
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

SGD vs GD: Rank Deficiency in Linear Networks

Aditya Varre ADITYA.VARRE@EPFL.CH
TML, EPFL

Margarita Sagitova MARGARITA.SAGITOVA@EPFL.CH
TML, EPFL

Nicolas Flammarion NICOLAS.FLAMMARION@EPFL.CH

TML, EPFL

Abstract
In this article, we study the behaviour of continuous-time gradient methods on a two-layer linear
network with square loss. A dichotomy between SGD and GD is revealed: GD preserves the rank
at initialization while (label noise) SGD diminishes the rank regardless of the initialization. We
demonstrate this rank deficiency by studying the time evolution of the determinant of a matrix of
parameters. To further understand this phenomenon, we derive the stochastic differential equation
(SDE) governing the eigenvalues of the parameter matrix. This SDE unveils a repulsive force
between the eigenvalues: a key regularization mechanism which induces rank deficiency. Our
results are well supported by experiments illustrating the phenomenon beyond linear networks and
regression tasks.

1. Introduction

One of the remarkable features of deep learning models is their capacity to learn effective represen-
tations that generalize well across different tasks, even when they are heavily overparameterized [6].
This success in learning these representations is often attributed to the gradient-based algorithms
used in training. These algorithms navigate complex non-convex landscapes to minimize the train-
ing objective and yield effective representations, while avoiding spurious features that arise from the
models’ vast number of parameters. Empirical studies have revealed that stochastic noise is a key
factor in mitigating spurious features and enabling effective representation learning. In this paper,
we investigate this overarching problem, specifically focusing on studying :

How does stochasticity facilitate the discovery of solutions with simplified structures?

We explore this question using a simplified model: a single hidden-layer linear network. Despite
lacking non-linearity, such networks capture some intricate phenomena of real-world deep networks
and have been extensively studied to understand convergence [3, 40], learning dynamics [45], and
the implicit bias of optimization algorithms [23, 47]. Our work builds on this foundation by compar-
ing stochastic algorithms with their deterministic counterparts, focusing on how these differences
influence the learning of simpler structures. Specifically, we analyze vector regression on two-layer
linear networks trained with both gradient flow and stochastic gradient flow methods and make the
following contributions:

© A. Varre, M. Sagitova & N. Flammarion.

LINEAR NETWORKS

• In Section 3, we track the evolution of the determinant of the parameter matrix under gradient
flow and stochastic gradient flow. We show that stochastic gradient flow drives the determi-
nant towards zero, effectively removing irrelevant direction(s).

• In Section C, we derive a stochastic differential equation that describes the behavior of the
eigenvalues of the parameter matrix. This analysis reveals a repulsive force between eigen-
values that pushes them apart and a geometric Brownian motion that pulls them toward zero.

• In Section D, we discuss the generalizability of our approach beyond square loss and vari-
ous noise models, including discrete step sizes. Finally, we present experimental results in
Section E that support our theoretical findings.

1.1. Related Work

Our work lies at the convergence of distinct research topics:

Effect of SGD on generalization. The relationship between the stochasticity of SGD and its gen-
eralization capabilities has been extensively examined [26, 28, 30, 33, 37]. Notably, SGD tends to
yield models with superior generalization compared to gradient descent [26, 30, 32]. Various explo-
rations into this phenomenon have been conducted through various approaches: hypothesizing that
SGD favors flatter minima linked to better generalization, as opposed to sharp minima associated
with poor generalization [1, 27, 32],

Stochastic dynamics and Label Noise. Recent literature has explored label noise-driven Gradi-
ent Descent as an effective method to probe the beneficial impact of stochasticity on generalization,
with two distinct perspectives emerging. Firstly, an asymptotic view on general model parametriza-
tion is considered, where Blanc et al. [7], Damian et al. [14], Li et al. [36] suggest that stochastic
dynamics preferentially optimize a hidden objective linked to the curvature of the loss.. Secondly,
specifically for diagonal linear networks, HaoChen et al. [24], Pillaud-Vivien et al. [44] observe a
similar collapsing effect due to label noise but with a finer characterization of the limiting process.
Finally, in the absence of label noise, Even et al. [17], Pesme et al. [43] have characterized the so-
lutions of stochastic GF and GD for diagonal linear networks. Recently, Ghosh et al. [19] further
exhibit a similar sparser features effect for single-neuron autoencoder.

2. Linear networks and continuous-time gradient method

Vector regression. We study the vector regression problems with inputs x1, . . . , xn in (Rp)n and
outputs y1, . . . , yn in (Rk)n. We consider the minimization of the square loss over a class of para-
metric models H = {fθ(·) : Rd → Rk | θ ∈ Rp} specified in the next paragraph. The train loss
therefore can be written as L (θ) = 1

2n

∑n
i=1 (yi − fθ(xi))

2.

Parameterization with a linear network. We focus on two-layer linear neural networks of width
l ∈ N∗. The model is described by the parameterization θ = (W1,W2), where W1 ∈ Rp×l and
W2 ∈ Rl×k, and the function fθ(x) = W⊤

2 W
⊤
1 x. This model is linear with respect to the input x.

In terms of expressivity, it is comparable to the linear class of predictors, represented as fβ(x) =
β⊤x, where β equals W1W2. Throughout our analysis, we denote the equivalent linear predictor
of the network as β. It is important to note that this parameterization introduces some redundancy,
a single linear predictor β can have multiple representations W1,W2 such that W1W2 = β.

2

LINEAR NETWORKS

Some representations have a rich structure whereas other resemble random features. For example,
consider the case of scalar regression (k=1), for a vector β there exists rich parameterizations where
all the neurons, i.e., columns of W1 align with β and also some lazy structures where W1 resembles
a random matrix [12, 51].

Train loss. By defining X⊤ = [x1, . . . , xn] and Y ⊤ = [y1, . . . , yn], the loss function is given by:

L (W1,W2) =
1

2n

∥∥XW1W2 − Y
∥∥2. (2.1)

For simplicity, we adjust for the noralization factor n by rescaling the data to (X,Y)← (X/
√
n, Y/

√
n),

thereby implicitly considering it in the loss function without directly mentioning n in the formula.
Note that the loss is non-convex in W1,W2.

Gradient flow. The dynamics induced in parameter space by running GF on Equation (2.1) is
given by

dW1 = −∇W1L (W1,W2) dt = X⊤(Y −XW1W2)W
⊤
2 dt, (2.2)

dW2 = −∇W2L (W1,W2) dt = W⊤
1 X

⊤(Y −XW1W2)dt. (2.3)

Introducing the block matrix, Θ =
[
W⊤

1 |W2

]
∈ Rl×(p+k) and denoting the residual matrix by

R = X⊤(Y −XW1W2), the evolution of Θ can be written as

dΘ =
[
dW1

⊤ | dW2

]
=
[
W2R

⊤dt |W⊤
1 Rdt

]
=
[
W⊤

1 |W2

] [0p×p R
R⊤ 0k×k

]
dt.

The gradient flow can therefore be compactly written as

dΘ = ΘJdt, where J =

[
0p×p R
R⊤ 0k×k

]
. (2.4)

The gradient flow (GF), when expressed in this form, reveals an inherent multiplicative structure
with respect to Θ in the gradient of the loss. As we see in subsequent sections, this representation
of the gradient flow with block matrices proves to be very convenient.

Label noise gradient descent. Label noise gradient descent (LNGD) is a theoretically studied
alternative to SGD that mirrors its practical behavior by sharing the geometric properties of the
noise [7, 14]. Let εt ∈ Rn×k, where each entry of εt is an independent Gaussian random variable.
At iteration t, the labels are perturbed with this Gaussian noise at an intensity δ, i.e., Ỹ = Y +

√
δεt.

The LNGD algorithm updates the iterates with a step size η in the direction of the gradient computed
after the labels have been perturbed, as follows:

Wt+1
1 = Wt

1 − η∇W1L
(
Ỹ ,X,Wt

1,W
t
2

)
; Wt+1

2 = Wt
2 − η∇W2L

(
Ỹ ,X,Wt

1,W
t
2

)
,

where, by an abuse of notation, L (Y,X,W1,W2) = 1/2
∥∥XW1W2 − Y

∥∥2. The iterates can then
be restructured into a block matrix:

Θt+1 = Θt − ηΘtJt − η
√
δΘtξt, where ξt =

[
0p×p X⊤εt
ε⊤t X 0k×k

]
, (2.5)

and Jt is defined as in Equation (2.4).

3

LINEAR NETWORKS

Stochastic gradient flow (SGF). We aim to model the aforementioned LNGD in continuous time
using an appropriate SDE. Stochastic continuous-time counterparts of discrete stochastic gradient
algorithms are favored for their enhanced amenability to theoretical analysis. We propose the fol-
lowing stochastic differential equation (SDE) to model LNGD in continuous time:

dΘ = Θ
[
Jdt+

√
ηδdξ

]
,where dξ =

[
0p×p X⊤dBt

dBt
⊤X 0k×k,

]
(2.6)

where Bt denotes a matrix Brownian motion in Rn×k. LNGD as defined in Equation (2.5), can be
interpreted as the the Euler-Maryama discretization of the above SGF with a stepsize η.

Initialization. The dynamics of gradient methods on homogeneous models are significantly influ-
enced by initialization, which determines the regime they operate in—specifically, the lazy regime
for large initializations and the rich regime for small ones [12, 54]. Thus, the scale of initialization
has garnered significant interest, particularly its impact on the training of networks with GD [8, 54].
It is observed that stochastic methods eliminate the dependence on initialization [43].

