
Under review as submission to TMLR

Unmasking Trees for Tabular Data

Anonymous authors
Paper under double-blind review

Abstract

Despite much work on advanced deep learning and generative modeling techniques for tabular
data generation and imputation, traditional methods have continued to win on imputation
benchmarks. We herein present UnmaskingTrees, a simple method for tabular imputation
(and generation) employing gradient-boosted decision trees which are used to incrementally
unmask individual features. On a benchmark for “out-of-the-box” performance on 27 tabular
datasets, UnmaskingTrees offers leading performance on imputation; state-of-the-art perfor-
mance on generation given data with missingness; and competitive performance on vanilla
generation given data without missingness. To solve the conditional generation subproblem,
we propose a tabular probabilistic prediction method, BaltoBot, which fits a balanced tree
of boosted tree classifiers. Unlike older methods, it requires no parametric assumption on
the conditional distribution, accommodating features with multimodal distributions; unlike
newer diffusion methods, it offers fast sampling, closed-form density estimation, and flexible
handling of discrete variables. We finally consider our two approaches as meta-algorithms,
demonstrating in-context learning-based generative modeling with TabPFN.

1 Introduction

Given a tabular dataset, it is frequently desirable to impute any missing values within that dataset, and to
generate new synthetic examples. Due to the prevalence of missingness in tabular datsets, imputation has
been a long-standing task in statistics and machine learning (Little and Rubin, 2019). In particular, multiple
imputation methods, which produce multiple samples from the estimated conditional distribution of missing
features, have proved advantageous for downstream inferential and prediction tasks (Rubin, 1996). Multiple
imputation has also been used as a subroutine for counterfactual estimation (Kreindler and Lumsden, 2016;
Yoon et al., 2018b) and domain adaptation (Ragab et al., 2023; McCarter, 2024). Synthetic data generation
for tabular data has also seen recent interest, with applications in addressing data imbalance (Van Breugel
et al., 2021; Kim et al., 2022b) and in preserving privacy (Kotelnikov et al., 2023; Gulati and Roysdon, 2024).

Imputation and generation are closely related tasks. Multiple imputation can be seen as a form of conditional
generation, where the partitioning between output variables and input variables is not known in advance.
Generation is then a special case of imputation where the set of observed conditioning variables is empty.
Furthermore, due to the aforementioned prevalance of missingness in tabular data, generation methods also
frequently need to be able to handle missingness at training time.

In this work, we are primarily focused on generation and imputation methods for users with limited data and
computing resources. On data generation, recent work (Jolicoeur-Martineau et al., 2024b) (ForestDiffusion)
has shown leading results on data generation using gradient-boosted trees (Chen and Guestrin, 2016) trained
on diffusion or flow-matching objectives, outperforming deep learning-based approaches, particularly on
smaller datasets. However, this approach tended to struggle on tabular imputation tasks, outperformed by
MissForest (Stekhoven and Bühlmann, 2012), an older multiple imputation approach based on random forests
(Breiman, 2001).

We address this shortfall by training gradient-boosted trees to autoregressively unmask features in random
order, via permutation language modeling (Yang, 2019). This autoregressive approach, which we dub
UnmaskingTrees, naturally performs conditional generation (i.e. imputation): we simply fill in and condition

1

Under review as submission to TMLR

on observed values, autoregressively generating the remaining missing values. This contrasts with tabular
diffusion modeling, for which the RePaint inpainting algorithm (Lugmayr et al., 2022) is employed to
mediocre effect (Jolicoeur-Martineau et al., 2024b). Because the predictor for a given feature must condition
on varying subsets of the other features, the ability of gradient-boosted trees to handle missing features
makes them a natural choice for autoregressive modeling. Hence, we maintain the tree-based approach of
Jolicoeur-Martineau et al. (2024b), while replacing their tree-based regressors with our novel tree-based
probabilistic predictors, which we turn to next.

While mean-estimating regression models are satisfactory for diffusion, for autoregression we must inject
noise, and hence must estimate the entire conditional distribution of each feature. We therefore revisit the
long-studied problem of (tabular) probabilistic prediction (Le et al., 2005; Meinshausen and Ridgeway, 2006).
Because the conditional distribution is possibly multi-modal, parametric approaches such as XGBoostLSS
(März, 2019), NGBoost (Duan et al., 2020), and PGBM (Sprangers et al., 2021) are poor choices for our
setting. Meanwhile, quantization of a continuous variable can model its multi-modality, but at the cost
of destroying either low-resolution or high-resolution information. A diffusion-based method, Treeffuser
Beltran-Velez et al. (2024), was recently proposed to address these problems. However, as a diffusion method,
it suffers from slow sampling and is unable to provide closed-form density estimates; furthermore, Treeffuser
does not naturally model discrete outcomes. To address these problems, we propose BaltoBot, a balanced
tree of boosted trees. For each individual variable, we recursively divide its output space with the kernel
density integral (KDI) quantizer (McCarter, 2023) into a “meta-tree” of binary classifiers, which for us are
gradient-boosted trees. This allows us to efficiently generate samples and estimate densities, because each
sample follows only one path from root to leaf of the meta-tree. Performing regression with hierarchical
classification proved successful in computer vision object bounding box prediction (Li et al., 2020), but has
been surprisingly underexplored in tabular ML and in generative modeling.

Our two methods are in fact meta-algorithms that, in combination, can create a generative model out
of any probabilistic binary classifier. To demonstrate this flexibility, we swap out XGBoost (Chen and
Guestrin, 2016) for TabPFN (Hollmann et al., 2022). TabPFN is a deep learning model pretrained to
perform in-context learning for tabular classification. While it has state-of-the-art classification benchmark
performance (McElfresh et al., 2024), it does not perform regression tasks, nor does it inherently perform
generative modeling. Constructing a generative model out of TabPFN (Hollmann et al., 2022) was first
proposed in TabPFGen (Ma et al., 2024), which approximates the posterior from TabPFN-provided likelihoods
by iteratively applying stochastic gradient Langevin dynamics (Welling and Teh, 2011). But unlike the
previous work, ours requires only a few TabPFN forward-passes for each sample rather than many iterative
data updates.

We showcase UnmaskingTrees on two tabular case studies, and on the benchmark of 27 tabular datasets
presented by Jolicoeur-Martineau et al. (2024b). On this benchmark for “out-of-the-box” performance on small
tabular datasets, our approach offers leading performance on imputation and state-of-the-art performance on
generation given data with missingness; and it has competitive performance on vanilla generation without
missingness. We also demonstrate that BaltoBot is on its own a promising method for probabilistic prediction,
showing its advantages on synthetic case studies and on a heavy-tailed sales forecasting benchmark.

Finally, we provide code with an easy-to-use sklearn-style API at https://github.com/
another-anonymous-account/unmasking-trees. In addition to being useful for practitioners, we
hope our work sparks study within the tabular ML community about whether diffusion or autoregression is
better for tabular data. Previous autoregressive tabular modeling methods, TabMT (Gulati and Roysdon,
2024) and DP-TBART (Castellon et al., 2023), use Transformer (Vaswani, 2017) models, making them
less applicable for the GPU-poor; they also lack publicly-available implementations. Our simple, efficient
implementations of UnmaskingTrees and BaltoBot contribute to investigating this question.

2

https://github.com/another-anonymous-account/unmasking-trees
https://github.com/another-anonymous-account/unmasking-trees

Under review as submission to TMLR

2 Method

2.1 UnmaskingTrees for tabular joint distribution modeling

UnmaskingTrees combines gradient-boosted trees with the training objective of generalized autoregressive
language modeling (Yang, 2019), inheriting the benefits of both. Consider a dataset with N samples and
D features. We learn the joint distribution over D-dimensional sample x by maximizing the expected
log-likelihood with respect to all possible permutations of the factorization order,

log p(x) = logEσ∈U(GD)

[D∏
t=1

p
(
xσ(t)|xσ(<t)

)]
,

where σ is a permutation drawn uniformly from U(GD), the permutation group on D features; xσ(<t) denotes
all features that precede the t-th feature in the permuted sequence of features. If we were to have marginalized
over permutations, we would have obtained a masked language modeling procedure with a randomly-sampled
masking rate r ∼ U(0, 1) (Liao et al., 2020; Kitouni et al., 2023; 2024); such a procedure was previously shown
to have benefits in combination with tabular Transformer models (Gulati and Roysdon, 2024) (TabMT).

For each sample, we generate new training samples by randomly sampling an order over the features, then
incrementally masking the features in that random order. Given duplication factor K, we repeat this process
K times with K different random permutations, leading to a training dataset with KND samples. Given this,
we train XGBoost (Chen and Guestrin, 2016) models to predict each unmasked sample given the more-masked
sample derived from it, one per feature. We model categorical features via softmax-based classification with
cross-entropy loss; our approach for non-categorical features is described in Section 2.2.

For both generation and imputation, we generate features of each sample in random order. For imputation
rather than generation tasks, we begin by filling in each sample with the observed values, and run inference
on the remaining unobserved features. Implementing this is very simple: it requires about 70 lines of Python
code for training, and about 20 lines for inference. The training algorithm for UnmaskingTrees is given in
Algorithm 1.

Algorithm 1 Unmasking Trees training
Require: dataset X ∈ RN×D; duplication factor K.

1: {# Build self-supervised training set}
2: Set Xtrain = ∅, Ytrain = ∅.
3: for k = 1, . . . , K do
4: for n = 1, . . . , N do
5: Draw random permutation σ from U(GD)
6: Set x := Xn,: and y := Xn,:.
7: for d = 1, . . . , D do
8: Mask random element xσ(d) := [MASK].
9: Append Xtrain := Xtrain ∪ {x}, Ytrain := Ytrain ∪ {y}

10: end for
11: end for
12: end for
13: {# Train conditional generation models}
14: for d = 1, . . . , D do
15: if feature d in X is a categorical feature then
16: Train XGBClassifier on ([Xtrain]:,j ̸=d, [Ytrain]:,d).
17: else
18: Run BaltoBot with ([Xtrain]:,j ̸=d, [Ytrain]:,d).
19: end if
20: end for

3

Under review as submission to TMLR

2.2 BaltoBot for tabular probabilistic prediction

In diffusion models, predicting the score function can be framed as a regression problem where the model learns
to estimate the conditional mean. However, a key problem when switching to autoregressively generating
continuous data is that this regression approach will attempt to predict the mean of a conditional distribution,
whereas we would like the model to sample from the possibly-multimodal conditional distribution. The
simplest solution is to quantize continuous features into bins, because classification over histograms is
inherently multimodal; TabMT (Gulati and Roysdon, 2024) did this with 1d k-Means clustering (Lloyd, 1982).
Yet this not only destroys information within bins due to rounding, it also destroys information about the
proximity among the ordered bins. Thus, it forces us to choose between a small number of quantization bins,
yielding low resolution; or to choose a large number of bins, risking catastrophic errors due to overfitting
and/or clumping of generated samples due to poor calibration. This not only limits performance, but also
necessitates hyperparameter tuning (Gulati and Roysdon, 2024).

