizes to simplicial complexes.
A k-chain of S is a scalar signal over (oriented) k-simplicies; Ck(S), or just Ck, is the
vector space of all k-chains. The incidence matrix is generalized by the boundary operator
∂k :Ck→Ck−1, which models the relationship between each k-simplex and its faces (its k-
dimensional subsets). The k-th Hodge Laplacian is defined as ∆k :=∂Tk ∂k+∂k+1∂

T
k+1 :Ck→Ck

and has been used to construct a variety of simplicial neural networks Papillon et al. (2023).

1. Messages are actually constructed with something more similar to a cosheaf Laplacian by leveraging the
union rather than the intersection of open sets. The work also supports more generic feature spaces.
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Figure 1: Examples of homology and relative homology. The greyed out simpleces can be
thought as being "collapsed" in a single point to compute relative homology: then,
the blue area β turns into a 2-sphere while the red line γ turns into a 1d ring.

Cycles and Homology A classical result in topology is that a boundary of a space
has no boundary : im ∂k+1 ⊂ ker ∂k. The k-th homology group is the quotient vector space
Hk(S) := ker ∂k/ im ∂k+1. Its dimensionality dimHk is an important invariant counting the
k-dimensional holes in S and its basis can be thought as a set of independent k-dimensional
cycles in S (0-cycles are connected components, 1-cycles are loops, 2-cycles are cavities).

Our construction is similar to (Robinson et al., 2018), which first introduced the Local
Homology Sheaf over simplicial complexes. Given a k-simplex σ ∈ S, define its star as
starσ = {τ ∈ S : σ ⊂ τ}. An open subset A ⊆ S is the union of sets of the form starσ; note
that this is not necessarily a simplicial complex. Instead, a subset A ⊆ S is closed if it is a
subcomplex of S (the faces of every simplex in A are also in A). We also define the closure
clA as the smallest subcomplex of S containing A, the interior intA as the largest open set
contained in A and the frontier as ∂A = clA \ A.

Relative Homology Let A ⊆ S be a subcomplex of S. The k-th relative homology
Hk(S,A) describes the k-th homology of the quotient space S/A obtained from S by identifying
all its points within A, i.e. by "collapsing" all points in A in a single point . Fig. 1 shows a
few examples. However, note that the relative homologies Hk(S, S \ star v) doesn’t depend
on (most) gray simpleces in S\ star v, but only on those in star v and its closest neighbors.
This is the Excision Principle: if A ⊂ B ⊂ S are subsets of S such that clA ⊂ intB, then
Hk(S,B) ∼= Hk(S\A,B\A). When A ⊂ S is an open set, Hk(S, S\A) ∼= Hk(clA, ∂A).

Local Homology Sheaf As in Robinson et al. (2018), we consider the sheaf H∗ defined
as H∗(A) = H∗(S, S\A) ∼= H∗(clA, ∂A) for each open set A ⊂ S (S\A is closed if A is open).
The sheaf structure is naturally given by the following long exact sequence2:

· · · Hk(A ∪B) Hk(A)⊕Hk(B) Hk(A ∩B) · · ·k∗−l∗i∗,j∗ (1)

where k∗, l∗, i∗ and j∗ are the sheaf restriction maps. This is a special case of the well
known Mayer-Vietoris sequence; see Apx. C.1. In particular, H∗(star vi) is called the local
homology of the vertex vi. Intuitively, the local homology of a point in a topological space

2. An exact sequence is a sequence of maps s.t. the image of a map equals to the kernel of the consecutive one.

3



Cesa Behboodi

contains information about what the space looks like around that point. If the space is an
n-manifold, the local neighborhood U of any point looks like a n-ball, whose boundary ∂U is
isomorphic to a n− 1-sphere Sn−1. Then, like in Fig. 1, via excision the local homology is
H∗(U, ∂U) ∼= H̃∗(Sn), i.e. the (reduced) homology of an n-sphere, which only has one cycle of
order n. Hence, local homology detects the local dimensionality of a space. Moreover, points
at the boundary of the space have empty local homology. This idea was used in Robinson
et al. (2018), among others, for stratification detection. Finally, note that the restriction maps
constructed in Eq. 1 are identity maps on Hn for points in the interior of an n-manifold3.

Finally, recall that sheaf diffusion minimizes the sheaf Dirichlet energy of a signal
Bodnar et al. (2022). At zero energy, the signal is in the Laplacian’s kernel and, by the
sheaf property, belongs to the global sections of H(S) Hansen and Ghrist (2021). Because
Hk(S) = Hk(S, ∅) = Hk(S) (Corollary 20 Robinson et al. (2018)), diffusion converges towards
the global homology classes of S of any order k while only relying on messages along edges.