Conserved quantities and balanceness. Gradient flows follow specific conservation laws along
their trajectory [38], maintaining characteristics of the initial conditions. For linear networks, this
conservation manifests as the balanceness property [15], described by:

∆ = W⊤
1 W1 −W2W

⊤
2 = W⊤

1 (0)W1(0)−W2(0)W
⊤
2 (0).

As a result, Arora et al. [2, 4], Saxe et al. [45] have adopted balanced initialization, where ∆(0) = 0,
to ensure that weight matrices remain low rank throughout the trajectory. However, unbalanced
initialization do not preserve these simple low-rank structures, as aspects of the initial conditions
persist. In contrast, stochastic methods do not adhere to these conservation laws [55] and the evo-
lution of the imbalance ∆ for SGF is d∆ = d

(
W⊤

1 W1 −W2W
⊤
2

)
= tr (XX⊤) W2W

⊤
2 dt −

k W⊤
1 X

⊤XW1dt. While there is no diffusion term in the derivative, the matrices remain stochas-
tic and no definitive conclusions can be drawn from this. However, in the case where k = p and
X⊤X = Ip, it can be shown that W⊤

1 W1 −W2W
⊤
2 → 0, indicating that the stochastic noise

eliminates initial imbalance.

Conclusion. Understanding how stochastic methods mitigate dependency on initialization re-
quires exploring beyond the evolution of the imbalance ∆. To this end, we identify and discuss
other conserved quantities, such as the determinant of the matrix Θ⊤Θ in the following sections.

3. Separation between Gradient Flow through determinant

Here, we present our first separation result between GF and SGF. While the determinant of the
parameters is preserved in GF, it is driven to zero by the stochasticity of SGF, leading to a simplistic
low-rank structure.

Determinant evolution of the gradient flow The theorem below demonstrates that the determi-
nant of the parameters is preserved in gradient flow.

Theorem 3.1 For the gradient flow defined in Equation (2.4), the following property holds,

d
(
det
(
Θ⊤Θ

))
= 0.

Hence, det
(
Θ(t)⊤Θ(t)

)
= det

(
Θ⊤

0 Θ0

)
, where Θ0 = Θ(0) is the initialisation at time t = 0.

4

LINEAR NETWORKS

The proof presented in the App. F.1, is based on straightforward computations of the derivative of
the determinant and the fact that the matrix J has zero trace. We note that the simplicity of the
proof arises from the strategically chosen block structure of Θ. This result would have been less
straightforward with different parametrizations, which likely explains why such a simple finding
appears to be novel. The theorem implies that the determinant of M along the trajectory remains
equal to the determinant at initialization. If Θ⊤

0 Θ0 is full-rank initially, meaning the determinant
is non-zero, the theorem ensures that the determinant of M remains non-zero. Consequently, the
rank of Θ does not diminish along the trajectory. When l ≥ p+ k, i.e., the hidden layer has a large
width and W1,W2 are initialized randomly from a Gaussian distribution, Θ⊤

0 Θ0 has full rank
almost surely. The theorem also reveals some implications regarding the impact of initialization
scale. Note that λmin(A) ≤ n

√
detA, indicating that when the scale of initialization is very small,

at least one singular value of Θ is small.

Determinant evolution of the stochastic gradient flow In contrast, the theorem presented below
demonstrates that the determinant of the parameters converges to zero in stochastic gradient flow.

Theorem 3.2 For the SDE, defined in the Equation (2.6), for t ≤ τ∞, the following property holds
for the evolution of determinant

d
(
det
(
Θ⊤Θ

))
= −2ηδktr

(
X⊤X

)
det
(
Θ⊤Θ

)
dt.

Hence, det
(
Θ(t)⊤Θ(t)

)
= det

(
Θ⊤

0 Θ0

)
exp−2ηδktr

(
X⊤X

)
t, where Θ0 is the initialization.

Although the evolution of the parameters in SGF is random, the evolution of the determinant is
deterministic. The theorem highlights a striking phenomenon: the noise in SGF diminishes the
determinant along the trajectory, leading to a simplification of the network over time. The larger
the noise and the stepsize, the faster the determinant vanishes. The vanishing of the determinant
suggests that the rank of the parameters decreases by at least one, effectively eliminating some
components. It holds for any initialization of Θ0 and indicates how the SGF overrides some aspects
of initialization. The proof uses the fact that stochastic Brownian term in the SDE, through Itô’s
calculus, introduces a negative drift, driving the determinant to zero (refer to F.3 for the proof).

Limitations. Given the large width of the hidden layer, the determinant converging to zero does
not fully reveal the complexity of the situation. It merely indicates that at least one singular value
is approaching zero. Furthermore, the theorem provides limited insights when the determinant is
already 0 at initialization, detΘ0 = 0 which happens whenever l < p + k. Next, we explore
the mechanisms behind this low-rank phenomenon, suggesting that the repulsive forces induced by
stochasticity drive the spurious singular values to zero as seen in the right plot of Figure 1.

4. Conclusion

In this paper, we demonstrate a distinct separation between GF and SGF when trained on linear
networks. This separation is obtained by tracking the evolution of the determinant of the parameter
matrix. However, while the determinant is a significant factor, it does not fully capture the implicit
regularization effects. We try to partially address this issue by studying the dynamics of singular
values in Sec C. In section D, we extend our approach to shed some light on the training dynamics
for losses other than square loss and discrete stepsize dynamics.

5

LINEAR NETWORKS

References

[1] Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas
Flammarion. A modern look at the relationship between sharpness and generalization. In
International Conference on Machine Learning, pages 840–902. PMLR, 2023.

[2] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In Proceedings of the 35th International Conference on
Machine Learning, 2018.

[3] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradi-
ent descent for deep linear neural networks. In International Conference on Learning Repre-
sentations, 2019. URL https://openreview.net/forum?id=SkMQg3C5K7.

[4] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

[5] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/c0c783b5fc0d7d808f1d14a6e9c8280d-Paper.pdf.

[6] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 2013.

[7] Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep
neural networks driven by an ornstein-uhlenbeck like process. In Conference on Learning
Theory, COLT 2020, Proceedings of Machine Learning Research. PMLR, 2020.

[8] Etienne Boursier, Loucas Pillaud-Vivien, and Nicolas Flammarion. Gradient flow dynamics of
shallow reLU networks for square loss and orthogonal inputs. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=L74c-iUxQ1I.

[9] Lukas Braun, Clémentine Carla Juliette Dominé, James E Fitzgerald, and Andrew M Saxe.
Exact learning dynamics of deep linear networks with prior knowledge. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural In-
formation Processing Systems, 2022. URL https://openreview.net/forum?id=
lJx2vng-KiC.

[10] Marie-France Bru. Diffusions of perturbed principal component analysis. Journal of
Multivariate Analysis, 29(1):127–136, 1989. ISSN 0047-259X. doi: https://doi.org/10.
1016/0047-259X(89)90080-8. URL https://www.sciencedirect.com/science/
article/pii/0047259X89900808.

[11] Marie-France Bru. Wishart processes. Journal of Theoretical Probability, 4:725–751, 1991.

[12] Lénaı̈c Chizat, Edouard Oyallon, and Francis Bach. On Lazy Training in Differentiable Pro-
gramming. Curran Associates Inc., Red Hook, NY, USA, 2019.

6

https://openreview.net/forum?id=SkMQg3C5K7
https://proceedings.neurips.cc/paper_files/paper/2019/file/c0c783b5fc0d7d808f1d14a6e9c8280d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c0c783b5fc0d7d808f1d14a6e9c8280d-Paper.pdf
https://openreview.net/forum?id=L74c-iUxQ1I
https://openreview.net/forum?id=lJx2vng-KiC
https://openreview.net/forum?id=lJx2vng-KiC
https://www.sciencedirect.com/science/article/pii/0047259X89900808
https://www.sciencedirect.com/science/article/pii/0047259X89900808

LINEAR NETWORKS

[13] Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient de-
scent on neural networks typically occurs at the edge of stability. In International Conference
on Learning Representations, 2020.

[14] Alex Damian, Tengyu Ma, and Jason D Lee. Label noise sgd provably prefers flat global
minimizers. Advances in Neural Information Processing Systems, 34:27449–27461, 2021.

[15] Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep ho-
mogeneous models: Layers are automatically balanced. In Advances in Neural Information
Processing Systems, 2018.

[16] Freeman J. Dyson. A Brownian-Motion Model for the Eigenvalues of a Random Matrix.
Journal of Mathematical Physics, 3(6):1191–1198, 11 1962. ISSN 0022-2488. doi: 10.1063/
1.1703862. URL https://doi.org/10.1063/1.1703862.

[17] Mathieu Even, Scott Pesme, Suriya Gunasekar, and Nicolas Flammarion. (s) gd over diagonal
linear networks: Implicit regularisation, large stepsizes and edge of stability. Advances in
Neural Information Processing Systems, 2023.

[18] Kenji Fukumizu. Effect of batch learning in multilayer neural networks. Gen, 1(04):1E–03,
1998.

[19] Nikhil Ghosh, Spencer Frei, Wooseok Ha, and Bin Yu. The effect of sgd batch size on autoen-
coder learning: Sparsity, sharpness, and feature learning. arXiv preprint arXiv:2308.03215,
2023.

[20] Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete
gradient dynamics in linear neural networks. Advances in Neural Information Processing
Systems, 32, 2019.

[21] Piotr Graczyk and Jacek Małecki. Multidimensional yamada-watanabe theorem and its appli-
cations to particle systems. Journal of Mathematical Physics, 54(2), 2013.

[22] Piotr Graczyk and Jacek Małecki. Strong solutions of non-colliding particle systems. 2014.