Inspired by this, we propose a general-purpose solution to the tabular probabilistic prediction problem. For
each individual regression output variable, we build a height-H balanced tree of binary classifiers. Consider a
node with height h on this “meta-tree”, which is fit with (Xtrain ∈ Rn×d, ytrain ∈ Rn). Using kernel density
integral quantization (KDI) (McCarter, 2023), which adaptively interpolates between uniform quantization and
quantile quantization, we obtain binarized ỹtrain ∈ [0, 1]n. Thus, the input space to every node is partitioned
into two with the splitting point determined by KDI. We train an XGBoost classifier on (Xtrain, ỹtrain). If
h > 0, we then recursively pass {(X(i), y(i)) ∈ (Xtrain, ytrain)|ỹ(i) = 0} to its left child, and analogously for
ỹ(i) = 1 to its right child. At a leaf node, h = 0, if given a single unique training set output value in a bin,
we record this value. At inference time, given a query input X, we descend the tree by obtaining predicted
probabilities from each node’s XGBoost classifier, then sampling from these. Once we reach a leaf node, we
either sample uniformly from its appropriate bin, or we return the lone output value if a singleton bin.

Conceptually, our proposed approach has four advantages. First, at training and inference time, each XGBoost
model within the meta-tree only sees samples that fall into its corresponding region of the output space.
Thus, for a meta-tree with height H (and thus 2H models), each sample is only passed as input to H different
models. While lower-level classifiers receive less data and are poorer quality, the magnitude of such errors
are smaller due to our hierarchical partitioning approach. Second, our singleton-bin technique allows us to
adaptively generate discrete and mixed-type variables, if the discrete outcome is frequent relative to the total
number of training samples and to the size of the meta-tree. (Up to 2H discrete outcomes can be produced
by BaltoBot.) Third, our adoption of KDI instead of KMeans for feature quantization is beneficial because
tabular data often has features which are irregular or highly skewed. KMeans clustering is based on mixture
modeling with equal-sized Gaussian components; in constrast, KDI is a 1d density-based clustering method
looks for local minima after applying a smoothing transformation. KDI was previously shown (McCarter,
2023) to be better at discretizing such irregular features than KMeans, so we propose adopting it here for
generative modeling. Finally, eschewing diffusion modeling enables us to perform closed-form conditional
density estimation.

The training and inference algorithms for BaltoBot are given in Algorithms 2 and 3, respectively.

Algorithm 2 BaltoBot training
Require: dataset (X ∈ RN×D, y ∈ RN); BaltoBot meta-tree height H;

1: if H = 0 or unique(y) = C for some constant C then
2: Save bounds := (min(y), max(y)).
3: else
4: Obtain split point p from KDI quantization on y.
5: Train XGBoost binary classifier on (X, 1{y ≤ p}).
6: Train “left-child” BaltoBot on {(X(i), y(i)) ∈ (X, y)|y(i) ≤ p}, with height H − 1.
7: Train “right-child” BaltoBot on {(X(i), y(i)) ∈ (X, y)|y(i) > p}, with height H − 1.
8: end if

4

Under review as submission to TMLR

Algorithm 3 BaltoBot inference
Require: input query x ∈ RD; trained BaltoBot model.

1: if bounds is defined then
2: Sample uniformly from U(bounds).
3: Return.
4: else
5: Obtain prediction from XGBoost binary classifier.
6: if prediction = left-child then
7: Run inference on “left-child” BaltoBot with input query x.
8: else if prediction = right-child then
9: Run inference on “right-child” BaltoBot with input query x.

10: end if
11: end if

2.3 Computational complexity

ForestDiffusion, with T diffusion steps and duplication factor K, constructs a training dataset of size TKN ×D.
Given the same duplication factor K, UnmaskingTrees will construct a training dataset of size KND × D.
Meanwhile, ForestDiffusion must train DT different XGBoost regression models. We, on the other hand,
train D different BaltoBot models, one per feature; with BaltoBot meta-tree height of H, we then train
a total of D2H XGBoost binary classifiers. However, classifiers lower in the BaltoBot meta-tree become
progressively faster to train. Indeed, each constructed training sample will be seen by DT different XGBoost
regressors with ForestDiffusion, but only DH classifiers with our approach. Given that T ∼ 50 and H ∼ 4,
this yields a large speedup for our approach.

The KDI quantizer (McCarter, 2023) has negligible contribution to runtime, because it uses the polynomial-
exponential kernel density estimator (KDE) (Hofmeyr, 2019), which has linear complexity in sample size for
1d data, unlike the quadratic complexity of the Gaussian KDE.

At inference time, each ForestDiffusion generated sample passes through T steps of the diffusion reverse-
process, for a total of DT XGBoost predictions. For UnmaskingTrees with BaltoBot, each generated sample
instead requires only DH XGBoost predictions, because each sample follows only one path from root to leaf
of the meta-tree. The resulting speedup is especially impactful for the multiple imputation scenario, where
inference time dominates.

We observe that MissForest and MICE-Forest require training DT models, where number of iterations T is
determined by a stopping criterion that tests for convergence. Assuming that dataset size does not affect the
number of required iterations, these methods each have complexity O(ND2).

2.4 In-context learning-based generation with BaltoBoTabPFN and UnmaskingTabPFN

Within our flexible frameworks for joint and conditional modeling, TabPFN (Hollmann et al., 2022) can be
used as a base learner for probabilistic prediction and generative modeling. For UnmaskingTabPFN joint
modeling, a difficulty arises from TabPFN’s inability to handle inputs Xtrain with missing values (NaNs). To
address this, we developed NanTabPFN, a wrapper for TabPFN that supports missingness in both training
and test features. Based on each test query xtest, we select row indices R and column indices C so that
[Xtrain]R,C has no NaNs, using the following key idea. Consider a particular train sample xtrain and test query
xtest, with visible (non-missing) features denoted by sets V(xtrain) and V(xtest). We can maximize the number
of utilized features, while also ensuring that TabPFN receives no NaNs, by restricting the set of columns
to those observed for the test query, C := V(xtest), then choosing training samples R := {i|C ⊆ V(x(i)

train)}.
In practice, our procedure is more complicated, because the above choices may result in either empty C or
empty R. If R is empty, we incrementally set random features of xtest to missing until we are able to obtain
a non-empty training set. If C is empty, we introduce a new all-1s feature to both Xtrain and xtest.

5

Under review as submission to TMLR

3 Results

Figure 1: Results on Two Moons case study. Original data is shown in green; generated data is shown in red;
imputed data is shown in blue.

Figure 2: Results on Iris dataset, with species, petal width, and petal length depicted. Original data and
synthetically-generated datasets are shown on the left columns. The imputed dataset is shown on the right
columns, with × symbols highlighting the samples with any missingness that required imputation.

6

Under review as submission to TMLR

We evaluate UnmaskingTrees on two case studies (Section 3.1) and on a tabular benchmark of 27 datasets
(Section 3.2). We then evaluate BaltoBot and BaltoBoTabPFN on tabular probabilistic prediction case
studies (Section 3.3) and on a sales forecasting dataset (Section 3.4). Results were obtained always using
our method’s default hyperparameters: BaltoBot tree height of 4, and duplication factor K = 50. These
hyperparameter values were tuned on the Two Moons and Iris case studies, then applied without further
tuning to the remaining experiments, because tuning is problematic for users with limited computing and/or
data resources. (The tree height H was tuned on Two Moons and Iris by increasing H until we saw that the
resulting plots stopped showing visible improvement.) XGBoost hyperparameters were set to their defaults.
Experiments were performed on a iMac (21.5-inch, Late 2015) with 2.8GHz Intel Core i5 processor and 16GB
memory.

Overall, UnmaskingTrees (using BaltoBot) has leading performance on imputation and state-of-the-art
performance on generation after training on incomplete data; and it has competitive performance on vanilla
tabular generation scenarios. We further demonstrate the benefits of BaltoBot and BaltoBoTabPFN when
evaluated in their own right for probabilistic prediction.

3.1 Case studies on Two Moons and Iris datasets

Two Moons dataset We first compare our approach to previous leading methods on the synthetic Two
Moons dataset with 200 training samples and noise level N (0, 0.1). We compare UnmaskingTrees to MissForest
(Stekhoven and Bühlmann, 2012), MICE-Forest (Van Buuren et al., 1999; Wilson et al., 2022) (another
popular traditional multiple imputation method), and ForestDiffusion, with default hyperparameters for
all methods. For ForestDiffusion, we evaluate both the variance-preserving SDE diffusion (Forest-VP) and
flow-matching (Forest-Flow) versions on generation; on imputation, we evaluate Forest-VP with and without
RePaint, again using default RePaint hyperparameters; Forest-Flow does not support imputation.

We show results in Figure 1. On generation, Forest-VP appears to do best according to visual inspection,
while UnmaskingTrees and Forest-Flow perform similarly decently. UnmaskingTabPFN performs poorly, but
does capture the overall shape of the distribution. Next, we turn to imputation, wherein we request a single
imputation for a copy of the original training data with the second dimension (y-axis) values masked out.
ForestDiffusion struggles with and without RePaint, with substantial out-of-distribution imputations, and
MissForest and MICE-Forest share this problem to lesser degrees. Meanwhile, UnmaskingTrees generates
impeccable imputations.