Persistent Homology provides a richer structure than homology, by enriching homology
classes with a (differentiable) notion of resolution; see Apx. D. Rather than building a single
sheaf for a fixed complex S, we consider a filtration, i.e. a sequence of simplicial complexes
{St}t related by inclusion, and build the local homology sheaf of the complex St at each time-
step t. Cycles in the local homology at a step in the filtration can "persist" in the consecutive
steps or disappear. This enriches the local homology with a notion of time or scale, i.e. each
cycle is associated with a time-step where it emerges and a time-step where it disappears. In
practice, we define the "filtered" neighborhood of a node i as At

i = start vi ⊂ St and compute
the persistent cycles in the persistent module H•k(Ai) =

⊕
tHk(St, St\At

i) as in Apx. E.
Persistent cycles are shared among the time-steps between their births and deaths, see
Eq. 9. This feature sharing strategy generates the persistent relative homology subspace
Hk(Ai) ⊂ H•k(Ai). Columns in Fig. 2 are examples of persistent local homology.

3. Proposed Architecture

Given a graph G = (V,E) with weighted edges (e.g. the distance matrix of a point cloud),
we construct the Vietoris-Rips filtration4 {St}t of its flag complex S. Unfortunately, while
the persistent module H•k forms a sheaf, persistent local homology Hk ⊂ H•k fails to be a
sheaf Palser (2019). To preserve the sheaf diffusion properties described before, we prefer
using the sheaf Laplacian of H•k. Hence, our message passing on Hk first embeds persistent
homology features in the sheaf H•k, then applies the sheaf Laplacian ∆H•k and, finally, projects
the output on Hk by averaging the features of a cycle along its life span. Fig. 2 shows an
example of Laplacian ∆H•k . See Apx. F for details on the implementation.

To complete our architecture, we need to include a learnable layer operating on each
node’s feature space H∗(Ai). This involves two challenges: i) a persistent cycle is only defined
up to a sign (the Laplacian constructed is equivariant to these sign changes) and ii) each
node’s feature space looks different. i) is related to the spectral symmetries studied in Lim
et al. (2023) and be can solved similarly: given x ∈ H∗(Ai), we construct a sign equivariant
layer of the form ψ(x) = x ◦ ρ(|x|). The learnable operator ρ can be modeled by a simple
MLP. To share ρ among different nodes and solve ii), we learn a separate MLP Ψ to output

3. The local homology sheaf Hn is closely related to the orientation sheaf of an n-manifold.
4. A simplex appears in the filtration at a time step equal to the maximum weight of its edges.

4



Algebraic Topological Networks

the weights of ρ for each node individually. Note that each persistent cycle is uniquely
identified by its order k and its birth and death times s, t ∈ R, Then, we can parameterize a
linear map on H∗(Ai) via Ψ as follows: for each pair (i, j) of input/output persistent cycles,
the (i, j)-th entry of the weight matrix is parameterized by Ψ(ki, si, ti, kj , sj , tj) ∈ R. As
usual, this approach can be integrated in a multi-channel network, where the features of the
node include multiple copies of the vector space H∗(A).

4. Limitations and Complexity

Persistent homology is computed by reducing the boundary matrices, with a worst case
complexity cubic in the number of simplices. Assuming N nodes and by considering only
homology up to order K (typically K = 2 or 3), there are at worst O(NK+1) simplices so
the complexity is O(N3K+3). However, thanks to the excision principle, local homology can
be computed by using only a limited number of neighboring nodes. Assuming each node
has O(n) neighbors, computing the local homology of each node costs only O(Nn3K+3).
Moreover, the computation of each local homology can be fully parallelized. For each par of
nodes, the sheaf Laplacian is also computed via a matrix reduction using the union of their
local neighbors (with O(2n) nodes): with a similar worst case complexity O((2n)3K+3) for
each pair of nodes O(nN), the overall complexity is then O(Nn3K+423K+3). Still, we note
that there exists optimized algorithms like Ripser Bauer (2021), which are much faster on
average by leveraging a number of smart heuristics. Additionally, the number of neighbors
n can be chosen sufficiently low to control the overall complexity. The main limitation
we currently see is the fact that these computations can not be performed on a GPU in a
straightforward way. As a result, computing the sheaf structure requires moving the edge
weights to the CPU during inference and, then, move the sheaf Laplacian data back on GPU.