[23] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati
Srebro. Implicit regularization in matrix factorization. Advances in Neural Information Pro-
cessing Systems, 30, 2017.

[24] Jeff Z. HaoChen, Colin Wei, Jason D. Lee, and Tengyu Ma. Shape matters: Understanding
the implicit bias of the noise covariance. In Mikhail Belkin and Samory Kpotufe, editors,
Conference on Learning Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA,
2021.

[25] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan
Haldane, Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and

7

https://doi.org/10.1063/1.1703862

LINEAR NETWORKS

Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, Septem-
ber 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/
s41586-020-2649-2.

[26] Fengxiang He, Tongliang Liu, and Dacheng Tao. Control batch size and learning rate to gener-
alize well: Theoretical and empirical evidence. In Advances in Neural Information Processing
Systems, volume 32, 2019.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Comput., 9(1):1–42, jan 1997.

[28] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: Closing the
generalization gap in large batch training of neural networks. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, page 1729–1739,
2017.

[29] Nobuyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and diffusion pro-
cesses, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co.,
Amsterdam, 1981. ISBN 0-444-86172-6.

[30] Stanislaw Jastrzebski, Zac Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Amos
Storkey, and Yoshua Bengio. Three factors influencing minima in SGD. In International
Conference on Learning Representations, 2018.

[31] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In In-
ternational Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=HJflg30qKX.

[32] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. In International Conference on Learning Representations, 2017.

[33] Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does SGD escape
local minima? In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 2698–2707. PMLR, 10–15
Jul 2018.

[34] Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari.
The large learning rate phase of deep learning: the catapult mechanism. arXiv preprint
arXiv:2003.02218, 2020.

[35] Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and dynamics of
stochastic gradient algorithms i: Mathematical foundations. Journal of Machine Learning
Research, 20(40):1–47, 2019.

[36] Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after sgd reaches zero loss?–a
mathematical framework. In International Conference on Learning Representations, 2021.

[37] Stephan Mandt, Matthew D. Hoffman, and David M. Blei. A variational analysis of stochastic
gradient algorithms. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, page 354–363, 2016.

8

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://openreview.net/forum?id=HJflg30qKX
https://openreview.net/forum?id=HJflg30qKX

LINEAR NETWORKS

[38] Sibylle Marcotte, Rémi Gribonval, and Gabriel Peyré. Abide by the law and follow the flow:
conservation laws for gradient flows. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=kMueEV8Eyy.

[39] Eberhard Mayerhofer, Oliver Pfaffel, and Robert Stelzer. On strong solutions for positive def-
inite jump diffusions. Stochastic processes and their applications, 121(9):2072–2086, 2011.

[40] Hancheng Min, Salma Tarmoun, Rene Vidal, and Enrique Mallada. On the explicit role of
initialization on the convergence and implicit bias of overparametrized linear networks. In
Proceedings of the 38th International Conference on Machine Learning, 2021.

[41] J. R. Norris, L. C. G. Rogers, and David Williams. Brownian motions of ellipsoids. Transac-
tions of the American Mathematical Society, 294(2):757–765, 1986. ISSN 00029947. URL
http://www.jstor.org/stable/2000214.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[43] Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for di-
agonal linear networks: a provable benefit of stochasticity. Advances in Neural Information
Processing Systems, 34:29218–29230, 2021.

[44] Loucas Pillaud-Vivien, Julien Reygner, and Nicolas Flammarion. Label noise (stochastic)
gradient descent implicitly solves the lasso for quadratic parametrisation. In Conference on
Learning Theory, pages 2127–2159. PMLR, 2022.

[45] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In 2nd International Conference on
Learning Representations, ICLR 2014, 2014.

[46] Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116
(23):11537–11546, 2019.

[47] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. Journal of Machine Learning Research,
19(70):1–57, 2018.

[48] Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene Vidal. Understanding
the dynamics of gradient flow in overparameterized linear models. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Research, pages 10153–10161. PMLR, 18–24
Jul 2021.

9

https://openreview.net/forum?id=kMueEV8Eyy
http://www.jstor.org/stable/2000214
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

LINEAR NETWORKS

[49] James Townsend. Differentiating the singular value decomposition. Technical report, Techni-
cal Report 2016, https://j-towns. github. io/papers/svd-derivative . . . , 2016.

[50] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA, 2009. ISBN 1441412697.

[51] Aditya Vardhan Varre, Maria-Luiza Vladarean, Loucas Pillaud-Vivien, and Nicolas Flammar-
ion. On the spectral bias of two-layer linear networks. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
FFdrXkm3Cz.

[52] Aditya Vardhan Varre, Maria-Luiza Vladarean, Loucas Pillaud-Vivien, and Nicolas Flammar-
ion. On the spectral bias of two-layer linear networks. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

[53] Zihan Wang and Arthur Jacot. Implicit bias of sgd in l2-regularized linear dnns: One-way
jumps from high to low rank, 2023.

[54] Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay
Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized mod-
els. In Jacob Abernethy and Shivani Agarwal, editors, Proceedings of Thirty Third Conference
on Learning Theory, volume 125 of Proceedings of Machine Learning Research, pages 3635–
3673. PMLR, 09–12 Jul 2020.

[55] Liu Ziyin, Hongchao Li, and Masahito Ueda. Law of balance and stationary distribution of
stochastic gradient descent. arXiv preprint arXiv:2308.06671, 2023.

10

https://openreview.net/forum?id=FFdrXkm3Cz
https://openreview.net/forum?id=FFdrXkm3Cz

LINEAR NETWORKS

Appendix A. Notations

Notation Sd, S
+
d , S

++
d denote the set of symmetric, positive semi-definite and positive definite

matrices in Rd×d. We use ⊙ to denote the Hadamard product. We use ⟨., .⟩ to denote the inner
product, i.e., ⟨u, v⟩ = u⊤v for vectors, and ⟨A,B⟩ = Tr (AB⊤) for matrices. Id denotes the
identity matrix of dimension d and 0p×k denote the matrix with all zero entries of dimension p× k.

Appendix B. Further Related Work

Linear Networks. The study of two-layer linear networks has been explored extensively, par-
ticularly when optimized using gradient flow on the square loss, across various settings including
zero-balance initialization and whitened data Braun et al. [9], Fukumizu [18], Saxe et al. [45, 46].
Early work by Saxe et al. [45, 46] elucidates the temporal changes in the singular values of the
predictor, assuming decoupled dynamics and a specific data-dependent weight initialization. This
condition is broadened by the analyses of Fukumizu [18] and Braun et al. [9], Tarmoun et al. [48],
who apply solutions from a matrix Riccati equation to characterize the weights dynamics under
full-rank network initialization. Furthermore, Gidel et al. [20] extends the existing framework by
relaxing the whitened data assumption, conducting a perturbation analysis, and discussing the tem-
poral evolution of the weight matrices’ singular values. Additionally, Varre et al. [52] eliminates
the need for zero-balanced and full-rank initializations. Their study provides detailed formulas for
weight evolution as a function of the initial scale , also studies a simple version of a stochastic flow
without the drift. Wang and Jacot [53] studied the implicit bias of SGD with ℓ2-regularization.

Matrix valued stochastic process and their eigenvalues. Stochastic process on the space of sym-
metric (or Hermitian) matrices and the evolution of their eigenvalues are well studied since Dyson
[16]. These techniques were further developed by Bru [10, 11] to study perturbations of principal
component analysis and the eigenvalues of Wishart processes. Graczyk and Małecki [21], Norris
et al. [41] applied SDE-based techniques to study the eigenvalues and eigenvectors of Brownian
motion on ellipsoids.

Appendix C. Mechanism behind the low-rank phenomenon

In this section, we investigate the evolution of singular values under stochastic training to gain
deeper insights into the low-rank phenomenon. To simplify the discussion, throughout the section
we consider the case where k = 1 and for notational convenience, we let W1 = W,W2 = a.
Additionally, we assume that l ≤ p, however the results can be extended to any l.

Warm-up: Comparison with diagonal networks. Let W = UΣV⊤ be the singular value de-
composition (assuming l ≤ p). The predictor β can be expressed as

W⊤a = UΣV⊤a = U [σ ⊙ c] ,where c = V⊤a.

This expression reveals a Hadamard product between σ and c, reminiscent of diagonal networks
which are widely studied to understand the nonconvex dynamics of gradient algorithms [43, 44, 54].
In the context of diagonal networks, SGD is known to provably induce sparsity in predictions.
Similarly, for linear networks, SGF may induce sparsity in terms of the singular value σ. We next
derive the SDE governing the evolution of the singular values Σ of the weight matrix to gain a
clearer understanding of the low-rank phenomenon.

11

LINEAR NETWORKS

Scalar Regression. We assume that the data is isotropic, i.e., X = Ip. Under these conditions,
the loss function for scalar regression can be written as

L (W,a) =
1

2

∥∥y −Wa
∥∥2. (C.1)

We train the above objective with SGF, formulated as follows,

dW = (y −Wa)a⊤dt+
√
ηδ dBta

⊤; da = W⊤(y −Wa)dt+
√

ηδ W⊤dBt. (C.2)

where Bt is the standard Brownian motion in Rp. For analytical convenience, we rescale the time
t→ t/ηδ and use the process dX = 1/ηδ(y −Wa)dt+ dBt. The SGF can then be rewritten as,

dW = dXa⊤; da = W⊤dX. (C.3)

Our focus is on understanding the evolution of the singular values of the matrix W. This aim is
facilitated by considering the symmetric matrix M = W⊤W, whose eigenvalues are the squares
of the singular values of W. Taking the derivative of M, we find

dM = dW⊤W +W⊤dW + dW⊤dW = adX⊤W +W⊤dXa⊤ + paa⊤dt. (C.4)

Note that dxdy represents d[x, y] for any continuous semi-martingales x, y [see, e.g., 29, chapter 3
for reference].