Iris dataset In Figure 2, we show results for the Iris dataset (Fisher, 1936), plotting petal length, petal
width, and species. We compare both methods on generation, and to compare on imputation, we create
another version of the Iris dataset, with missingness completely at random: we randomly select samples with
50% chance to have any missingness, and on these samples, we mask the non-species feature values with 50%
chance. Visually, ForestDiffusion and UnmaskingTrees perform about equally well on generation. Meanwhile,
on imputation, UnmaskingTrees does a better job conditioning on species information than ForestDiffusion.
UnmaskingTrees also produces more diverse imputations than MissForest.

3.2 Benchmarking UnmaskingTrees on 27 tabular datasets

Imputation Here, we add UnmaskingTrees to the benchmark of 8 imputation methods on 27 public datasets,
evaluated according to 9 metrics, developed by Jolicoeur-Martineau et al. (2024b) for evaluating tabular
imputation and generation methods. This benchmark primarily contains smaller-sized (with 103 ≤ N ≤ 20,640
and 4 ≤ D ≤ 90) datasets, which our approach is especially geared towards. Namely, we compare our approach
against Forest-VP Jolicoeur-Martineau et al. (2024b), as well as k-NN imputation (Troyanskaya et al., 2001),
ICE (Buck, 1960), MICE-Forest (Van Buuren et al., 1999; Wilson et al., 2022), MissForest (Stekhoven and
Bühlmann, 2012), Softimpute (Hastie et al., 2015), minibatch Sinkhorn optimal transport (Muzellec et al.,
2020), and generative adversarial nets (GAIN) (Yoon et al., 2018a). 1 We follow Jolicoeur-Martineau et al.
(2024b) in computing the per-dataset rank of each method relative to other methods, then reporting the

1We do not add TabMT (Gulati and Roysdon, 2024) and TabPFGen (Ma et al., 2024) to the benchmark because no code was
provided. We do not add UnmaskingTabPFN because of out-of-memory errors on our machine.

7

Under review as submission to TMLR

average over 27 datasets. For all methods other than our own, we compute ranks by reusing the raw scores
provided in Jolicoeur-Martineau et al. (2024b)’s code repository.

Results for imputation are shown in Table 1. UnmaskingTrees wins first place on 3/9 metrics, including both
metrics based on downstream prediction tasks; and it generally outperforms ForestDiffusion, winning on
8/9 metrics. While MissForest wins first place on 4/9 metrics, UnmaskingTrees wins 5-4 head-to-head vs
MissForest; UnmaskingTrees has average averaged rank of 3.2 compared to 3.5 for MissForest. UnmaskingTrees
is also the only method with better than 5th place rank on all metrics.

We report further ablation experiments in Table 2, wherein we run UnmaskingTrees without BaltoBot, and
instead with vanilla quantization using k-Means clustering (Lloyd, 1982) and KDI quantization (McCarter,
2023). Results showing progressive improvements for the UnmaskingTrees framework, for KDI quantization
versus k-Means, and for the BaltoBot method used in our full proposed solution.

Table 1: Tabular data imputation (27 datasets, 3 experiments per dataset, 10 imputations per experiment)
with 20% missing. Shown are averaged rank over all datasets and experiments (standard-error). Overall best
is highlighted; better of Forest-VP versus ours is boldface blue.

MinMAE ↓ AvgMAE ↓ Wtrain ↓ Wtest ↓ MAD ↓ R2 ↓ F1 ↓ Pbias ↓ Covrate ↓

KNN 5.5 (0.5) 6.3 (0.4) 4.9 (0.4) 5.0 (0.4) 8.4 (0) 6.5 (1) 5.7 (1.1) 6.2 (1) 5.4 (0.6)
ICE 6.8 (0.4) 4.7 (0.4) 7.0 (0.5) 7.2 (0.4) 1.6 (0.2) 6.2 (1) 7.0 (0.6) 5.7 (0.9) 5.3 (0.6)

MICE-Forest 3.9 (0.4) 2.5 (0.4) 2.9 (0.2) 3.0 (0.2) 3.6 (0.2) 3.7 (1.4) 3.2 (1) 5.5 (1.2) 4.3 (0.6)
MissForest 2.7 (0.5) 4.0 (0.4) 1.8 (0.3) 2.0 (0.3) 5.5 (0.2) 3.8 (1.4) 2.5 (0.5) 5.5 (1.5) 3.3 (0.5)
Softimpute 6.7 (0.4) 7.6 (0.4) 7.1 (0.5) 7.3 (0.5) 8.4 (0) 6.0 (0.9) 7.8 (0.4) 6.3 (0.9) 6.7 (0.4)

OT 5.9 (0.4) 6.1 (0.3) 6.0 (0.5) 6.0 (0.5) 3.7 (0.3) 6.2 (0.5) 6.8 (0.6) 5.5 (0.8) 4.8 (0.5)
GAIN 4.7 (0.4) 6.5 (0.3) 6.0 (0.3) 6.0 (0.2) 6.9 (0.1) 5.7 (0.8) 5.4 (0.8) 4.7 (1) 5.0 (0.6)

Forest-VP 5.3 (0.4) 4.0 (0.5) 5.8 (0.3) 5.1 (0.4) 3.2 (0.4) 4.5 (0.9) 4.6 (0.8) 3.3 (0.6) 5.5 (0.7)
UTrees 3.5 (0.5) 3.2 (0.5) 3.5 (0.4) 3.5 (0.5) 3.8 (0.2) 2.5 (0.6) 2.2 (0.6) 2.3 (0.9) 4.7 (0.6)

Table 2: Averaged ranks from ablation study of tabular data imputation (27 datasets, 3 experiments per
dataset, 10 imputations per experiment) with 20% missing. Shown are averaged rank over all datasets and
experiments (standard-error). Overall best is highlighted; better of Forest-VP versus ours is boldface blue.
See Table 1 for column meanings.

MinMAE ↓ AvgMAE ↓ Wtrain ↓ Wtest ↓ MAD ↓ R2 ↓ F1 ↓ Pbias ↓ Covrate ↓

KNN 6.8 (0.6) 7.8 (0.6) 6.0 (0.4) 6.1 (0.5) 10.4 (0) 8.2 (1.3) 7.0 (1.5) 7.5 (1.5) 6.5 (0.8)
ICE 8.3 (0.5) 5.8 (0.5) 8.5 (0.6) 8.8 (0.5) 1.9 (0.4) 8.0 (1.1) 9.0 (0.6) 7.2 (1.1) 6.4 (0.8)

MICE-Forest 4.8 (0.6) 3.3 (0.6) 3.5 (0.3) 3.4 (0.3) 4.6 (0.4) 4.3 (1.8) 4.3 (1.3) 6.8 (1.6) 4.8 (0.7)
MissForest 3.3 (0.7) 5.0 (0.6) 2.2 (0.4) 2.3 (0.4) 7.2 (0.3) 4.7 (1.8) 3.3 (0.9) 6.8 (1.9) 3.8 (0.6)
Softimpute 8.3 (0.5) 9.3 (0.5) 8.8 (0.6) 8.9 (0.6) 10.4 (0) 7.5 (1.2) 9.8 (0.4) 8.3 (0.9) 7.9 (0.6)

OT 7.2 (0.5) 7.6 (0.4) 7.4 (0.6) 7.4 (0.6) 4.8 (0.4) 8.2 (0.5) 8.8 (0.6) 7.3 (0.7) 5.8 (0.7)
GAIN 5.8 (0.5) 8.3 (0.4) 7.2 (0.5) 7.5 (0.4) 8.9 (0.1) 7.5 (0.8) 7.4 (0.8) 6.7 (1) 6.1 (0.8)

Forest-VP 6.4 (0.5) 4.8 (0.6) 7.0 (0.4) 6.1 (0.5) 3.8 (0.5) 6.5 (0.9) 6.6 (0.8) 4.5 (0.8) 6.5 (0.8)
UTrees-kMeans 6.0 (0.6) 5.8 (0.5) 6.3 (0.6) 6.1 (0.6) 4.1 (0.3) 4.0 (0.7) 2.9 (0.6) 3.8 (1) 6.0 (0.7)

UTrees-KDI 5.1 (0.5) 5.1 (0.5) 5.4 (0.6) 5.6 (0.5) 4.8 (0.3) 4.5 (0.9) 4.0 (0.5) 3.5 (1.2) 6.4 (0.7)
UTrees 3.8 (0.5) 3.2 (0.5) 3.8 (0.4) 3.8 (0.5) 5.0 (0.3) 2.7 (0.6) 2.9 (0.8) 3.5 (0.8) 5.8 (0.7)

Generation with and without missingness We next repeat the experimental setup of Jolicoeur-
Martineau et al. (2024b) for evaluating tabular generation methods. For tabular generation, using the same 27
datasets, Jolicoeur-Martineau et al. (2024b) benchmark their methods (Forest-VP and Forest-Flow) against 6
other methods, namely, Gaussian Copula (Joe, 2014), tabular variational autoencoding (TVAE) (Xu et al.,
2019), two conditional generative adversarial net methods (CTGAN (Xu et al., 2019) and CTAB-GAN+
(Zhao et al., 2021)), and two other tabular diffusion methods (STaSy (Kim et al., 2022a) and TabDDPM
(Kotelnikov et al., 2023)). These are evaluated with 9 metrics, in the vanilla fully-observed setting and in the
synthetically-induced 20% missing completely at random (MCAR) setting.

Results for partially-missing data are shown in Table 3. UnmaskingTrees is first place on 5/9 metrics;
head-to-head, UnmaskingTrees beats TabDDPM 5-4, and beats Forest-Flow 6-3. Results for fully-observed
data are shown in Table 4. UnmaskingTrees loses head-to-head to Forest-Flow, Forest-VP, and TabDDPM,
but wins against the other methods.

Raw scores, per-dataset results, and runtimes are provided in the Appendix.

8

Under review as submission to TMLR

Table 3: Tabular data generation with incomplete data (27 datasets, 3 experiments per dataset, 20% missing
values), MissForest is used to impute missing data except in Forest-VP, Forest-Flow, and UnmaskingTrees;
averaged rank over all datasets and experiments (standard-error). Overall best is highlighted; better of
Forest-VP versus Forest-Flow versus ours is boldface blue.

