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Abstract

Multi-view multi-label learning typically suffers from dual data incompleteness
due to limitations in feature storage and annotation costs. The interplay of hetero-
geneous features, numerous labels, and missing information significantly degrades
model performance. To tackle the complex yet highly practical challenges, we
propose a Theory-Driven Label-Specific Representation (TDLSR) framework.
Through constructing the view-specific sample topology and prototype association
graph, we develop the proximity-aware imputation mechanism, while deriving class
representatives that capture the label correlation semantics. To obtain semantically
distinct view representations, we introduce principles of information shift, inter-
action and orthogonality, which promotes the disentanglement of representation
information, and mitigates message distortion and redundancy. Besides, label-
semantic-guided feature learning is employed to identify the discriminative shared
and specific representations and refine the label preference across views. Moreover,
we theoretically investigate the characteristics of representation learning and the
generalization performance. Finally, extensive experiments on public datasets and
real-world applications validate the effectiveness of TDLSR.

1 Introduction

The popularity of multi-view learning stems from its ability to provide comprehensive representations
of samples [29, 9]. Integrating multi-source information effectively reveals latent semantic associ-
ations in multimodal data, thereby enriching the feature space and improving model accuracy and
generalization [10]]. With the advancement of information technology, single-label proves inadequate
in meeting the object labeling and recognition demands [3]]. In practice, objects frequently fall under
multiple categories simultaneously, with a document in text classification [40] being assigned labels
like topic, intended audience, sentiment and so on. Benefiting from the holistic characterization
offered by multi-view approaches [41] and the capacity of multi-label methods [31] to capture all
sample attributes, diverse views and labels are emerging as the dominant form of training data. Con-
sequently, multi-view multi-label classification (MvMLC) has attracted significant research attention,
as it delivers a refined understanding of the complexity and diversity inherent in real-world situations.
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Existing MVMLC methods are capable of implementing both multivariate feature fusion and multi-
objective joint discrimination. For example, LVSL [43]] performed view-specific label learning and
leveraged low-rank label structures to enhance performance. EF2FS [[12] proposed an embedded
feature selection model that integrated feature aggregation and enhancement. However, these ideal
methods assume the presence of both features and labels, whereas limitations in feature collection
techniques and annotation complexity result in the unavailability of partial views and tags [37],
motivating researchers to explore the incomplete multi-view multi-label classification iMvMLC)
approach. Early efforts like iMVWL [33] employed a joint learning strategy to refine the shared
subspace and enhance the robustness of the weak label classifier. NAIM3L [21] combined matrix
factorization with global high-rank and local low-rank constraints to obtain a shared label space. Given
the ability to capture complex semantic information, deep learning based methods have demonstrated
promising performance. The pioneering work DICNet [25] introduced an incomplete instance-level
contrastive learning method for improved consensus representation, while LMVCAT [26] designed
two transformer-based modules for cross-view feature aggregation and category awareness.

Despite the emergence of various effective iMvMLC methods, they remain deficient in feature
information reconstruction, semantic distinctness of extracted representations and the coupling
between label correlation semantics with feature connotation. (i) The absence of views severely
undermines both the capture of cross-view dependencies and the stability of downstream modules.
Approaches [4] that only mask missing samples tend to circumvent the challenge, rather than engaging
in robust information recovery. AIMNet [23] attempted to perform missing imputation via cross-view
global attention computation. However, the integration of a global weighting scheme may further
exacerbate reconstruction noise since not all samples are strongly correlated. (ii) The essence of
multi-view learning lies in extracting the complementarity and consistency across diverse views [36]].
Additionally, increased attention should be devoted to feature separation in multi-label scenarios [42]],
as distinct labels exhibit varying sensitivities towards particular features. DIMC [38]], TSIEN [34]]
and SIP [27]] primarily focused on shared subspaces while overlooking the unique characteristics of
individual views. MTD [24] attempted to obtain shared and specific representations through geometric
distance constraints. However, this linear interaction pattern struggled to reflect the intricate inter-
view relationships. (iii) Label relevance is fundamental to multi-label learning and distinguishes it
from multi-class problem [44], which makes multiple independent binary classifications insufficient
as done in some methods [24]]. Besides, instead of being considered in isolation, mutually dependent
label semantics should interact seamlessly with feature information to facilitate both the perception
of label-specific features and the selection of the preferred labels corresponding to those features.