Eigenvalues of a matrix-valued stochastic process. We leverage tools from the study of eigen-
values of matrix-valued stochastic processes [10, 21] to derive the evolution of the eigenvalues of
M in the theorem that follows.

Theorem C.1 Let s1 > . . . sl be the order of the eigenvalues of the matrix M defined by Equa-
tion (C.4). Let the collision time for the eigenvalues be defined as

τ = {inf t : si(t) = sj(t) for 1 ≤ i ̸= j ≤ l}. (C.5)

For t ≤ τ , the eigenvalues are semi-martingales given by the solution of the following SDE

d(si) = pc2i dt+
l∑

j=1,
j ̸=i

sic
2
j + sjc

2
i

si − sj
dt+ 2

√
sic2i

(
dX̃
)
i

(C.6)

where c = V⊤a and
(

dX̃
)
i
= 1/ηδ

(
⟨ui, y⟩ −

√
sic2i

)
dt+ dεi with ui being the ith column of U

and (ε0, . . . , εl−1) is the standard Brownian motion in Rl. The evolution of ci and U are presented
in the appendix F.5.

This theorem can be interpreted as the stochastic counterpart to the evolution of eigenvalues pre-
viously described for linear networks by Arora et al. [5], Varre et al. [51]. The derivation of the
eigenvalues is inspired by the work of [10].

The evolution of the eigenvalues features a key term highlighted in Equation (C.6) consisting
of the sum of skew-symmetric elements sic

2
j+sjc

2
i/si−sj . For a pair of indices (i0, j0) with i0 < j0

and thus si0 > sj0 , the term si0c
2
j0
+sj0c

2
i0/si0−sj0 positively influences the evolution of the larger

12

LINEAR NETWORKS

eigenvalue dsi0 and negatively affects the smaller eigenvalue dsj0 . Therefore, this force is repulsive,
driving the eigenvalues apart and increasing their gap. Another factor influencing the dynamics is
the presence of Geometric Brownian motion, where the singular value σi multiplicatively influences

the Brownian motion as
√

sic2i

(
dX̃
)
i
, similar to what is observed in diagonal linear networks

(refer to the previous discussion for similarities). This effect tends to pull the singular values toward
zero. Together with the fact that (si, ci) = (0, 0) represents a fixed point of the dynamics, these two
forces collectively push redundant singular values toward zero.

To further understand the interplay of repulsive forces and geometric Brownian motion, we
consider the evolution of the smaller singular value sp for l = p. Using the Ito chain rule, we
analyze the evolution of log sp, expressed as,

d(log sp) = p
c2p
sp

dt+
1

sp

p∑
j=1,
j ̸=p

spc
2
j + sjc

2
p

sp − sj
dt− 2

c2p
sp

+ 2

√
c2p
sp

(
dX̃
)
p
.

Using that spc2j+sjc
2
p/sp−sj < −c2p, for all indices j, the repulsive force accumulates to −(p −

1)(c2p/sp) and the Ito correction term from the logarithm contributes an additional −2(c2p/sp) (the
GBM component) thus offsetting the positive drift of p(c2p/sp). In the case of l ̸= p, considering
a polynomial xα with an appropriate α would demonstrate similar behaviour. This discussion out-
lines the forces at play, yet a complete characterization of the solution of the SDE Equation (C.6)
remains missing. Moreover, we have not established that the eigenvalues avoid a.s. collision, i.e.,
the explosion time τ∞ =∞ which is in itself a significant challenge [10, 22].

A simplified two-vector problem. To enhance our understanding of the SDE governing the evolu-
tion of the eigenvalues detailed in Equation (C.6), we consider the large noise limit. In this scenario,
the process described in Equation (C.3) simplifies to a purely noise-driven process without drift:

dW = dBta
⊤; da = W⊤dBt.

This SDE exhibits notable symmetry; allowing for an analysis using a matrix with sub-sampled
columns. Let S be any subset of 1, . . . , l, with (wi)

l
i=1 representing the columns of W. We define

WS ∈ Rp×|S| as the subsampled matrix obtained by selecting columns wi where i ∈ S, and
similarly, we define a subsampled vector aS by selecting the corresponding coordinates. The SDE
restricted to the set S is structured as follows:

dWS = dBta
⊤
S ; daS = W⊤

S dBt.

To demonstrate that the columns of W align, we leverage the symmetry of the SDE by examining
the restricted problem on every pair of rows S = {i, j}, and proving alignment within this subset.
This approach leads us to consider the two vector problem (l = 2), where W = [w1|w2] and
w1,w2 ∈ Rp, a ∈ R2. We describe the behavior of the eigenvalues for this two-vector problem in
the theorem below.

Theorem C.2 In the large noise limit, let s0 > s1 be the eigenvalues of W, the following properties
hold, for t ≤ τ defined by τ = {inf t : s0(t) = s1(t)},

(a) s0, s1 are greater than zero almost surely,

13

LINEAR NETWORKS

(b) for α = (p− 3)/2, s−α
0 is a super-martingale while s−α

1 is a sub-martingale.

This model for l = 2 mirrors the dynamics of the Wishart process studied by Bru [11], motivating
the exploration of the evolution of an appropriately chosen exponent of s0, s1. The first part of the
theorem arises from the fact that s−α

1 s−α
2 is a local continuous martingale that cannot explode to

infinity in finite time. The second part highlights a clear separation between the eigenvalues: one
is a sub-martingale that consistently increases in expectation, while the other is a super-martingale
that diminishes (note that the eigenvalues are raised to a negative power). This dynamic, coupled
with the symmetry argument, suggests that for every pair of columns, there is a component that
strengthens the alignment through its increases in expectation. Refer to App. F.6 for the proof.

Conclusion. In this section, we derive the SDE of eigenvalues for the matrix of parameters evolv-
ing under SGF. This derivation provides deeper insights into the mechanisms contributing to low-
rank behavior. Specifically, repulsive forces drive the eigenvalues apart, while the geometric Brow-
nian motion pulls them towards zero. These forces, unique to training with SGF, highlight the reg-
ularization effects of stochastic methods compared to gradient flow. However, fully characterizing
the solution of this SDE remains a challenging open problem we let as future work.

Appendix D. Generalization to other settings

In this section, we generalize our results beyond the square loss and the label noise gradient flow.
We consider the general framework of a loss function over the weight product W1W2 defined as

L (W1,W2) = L̂(W1W2) = E(x,y)∼D [ℓ(W1W2;x, y)] ,

In this framework, the loss function ℓ combines the prediction loss directly with the parametrized
model fθ. This approach applies, for example, to classification problems using linear networks
where ℓ might represent any classification loss and fθ = W1W2. It also directly extends to more
complex architectures where fθ = σ(W1W2) for an activation function σ, including settings like
a self-attention layer with frozen value vectors. We denote the product by β = W1W2 noting it
solely controls the loss. We investigate the evolution of the weight matrix determinant for a general
loss across various algorithms, from gradient flow to gradient descent, and demonstrate that a similar
separation occurs due to stochasticity.

Warm-up: Gradient flow. The gradient flow on the loss L can be written as the following,

dΘ = ΘJdt, where J =

[
0p×p −∇L̂(β)

−∇L̂(β)⊤ 0k×k

]
. (D.1)

Following a similar proof as in Theorem 3.1, we obtain that d
(
Θ⊤Θ

)
= 0. For separable classifi-

cation problem, the gradient flow converges to infinity [31, 47], hence, after appropriate rescaling,
the layers are aligned, as shown by Ji and Telgarsky [31]. Next, we contrast this result with the
outcomes observed in stochastic and discrete algorithms.

14

LINEAR NETWORKS

Continuous modelling of SGD. We consider the SGD algorithm with a batch size B. We denote
the mini-batch version of the loss functions L and L̂ as LB and L̂B , respectively. The SGD update
with stepsize η can be represented with the following block structure,

Θt+1 = Θt − ηΘtJt − ηΘtξt, where ξt =

 0p×p −
(
∇L̂(β)−∇L̂B(β)

)
−
(
∇L̂(β)−∇L̂B(β)

)⊤
0k×k

 .

We denote the SGD noise as gt =
(
∇L̂(β)−∇L̂B(β)

)
and the noise covariance as Σt =

E
[
gt
(
gt
)⊤] where the expectation is over all the minibatches. Following Li et al. [35], the SGD

update can be modelled with the following SDE,

dΘ = −ΘJdt−√ηdξ,where dξ =

 0p×p −Σ1/2
t dBt

−
(
Σ
1/2
t dBt

)⊤
0k×k

 . (D.2)

The main difference with SGF is that, in overparameterized problems, the noise covariance is time-
varying and decreases to zero upon convergence. Using Theorem F.3, the evolution of the determi-
nant of M = Θ⊤Θ is given by d(det (M)) = −ηdet (M)Tr (Σ(t))dt and can be explicitly solved
as

d(det (M)(t)) = det (M(0))exp{−η
∫ t

0
Tr (Σ(s))ds}.

Hence, the decay in the determinant is governed by the integral
∫∞
0 Tr (Σ(t))dt which is a stochastic

quantity. Tr (Σ(t)) represents the strength of the stochastic noise, which, in over-parameterized
regression, is proportional to the loss, i.e., Tr (Σ(t)) ∝ L (Θ) [43]. Therefore, the rate of decay in
the determinant depends on

∫∞
0 L ((Θ(t))) dt, with slower convergence leading to a simpler model

at convergence, as observed in the case of diagonal networks by Pesme et al. [43]. The result above
also holds for non-separable classification tasks where the noise of SGD drives the determinant to
0, a scenario not covered by the previous analysis of Ji and Telgarsky [31].