Wtrain ↓ Wtest ↓ covtrain ↓ covtest ↓ R2
fake ↓ F 1fake ↓ F 1disc ↓ Pbias ↓ covrate ↓

GaussianCopula 7.0 (0.3) 7.1 (0.2) 7.2 (0.3) 7.1 (0.3) 6.3 (0.4) 6.6 (0.3) 6.7 (0.4) 5.5 (1.0) 7.7 (0.6)
TVAE 5.2 (0.3) 4.9 (0.3) 5.7 (0.3) 5.8 (0.2) 6.0 (1.0) 5.8 (0.5) 5.8 (0.4) 8.0 (0.4) 6.2 (1.0)

CTGAN 8.3 (0.2) 8.4 (0.2) 8.4 (0.2) 8.3 (0.2) 8.3 (0.3) 8.4 (0.2) 6.5 (0.2) 4.8 (1.2) 7.1 (0.7)
CTABGAN 6.7 (0.4) 6.5 (0.4) 7.1 (0.3) 6.8 (0.3) 7.3 (0.6) 7.1 (0.4) 6.6 (0.3) 7.5 (1.0) 6.1 (0.6)

Stasy 5.9 (0.2) 6.1 (0.3) 5.3 (0.2) 5.1 (0.3) 5.8 (0.9) 4.4 (0.4) 5.3 (0.4) 3.7 (0.4) 4.6 (1.1)
TabDDPM 3.0 (0.7) 3.4 (0.7) 2.3 (0.5) 2.9 (0.6) 1.7 (0.3) 3.3 (0.6) 3.9 (0.6) 3.8 (1.2) 2.0 (0.5)
Forest-VP 3.7 (0.2) 3.2 (0.3) 3.9 (0.2) 3.8 (0.3) 3.2 (0.3) 2.3 (0.3) 4.2 (0.4) 4.2 (0.8) 4.5 (1.1)

Forest-Flow 3.0 (0.3) 2.6 (0.3) 2.6 (0.3) 2.7 (0.2) 3.0 (0.7) 3.7 (0.3) 5.0 (0.5) 3.8 (0.9) 3.2 (0.8)
UTrees 2.1 (0.2) 2.8 (0.3) 2.5 (0.2) 2.5 (0.2) 3.3 (0.8) 3.5 (0.5) 1.0 (0.0) 3.7 (0.9) 3.7 (1.0)

Table 4: Tabular data generation with complete data (27 datasets, 3 experiments per dataset); averaged rank
over all datasets and experiments (standard-error). Overall best is highlighted; better of Forest-VP versus
Forest-Flow versus ours is boldface blue.

Wtrain ↓ Wtest ↓ covtrain ↓ covtest ↓ R2
fake ↓ F 1fake ↓ F 1disc ↓ Pbias ↓ Covrate ↓

GaussianCopula 7.1 (0.3) 7.2 (0.3) 7.3 (0.3) 7.4 (0.3) 6.2 (0.2) 6.4 (0.3) 7.0 (0.4) 6.5 (1.1) 7.5 (0.7)
TVAE 5.3 (0.2) 5.1 (0.2) 5.7 (0.2) 5.7 (0.2) 6.5 (0.7) 6.0 (0.5) 5.5 (0.3) 7.3 (0.6) 6.7 (0.6)

CTGAN 8.4 (0.1) 8.4 (0.2) 8.3 (0.2) 8.1 (0.2) 8.5 (0.2) 8.3 (0.2) 6.7 (0.3) 5.3 (1.1) 7.2 (0.5)
CTAB-GAN+ 6.8 (0.3) 6.7 (0.3) 7.2 (0.3) 7.1 (0.3) 6.8 (0.4) 6.9 (0.4) 6.9 (0.3) 7.7 (0.8) 6.7 (0.8)

STaSy 6.1 (0.2) 6.3 (0.2) 5.3 (0.2) 5.4 (0.2) 6.0 (1.2) 5.1 (0.3) 6.1 (0.3) 4.5 (0.8) 4.2 (1.1)
TabDDPM 3.0 (0.7) 3.9 (0.6) 2.8 (0.5) 3.4 (0.5) 1.2 (0.2) 3.8 (0.6) 3.2 (0.4) 3.0 (0.9) 1.4 (0.2)
Forest-VP 3.2 (0.2) 2.8 (0.2) 3.6 (0.3) 3.3 (0.3) 2.8 (0.3) 2.2 (0.3) 4.3 (0.4) 3.2 (0.9) 3.5 (0.8)

Forest-Flow 1.9 (0.2) 1.5 (0.2) 1.7 (0.2) 1.8 (0.2) 2.3 (0.4) 2.4 (0.3) 4.3 (0.4) 2.8 (0.5) 2.7 (0.4)
UTrees 3.1 (0.1) 3.1 (0.2) 3.1 (0.2) 2.8 (0.2) 4.7 (0.3) 3.9 (0.3) 1.0 (0.0) 4.7 (0.7) 5.2 (0.9)

3.3 Evaluating BaltoBot on synthetic probabilistic prediction case studies

Wave dataset We compare our approach with Treeffuser (Beltran-Velez et al., 2024) on the “wave”
synthetic dataset from Treeffuser (Beltran-Velez et al., 2024), which as shown in Figure 3 is nonlinear,
multimodal, and heteroskedastic. On the raw probabilistic predictions in Figure 3(A), we see that BaltoBot
and BaltoBoTabPFN are (by visual inspection) able to model the conditional distribution as well as Treeffuser.
Yet this case study illustrates the two advantages of BaltoBot. First, in Figure 3(B) we show the runtime
of the different methods: training, sampling, and total. To train on 5000 samples, Treeffuser took 1.1s and
BaltoBot took 2.6s. But to generate 5000 samples, Treeffuser took 5.0s while BaltoBot took 0.72s, for ∼ 7×
speedup. Second, BaltoBot offers the ability to estimate a closed-form probability density function (pdf)
of the predictive distribution as shown in Figure 3(C); in contrast, Treeffuser can only sample from the
predictive distribution.

Poisson-distributed count data We generate 500 samples of Xi ∼ Unif[0, 3], Yi ∼ Poisson(λ =
√

Xi),
and show probabilistic predictions for Y in Figure 4. Whereas Treeffuser generates a spurious negative-valued
outlier and many non-integer Y samples, our approach automatically models the count-type distribution of
the data.

3.4 Sales forecasting with uncertainty

We employ the M5 sales forecasting Kaggle dataset (Makridakis and Howard, 2020) to compare BaltoBot
with other probabilistic prediction methods. The dataset has five years of sales data from ten Walmart
stores, and the task requires predicting the (heavy-tailed) number of units sold given a product’s attributes
and previous sales. We use the exact same data preparation used for Treeffuser (Beltran-Velez et al., 2024)
experiments, which yields 1k products, 120k training samples, and 10k test samples. As in the Treeffuser
evaluation (Beltran-Velez et al., 2024), we evaluate probabilistic predictions with the continuous ranked
probability score (CRPS), and evaluate the conditional mean predictions with the mean absolute error (MAE)
and root mean-squared error (RMSE).

9

Under review as submission to TMLR

Figure 3: Comparison of Treeffuser and our approach on wave synthetic data with 5000 samples. (A)
Probabilistic predictions for Treeffuser (top), BaltoBot (center), and BaltoBoTabPFN (bottom). (B) Runtime
comparison for the different methods. (C) Estimated pdf from our methods at X = 2, depicted as the vertical
dotted line in (A).

Figure 4: Comparison of Treeffuser, BaltoBot, and BaltoBoTabPFN on Poisson-distributed data. The input
variable is on the x-axis, while probabilistic predictions are shown on the y-axis.

For full comparability, we follow the Treeffuser evaluation setup (Beltran-Velez et al., 2024) and evaluate
CRPS by generating 100 samples from our estimators’ p(y|X) for each X in the testset; and for MAE and
RMSE, we estimate the conditional means E[y|X] using 50 samples. For comparability, for this (and only
this) dataset, we also evaluate BaltoBot with hyperparameter tuning, using the same setup used for all other
methods (10 folds, each with 80%-20% train-validation split, and 25 Bayesian optimization iterations). 2 We
also compare Treeffuser, BaltoBot, and BaltoBoTabPFN when run without hyperparameter tuning.

We report results in Table 5. In addition to ours’ and Treeffuser, we report results for Deep Ensembles
(Lakshminarayanan et al., 2017), IBUG (Brophy and Lowd, 2022), NGBoost Poisson (Duan et al., 2020),
and Quantile Regression Forests (Meinshausen and Ridgeway, 2006). For methods other than our own,

2We optimize over the following XGBoost hyperparameter spaces: learning_rate ∈ log-uniform(0.05, 0.5), max_leaves
∈ {0, 25, 50}, and subsample ∈ log-uniform(0.3, 1).

10

Under review as submission to TMLR

Table 5: Sales forecasting evaluation on M5 dataset. We highlight the best 2 methods for each metric. The
best of Treeffuser versus ours (with tuning) is boldface blue; the best of Treeffuser versus ours (without
tuning) is boldface brown.

Method CRPS ×10−1(↓) RMSE ×100(↓) MAE ×100(↓)

Deep Ensembles 7.05 2.03 0.97
IBUG 8.90 2.12 1.00
NGBoost Poisson 6.86 2.33 0.99
Quantile Regression Forests 7.11 2.88 1.01
Treeffuser 6.44 2.09 0.99
BaltoBot 6.44 2.07 0.98
Treeffuser (no tuning) 6.62 2.09 0.99
BaltoBot (no tuning) 6.69 2.19 0.98
BaltoBoTabPFN (no tuning) 6.66 2.06 0.97

we report the metrics provided in Table 2 of (Beltran-Velez et al., 2024). Overall, our proposed methods
outperform previous methods at combining excellent performance on both conditional distribution prediction
and conditional mean prediction. Treeffuser and BaltoBot (both with tuning) tie for first-place according to
CRPS, yet BaltoBot outperforms Treeffuser on RMSE and MAE. The winners on conditional mean metrics
(RMSE and MAE) are Deep Ensembles and BaltoBoTabPFN, yet BaltoBoTabPFN (no tuning) strongly
outperforms Deep Ensembles on CRPS.