5. Conclusions

The proposed local homology sheaf Laplacian can be used to enhance existing deep learning
architectures by making them aware of the local and global topology of the underlying data
structure during inference. We expect this to be especially useful in tasks such as graph link
prediction, mesh reconstruction or simply where the data presents a variety of topologies.
We plan to experimentally evaluate this method on similar tasks in future works.
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Appendix A. Example of persistent sheaf Laplacian
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Figure 2: Example of persistent sheaf Laplacian. The three columns depict the time evolution of
the filtrations of the local neighborhood of three simplices. At different time steps, some
new relative cycles appear or disappear and each cycle "persists" for an interval of time.
In our architecture, a single feature is stored for each persistent cycle; this feature can
be thought as been shared over all time steps within the cycle’s life span. Moreover, the
three columns share a relative 1-cycle γ1. Note that this cycle exists at different times
intervals in the three columns and, therefore, there exists a sheaf Laplacian only during
the intersection of these intervals [t1, t3).
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Appendix B. Sheaves

Given a space X, a pre-sheaf F associates to each open set U ⊂ X a space F(U) and
to each pair U ⊂ V (⊂ X) a map F(U ⊂ V ) : F(V ) → F(U) (restriction map), such that
F(U ⊂ U) is the identity and F(U ⊂ V )F(V ⊂ W ) = F(U ⊂ W ) if U ⊂ V ⊂ W . We are
mostly interested in the cases where F(U) are vector spaces. An element of F(U) is called a
"local section", while an element of F(X) is called a "global section".

Given an open cover {Ui ⊂ U}i of U ⊂ X, a sheaf is a pre-sheaf satisfying two additional
axioms:

1. locality : if two local sections s, t ∈ F(U) agree when restricted on all {Ui}i, then they
are identical

2. gluing : if a set of local sections {si ∈ F(Ui)}i agree on all their overlaps, then there
exists section s ∈ F(U) which agrees with si when restricted on Ui, for all i

Given a sheaf F , with F(U) vector spaces, we can construct the sheaf Laplacian Hansen
and Gebhart (2020). To do so, consider an open cover {Ui}i of the space X. For any i, j s.t.
Ui ∩ Uj 6= ∅, define the linear map

δij : F(Ui)×F(Uj)→ F(Ui ∩ Uj), xi, xj 7→ F(Ui ∩ Uj ⊂ Ui)xi −F(Ui ∩ Uj ⊂ Uj)xj

Then, the sheaf Laplacian is a block matrix defined as LF = δT δ. Note that, if i 6= j, the
(i, j)-th block is defined as [∆F ]ij = −F(Ui ∩ Uj ⊂ Ui)

TF(Ui ∩ Uj ⊂ Uj).
Given a sheaf defined over a graph, the sheaf Laplacian generalizes the classical graph

Laplacian and provides a useful tool to build more expressive message passing operators for
neural networks.

To build message passing, the restriction map of a pre-sheaf is sufficient and we do not
actually need the additional two axioms of a sheaf. Still, since local homology in Sec. 2 forms
a sheaf with some interesting properties and to keep the notation simpler, we use the word
"sheaf" also in the message passing architectures which don’t enforce these axioms.

Appendix C. Simplicial Complexes, Boundary Maps and Homology

Simplicial Complex Give a finite set of nodes V , with |V | = N ∈ N, a simplicial
complex S is a mathematical objects that can be thoughts as a collection of subsets of
V , i.e. S ⊂ 2V , such that ∀σ ∈ S, τ ⊂ σ =⇒ τ ∈ S. Each such subset σ ∈ S is called
a simplex. We usually refer to simplices with k + 1 elements as k-simplices. Simplicial
complexes generalize the common notion of graph, by thinking of an edge as a set containing
two nodes. A k-simplex σ = {v0, . . . , vk} ⊂ V , like edges, is typically associated with an
orientation, i.e. a particular choice of ordering of its elements σ = [v0, . . . , vk] ∈ S. Two
k-simplicies σ, σ′ containing the same subset of nodes share the same orientation if they differ
by an even permutation but have opposite orientation if they differ by an odd permutation.

Chain Complexes and Boundary Operators Let S be a simplicial complex. A k-
chain of S is a scalar function f : S → R on the oriented k-simplicies of S such that
f(σ) = f(σ′) if σ and σ′ have the same orientation (differ by an even permutation) and
f(σ) = −f(σ′) if they have opposite orientation (differ by an odd permutation). A chain
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complex C•(S) is a sequence of vector spaces C0(S), C1(S), . . . , where Ck(S) is the vector
space of all k-chains. A chain complex is associated with a linear boundary operator (or
differential) ∂k : Ck → Ck−1, defined on a k-simplex σ = [v0, v1, . . . , vk] ∈ S (intended as one
of the basis elements of Ck) as5

∂kσ :=

k∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk] (2)

where [v0, . . . , v̂i, . . . , vk] is a k − 1-simplex obtained from σ by removing the node vi. We
often use ∂• : C• → C• to denote the operator acting on each subspace Ck of C• with the
corresponding operator ∂k.