Discrete gradient algorithms. We can extend the previous results to discrete (possibly stochastic)
gradient algorithm. Both algorithms can be written as

Θt+1 = Θt (Ip+k + ηJt) ,

for stepsize η and Jt the possibly stochastic block gradient matrix defined in Equation (D.1). In the
context of discrete algorithms, the determinant is controlled by the following lemma.

Lemma D.1 When l = p+ k and η2
∥∥Jt

∥∥2
F
≤ 1, the following property holds for the determinant,

∥detΘt+1∥ ≤ exp(−η2

2

∥∥Jt

∥∥2
F
) ∥detΘt∥ .

If the factor η2
∥∥Jt

∥∥2
F
≤ 1 at every iteration t, the determinant is reduced by the discrete step

size. However, there is a tradeoff: the sum S :=
∑∞

t=0 η
2
∥∥Jt

∥∥2
F

can be finite, indicating that

15

LINEAR NETWORKS

100 101 102

Iteration

10 7

10 5

10 3

10 1

101

103

105

De
te

rm
in

an
t

= 0
= 2

100 101 102 103

Iteration

10 4

10 3

10 2

10 1

100

101

Si
ng

ul
ar

 v
al

ue
s

0
1
2
3
4

= 0
= 2

Figure 1: Evolution of the model characteristics for gradient flow (δ = 0) and stochastic gradient
flow (δ = 2). Left: Determinant of M. Right: Top-5 singular values of W1.

it does not completely drive the determinant to zero. Increasing η to increase S might lead to
instability and divergence. Furthermore, since

∥∥Jt

∥∥2
F
∝ L (Θt), there is an additional tradeoff

between convergence and the simplicity of the parameters. This illustrates how step sizes that
produce non-convergent training loss patterns, such as the catapult effect [34] or the edge of stability
mechanisms [13], can simplify the network’s parameters.

Appendix E. Experimental evidence

We consider a regression problem on synthetic data with n = 1000 samples of Gaussian data in
R5 (p = 5) with labels in R2 (k = 2) generated by some ground truth β ∈ R5×2, the width of
the network is l = 10. We use Gaussian initialization of the network parameters with entries from
N (0, 1). Experiments details can be found in the appendix G. In the left plot of Figure 1, we show
the time evolution of the determinant of matrix M. As suggested by theorems 3.1 and 3.2, in the
case without label noise, det

(
Θ⊤Θ

)
stays constant, while with the Label Noise of intensity δ = 2

it goes to zero with time. In the right plot of Figure 1, we demonstrate the time evolution of the
top-5 singular values of the matrix W1. Note that in the case of Gradient Flow all except the first k
singular values (σ0 and σ1) stay at the same scale, while adding Label Noise forces smallest d+l−k
singular values (σ2, σ3, and σ4) to tend toward zero. Further experiments illustrate in Figure 2 the
evolution of singular values of parameter matrix W1 when optimized with SGD, for classification
tasks and with ReLU network. These results also confirm that the beneficial effects of stochasticity
hold in these contexts.

Appendix F. Proofs

Theorem F.1 For the gradient flow defined in Equation (2.4), the following property holds,

d
(
det
(
Θ⊤Θ

))
= 0.

Hence, det
(
Θ(t)⊤Θ(t)

)
= det

(
Θ⊤

0 Θ0

)
, where Θ0 = Θ(0) is the initialisation at time t = 0.

First, we present a proof of this theorem, based on straightforward computations of the derivative
of the determinant and the fact that the matrix J has zero trace.

16

LINEAR NETWORKS

100 101 102 103

Iteration

10 9

10 7

10 5

10 3

10 1

101

Si
ng

ul
ar

 v
al

ue
s

0
1
2
3
4

= 0.005
= 0.1

100 101 102 103

Iteration

10 15

10 12

10 9

10 6

10 3

100

Si
ng

ul
ar

 v
al

ue
s

0
1
2
3
4
5

= 0.005
= 0.5

100 101 102 103 104 105

Iteration

10 2

10 1

100

101

Si
ng

ul
ar

 v
al

ue
s

0
1
2
3
4

= 0.0001
= 0.001

Figure 2: Evolution of the top-5 singular values of W1 for SGD with small and large stepsizes η.
Left: Regression with MSE loss, linear network. Middle: Classification with logistic loss, linear
network. Right: Regression with MSE loss, 2-layer ReLU network.

Proof Let M = Θ⊤Θ. The dynamics of M are governed by the ODE,

dM = dΘ⊤Θ+Θ⊤dΘ = Θ⊤ΘJdt+ JΘ⊤Θdt = (MJ+ JM)dt.

Using the gradient of the determinant given in Proposition F.2, the determinant of M evolves as
follows,

d(det (M)) = ⟨∇det (M), dM⟩ = det (M)
〈
M−1,MJ+ JM

〉
dt,

= det (M)
〈
M−1,MJ

〉
+
〈
M−1,JM

〉
= 2det (M) ⟨Ip+k,J⟩ = 2det (M)Tr (J).

Given that Tr (J) = 0, it follows that d(det (M)) = 0.

Proposition F.2 For any matrix M in Sd, the first two derivatives of the determinant of M, denoted
by det (M) are the following

(i) ∇det (M) = det (M)M−1

(ii) For 1 ≤ a, b, k, l ≤ d, the second order partial derivative is given by

∂2det (M)

∂Mab∂Mkl
= det (M)

[
(M−1)ba(M

−1)lk − (M−1)bk(M
−1)la

]
(F.1)

Theorem F.3 For a stochastic process given by the SDE,

dΘ = Θ [Jdt+ dξ] (F.2)

with TrJ = Tr ξ = 0, the determinant of the M = Θ⊤Θ evolves as

d(det (M)) = −det (M)Tr [dξdξ]. (F.3)

Proof First, we compute the evolution of M = Θ⊤Θ using the Ito’s product rule,

dM = d
(
Θ⊤Θ

)
= dΘ⊤Θ+Θ⊤dΘ+ dΘ⊤dΘ

17

LINEAR NETWORKS

The last term is interpreted as a derivative of the finite variation and it should be computed using
dt. (dBt)ij = 0 and (dBt)ij . (dBt)kl = δi=k∧j=ldt. Using Eq. (2.6),

dM = [Jdt+ dξ]Θ⊤Θ+Θ⊤Θ[Jdt+ dξ] + dξΘ⊤Θdξ,

= JMdt+MJdt+ dξMdξ + dξM+Mdξ.

Using the Ito chain rule, we can compute the evolution of determinant as following,

d(det (M)) = ⟨∇det (M), dM⟩+ 1

2

∑
a,b,k,l

∂2det (M)

∂Mab∂Mkl
dMabdMkl,

The first term is

⟨∇det (M), dM⟩ = det (M)
〈
M−1,JMdt+MJdt+ dξMdξ + dξM+Mdξ

〉
,

= 2det(M) ⟨Ip+k,J⟩ dt+ 2det (M) ⟨Ip+k, dξ⟩+
〈
M−1, dξMξ

〉
Using the property that Tr (J) = Tr (dξ) = 0. We get that ⟨∇det (M), dM⟩ =

〈
M−1, dξMξ

〉
.

For the second term

1

2

∑
a,b,k,l

∂2det (M)

∂Mab∂Mkl
=

1

2

∑
a,b,k,l

detM
[
(M−1)ba(M

−1)lk − (M−1)bk(M
−1)la

]
dMabdMkl,

=
det(M)

2

∑
a,b,k,l

[
(M−1)ba(M

−1)lk
]

dMabdMkl −
∑
a,b,k,l

[
(M−1)bk(M

−1)la
]

dMabdMkl,

Rearranging the terms in the summation, we get,∑
a,b,k,l

[
(M−1)ba(M

−1)lk
]

dMabdMkl =
∑
a,b,k,l

[
(M−1)badMab

] [
(M−1)lkdMkl

]
,

=
∑
b,l

[∑
a

(M−1)badMab

][∑
k

(M−1)lkdMkl

]
,

=
∑
b,l

(
M−1dM

)
bb

(
M−1dM

)
ll
=
∑
b

(
M−1dM

)
bb

∑
l

(
M−1dM

)
ll
,

= Tr
(
M−1dM

)
Tr
(
M−1dM

)
.

Similarly for the other term, we get,∑
a,b,k,l

[
(M−1)bk(M

−1)la
]

dMabdMkl =
∑
a,b,k,l

[
(M−1)bkdMkl

] [
(M−1)ladMab

]
,

=
∑
b,l

[∑
a

(M−1)badMal

][∑
k

(M−1)bkdMkl

]
,

=
∑
b

[∑
l

(
M−1dM

)
bl

(
M−1dM

)
lb

]
=
∑
b

(
M−1dMM−1dM

)
bb
,

= Tr
[(
M−1dM

) (
M−1dM

)]
.

18

LINEAR NETWORKS

Note that the diffusion part of M−1dM is dξ +M−1dξM. Using this

Tr
(
M−1dM

)
Tr
(
M−1dM

)
= Tr

[
dξ +M−1dξM

]
Tr
[
dξ +M−1dξM

]
= 0,

as Tr dξ = 0. For the other term,

Tr
[(
M−1dM

) (
M−1dM

)]
= Tr

[(
dξ +M−1dξM

) (
dξ +M−1dξM

)]
,

= 2Tr [dξdξ] + 2Tr
[
M−1dξMdξ

]
.