4 Limitations and Future Work

Limitations While UnmaskingTrees leads overall on the tabular imputation benchmark, MissForest still
outperformed on the metrics based on Wasserstein distance to train and test dataset distributions. And
Forest-Flow still won on vanilla (i.e. no missingness) generation benchmark. It remains to be seen whether a
single method can be developed which wins on all scenarios and metrics.

Our proposed BaltoBot method would benefit from a more principled method for selection of the meta-tree
height H. Unlike with standard flat quantization where having a large number of bins can cause one to make
catastrophically wrong predictions, BaltoBot “knows” proximities among meta-tree leaves. This means that
making H bigger tends not to cause major errors, so it’s better to err on the side of larger H rather than small
H. Still, the main drawbacks with increasing H are that (1) training takes longer, and (2) imputations and
generations are less diverse. Deeper theoretical analysis of these trade-offs and a more principled approach
for choosing the height would improve the ease-of-use and potentially the performance of our method.

While BaltoBoTabPFN performed well on probabilistic prediction tasks, when used as a subroutine in
UnmaskingTabPFN, it is very slow and experienced out-of-memory errors on the (Jolicoeur-Martineau et al.,
2024b) benchmark on our machine. Further improvements either to it, or to how it is employed, are needed
to make it practical for all but the smallest datasets.

With regards to scalability, the runtime complexity of UnmaskingTrees training is cubic in terms of feature
dimensionality D. This compares to quadratic complexity for ForestDiffusion; this would also be the
complexity for single-order autoregressive modeling, which would support only generation rather than
arbitrary imputation. This means that our approach is primarily applicable for small-sized tabular datasets,
or for scenarios where inference time is more important than training time.

Related to the above remarks, we would like to emphasize that our proposed approach is aimed at and
evaluated on smaller-sized tabular datasets. It is also evaluated via “out-of-the-box” performance, being
aimed at users lacking the resources for large deep learning models or hyperparameter optimization. For
users with access to larger tabular datasets and more extensive computing resources, recent deep learning
methods like Tabsyn (Zhang et al., 2024) would be expected to perform better.

11

Under review as submission to TMLR

Future Work Reducing the training complexity with respect to the number of features is a key next step.
One possibility would be to use an optimized, rather than random, selection of feature orderings at training
time (Shih et al., 2022). Another possibility would be to use multi-output trees to train a single XGBoost
model for all BaltoBot tree nodes and all features, similarly to a recently-proposed approach for speeding
up ForestDiffusion (Cresswell and Kim, 2024). In addition to improving scalability, BaltoBot’s core idea
of binary partitioning could be combined with deep learning approaches. For example, one might equip a
neural network with a hierarchical softmax head (Morin and Bengio, 2005) for modeling continuous outputs
without losing proximity information among bins. Finally, future work could theoretically analyze BaltoBot,
empirically evaluate it on uncertainty quantification and probabilistic forecasting tasks, and extend it to
multiple dimensions.

5 Discussion and Related Work

Diffusion modeling has recently gained popularity in tabular ML (Zheng and Charoenphakdee, 2022; Jolicoeur-
Martineau et al., 2024b; Beltran-Velez et al., 2024; Kotelnikov et al., 2023). Our proposed approach is an
instance of the autoregressive discrete diffusion framework (Hoogeboom et al., 2021), instances of which have
shown success in a variety of tasks (Yang, 2019; Austin et al., 2021; Kitouni et al., 2024; Jolicoeur-Martineau
et al., 2024a). Yet our results call into question whether diffusion is beneficial for tabular conditional
generation, or whether autoregression is sufficient for our setting. It has been observed that diffusion is
autoregression in frequency space, progressing from low frequencies to high frequencies, which makes it a
good match for image data with its power law spectra (Rissanen et al., 2022; Dieleman, 2024; Stewart, 2024).
In tabular datasets without this phenomena, we would expect diffusion modeling to be less advantageous.

Why is ForestDiffusion better at vanilla generative modeling, while UnmaskingTrees is better on missing data
problems? We offer two speculative explanations. First, imputation is a conditional modeling scenario, except
that you do not know the partition of the features into input features and output features a priori. One could
address imputation by learning all possible 2D conditional distributions, but this is impractical for large D,
so one would prefer to learn a single joint distribution. Both autoregression and diffusion are ways of learning
a joint distribution; because autoregression does so by learning conditional distributions, it is more suited to
the conditional modeling imputation setting. Second, for missing data, diffusion has a train-inference gap:
during training, observed features begin the reverse process from N (0, 1); during inference for imputation,
observed features begin the reverse process at their actual values. On the other hand, the advantages of
diffusion modeling (no quantization error, holistic generation, needing only an estimated score function rather
than well-calibrated conditional distributions) give it superiority when these problems can be avoided.

Despite their strong outperformance on other modalities, deep learning approaches have laboured against
gradient-boosted decision trees on tabular data (Shwartz-Ziv and Armon, 2022; Jolicoeur-Martineau et al.,
2024b). Previous work (Breejen et al., 2024) suggests that tabular data requires an inductive prior that favors
sharpness rather than smoothness, showing that TabPFN (Hollmann et al., 2022) (the leading deep learning
tabular classification method) can be further improved with synthetic data generated from random forests.
We anticipate that our XGBoost classifiers may be swapped out for a future variant of TabPFN that learns
sharper boundaries and handles missingness.

We also note that MissForest (Stekhoven and Bühlmann, 2012), hailing from statistical literature on multiple
imputation, has yet to be completely dethroned. Future progress in tabular conditional generation may
require going back to the well of this traditional literature. As one example, we observe that MissForest
exploits feature missingness fraction information, but we are not aware of any “machine learning” approaches
which do so. The statistical literature has also previously explored the value of conditional modeling for joint
modeling (Gelman and Raghunathan, 2001; Liu et al., 2014; Kropko et al., 2014). Indeed, our UnmaskingTrees
approach, and all autoregressive modeling, is presaged by the full-mechanism bootstrap (Efron, 1994).

Finally, we observe where randomness enters into our generation process compared to previous work. Flow-
matching (Liu et al., 2022; Albergo and Vanden-Eijnden, 2022; Lipman et al., 2022) (used in Forest-Flow)
injects randomness solely at the beginning of the reverse process via Gaussian sampling, whereas diffusion
modeling (Sohl-Dickstein et al., 2015; Song and Ermon, 2019) (used in Forest-VP) injects randomness both
at the beginning and during the reverse process. In contrast, because our method starts with a fully-masked

12

Under review as submission to TMLR

sample, it injects randomness gradually during the generation process. First, we randomly generate the order
over features for unmasking. Second, we do not “greedily decode” to the most likely leaf in the meta-tree,
but instead sample according to predicted probabilities. Third, for continuous features, having sampled a
particular meta-tree leaf bin, we sample from within the bin, treating it as a uniform distribution.

6 Conclusions

We proposed tree-based autoregressive modeling of tabular data, especially for data with missingness. For
the subproblem of conditional probabilistic prediction of individual variables, we presented a hierarchical
partitioning method with benefits over vanilla quantization and diffusion-based probabilistic prediction. We
then considered each of these as meta-algorithms that enable pure in-context learning-based modeling using
TabPFN as base classifier. On a benchmark for out-of-the box performance on tabular data, we showed
leading results for imputation and state-of-the-art results for generation given data with missingness.

13

Under review as submission to TMLR

References
Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. arXiv

preprint arXiv:2209.15571, 2022. 12

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems,
34:17981–17993, 2021. 12

Nicolas Beltran-Velez, Alessandro Antonio Grande, Achille Nazaret, Alp Kucukelbir, and David Blei. Tre-
effuser: Probabilistic predictions via conditional diffusions with gradient-boosted trees. arXiv preprint
arXiv:2406.07658, 2024. 2, 9, 10, 11, 12

Felix den Breejen, Sangmin Bae, Stephen Cha, and Se-Young Yun. Why in-context learning transformers are
tabular data classifiers. arXiv preprint arXiv:2405.13396, 2024. 12

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001. 1

Jonathan Brophy and Daniel Lowd. Instance-based uncertainty estimation for gradient-boosted regression
trees. Advances in Neural Information Processing Systems, 35:11145–11159, 2022. 10

Samuel F Buck. A method of estimation of missing values in multivariate data suitable for use with an
electronic computer. Journal of the Royal Statistical Society: Series B (Methodological), 22(2):302–306,
1960. 7

Rodrigo Castellon, Achintya Gopal, Brian Bloniarz, and David Rosenberg. Dp-tbart: A transformer-based
autoregressive model for differentially private tabular data generation. arXiv preprint arXiv:2307.10430,
2023. 2

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016. 1, 2, 3

Jesse C Cresswell and Taewoo Kim. Scaling up diffusion and flow-based xgboost models. arXiv preprint
arXiv:2408.16046, 2024. 12

Sander Dieleman. Diffusion is spectral autoregression, 2024. URL https://sander.ai/2024/09/02/
spectral-autoregression.html. 12

Tony Duan, Avati Anand, Daisy Yi Ding, Khanh K Thai, Sanjay Basu, Andrew Ng, and Alejandro Schuler.
Ngboost: Natural gradient boosting for probabilistic prediction. In International conference on machine
learning, pages 2690–2700. PMLR, 2020. 2, 10

Bradley Efron. Missing data, imputation, and the bootstrap. Journal of the American Statistical Association,
89(426):463–475, 1994. 12

Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2):179–188,
1936. 7

Andrew Gelman and Trivellore E Raghunathan. Using conditional distributions for missing-data imputation.
Statistical Science, 15:268–69, 2001. 12

Manbir Gulati and Paul Roysdon. Tabmt: Generating tabular data with masked transformers. Advances in
Neural Information Processing Systems, 36, 2024. 1, 2, 3, 4, 7

Trevor Hastie, Rahul Mazumder, Jason D Lee, and Reza Zadeh. Matrix completion and low-rank svd via fast
alternating least squares. The Journal of Machine Learning Research, 16(1):3367–3402, 2015. 7

David P Hofmeyr. Fast exact evaluation of univariate kernel sums. IEEE transactions on pattern analysis
and machine intelligence, 43(2):447–458, 2019. 5