Example If S is just a graph G = (V,E), C0 are functions over the nodes V while C1 are
functions over the (oriented) edges E. Moreover, the operator δ1 : C1 → C0 maps an edge
e = (v0, v1) ∈ E to ∂1(e) = [v1]− [v0] and, therefore, if f ∈ C1, then

(∂1f)(vi) =
∑

e=[vj ,vi]∈E

f(e)−
∑

e=[vi,vj ]∈E

f(e) (3)

This boundary operator ∂1 can be used to construct the Graph Laplacian as ∆0 := ∂1∂
T
1 ,

which is typically used to perform message passing in GCNs. The boundary operators can
be used to generalize this construction to a Hodge Laplacian over a simplicial complex,
defined as ∆k := ∂Tk ∂k + ∂k+1∂

T
k+1 : Ck → Ck, which can be used to construct a variety of

higher-order simplicial neural networks Papillon et al. (2023).

Cycles, Boundaries and Homology A k-chain is said to be a boundary if it is the
boundary of a k + 1-chain; the subspace of k-boundaries is indicated by Bk := im ∂k+1. A
k-chain is said to be a cycle if its boundary is zero; the subspace of k-cycles is indicated by
Zk := ker ∂k. A classical result in topology is that a boundary of a space has no boundary,
i.e. ∂• ◦ ∂• = ∂2• = 0. It follows that Bk = im ∂k+1 ⊂ Zk = ker ∂k. The k-th homology
group is defined as the quotient vector space Hk(S) := Zk/Bk. The dimensionality dimHk

is an important invariant and is equal to the k − th Betti number βk of S, which counts the
k-dimensional holes in S.

Topology, open sets and subcomplexes of a simplicial complex Given a finite
simplicial complex S, a subset A ⊆ S is said to be closed if it is also a simplicial complex
(i.e. for each simplex in A, all its faces are also in A), i.e. it is a subcomplex of S. Instead,
an open subset6 A ⊆ S is the union of sets of the form starσ = {τ ∈ S : σ ⊂ τ}; note that
this is not necessarily a simplicial complex. Finally, we define a few useful operations on a
subset A ⊆ S:

• S\A indicates the standard set difference.

• the closure clA is the smallest subcomplex of S containing A.

• the star starA is the set of all simplices in S which contain a simplex in A

5. This definition should be extended linearly to the full space Ck.
6. Formally, we consider the Alexandrov topology of the simplicial complex like in Robinson et al. (2018)
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• the boundary (or frontier) ∂A = clA ∩ cl(S\A)

• the interior intA is the largest open set contained in A

Relative Homology Let A ⊆ S be a subcomplex (i.e. a closed subset) of the simplicial
complex S. The relative k-chain space Ck(S,A) ∼= Ck(S)/Ck(A) is the vector space of
k-chains over S which are zeros over the simplices in A. Clearly, Ck(S,A) is a subspace
of Ck(S) so the map ∂k : Ck → Ck−1 can be generalized to ∂k : Ck(S,A) → Ck−1(S,A).
Then, the sub-space of relative k-boundaries is indicated by Bk(S,A) := im ∂k+1 and the
subspace of relative k-cycles is indicated by Zk(S,A) := ker ∂k. Finally, the k-th relative
homology is defined as Hk(S,A) = Zk(S,A)/Bk(S,A). Intuitively, Hk(S,A) describes the
k-th homology of the quotient space S/A obtained from S by identifying all its points
within A, i.e. by "collapsing" all points in A in a single point7.

C.1. Properties of Homology and Long Exact Sequences

Long Exact Sequence for the Relative Homology If A ⊂ S is a subcomplex of S,
the relative chains give rise to a chain complex of relative homology groups with the following
short exact sequence:

· · · → Hk(A)→ik Hk(S)→jk Hk(S,A)→∂ Hk−1(A)→ . . . (4)

The map ik comes from the inclusion of Ck(A) into Ck(S) and, intuitively, is relating the
k-dimensional holes in A with their copy in S. The map jk comes from the projection of
Ck(S) into Ck(S,A) and, intuitively, relates the holes in S outside of A with their copies
in S/A. Finally, the last map ∂ detects the k-dimensional holes in S/A, not present in S,
which have appeared by collapsing A in a single point. These k-dimensional holes can be
related with A’s k − 1-dimensional boundary ∂A ⊂ A and, therefore, included in Hk−1(A).

Mayer-Vietoris Sequence Given two subcomplexes A,B and the union S = intA∪ intB,
there is another important long exact sequence:

· · · → Hk+1(S)→∂∗ Hk(A ∩B)→i∗,j∗ Hk(A)⊕Hk(B)→k∗−l∗ Hk(S)→ . . . (5)

Intuitively, if a k + 1 cycle in S is "broken" when S is split into A and B, the cycle splits
into two k + 1 chains in A and B which overlap in A ∩B. The boundaries of the two k + 1
chains are homologous, i.e. they are a k-cycle in A ∩B, that is an element of Hk(A ∩B).