Putting everything together, we get,

1

2

∑
a,b,k,l

∂2det (M)

∂Mab∂Mkl
= −detM

(
Tr [dξdξ] + Tr

[
M−1dξMdξ

])
which gives us

d(det (M)) = −det (M) Tr [dξdξ].

Lemma F.4 When l = p+ k and η2
∥∥Jt

∥∥2
F
≤ 1, the following property holds for the determinant,

∥detΘt+1∥ ≤ exp(−η2

2

∥∥Jt

∥∥2
F
) ∥detΘt∥ .

Proof Note that because of the block structure of the matrix Jt, its nonzero eigenvalues come in±-
pairs: ±σ1, . . . ,±σm, moreover, since Jt is symmetric, singular values of Jt are the absolute values
of eigenvalues, i.e. σ1, . . . , σm. Then, the determinant of Θt+1 can be written as the following,

detΘt+1 = detΘtdet (Ip+k + ηJt) = detΘt

m∏
i=1

(1− η2σ2
i).

Using that 1− x2 ≤ e−x2
for all x, we can estimate

m∏
i=1

(1− η2σ2
i) ≤ exp(−η2

m∑
i=1

σ2
i) = exp(−η2

2

∥∥Jt

∥∥2
F
).

We obtain the required inequality by observing that
m∏
i=1

(1 − η2σ2
i) =

∥∥∥∥ m∏
i=1

(1− η2σ2
i)

∥∥∥∥ since each

term 1− η2σ2
i ≥ 0 when η2

∥∥Jt

∥∥2
F
< 1.

Theorem F.5 Let s1 > . . . sl be the order of the eigenvalues of the matrix M defined by Equa-
tion (C.4). Let the collision time for the eigenvalues be defined as

τ = {inf t : si(t) = sj(t) for 1 ≤ i ̸= j ≤ l}. (F.4)

19

LINEAR NETWORKS

For t ≤ τ , the eigenvalues are semi-martingales given by the solution of the following SDE

d(si) = pc2i dt+
l∑

j=1,
j ̸=i

sic
2
j + sjc

2
i

si − sj
dt+ 2

√
sic2i

(
dX̃
)
i

(F.5)

where
(

dX̃
)
i
= 1/ηδ

(
⟨ui, y⟩ −

√
sic2i

)
dt+dεi with ui being the ith column of U and (ε0, . . . , εl−1)

is the standard Brownian motion in Rl. The evolution of ci and U are presented in the appendix.

Proof The proof follows the approach of Bru [10]. Let W = UΣV⊤ be the singularvalue
decomposition (see Def.H.1 involved with r = l and l < p and it will be the rank). Our focus is on
understanding the evolution of the singular values and singular vectors of the matrix W. To derive
the evolution of Σ,V we can consider the eigen values and eigenvectors of the PSD matrix process
M. Note that M = VΣ⊤V⊤, let D = Σ2.

Evolution of D and V Taking the derivative of M, we find

dM = dW⊤W +W⊤dW + dW⊤dW = adX⊤W +W⊤dXa⊤ + paa⊤dt. (F.6)

We invoke the theorem H.2 we derived to give the eigenvalues of any matrix valued stochastic
process. Note that VV⊤ = Il, so some terms of the computation are not required.

dD = I⊙ Ñ dt+ I⊙ dM̃ dt+ I⊙
(

dM̃
(
S⊙ dM̃

))
.

and the evolution of the eigenvectors,

dV = V
(
Q∥ dt+ S⊙ (Ñdt+ dM̃

)
where you define,

Q∥ =
I⊙

[(
S⊙ dM̃

)(
S⊙ dM̃

)]
2

− S⊙
[(

S⊙ dM̃
) [

dM̃⊙ I
]]

+ S⊙
(

dM̃
(
S⊙ dM̃

))
where the matrix S is given by

Sij =

{
0 if i = j,

(sj − si)
−1 o.w.

Ñ = V⊤(paa⊤)V = pcc⊤.

dM̃ = V⊤
[
adX⊤W +W⊤dXa⊤

]
V,

= cdX⊤UΣ+ΣU⊤dXc⊤.

Note that Σ = diag ((σ0, . . . ,σl−1)) where σ0 > σ1 . . . > σl−1. Let D = Σ2 and denote the
entires of D as following, D = diag ((s0, . . . , sp−1)). Note that

U⊤dX = U⊤(
1

ηδ
(y −Wa)dt+ dBt),

=
1

ηδ

[
U⊤y −Σc

]
dt+U⊤dBt.

20

LINEAR NETWORKS

Using Levy’s characterization U⊤dBt is a Brownian motion in Rl, lets call that dB̃t. The diffusion
part of dM̃ (say dF)

dF = ΣV⊤dBtc
⊤ + cdBt

⊤VΣ,

=
(
σ ⊙ dB̃t

)
c⊤ + c

(
σ ⊙ dB̃t

)⊤
= dmtc

⊤ + cdmt
⊤

where dmt
def
= (σ ⊙ dB̃t). We are required to compute dF(S ⊙ dF) to compute the evolution of

eigenvalues. Using the lemma H.4, we get

dF(S⊙ dF) = cs⊤Sdiag (c) dt−Ddiag (Sdiag (c) c) dt+Ddiag (c)Sdiag (c) dt,

I⊙ [dF(S⊙ dF)] = I⊙
[
cs⊤Sdiag (c) dt−Ddiag (Sdiag (c) c) dt

]
The element wise computation of this term gives the required result for evolution of eigenvalues.

Evolution of c. Note that c = V⊤a. Computing the derivative using the Ito’s product rule, we
get,

dV⊤a = V⊤da+ dV⊤a+ dV⊤da,

= V⊤da+ dV⊤VV⊤a+ dV⊤VV⊤da,

dV⊤V =
[(

Q⊤
∥ dt− S⊙ dX

)]
,

V⊤da = V⊤W⊤dBt +
1

ηδ

[
U⊤y −Σc

]
dt = ΣdB̃t = dmt +

1

ηδ

[
U⊤y −Σc

]
dt,

dV⊤VV⊤da = −(S⊙ dF)dmt.

dV⊤VV⊤da =
[(

Q⊤
∥ dt− S⊙

(
Ñdt+ dM̃

))]
c

Using the lemma H.6, H.5, H.4 and computing the element wise summation, we get the follow-
ing evolution for dc

dci = −
1

2

l∑
j=1

Sij(sic
2
j + sjc

2
i)dt− ci

l∑
j=1

(Sijc
2
j)

∑
k ̸=i,j

skSki

− (p− 2)ci

l∑
j=1

Sijc
2
i dt−

l∑
j=1

Sijsjdt,

+ σi(U
⊤dX)i(1−

l∑
j=1

Sijc
2
j)− ci

∑
j

Sijσjcj(U
⊤dX)j

Evolution of U. To compute the evolution of U, we invoke the theorem H.2 on the evolution of
WW⊤ = UDU⊤. We ignore it here as it does not have much consequence on our results.

Theorem F.6 In the large noise limit, when l = 2, the following properties hold, for t ≤ τ ,

21

LINEAR NETWORKS

(a) s0, s1 are greater than zero almost surely.

(b) for α = (p− 3)/2, s−α
0 is a super-martingale while s−α

1 is a sub-martingale.

Proof First, note that in the large noise limit with l = 2, the evolution of the eigenvalues is expressed
as

d(s0) = pc20dt+
s0c

2
1 + s1c

2
0

s0 − s1
dt+ 2

√
s0c20

(
dB̃t

)
0
, (F.7)

d(s1) = pc21dt− s0c
2
1 + s1c

2
0

s0 − s1
dt+ 2

√
s1c21

(
dB̃t

)
1
. (F.8)

Using the Ito chain rule, for the evolution of s−α
0 we can write

d
(
s−α
0

)
=

∂(s−α
0)

∂s0

(
pc20dt+

s0c
2
1 + s1c

2
0

s0 − s1
dt+ 2

√
s0c20

(
dB̃t

)
0

)
+

1

2

∂2(s−α
0)

∂2s0

(
2
√
s0c20

)2

dt

= −αs−α−1
0

(
pc20dt+

s0c
2
1 + s1c

2
0

s0 − s1
dt− 2(α+ 1)c20dt+ 2

√
s0c20

(
dB̃t

)
0

)
= −αs−α−1

0

(
c20dt+

s0c
2
1 + s1c

2
0

s0 − s1
dt+ 2

√
s0c20

(
dB̃t

)
0

)
,

analogously

d
(
s−α
1

)
= −αs−α−1

1

(
c21dt− s0c

2
1 + s1c

2
0

s0 − s1
dt+ 2

√
s1c21

(
dB̃t

)
1

)
,

and finally for s−α
0 s−α

1

d
(
s−α
0 s−α

1

)
= d
(
s−α
0

)
s−α
1 + s−α

0 d
(
s−α
1

)
+ d
(
s−α
0

)
d
(
s−α
1

)
= −αs−α−1

0 s−α
1

(
c20dt+

s0c
2
1 + s1c

2
0

s0 − s1
dt+ 2

√
s0c20

(
dB̃t

)
0

)
−αs−α

0 s−α−1
1

(
c21dt− s0c

2
1 + s1c

2
0

s0 − s1
dt+ 2

√
s1c21

(
dB̃t

)
1

)
.