14

https://sander.ai/2024/09/02/spectral-autoregression.html
https://sander.ai/2024/09/02/spectral-autoregression.html

Under review as submission to TMLR

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer that
solves small tabular classification problems in a second. arXiv preprint arXiv:2207.01848, 2022. 2, 5, 12

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and Tim
Salimans. Autoregressive diffusion models. arXiv preprint arXiv:2110.02037, 2021. 12

Harry Joe. Dependence modeling with copulas. CRC press, 2014. 8

Alexia Jolicoeur-Martineau, Aristide Baratin, Kisoo Kwon, Boris Knyazev, and Yan Zhang. Any-property-
conditional molecule generation with self-criticism using spanning trees. arXiv preprint arXiv:2407.09357,
2024a. 12

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular data
via diffusion and flow-based gradient-boosted trees. In International Conference on Artificial Intelli-
gence and Statistics, pages 1288–1296. PMLR, 2024b. URL https://github.com/SamsungSAILMontreal/
ForestDiffusion. 1, 2, 7, 8, 11, 12, 18, 19

Jayoung Kim, Chaejeong Lee, and Noseong Park. Stasy: Score-based tabular data synthesis. arXiv preprint
arXiv:2210.04018, 2022a. 8

Jayoung Kim, Chaejeong Lee, Yehjin Shin, Sewon Park, Minjung Kim, Noseong Park, and Jihoon Cho.
Sos: Score-based oversampling for tabular data. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 762–772, 2022b. 1

Ouail Kitouni, Niklas Nolte, James Hensman, and Bhaskar Mitra. Disk: A diffusion model for structured
knowledge. arXiv preprint arXiv:2312.05253, 2023. 3

Ouail Kitouni, Niklas Nolte, Diane Bouchacourt, Adina Williams, Mike Rabbat, and Mark Ibrahim. The
factorization curse: Which tokens you predict underlie the reversal curse and more. arXiv preprint
arXiv:2406.05183, 2024. 3, 12

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling tabular
data with diffusion models. In International Conference on Machine Learning, pages 17564–17579. PMLR,
2023. 1, 8, 12

David M Kreindler and Charles J Lumsden. The effects of the irregular sample and missing data in time
series analysis. In Nonlinear Dynamical Systems Analysis for the Behavioral Sciences Using Real Data,
pages 149–172. CRC Press, 2016. 1

Jonathan Kropko, Ben Goodrich, Andrew Gelman, and Jennifer Hill. Multiple imputation for continuous
and categorical data: comparing joint multivariate normal and conditional approaches. Political Analysis,
22(4), 2014. 12

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural information processing systems, 30, 2017. 10

Quoc V Le, Tim Sears, and Alexander J Smola. Nonparametric quantile regression. Technical report,
Technical report, National ICT Australia, June 2005. Available at http://sml . . . , 2005. 2

Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, and Juho Kannala. Hierarchical scene coordinate
classification and regression for visual localization. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11983–11992, 2020. 2

Yi Liao, Xin Jiang, and Qun Liu. Probabilistically masked language model capable of autoregressive generation
in arbitrary word order. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 263–274, 2020. 3

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for
generative modeling. arXiv preprint arXiv:2210.02747, 2022. 12

15

https://github.com/SamsungSAILMontreal/ForestDiffusion
https://github.com/SamsungSAILMontreal/ForestDiffusion

Under review as submission to TMLR

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data. John Wiley & Sons, 2019. 1

Jingchen Liu, Andrew Gelman, Jennifer Hill, Yu-Sung Su, and Jonathan Kropko. On the stationary
distribution of iterative imputations. Biometrika, 101(1):155–173, 2014. 12

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. arXiv preprint arXiv:2209.03003, 2022. 12

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137,
1982. 4, 8

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint:
Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 11461–11471, June 2022. 2

Junwei Ma, Apoorv Dankar, George Stein, Guangwei Yu, and Anthony Caterini. Tabpfgen–tabular data
generation with tabpfn. arXiv preprint arXiv:2406.05216, 2024. 2, 7

Spyros Makridakis and Addison Howard. M5 forecasting - accuracy, 2020. URL https://kaggle.com/
competitions/m5-forecasting-accuracy. 9

Alexander März. Xgboostlss–an extension of xgboost to probabilistic forecasting. arXiv preprint
arXiv:1907.03178, 2019. 2

Calvin McCarter. The kernel density integral transformation. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. 2, 4, 5, 8

Calvin McCarter. Towards backwards-compatible data with confounded domain adaptation. Transactions
on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
GSp2WC7q0r. 1

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakrishnan, Micah
Goldblum, and Colin White. When do neural nets outperform boosted trees on tabular data? Advances in
Neural Information Processing Systems, 36, 2024. 2

Nicolai Meinshausen and Greg Ridgeway. Quantile regression forests. Journal of machine learning research, 7
(6), 2006. 2, 10

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In International
workshop on artificial intelligence and statistics, pages 246–252. PMLR, 2005. 12

Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using optimal transport.
In International Conference on Machine Learning, pages 7130–7140. PMLR, 2020. 7

Mohamed Ragab, Emadeldeen Eldele, Min Wu, Chuan-Sheng Foo, Xiaoli Li, and Zhenghua Chen. Source-free
domain adaptation with temporal imputation for time series data. In Proceedings of the 29th ACM SIGKDD
conference on knowledge discovery and data mining, pages 1989–1998, 2023. 1

Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat dissipation.
arXiv preprint arXiv:2206.13397, 2022. 12

Donald B Rubin. Multiple imputation after 18+ years. Journal of the American statistical Association, 91
(434):473–489, 1996. 1

Andy Shih, Dorsa Sadigh, and Stefano Ermon. Training and inference on any-order autoregressive models
the right way. Advances in Neural Information Processing Systems, 35:2762–2775, 2022. 12

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information Fusion,
81:84–90, 2022. 12

16

https://kaggle.com/competitions/m5-forecasting-accuracy
https://kaggle.com/competitions/m5-forecasting-accuracy
https://openreview.net/forum?id=GSp2WC7q0r
https://openreview.net/forum?id=GSp2WC7q0r

Under review as submission to TMLR

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pages 2256–2265.
PMLR, 2015. 12

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019. 12

Olivier Sprangers, Sebastian Schelter, and Maarten de Rijke. Probabilistic gradient boosting machines for
large-scale probabilistic regression. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pages 1510–1520, 2021. 2

Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for mixed-type
data. Bioinformatics, 28(1):112–118, 2012. 1, 7, 12

Riley Stewart. trasformers are kiki, diffusion is bouba, and language is pointier than images, 2024. URL
https://x.com/riley_stews/status/1827089629369266492. 12

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David
Botstein, and Russ B Altman. Missing value estimation methods for dna microarrays. Bioinformatics, 17
(6):520–525, 2001. 7

Boris Van Breugel, Trent Kyono, Jeroen Berrevoets, and Mihaela Van der Schaar. Decaf: Generating fair
synthetic data using causally-aware generative networks. Advances in Neural Information Processing
Systems, 34:22221–22233, 2021. 1

Stef Van Buuren, Hendriek C Boshuizen, and Dick L Knook. Multiple imputation of missing blood pressure
covariates in survival analysis. Statistics in medicine, 18(6):681–694, 1999. 7

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017. 2

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of
the 28th international conference on machine learning (ICML-11), pages 681–688. Citeseer, 2011. 2

Samuel Von Wilson, Bogdan Cebere, James Myatt, and Samuel Wilson. AnotherSamWilson/miceforest:
Release for Zenodo DOI, December 2022. URL https://doi.org/10.5281/zenodo.7428632. 7

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular data
using conditional gan. Advances in neural information processing systems, 32, 2019. 8

Z Yang. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019. 1, 3, 12

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative adversarial
nets. In International conference on machine learning, pages 5689–5698. PMLR, 2018a. 7

Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: Estimation of individualized treatment
effects using generative adversarial nets. In International conference on learning representations, 2018b. 1

Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Xiao Qin, Christos Faloutsos,
Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-based diffusion
in latent space. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=4Ay23yeuz0. 11

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan: Effective table data synthesizing.
In Asian Conference on Machine Learning, pages 97–112. PMLR, 2021. 8

Shuhan Zheng and Nontawat Charoenphakdee. Diffusion models for missing value imputation in tabular
data. arXiv preprint arXiv:2210.17128, 2022. 12

17

https://x.com/riley_stews/status/1827089629369266492
https://doi.org/10.5281/zenodo.7428632
https://openreview.net/forum?id=4Ay23yeuz0

Under review as submission to TMLR

A Ablation experiment with imputation - raw scores

Raw scores (shown in Table 6) demonstrate that UnmaskingTrees on its own improves upon Forest-VP’s
diffusion approach. We also see that KDI quantization (with 20 bins) contributes to improvement beyond
k-Means (also 20 bins), and that BaltoBot yields even further improvement.

Table 6: Raw scores from ablation study for tabular data imputation (27 datasets, 3 experiments per dataset,
10 imputations per experiment) with 20% missing values. Shown are raw scores - mean (standard-error).
Overall best is highlighted; better of Forest-VP versus ours is boldface blue. See Table 1 for column
meanings.