This sequence holds also for relative homology, i.e. if T = intC ∪ intD ⊂ S, with
C,D ⊂ S, then

· · · → Hk+1(S, T )→∂∗ Hk(S,C ∩D)→i∗,j∗ Hk(S,C)⊕Hk(S,D)→k∗−l∗ Hk(S, T )→ . . .
(6)

Eq. 6 can also be used to construct the sequence in Eq. 1 by replacing C = S\A,D = S\B
and, therefore, T = C ∪D = S\(A ∩B), C ∩D = S\(A ∪B):

· · · → Hk(S, S\(A ∪B))→i∗,j∗ Hk(S, S\A)⊕Hk(S, S\B)→k∗−l∗ Hk(S, S\(A ∩B))→ . . .
(7)

7. Note the difference between the set difference S\A and the quotient space S/A.

11
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Note that the maps in this sequence are given by the restriction maps of the sheaf and the
exactness of the sequence proves exactly the gluing property of a sheaf. See Proposition 19
Robinson et al. (2018) for a more precise proof.

Appendix D. Persistent Homology

Given a finite simplicial complex S and a function f : S → R s.t. f(σ) ≤ f(τ) if σ < τ , define
the simplicial complex St = {σ ∈ S : f(σ) ≤ t} ⊂ S. Note that St1 ⊂ St2 if t1 ≤ t2 and
there exists t−, t+ such that St = ∅ for any t ≤ t− and St = S for any t ≥ t+. Moreover, the
sequence of simplicial complexes {St}t∈R only contains a finite number of different complexes,
so it can be replaced by a finite sequence {St}t∈R indexed by a subset R ⊂ R. This sequence
is called a filtration of simplicial complexes.

The inclusion St1 ⊂ St2 induces an homomorphism it1,t2k : Hk(St1) → Hk(St2), whose
image im it1,t2k is the persistent homology group Ht1,t2

k (S) and detects k-cycles in St1
which are still present in St2 . In particular, any k-cycles is born at a certain "time" t1 (is
not in the image of it,t1k for any t < t1). It can also disappear at a time t2 (it is in the kernel
of it1,tk for any t ≥ t2) or persist forever (it is a cycle in Hk(S)).

Note also that, if the complexes in the filtration only differ by a single simplex (i.e. the
function f gives a total ordering of the simpleces), each time step a single k-simplex is added,
which either creates a new k-cycle or destroys a k− 1 cycle. This is useful since the homology
group Hk(S) does not come with a natural choice of basis8; in this case, instead, cycles are
uniquely identified by their birth and death times, which indirectly provides a choice of basis.

Relative persistent homology has also been studied in the literature, e.g. see Robinson
et al. (2018); Blaser and Brun (2022). However, as far as we know, these works considered a
slightly different formulation, assuming a filtration of pairs (S,At), with At ⊂ At+1 ⊂ S.

Instead, in this work, we consider a filtration of pairs in the following form. Let S∞ =
S and A∞ = A ⊂ S. Let S = (. . . , St, . . . , S

∞ = S) be a filtration of S and A =
(. . . , At, . . . , A

∞ = A) be a filtration of A, with At = St ∩ A (and, clearly, St ⊂ St+1 and
At ⊂ At+1). To simplify the notation, sometimes we just write S instead of S to indicate a
filtration.

As earlier, the inclusion St1 ⊂ St2 induces an homomorphism it1,t2k : Hk(St1 , At1) →
Hk(St2 , At2), whose image im it1,t2k is the persistent relative homology Ht1,t2

k (S,A) and
detects relative k-cycles in St1/At1 which are still present in St2/At2 . Given an open set
U ⊂ S∞, define the persistence module

H•k(U) =
⊕
t

Hk(St, St\U) (8)

Then, our persistent homology feature spaces can be formally defined as the quotient

Hk(U) =

(⊕
t

Hk(St, St\U)

)
/

(⊕
t1<t2

im it1,t2k

)
= H•k(U)/

(⊕
t1<t2

im it1,t2k

)
(9)

8. A basis for Hk(S) can be computed as the 0-eigenvectors of the k-th Hodge Laplacian ∆k = ∂T
k ∂k +

∂k+1∂
T
k+1. However, this basis is not unique and numerical algorithms are not guaranteed to return the

same solution consistently. The lack of a choice of basis is problematic to construct learnable neural
operations like linear layers and non-linearities, which depend on a specific basis.
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The quotient removes the copies of a persistent cycle through its life interval. Hence, the
resulting space has a dimension for each unique persistent cycle.

Sovdat (2016) studied a similar sequence where At ⊂ St but not necessarily At = St∩A∞
(i.e. a simplex can enter S at a time step but also enter in A at a later time step) and
proposed an algorithm to compute this relative persistent (co)homology.

Apx. E describes how persistent relative homology can be computed while Apx. F describes
a method to construct the corresponding sheaf Laplacian.