Now, we can show that the drift term in the SDE that describes the dynamics of s−α
0 s−α

1 is zero,
which gives us the first part of the result by Mckean’s argument [39],

−αs−α−1
0 s−α−1

1

(
s1c

2
0 + s1

s0c
2
1 + s1c

2
0

s0 − s1
+ s0c

2
1 + s0

s0c
2
1 + s1c

2
0

s0 − s1

)
= −αs−α−1

0 s−α−1
1

(
s1c

2
0 + s0c

2
1 +

s0s1c
2
1 + s21c

2
0 − s20c

2
1 + s0s1c

2
0

s0 − s1

)
= −αs−α−1

0 s−α−1
1

(
s1c

2
0 + s0c

2
1 +

(s1 − s0)
(
s0c

2
1 + s1c

2
0

)
s0 − s1

)
= 0.

The second part is obtained by noticing that

c20 +
s0c

2
1 + s1c

2
0

s0 − s1
=

s0
(
c21 + c20

)
s0 − s1

≥ 0,

c21 −
s0c

2
1 + s1c

2
0

s0 − s1
= −

s1
(
c21 + c20

)
s0 − s1

≤ 0,

22

LINEAR NETWORKS

and hence the drift term of d
(
s−α
0

)
is not positive, while the drift term of d

(
s−α
1

)
is not negative.

Appendix G. Experiment details

In all the graphs we plot the values averaged on the 20 runs with different random seeds as well
as the 95% confidence interval (lightly colored). To numerically emulate GF (Figure 1), we set a
stepsize of 1e−6 in numerical simulation.

In the further experiments, we study the behaviour of the linear network for regression with the
same synthetic data and same network initialization as in previous experiment. As seen in the left
plot of the Figure 2, when the stepsize is large (η = 0.1), singular values exhibit behavior similar
to the case of LNGF, while with the small stepsize (η = 0.005) the evolution of singular values is
closer to GF case. Next, we examine the effect of SGD in the case of classification task with logistic
loss, as illustrated in the middle plot of the Figure 2. We consider synthetic data with n = 1000
samples of Gaussian data in R5 (d = 5) constituting two clusters corresponding to two classes
(k = 1). Note that larger stepsize (η = 0.5) in this case also forces the smallest singular value to
tend to zero, however the effect is not so dramatic for the rest of singular values. Additionally, we
study the 2-layer ReLu network optimized with SGD on the same regression task as before. As seen
in the right plot of the Figure 2, the decrease of the last singular value σ4 is much slower than in the
case of the linear network, however, the larger stepsize still facilitates divergence of k largest (σ0
and σ1) and p− k smallest (σ2, σ3 and σ4) singular values.

All experiments are implemented with Python 3 [50] under PSF license, NumPy [25] under
BSD license, and PyTorch [42] under BSD-3-Clause license.

The experiments were run on a Intel i5-8250U, 8-GB RAM, with OS Ubuntu 20.04.6.

Appendix H. Supplementary material

H.1. Notations and preliminary definitions

Definition H.1 (Eigen decomposition and Singular Value decomposition) We discuss the eigen
value decomposition for a symmetric square matrix, and the singular value decompostion for any
matrix is defined as the following

(a) Eigen decomposition. For any rank r matrix R ∈ Sp, R = VDV⊤ is the eigen decomposi-
tion, where V ∈ Rp×r, D ∈ Rr×r, D is a diagonal matrix and V⊤V = Ir, however, VV⊤ is
not necessarily an identity matrix unless r = p.

(b) Singular Value Decomposition. For any rank r matrix W ∈ Rp×l, W = UΣV⊤, where
U ∈ Rp×r,V ∈ Rl×r,Σ ∈ Rr×r, Σ is a diagonal matrix and U⊤U = V⊤V = Ir, however
the UU⊤ and VV⊤ are not necessarily identity unless r = p or r = l respectively.

H.2. Eigenvalues of matrix valued stochastic process

Theorem H.2 For a matrix-valued stochastic process on S++
p+k ,

dR = Ndt+ dM

23

LINEAR NETWORKS

where dM is a local martingale process. Let R = VDV⊤ is the eigenvalue decomposition of the
process, the evolution of eigenvalues satisfy the SDE for time t less than the collision time,

dD = I⊙ Ñ dt+ I⊙ dM̃ dt+ I⊙
(

dM̃
(
S⊙ dM̃

))
+D−1 ⊙

(
V⊤dR

(
I−VV⊤

)
dRV

)
.

where S is defined as per Eq. H.1 and dM̃ = V⊤dMV, Ñ = V⊤NV. The evolution of the
eigenvectors,

dV = V
(
Q∥ dt+ S⊙ dF

)
+ (I−VV⊤)

(
Q⊥ dt+ dRVD−1

)
.

where you define,

Q∥ =
I⊙

[(
S⊙ dM̃

)(
S⊙ dM̃

)]
2

−
I⊙

[
D−1V⊤dR

(
I−VV⊤) dRVD−1

]
2

− S⊙
[(

S⊙ dM̃
) [

dM̃⊙ I
]]

+ S⊙
(

dM̃
(
S⊙ dM̃

))
+ S⊙

(
V⊤dR

(
I−VV⊤

)
dRVD−1

)
,

Q⊥ =
[
dRVD−1

] [[
S⊙ dM̃

]
D− dM̃

]
D−1.

Evolution of eigenvalues for general matrix SDE Proof Using the eigen decomposition, we
have R = VDV⊤,

D = V⊤RV,

dD = V⊤dRV +V⊤RdV + dV⊤RV +V⊤dRdV + dV⊤dRV + dV⊤RdV,

= V⊤dRV +DV⊤dV + dV⊤VD+V⊤dRdV + dV⊤dRV +
(

dV⊤V
)
D
(
V⊤dV

)
.

The approach we follow is use the jacobian of the evolution of V (see [49]) and solve the constrains
equations to obtain the Ito correction term as done in [10]. Let (s1, s2, . . . , sr) denote the diagonal
entries of D. Furthermore, we define the matrix S, which plays a notable role in Jacobian w.r.t V,
as the following,

Sij =

{
0 if i = j,

(sj − si)
−1 o.w.

(H.1)

For the sake of brevity, we denote the evolution

dF def
= V⊤dRV = V⊤NV dt+V⊤dMV,

def
= Ñ dt+ dM̃

The evolution of the eigenvectors,

dV = VdΩV + (I−VV⊤)dΞV.

24

LINEAR NETWORKS

Using the Jacobian of the eigen vectors, we write,

dΩV = Q∥ dt+ S⊙ dF,

dΞV = Q⊥ dt+ dRVD−1.

Note that V⊤V = Ir, using this we have,

0 = d
(
V⊤V

)
= dV⊤V +V⊤dV + dV⊤dV,

= dΩV
⊤ + dΩV + dV⊤VV⊤dV + dV⊤

(
I−VV⊤

)
dV,

= dΩV
⊤ + dΩV + dΩV

⊤dΩV + dΞV
⊤
(
I−VV⊤

)
dΞV,

= dΩV
⊤ + dΩV − (S⊙ dF) (S⊙ dF) +D−1V⊤dR

(
I−VV⊤

)
dRVD−1.

Using dΩ⊤
V = Q⊤

∥ dt− S⊙ dF, we have dΩV
⊤ + dΩV =

(
Q⊤

∥ +Q∥

)
dt.(

Q∥ +Q⊤
∥

)
dt =

(
S⊙ dM̃

)(
S⊙ dM̃

)
−D−1V⊤dR

(
I−VV⊤

)
dRVD−1. (H.2)

Coming back to the evolution of singular values,

dD = V⊤dRV +DV⊤dV + dV⊤VD+V⊤dRdV + dV⊤dRV +
(

dV⊤V
)
D
(
V⊤dV

)
.

= dF+
(
DQ∥ +Q⊤

∥ D
)

dt+D (S⊙ dF)− (S⊙ dF)D+ dΩ⊤
VDdΩV

+V⊤dR
[
VdΩV +

(
I−VV⊤

)
dΞV

]
+
[
dΩV

⊤V⊤ + dΞV
⊤
(
I−VV⊤

)]
dRV,

dD = I⊙ dF+
(
DQ∥ +Q⊤

∥ D
)

dt−
(
S⊙ dM̃

)
D
(
S⊙ dM̃

)
+ dM̃

(
S⊙ dM̃

)
−
(
S⊙ dM̃

)
dM̃+V⊤dR

(
I−VV⊤

)
dRVD−1 +D−1V⊤dR

(
I−VV⊤

)
dR.

(H.3)

Note that dD is diagonal, hence, I⊙ dD = dD.

I⊙ dD = I⊙ dF+ I⊙
(
DQ∥ +Q⊤

∥ D
)

dt− I⊙
[(

S⊙ dM̃
)
D
(
S⊙ dM̃

)]
+ 2I⊙

(
dM̃

(
S⊙ dM̃

))
+ 2I⊙

(
D−1V⊤dR

(
I−VV⊤

)
dR
)

Note that I⊙ (DM) = I⊙ (MD) = D ⊙M for any matrix M and diagonal matrix D, using this
property, we can simplify the above expression as,

dD = I⊙ dF+D⊙
(
Q∥ +Q⊤

∥

)
dt− I⊙

[(
S⊙ dM̃

)
D
(
S⊙ dM̃

)]
+ 2I⊙

(
dM̃

(
S⊙ dM̃

))
+ 2D−1 ⊙

(
V⊤dR

(
I−VV⊤

)
dR
)

25

LINEAR NETWORKS

Using Eq. H.2, we have,

D⊙
(
Q∥ +Q⊤

∥

)
dt = D⊙

[(
S⊙ dM̃

)(
S⊙ dM̃

)
−D−1V⊤dR

(
I−VV⊤

)
dRVD−1

]
,

= I⊙
[(

S⊙ dM̃
)(

S⊙ dM̃
)
D
]
−D−1 ⊙

(
V⊤dR

(
I−VV⊤

)
dRV

)
.