MinMAE ↓ AvgMAE ↓ Wtrain ↓ Wtest ↓ MAD ↑ R2
imp ↑ F 1imp ↑ Pbias ↓ Covrate ↑

KNN 0.16 (0.03) 0.16 (0.03) 0.42 (0.08) 1.89 (0.49) 0 (0) 0.59 (0.09) 0.75 (0.04) 1.27 (0.25) 0.4 (0.11)
ICE 0.1 (0.01) 0.21 (0.03) 0.52 (0.09) 1.99 (0.49) 0.69 (0.1) 0.59 (0.09) 0.74 (0.04) 1.05 (0.29) 0.39 (0.09)

MICE-Forest 0.08 (0.02) 0.13 (0.03) 0.34 (0.07) 1.86 (0.48) 0.29 (0.08) 0.61 (0.1) 0.76 (0.04) 0.61 (0.2) 0.75 (0.11)
MissForest 0.1 (0.03) 0.12 (0.03) 0.32 (0.07) 1.85 (0.48) 0.1 (0.03) 0.61 (0.1) 0.76 (0.04) 0.62 (0.22) 0.79 (0.08)
Softimpute 0.22 (0.03) 0.22 (0.03) 0.53 (0.07) 1.99 (0.48) 0 (0) 0.58 (0.09) 0.74 (0.04) 1.18 (0.34) 0.31 (0.09)

OT 0.14 (0.02) 0.19 (0.03) 0.56 (0.1) 1.98 (0.49) 0.28 (0.05) 0.59 (0.1) 0.75 (0.04) 1.09 (0.27) 0.39 (0.12)
GAIN 0.16 (0.03) 0.17 (0.03) 0.49 (0.11) 1.95 (0.51) 0.01 (0) 0.6 (0.1) 0.75 (0.04) 1.04 (0.25) 0.54 (0.12)

Forest-VP 0.14 (0.04) 0.17 (0.03) 0.55 (0.13) 1.96 (0.5) 0.25 (0.03) 0.61 (0.1) 0.74 (0.04) 0.81 (0.25) 0.57 (0.14)
UTrees-kMeans 0.1 (0.02) 0.15 (0.03) 0.43 (0.09) 1.9 (0.5) 0.28 (0.06) 0.61 (0.1) 0.76 (0.04) 0.63 (0.21) 0.72 (0.13)

Utrees-KDI 0.1 (0.02) 0.14 (0.03) 0.42 (0.09) 1.89 (0.49) 0.27 (0.06) 0.61 (0.1) 0.76 (0.04) 0.68 (0.24) 0.68 (0.14)
UTrees 0.08 (0.02) 0.14 (0.03) 0.37 (0.08) 1.87 (0.48) 0.27 (0.07) 0.61 (0.1) 0.76 (0.04) 0.55 (0.19) 0.71 (0.13)
Oracle 0 (0) 0 (0) 0 (0) 1.87 (0.49) 0 (0) 0.64 (0.09) 0.78 (0.04) 0 (0) 1 (0)

B Full dataset-level results

Full imputation results are in Table 7. Full generation results are in Table 8. Timing results are in Table 10,
and depicted in Figure 5. Our method is relatively efficient at both imputation and generation. The datasets
on which we are slowest for imputation are Libras (1976 seconds, N = 360, D = 90) and Bean (1929 seconds,
N = 13611, D = 16), on our ancient 2015 iMac with 16Gb RAM. On Libras, ForestVP imputation took 12439
seconds (without RePaint) and 14715 seconds (with RePaint); on Bean, ForestVP took 898 seconds (without
RePaint) and 1318 seconds (with RePaint), on their cluster of 10-20 CPUs with 64-256Gb of RAM. The
datasets on which we are slowest for generation are also Libras (2987 seconds) and Bean (4346 seconds). On
Libras, ForestFlow generation took 9481 seconds and ForestVP took 9042 seconds; on Bean, ForestFlow took
869 seconds and ForestVP took 947 seconds, once again on their much more powerful computing cluster.

Table 7: Full imputation results for UnmaskingTrees on (Jolicoeur-Martineau et al., 2024b) benchmark.
Dataset MinMAE ↓ AvgMAE ↓ Pbias ↓ Covrate ↑ Wtrain ↓ Wtest ↓ Var ↑ MAD (mean) ↑ MAD (med) ↑ R2 ↑ F1 ↑
iris 6.00e-02 8.91e-02 0.00e+00 0.00e+00 6.62e-02 2.40e-01 2.65e-03 1.48e-01 1.22e-01 0.00e+00 9.53e-01
wine 9.48e-02 1.31e-01 0.00e+00 0.00e+00 3.54e-01 1.44e+00 5.64e-03 2.37e-01 1.99e-01 0.00e+00 9.37e-01
parkinsons 4.69e-02 6.52e-02 0.00e+00 0.00e+00 2.94e-01 1.71e+00 2.73e-03 1.23e-01 1.03e-01 0.00e+00 8.30e-01
climate 2.38e-01 3.38e-01 0.00e+00 0.00e+00 1.22e+00 3.87e+00 4.38e-02 7.94e-01 6.88e-01 0.00e+00 7.08e-01
concrete compression 2.33e-02 5.19e-02 1.17e+02 2.44e-01 7.95e-02 5.05e-01 5.61e-03 1.59e-01 1.30e-01 7.55e-01 0.00e+00
yacht hydrodynamics 2.72e-02 6.53e-02 8.78e+01 9.62e-01 6.46e-02 5.11e-01 1.22e-02 1.90e-01 1.45e-01 8.96e-01 0.00e+00
airfoil self noise 2.42e-02 6.64e-02 3.37e+00 1.00e+00 4.60e-02 2.50e-01 1.25e-02 2.29e-01 1.84e-01 7.24e-01 0.00e+00
connectionist sonar 9.86e-02 1.18e-01 0.00e+00 0.00e+00 1.43e+00 8.51e+00 5.14e-03 2.22e-01 1.88e-01 0.00e+00 7.99e-01
ionosphere 8.52e-02 1.18e-01 0.00e+00 0.00e+00 7.82e-01 4.44e+00 1.47e-02 2.54e-01 2.02e-01 0.00e+00 9.10e-01
qsar biodegradation 1.53e-02 2.34e-02 0.00e+00 0.00e+00 1.92e-01 1.39e+00 1.25e-03 5.35e-02 4.36e-02 0.00e+00 8.49e-01
seeds 5.36e-02 8.45e-02 0.00e+00 0.00e+00 1.22e-01 4.78e-01 3.37e-03 1.74e-01 1.48e-01 0.00e+00 8.83e-01
glass 4.96e-02 7.59e-02 0.00e+00 0.00e+00 1.40e-01 6.42e-01 5.09e-03 1.44e-01 1.17e-01 0.00e+00 5.43e-01
ecoli 5.15e-02 8.00e-02 0.00e+00 0.00e+00 1.09e-01 4.04e-01 3.60e-03 1.54e-01 1.30e-01 0.00e+00 6.83e-01
yeast 4.38e-02 7.40e-02 0.00e+00 0.00e+00 1.07e-01 3.19e-01 3.58e-03 1.73e-01 1.50e-01 0.00e+00 4.44e-01
libras 3.06e-02 3.64e-02 0.00e+00 0.00e+00 6.57e-01 8.93e+00 8.11e-04 8.17e-02 7.06e-02 0.00e+00 5.69e-01
planning relax 8.41e-02 1.21e-01 0.00e+00 0.00e+00 3.06e-01 1.46e+00 5.57e-03 2.39e-01 2.03e-01 0.00e+00 4.52e-01
blood transfusion 3.44e-02 6.69e-02 0.00e+00 0.00e+00 3.21e-02 1.12e-01 4.80e-03 1.58e-01 1.32e-01 0.00e+00 5.87e-01
breast cancer 3.96e-02 5.16e-02 0.00e+00 0.00e+00 3.10e-01 1.85e+00 1.21e-03 1.01e-01 8.73e-02 0.00e+00 9.59e-01
connectionist vowel 5.30e-02 9.39e-02 0.00e+00 0.00e+00 1.88e-01 7.25e-01 5.53e-03 2.48e-01 2.14e-01 0.00e+00 6.64e-01
concrete slump 1.25e-01 1.88e-01 4.76e+01 7.25e-01 2.64e-01 1.16e+00 1.48e-02 3.40e-01 2.75e-01 6.75e-01 0.00e+00
wine quality red 4.08e-02 7.16e-02 2.01e+01 1.00e+00 1.41e-01 5.17e-01 3.52e-03 1.83e-01 1.58e-01 3.06e-01 0.00e+00
wine quality white 3.41e-02 6.45e-02 7.74e+01 4.78e-01 1.40e-01 4.53e-01 3.36e-03 1.91e-01 1.68e-01 3.38e-01 0.00e+00
california 1.97e-02 4.97e-02 2.32e+01 5.93e-01 0.00e+00 0.00e+00 4.98e-03 1.58e-01 1.40e-01 6.55e-01 0.00e+00
bean 1.02e-02 2.06e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.05e-03 6.42e-02 5.80e-02 0.00e+00 7.82e-01
tictactoe 2.96e-01 5.11e-01 0.00e+00 0.00e+00 7.76e-01 1.93e+00 2.45e-02 1.47e+00 1.13e+00 0.00e+00 8.23e-01
congress 1.73e-01 2.77e-01 0.00e+00 0.00e+00 8.03e-01 2.38e+00 9.76e-03 5.86e-01 4.33e-01 0.00e+00 9.33e-01
car 4.04e-01 6.85e-01 0.00e+00 0.00e+00 4.84e-01 1.07e+00 2.95e-02 2.06e+00 1.65e+00 0.00e+00 8.01e-01