Appendix E. Computing Relative Homology and Relative Persistent
Homology

Computing Persistent Homology The Ripser library implements an efficient algorithm
to compute persistent homology Bauer (2021); Tralie et al. (2018). This algorithm can be
easily adapted to also return the indices of the simplices which created and destroyed
each homology class / persistent cycle; indeed, these indices are needed to implement a
differentiable version of persistent homology Brüel-Gabrielsson et al. (2019). Note that this
software actually computes persistent co-homology and also returns representative cochains,
which can be thought simply as the transpose of representative chains. In the rest of this
section, we will work with co-homology groups Hk(·) rather than homology groups Hk(·)
to better reflect the algorithm but we first emphasize that these groups are isomorphic.

Unfortunately, Ripser only compute absolute (co)homology. Sovdat (2016) previously
described a very similar algorithm to compute the persistent relative homology of a sequence
of pairs {(St, At)}t. As discussed in Apx. D, they consider more general filterations than
ours and, therefore, their algorithm is unnecessarily complicated for us.

Instead, we note that the Ripser algorithm from Bauer (2021) essentially performs an
(optimized) Gauss reduction of the co-boundary matrix ∂•S : C•(S)→ C•(S), with rows and
columns (corresponding to different simplices in the filtration) sorted by decreasing weight /
birth time. This algorithm can be used to compute the relative (co)homology H•(S,A) by
simply removing those rows and columns of ∂•S which belongs to A; indeed, by definition one
obtains precisely the relative co-boundary map ∂•S,A : C•(S,A) → C•(S,A) which defines
relative (co)homology.

Moreover, as most existing persistent homology tools, Ripser only supports finite fields
F = Z/pZ (for p prime), while our sheaf requires features in the real field F = R. Fortunately,
the algorithm described in Bauer (2021) works for any generic field F, so Ripser can be
easily adapted to compute (co)homology with F = R coefficients.

Appendix F. Computing the sheaf Laplacian

Let A′, B′ ⊂ S be two open sets and C ′ = A′ ∩ B′ ⊂ S their intersection. To construct
the sheaf Laplacian between these two open sets ∆k

B′,A′ = −
[
Hk(C ′ ⊂ A′)

]T ◦ Hk(C ′ ⊂ B′)
we need to construct the two restriction maps Hk(C ′ ⊂ A′),Hk(C ′ ⊂ B′) and then find
equivalent cocycles in their images.

The following Mayer-Vietoris sequence for relative cohomology suggests a way to perform
this computation. Let D′ = A′ ∪ B′ the union of the two open sets and D = S \ D′ its

13
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complementary; then the following sequence is exact:

· · · → Hk−1(S,D)→∂k−1
Hk(S,C)→i∗⊕−j∗ Hk(S,A)⊕Hk(S,B)→k∗+l∗ Hk(S,D)→ . . .

(10)

where the maps i∗ and j∗ are adjoint of the restriction maps Hk(C ′ ⊂ A′),Hk(C ′ ⊂ B′). The
co-boundary map ∂k−1 detects the k relative cycles in C ′, not present in neither A′ nor B′,
which have appeared when collapsing C \D in a single point (e.g. a line with it extremes in
D′ \ C ′ is a connected component, i.e. a 0-cycle, in H0(S,D), but when D′ \ C ′ is collapsed,
the two extremes merge and the 0-cycle becomes a 1-cycle in H1(S,C)).

This sequence implies that Hk(S,C) splits as the co-image coim(i∗⊕−j∗) (i.e. the image
of the restriction maps) and the image im ∂k−1. In other words, the restrictions of two
cocycles in Hk(S,A) and Hk(S,B) are equivalent if their difference is zero modulo im ∂k−1.

Hence, we set up an extended coboundary matrix Bk whose reduction computes the sheaf
Laplacian.

Columns The matrix columns are divided in two sets. First, it contains all columns
of ∂•(S,D) as used in Apx. E to compute the persistent relative cohomology Hk(S,D).
Second, it contains a column for each persistent cocycle found previously in Hk(S,A) and
Hk(S,B). Like in Apx. E, the columns in the first set are sorted inversely by the weight of
each k− 1 simplex in D′. Instead, the columns in the second set are sorted inversely by their
corresponding cocycle’s birth time (cocycles of A′ and B′ are mixed by sorting). These two
sets split the matrix in two sub-matrices Bk = [BkD,BkAB].

Rows in BkD Columns in BkD simply contain the coboundaries in D′ of each simplex,
sorted by decreasing weight, as in Apx. E.