Using this,

dD = I⊙ dF+ I⊙
[(

S⊙ dM̃
)(

S⊙ dM̃
)
D
]
− I⊙

[(
S⊙ dM̃

)
D
(
S⊙ dM̃

)]
+ 2I⊙

(
dM̃

(
S⊙ dM̃

))
+D−1 ⊙

(
V⊤dR

(
I−VV⊤

)
dRV

)
,

= I⊙ dF+ I⊙
[(

S⊙ dM̃
) [(

S⊙ dM̃
)
D−D

(
S⊙ dM̃

)]]
+ 2I⊙

(
dM̃

(
S⊙ dM̃

))
+D−1 ⊙

(
V⊤dR

(
I−VV⊤

)
dRV

)
,

= I⊙ dF+ I⊙
[(

S⊙ dM̃
)

dM̃
]

+ 2I⊙
(

dM̃
(
S⊙ dM̃

))
+D−1 ⊙

(
V⊤dR

(
I−VV⊤

)
dRV

)
,

= I⊙ dF+ I⊙
(

dM̃
(
S⊙ dM̃

))
+D−1 ⊙

(
V⊤dR

(
I−VV⊤

)
dRV

)
.

Evolution of eigenvectors for general matrix SDE. Here, we derive the evolution of eigenvec-
tors,

Using Eq. H.2, we have,(
Q∥D+Q⊤

∥ D
)

dt =
(
S⊙ dM̃

)(
S⊙ dM̃

)
D−D−1V⊤dR

(
I−VV⊤

)
dRV

Now further using the constrain that dD needs to be diagonal we get,(
DQ∥ +Q⊤

∥ D
)

dt = dD− I⊙ dF+
(
S⊙ dM̃

)
D
(
S⊙ dM̃

)
− dM̃

(
S⊙ dM̃

)
+
(
S⊙ dM̃

)
dM̃

−V⊤dR
(
I−VV⊤

)
dRVD−1 −D−1V⊤dR

(
I−VV⊤

)
dR.(

DQ∥ −Q∥D
)

dt = dD− I⊙ dF−
(
S⊙ dM̃

) [(
S⊙ dM̃

)
D−D

(
S⊙ dM̃

)]
− dM̃

(
S⊙ dM̃

)
+
(
S⊙ dM̃

)
dM̃−V⊤dR

(
I−VV⊤

)
dRVD−1,

= dD− I⊙ dF−
(
S⊙ dM̃

) [
dM̃⊙ Ī

]
− dM̃

(
S⊙ dM̃

)
+
(
S⊙ dM̃

)
dM̃−V⊤dR

(
I−VV⊤

)
dRVD−1,

= dD− I⊙ dF+
(
S⊙ dM̃

) [
dM̃⊙ I

]
− dM̃

(
S⊙ dM̃

)
−V⊤dR

(
I−VV⊤

)
dRVD−1.

Ī⊙
(
DQ∥ −Q∥D

)
dt = Ī⊙ (dD− I⊙ dF) + Ī⊙

[(
S⊙ dM̃

) [
dM̃⊙ I

]]
− Ī⊙

(
dM̃

(
S⊙ dM̃

))
− Ī⊙

(
V⊤dR

(
I−VV⊤

)
dRVD−1

)
.

26

LINEAR NETWORKS

(̄
I⊙Q∥

)
dt = S⊙

[
−
(
S⊙ dM̃

) [
dM̃⊙ I

]
+ dM̃

(
S⊙ dM̃

)
+V⊤dR

(
I−VV⊤

)
dRVD−1

]
.

Combing these, we get the diagonal and off diagonal terms of Q∥(
I⊙Q∥

)
dt =

1

2
I⊙

(
Q∥ +Q⊤

∥

)
dt,

=
I⊙

[(
S⊙ dM̃

)(
S⊙ dM̃

)]
2

−
I⊙

[
D−1V⊤dR

(
I−VV⊤) dRVD−1

]
2

.

Q∥ =
I⊙

[(
S⊙ dM̃

)(
S⊙ dM̃

)]
2

−
I⊙

[
D−1V⊤dR

(
I−VV⊤) dRVD−1

]
2

− S⊙
[(

S⊙ dM̃
) [

dM̃⊙ I
]]

+ S⊙
(

dM̃
(
S⊙ dM̃

))
+ S⊙

(
V⊤dR

(
I−VV⊤

)
dRVD−1

)
.

Computing of Q⊥. Recalling the evolution of the eigenvectors,

dV = VdΩV + (I−VV⊤)dΞV.

Using the Jacobian of the eigen vectors, we write,

dΩV = Q∥ dt+ S⊙ dF,

dΞV = Q⊥ dt+ dRVD−1,

dV = V
[
Q∥ dt+ S⊙ dF

]
+ (I−VV⊤)

[
Q⊥ dt+ dRVD−1

]
,

dV⊤ =
[
Q⊤

∥ dt− S⊙ dF
]
V⊤ +

[
Q⊤

⊥dt+D−1V⊤dR
]
(I−VV⊤).

Using the fact that
(
I−VV⊤)R = 0 and deriving it,

0 =
(
I−VV⊤

)
R,

0 = d
[(

I−VV⊤
)
R
]
,

dR = d
(
VV⊤R

)
,

= dVV⊤R+VdV⊤R+VV⊤dR+ dVdV⊤R+ dVV⊤dR+VdV⊤dR,

dRV = dVD+VdV⊤VD+VV⊤dRV + dVdV⊤VD+ dVV⊤dRV +VdV⊤dRV,

dVD = V
[
Q∥D dt+ (S⊙ dF)D

]
+ (I−VV⊤) [Q⊥D dt+ dRV] ,

VdV⊤VD = V
[
Q⊤

∥ dt− S⊙ dF
]
D,

dVdV⊤VD = −V [S⊙ dF] [S⊙ dF]D−
[(

I−VV⊤
)

dRVD−1
]
[S⊙ dF]D,

dVV⊤dRV = V [S⊙ dF] dF+
[(

I−VV⊤
)

dRVD−1
]

dF,

VdV⊤dRV = −V [S⊙ dF] dF+VD−1V⊤dR(I−VV⊤)dRV.

27

LINEAR NETWORKS

Adding the terms up we get,

V
[
Q∥ +Q⊤

∥

]
Ddt+

(
I−VV⊤

)
Q⊥Ddt

−V [S⊙ dF] [S⊙ dF]D−
[(

I−VV⊤
)

dRVD−1
]
[S⊙ dF]D

+
[(

I−VV⊤
)

dRVD−1
]

dF+VD−1V⊤dR(I−VV⊤)dRV = 0.

(
I−VV⊤

)
Q⊥Ddt−

[(
I−VV⊤

)
dRVD−1

]
[S⊙ dF]D+

[(
I−VV⊤

)
dRVD−1

]
dF = 0.

(
I−VV⊤

)
Q⊥Ddt =

[(
I−VV⊤

)
dRVD−1

]
[S⊙ dF]D−

[(
I−VV⊤

)
dRVD−1

]
dF,(

I−VV⊤
)
Q⊥ =

[(
I−VV⊤

)
dRVD−1

]
[[S⊙ dF]D− dF]D−1

Q⊥ =
[
dRVD−1

]
[[S⊙ dF]D− dF]D−1

This gives the expression for Q⊥ and this ends our computation.

Lemma H.3 For any matrix A ∈ Rn×m, B ∈ Rn×n, m × n-dimensional Brownian motion dBt,
the following results hold on the covariance

dBtAdBt = A⊤dt, (H.4)

dBtBdBt
⊤ = tr (B) Imdt. (H.5)

Lemma H.4 With S defined in Equation (H.1), dF = dF = ΣV⊤dBtc
⊤ + cdBt

⊤VΣ and
dmt

def
= (σ ⊙ dB̃t).

dF(S⊙ dF) = cs⊤Sdiag (c) dt−Ddiag (Sdiag (c) c) dt+Ddiag (c)Sdiag (c) dt. (H.6)

Proof

S⊙ dF = [diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c)] ,

dF(S⊙ dF) =
(
cdmt

⊤ + dmtc
⊤
)
[diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c)] ,

= cs⊤Sdiag (c) dt−Ddiag (Sdiag (c) c) dt+Ddiag (c)Sdiag (c) dt.

Lemma H.5 With S defined in Equation (H.1), dF = dF = ΣV⊤dBtc
⊤ + cdBt

⊤VΣ and
dmt

def
= (σ ⊙ dB̃t).

(S⊙ dF)(S⊙ dF) = Ddiag
(
Sdiag (c)2 S

)
dt+ diag (c)SDSdiag (c) dt. (H.7)

28

LINEAR NETWORKS

Proof

(S⊙ dF) = S⊙
(

dmtc
⊤ + cdmt

⊤
)
,

= diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c) .

Now, computing the product,

(S⊙ dF)(S⊙ dF) = [diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c)] [diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c)] ,

= Ddiag
(
Sdiag (c)2 S

)
dt+ diag (c)SDSdiag (c) dt.

Lemma H.6

(S ⊙ dF)dmtc
⊤dF =

Proof

(S ⊙ dF)dmt = [diag (c)Sdiag (dmt) + diag (dmt)Sdiag (c)] dmt = diag (c)S(σ ⊙ σ)

29

	Introduction
	Related Work

	Linear networks and continuous-time gradient method
	Separation between Gradient Flow through determinant
	Conclusion
	Notations
	Further Related Work
	Mechanism behind the low-rank phenomenon
	Generalization to other settings
	Experimental evidence
	Proofs
	Experiment details
	Supplementary material
	Notations and preliminary definitions
	Eigenvalues of matrix valued stochastic process