18

Under review as submission to TMLR

Table 8: Full generation results for UnmaskingTrees on (Jolicoeur-Martineau et al., 2024b) benchmark.
Dataset Wtrain Wtest covtrain covtest R2

fake
F 1fake F 1disc Pbias Covrate

iris 2.34e-01 3.41e-01 8.78e-01 9.16e-01 0.00e+00 9.25e-01 4.23e-01 0.00e+00 0.00e+00
wine 1.09e+00 1.53e+00 9.09e-01 9.37e-01 0.00e+00 9.15e-01 3.46e-01 0.00e+00 0.00e+00
parkinsons 1.34e+00 1.77e+00 7.48e-01 9.08e-01 0.00e+00 7.33e-01 3.56e-01 0.00e+00 0.00e+00
climate model crashes 3.26e+00 3.89e+00 8.96e-01 9.50e-01 0.00e+00 5.39e-01 2.81e-01 0.00e+00 0.00e+00
concrete compression 4.63e-01 6.21e-01 5.11e-01 8.16e-01 6.73e-01 0.00e+00 4.15e-01 1.50e+02 2.00e-01
yacht hydrodynamics 4.20e-01 6.36e-01 6.13e-01 7.89e-01 8.46e-01 0.00e+00 5.14e-01 1.42e+02 4.48e-01
airfoil self noise 1.93e-01 2.93e-01 6.39e-01 8.96e-01 6.09e-01 0.00e+00 4.65e-01 1.97e+01 4.78e-01
connectionist bench sonar 7.21e+00 8.96e+00 6.87e-01 8.89e-01 0.00e+00 7.20e-01 3.69e-01 0.00e+00 0.00e+00
ionosphere 3.84e+00 4.66e+00 6.11e-01 7.94e-01 0.00e+00 8.57e-01 4.22e-01 0.00e+00 0.00e+00
qsar biodegradation 1.34e+00 1.62e+00 4.81e-01 8.19e-01 0.00e+00 8.02e-01 4.44e-01 0.00e+00 0.00e+00
seeds 3.51e-01 5.48e-01 8.98e-01 9.63e-01 0.00e+00 8.69e-01 3.09e-01 0.00e+00 0.00e+00
glass 4.52e-01 7.12e-01 8.27e-01 9.35e-01 0.00e+00 4.41e-01 3.65e-01 0.00e+00 0.00e+00
ecoli 2.86e-01 4.38e-01 8.99e-01 9.58e-01 0.00e+00 6.16e-01 3.78e-01 0.00e+00 0.00e+00
yeast 2.44e-01 3.49e-01 8.54e-01 9.44e-01 0.00e+00 3.62e-01 4.32e-01 0.00e+00 0.00e+00
libras 1.01e+01 1.16e+01 4.65e-01 8.43e-01 0.00e+00 3.54e-01 3.44e-01 0.00e+00 0.00e+00
planning relax 1.02e+00 1.47e+00 9.22e-01 9.98e-01 0.00e+00 4.56e-01 3.07e-01 0.00e+00 0.00e+00
blood transfusion 1.00e-01 1.52e-01 9.62e-01 9.56e-01 0.00e+00 5.95e-01 4.07e-01 0.00e+00 0.00e+00
breast cancer diagnostic 1.55e+00 1.90e+00 7.94e-01 9.12e-01 0.00e+00 9.40e-01 3.43e-01 0.00e+00 0.00e+00
connectionist bench vowel 7.04e-01 8.87e-01 3.04e-01 8.34e-01 0.00e+00 5.75e-01 3.43e-01 0.00e+00 0.00e+00
concrete slump 6.24e-01 1.20e+00 8.71e-01 8.57e-01 5.34e-01 0.00e+00 3.52e-01 4.57e+01 5.75e-01
wine quality red 4.30e-01 5.40e-01 8.63e-01 9.67e-01 2.46e-01 0.00e+00 4.51e-01 5.14e+01 7.94e-01
wine quality white 4.23e-01 4.97e-01 8.26e-01 9.55e-01 2.52e-01 0.00e+00 4.46e-01 1.84e+02 2.83e-01
california 0.00e+00 0.00e+00 6.22e-01 9.03e-01 3.05e-01 0.00e+00 4.30e-01 1.75e+02 1.70e-01
bean 0.00e+00 0.00e+00 3.35e-01 7.53e-01 0.00e+00 8.16e-01 3.97e-01 0.00e+00 0.00e+00
tictactoe 9.44e-01 1.95e+00 8.23e-01 6.28e-01 0.00e+00 8.31e-01 2.74e-01 0.00e+00 0.00e+00
congress 1.38e+00 2.46e+00 9.11e-01 9.16e-01 0.00e+00 9.47e-01 2.87e-01 0.00e+00 0.00e+00
car 4.61e-01 1.05e+00 5.82e-01 5.20e-01 0.00e+00 7.99e-01 3.02e-01 0.00e+00 0.00e+00

Table 9: Full generation with 20% missingness results for UnmaskingTrees on (Jolicoeur-Martineau et al.,
2024b) benchmark.

Dataset Wtrain Wtest covtrain covtest R2
fake

F 1fake F 1disc Pbias Covrate

iris 2.56e-01 3.54e-01 8.30e-01 8.71e-01 0.00e+00 9.42e-01 4.20e-01 0.00e+00 0.00e+00
wine 1.16e+00 1.55e+00 8.79e-01 8.96e-01 0.00e+00 9.17e-01 3.71e-01 0.00e+00 0.00e+00
parkinsons 1.41e+00 1.80e+00 6.49e-01 8.96e-01 0.00e+00 7.01e-01 3.76e-01 0.00e+00 0.00e+00
climate model crashes 3.33e+00 3.88e+00 8.59e-01 9.53e-01 0.00e+00 5.29e-01 3.20e-01 0.00e+00 0.00e+00
concrete compression 4.71e-01 6.33e-01 4.83e-01 7.89e-01 6.57e-01 0.00e+00 4.19e-01 1.64e+02 1.48e-01
yacht hydrodynamics 4.18e-01 6.25e-01 5.80e-01 8.30e-01 8.56e-01 0.00e+00 5.55e-01 1.04e+02 6.00e-01
airfoil self noise 2.00e-01 3.02e-01 6.05e-01 8.92e-01 5.97e-01 0.00e+00 4.56e-01 2.07e+01 3.44e-01
connectionist bench sonar 7.52e+00 9.11e+00 6.10e-01 8.68e-01 0.00e+00 7.30e-01 3.90e-01 0.00e+00 0.00e+00
ionosphere 3.99e+00 4.69e+00 5.52e-01 7.64e-01 0.00e+00 8.51e-01 4.32e-01 0.00e+00 0.00e+00
qsar biodegradation 1.37e+00 1.62e+00 4.54e-01 8.17e-01 0.00e+00 8.07e-01 4.47e-01 0.00e+00 0.00e+00
seeds 4.14e-01 5.86e-01 8.08e-01 9.38e-01 0.00e+00 8.53e-01 3.37e-01 0.00e+00 0.00e+00
glass 5.04e-01 7.33e-01 7.75e-01 8.93e-01 0.00e+00 4.16e-01 3.87e-01 0.00e+00 0.00e+00
yeast 2.51e-01 3.45e-01 8.22e-01 9.44e-01 0.00e+00 3.01e-01 4.39e-01 0.00e+00 0.00e+00
libras 1.00e+01 1.16e+01 4.60e-01 8.51e-01 0.00e+00 3.36e-01 3.63e-01 0.00e+00 0.00e+00
planning relax 1.07e+00 1.49e+00 9.01e-01 9.84e-01 0.00e+00 4.64e-01 3.37e-01 0.00e+00 0.00e+00
blood transfusion 9.11e-02 1.38e-01 9.62e-01 9.56e-01 0.00e+00 5.89e-01 4.18e-01 0.00e+00 0.00e+00
breast cancer diagnostic 1.62e+00 1.91e+00 7.48e-01 9.00e-01 0.00e+00 9.40e-01 3.69e-01 0.00e+00 0.00e+00
connectionist bench vowel 7.42e-01 9.15e-01 2.38e-01 8.01e-01 0.00e+00 5.46e-01 3.60e-01 0.00e+00 0.00e+00
concrete slump 7.16e-01 1.24e+00 8.24e-01 8.22e-01 4.10e-01 0.00e+00 3.58e-01 5.54e+01 5.25e-01
wine quality red 4.39e-01 5.45e-01 8.42e-01 9.64e-01 2.49e-01 0.00e+00 4.52e-01 8.86e+01 7.15e-01
wine quality white 4.28e-01 4.99e-01 8.15e-01 9.54e-01 2.52e-01 0.00e+00 4.48e-01 1.88e+02 2.33e-01
california 0.00e+00 0.00e+00 6.14e-01 8.99e-01 2.52e-01 0.00e+00 4.34e-01 1.57e+02 2.52e-01
bean 0.00e+00 0.00e+00 3.32e-01 7.50e-01 0.00e+00 8.06e-01 4.03e-01 0.00e+00 0.00e+00
tictactoe 1.12e+00 1.96e+00 8.04e-01 6.65e-01 0.00e+00 7.49e-01 3.20e-01 0.00e+00 0.00e+00
congress 1.55e+00 2.40e+00 8.82e-01 9.07e-01 0.00e+00 9.39e-01 3.40e-01 0.00e+00 0.00e+00
car 5.62e-01 1.07e+00 4.95e-01 5.12e-01 0.00e+00 7.61e-01 3.36e-01 0.00e+00 0.00e+00

Table 10: Runtime results for UnmaskingTrees on benchmark of 27 datasets.
Dataset # Samples # Features Imputation time (s) Generation time (s)
iris 150 4 5.31 10.72
wine 178 13 26.76 49.06
parkinsons 195 22 58.98 105.27
climate model crashes 540 18 103.73 207.70
concrete compression 1030 8 47.19 123.10
yacht hydrodynamics 308 6 8.89 22.36
airfoil self noise 1503 5 29.91 92.74
connectionist bench sonar 208 60 440.60 685.94
ionosphere 351 33 201.81 362.05
qsar biodegradation 1055 41 560.58 909.87
seeds 210 7 14.94 27.65
glass 214 9 17.12 33.78
ecoli 336 7 14.69 32.56
yeast 1484 8 62.96 150.93
libras 360 90 1975.78 2986.78
planning relax 182 12 25.25 46.18
blood transfusion 748 4 13.16 37.24
breast cancer diagnostic 569 30 279.33 495.71
connectionist bench vowel 990 10 79.85 179.48
concrete slump 103 7 9.74 16.49
wine quality red 1599 10 106.23 263.92
wine quality white 4898 11 357.68 890.90
california 20640 8 968.14 2754.75
bean 13611 16 1929.16 4345.50
tictactoe 958 9 25.85 51.77
congress 435 16 30.41 52.56
car 1728 6 30.18 60.38

19

Under review as submission to TMLR

(A) (B)

Figure 5: Runtime in seconds compared to number of features and number of samples, for imputation (A)
and generation (B) tasks.

20

	Introduction
	Method
	UnmaskingTrees for tabular joint distribution modeling
	BaltoBot for tabular probabilistic prediction
	Computational complexity
	In-context learning-based generation with BaltoBoTabPFN and UnmaskingTabPFN

	Results
	Case studies on Two Moons and Iris datasets
	Benchmarking UnmaskingTrees on 27 tabular datasets
	Evaluating BaltoBot on synthetic probabilistic prediction case studies
	Sales forecasting with uncertainty

	Limitations and Future Work
	Discussion and Related Work
	Conclusions
	Ablation experiment with imputation - raw scores
	Full dataset-level results