Before defining the rows in BkAB , let’s first recall some details about the algorithm in Bauer
(2021). A cocycle in Hk(S,A) (or B) can be represented by the column of the reduction
matrix used to reduce ∂kA. This vector expresses a k-cocycle as a linear combination of
k-simplices in A′. The non-zero simplex with lowest weight defines the birth time of the
cocycle. The corresponding reduced column contains the coboundary and the first non-zero
k + 1 simplex (the pivot) defines the death time of the cocycle (since, after that time, the
cocycle doesn’t belong to the kernel of the coboundary map anymore).

Rows in BkAB The columns in BkAB contain three sets of row. Each column, corresponding
to a certain cocycle to restrict, has

1. one row for each k-simplex in D′: these rows contain a copy of the reduction vector
representing the cocycle as above (note that A′, B′ ⊂ D′). These are also the same
rows in BkD

2. one row for each k + 1 simplex in A′: these rows contain a copy of the coboundary of
the cocycles in A′

3. another row for each k + 1 simplex in B′: these rows contain a copy of the coboundary
of the cocycles in B′

Note that each k + 1 simplex in D’ appears twice in the rows.
A linear combination of the columns of this extended reduction matrix is a linear

combination of cocycles in Hk(S,A), Hk(S,B) and Hk−1(S,D). This represents a pair of

14
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cocycles γA ∈ Hk(S,A) and γB ∈ Hk(S,B) and the rows in the resulting column model the
three constraints we are trying to enforce. Indeed, a non-zero value in a row implies

• if the row is a k+1-simplex in A′ (or B′), the cocycle γA ∈ Hk(S,A) (or γB ∈ Hk(S,B))
is dead at this time step (and so must be also its restriction to Hk(S,C) as proved in
Theorem 1).

• if the row is a k-simplex in C ′ ⊂ D′, it means that the sum of γA and γB is not zero at
this time step i.e. their restrictions are not equivalent cocycles.

• if the row is a k-simplex in D′ \ C ′ = (A′ \ C ′) ∪ (B′ \ C ′), either γA or γB can not be
restricted to Hk(S,C) at this time step.

Then, the matrix reduction algorithm trying to find pairs of cocycles which satisfy these
constraints for the longest time. Once this matrix is reduced, a column in BkAB represents
a pair of cocycles γA ∈ Hk(S,A) and γB ∈ Hk(S,B) whose sum is 0 when restricted to
Hk(S,C), modulo the coboundary of some cocycles in Hk−1(S,D), until the time step the
pivot of this column appears in the filtration. Then, the pivot corresponds to the time step
one of the three constraints above is violated.

Hence, the reduced columns in BkAB can be used to construct the sheaf Laplacian as follows.
Let the i-th reduced column correspond to a pair of cocycles (γiA, γ

i
B) which are obtained by

linearly combining the persistent bases of Hk(S,A) and Hk(S,B) via the reduction vectors
vi
A and vi

B, respectively. Note that these reduction vectors essentially construct the two
restriction maps. Let ti be the time the pivot of this column appear and let siA be the birth
time of γiA (i.e. the lowest weight of its simpleces) and tiA its death time, and siB and tiB
those of γiB. This pair restricts to the same cocycle in Hk(S,C) only in the time interval
[si, ti), with si = max(siA, s

i
B) and ti ≤ siB, s

i
A due to Theorem 1. The pair (si, ti) defines

the time interval during which an i-th sheaf Laplacian persists:

[∆i
Hk ]A′,B′ = vi

A(vi
B)T

We do not include the −1 sign since our constraint enforced γA + γB ∼= 0, i.e. γA ∼= −γB.
This Laplacian is visualized also in Fig. 2.

Note that the non-zero coefficients in the vector vi
A or vi

B are associated with persistent
cocycles of Hk(S,A) or Hk(S,B) which might appear and die at different time steps. It
follows that each entry of [∆i

Hk ]A′,B′ has an independent persistence interval given by the
intersection of [si, ti) with the intervals of the two cocycles of A′ and B′ involved.

If we define v|t as the components of v which are "active" at time t, the sheaf Laplacian
at a time step t can be constructed as

[∆t
Hk ]A′,B′ =

∑
i:t∈[ti,si)

vi
A|t(vi

B|t)T

Finally, the embedding and projection operations mention in Sec. 3 can be easily im-
plemented by weighting the entry (a, b) of the matrix [∆i

Hk ]A′,B′ by its own life span
min(ti, ta, tb)−max(si, sa, sb) divided by the output cocycle life span ta − sa.
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F.1. Other properties of the Local (Co)Homology Sheaf

Theorem 1 (The restriction of a cocycle dies earlier) Consider the following com-
mutative diagram for relative persistent cohomology and assume a single simplex is added to
S at each time step t:

· · · Hk−1(St) Hk−1(At) Hk(St, At) Hk(St) · · ·

· · · Hk−1(St+1) Hk−1(At+1) Hk(St+1, At+1) Hk(St+1) · · ·

∂k−1
t i∗tj∗t

∂k−1
t+1 i∗t+1j∗t+1

f t,t+1
A

f t,t+1
S,A f t,t+1

Sf t,t+1
S

(11)
Let γ ∈ im i∗t ⊂ Hk(St) be a cocycle of St at time t which corresponds to a relative cocycle
γ̄ ∈ Hk(St, At), i.e. γ = i∗t (γ̄). Assume that at time t+ 1 a k + 1-simplex σ is added to St
such that the cocycle γ dies in Hk(St+1), i.e. γ /∈ im f t,t+1

S . Then, γ̄ /∈ im f t,t+1
S,A either and,

therefore, the relative cocycle γ̄ dies at time t+ 1, too.
Proof Let γ ∈ ker f t,t+1

S and let σ be the k + 1 simplex added in St+1 which killed γ (i.e.
St+1 = St ∪ {σ}). Assume ∃γ̄ ∈ Hk(St, At) such that γ = i∗t (γ̄).

Since σ is a k + 1-simplex, Hk−1(At+1) ∼= Hk−1(At) and Hk−1(St+1) ∼= Hk−1(St).
Because these cohomology groups did not change, im j∗t

∼= im j∗t+1 and, therefore, ker ∂k−1t
∼=

ker ∂k−1t+1 . It also follows that coim ∂k−1t
∼= coim ∂k−1t+1 , i.e. ker i∗t = ker i∗t+1.

Finally, because γ̄ /∈ ker i∗t
∼= ker i∗t+1, γ̄ ∈ Hk+1(St+1, At+1) ∼= ker i∗t+1 ⊕ coim i∗t+1 if

and only if γ̄ ∈ coim i∗t+1. This requires that ∃γ′ = i∗t+1(γ̄) ∈ Hk(St+1). However, the
commutativity of the diagram guarantees that i∗t+1(f

t,t+1
S,A (γ̄)) = f t,t+1

S (i∗t+1(γ̄)) = 0, which is
a contradiction. Hence, γ̄ ∈ ker f t,t+1

S,A , i.e. the relative cocycle γ̄ must also die at time t+ 1.

A similar argument should work also for triples, i.e. projections Hk(S,B)→ Hk(S,A) with
B ⊂ A ⊂ S by replacing Hk(S) with Hk(S,B) and Hk(A) with Hk(A,B).

Theorem 2 (The restriction of a cocycle appears earlier) Consider again the com-
mutative diagram for relative persistent cohomology in Eq. 11 (here, shifted right by two
steps):

· · · Hk(St, At) Hk(St) Hk(At) Hk+1(St, At) · · ·

· · · Hk(St+1, At+1) Hk(St+1) Hk(At+1) Hk+1(St+1, At+1) · · ·

i∗t

i∗t+1

f t,t+1
S,A f t,t+1

S

j∗t ∂k
t

j∗t+1 ∂k
t+1

f t,t+1
A

f t,t+1
S,A

(12)
Again, assume a single simplex is added to S at each time step t. Let γ ∈ Hk(St) be a

cocycle of St which persists to St+1, i.e. γ ∈ im f t,t+1
S .

Assume that there exists a relative cocycle γ̄ ∈ Hk(St+1, At+1) such that γ = i∗t+1(γ̄).
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Then, γ̄ ∈ im f t,t+1
S,A , too. This implies that the projection γ̄ must always appear in the

filtration at the same time or earlier than the corresponding cocycle γ = i∗(γ̄).
Proof

Assume γ /∈ im i∗t . Then, there exists a new relative cocycle γ̄′ in Hk(St+1, At+1) appearing
at time t+ 1, with γ = i∗t+1(γ̄

′). Let σ be the k-simplex added to St \At which gave birth to
it (i.e. St+1 = St ∪ {σ} and At = At+1). Since σ /∈ At+1, H∗(At+1) ∼= H∗(At). Moreover,
since σ is a k-simplex, Hk+1(St, At) ∼= Hk+1(St+1, At+1), too.

It follows that ker ∂kt
∼= ker ∂kt+1 and, therefore, coim j∗t+1

∼= coim j∗t . Since γ ∈ im i∗t+1,
γ /∈ coim j∗t+1

∼= coim j∗t . Hence, γ ∈ ker j∗t
∼= im i∗t .

This a contradiction, so it must be the case that γ ∈ im i∗t , too.
Now, let γ̄ ∈ Hk(St, At) s.t. γ = i∗t (γ̄). Then, by commutativity of the diagram,

γ = f t,t+1
S (i∗t (γ̄)) = i∗t+1(f

t,t+1
S,A (γ̄)), which implies γ̄ ∈ coim f t,t+1

S,A . In other words, γ̄ is also
a persistent cocycle in Hk(S,A).

As earlier, a similar argument should work also for triples B ⊂ A ⊂ S.
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