To tackle these issues, we propose a Theory-Driven Label-Specific Representation framework named
TDLSR. The motivation behind TDLSR is to minimize view reconstruction errors, improve the seman-
tic discriminability of extracted representations and strengthen the interaction between label-relevant
semantics and feature information. We first construct view-specific instance relation graphs using the
attention mechanism integrated with neighborhood-aware selection. Without any discrepancy arising
from network parameter updates, the reconstruction risk is minimized by propagating highly relevant
sample information across views. By introducing the principles of information shift, interaction and
orthogonality, we develop a mutual information optimization model that aligns the core constituents
of representations with their respective views, facilitates interaction among shared representations,
suppresses cross-talk between private components and enforces orthogonality of shared and specific
information from the same view. Label correlation information is transmitted via graph-induced rela-
tional network modeling, which results in the emergence of interdependent category representatives.
Through discrete engagements between each class prototype and semantically distinct features, the
most sensitive feature ensemble for each label across both shared and specific feature pools can be
identified. We further establish the generalization error bound via error decomposition, showing that
feature disentanglement maximizes the mutual information between representations and objects and
reduces generalization error. The main contributions of our work are summarized as follows:

e We propose a general multi-view representation extraction model inspired by information theory.
This model guarantees unbiased representations through the constraint of information shift, sep-
arates shared and specific semantic via the regulation of information interaction, and eliminates
representation redundancy by strengthening information orthogonality.

e TDLSR enhances the propagation of feature dependencies and label correlation semantics by
constructing relational graphs. Besides, it introduces label-specific shared and private feature



learning for the first time. Theoretically, we prove the discriminability and effectiveness of feature
extraction and derive the generalization error bound.

e Extensive experimental results across diverse public available datasets, along with applications on
real-world NBA data, validate the effectiveness and robustness of our method.

2  Method

In this section, we present the following critical components of our TDLSR as shown in Fig. [T}
proximity-aware graph attention recovery mechanism, universal view extraction framework under
mutual information constraints and multi-label semantic and label-specific representation learning.

2.1 Problem definition

We define {X)}Y_, as original multi-view setting, where X ) = {z{")}¥ | € RN*d" represents
d,, dimensional feature matrix of the v-th view. The label matrix Y € {0, 1} *¢ corresponds to
C categories, with Y; ; = 1 if sample i is tagged as class j. Besides, we let W € {0, V=V
and G € {0,1}"*¢ denote the missing indicator for views and labels, respectively. Specifically,
W; ; = 1if the j-th view of the i-th sample is available, otherwise W; ; = 0. Similarly, G; ; = 1 or
0 reflects the certainty of the corresponding label. Our goal is to train an end-to-end neural network
capable of performing classification inference on incomplete multi-view weak multi-label data.
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Figure 1: The main framework of our proposed TDLSR. Different shapes signify different samples.

2.2 Proximity-aware Graph Attention Recovery Mechanism

The lack of diverse views limits the capacity of deep neural models to extract high-level represen-
tations [20]. Consequently, data augmentation through reconstruction techniques is essential for
improving model accuracy and stability. To mitigate information deficiency arising from incomplete-
ness, we propose an attention-based relational graph construction strategy to propagate similarity
signals across samples for missing imputation. For any view v, the attention score for an instance pair

) _ @) /T

is computed by Bl(vj , where 7 is the temperature parameter and h(-) denotes the

normalization function. Each row of the matrix B(") quantifies the degree of similarity between the
corresponding sample with all other samples [23], which facilitates the identification of the k-nearest
neighbors for each instance. Therefore, we construct the view-specific graph $(*) € RN *N through

attention-induced proximity awareness, where vaj) = 1 means W; ,W; , = 1 and Bl.(_z.) is one of
the top-k largest elements in the i-th row, i.e., a:g.v) is the neighbor of mgv). Considering similarity

relations between instances in existing views are applicable to the missing views, the transferred
graph for finding the available instances related to the missing ones can be obtained:

\4
KO = 3 $0) diag (W), M
k=1,k#v
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Figure 2: Depiction of information shift, interaction, and orthogonality.

where diag(-) creates a diagonal matrix and W ,, is the v-th column. Besides, the contribution of
available samples to reconstruct missing ones is governed by the maximal computable correlation
from alternative views:

Bi,j = Imax (Bfl),é’(l)

J g0

(2) &(2) ) &(V)
B2)SY).. B8, 2)
where B; ; encapsulates the influence of the j-th sample in the recovery process of the i-th sample.

By treating K as the adjacency matrix and B as the edge weight, we can get the reconstructed data
after message propagation:

() 5 (v)
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Since X (*) serves as an approximate proxy of missing instances, we combine it with the original
view to generate the final recovery matrix for downstream tasks:

Z0 =X (1 - W)+ XOW,,. @

2.3 Universal View Extraction Framework under Mutual Information Constraints

Previous studies [27]] have primarily concentrated on enabling networks to extract shared information,
while overlooking the contributions of each unique view. Moreover, the reliance on linear geometric
constraints in early view-specific representation learning [24] falls short of capturing complex feature
interactions. To effectively assess both the consistency and the complementarity of distinct features,
we propose a general model that directly constrains the mutual information between representations
for precisely measuring their interaction degree. Two groups of multi-layer perceptrons { M }V_, and
{ MvO }V_ | are employed as shared and view-private channel to extract the corresponding representa-
tions, i.e., {M? : Z(") — SWNV_ and {MO : Z(") - O)}V_,. Taking the image-text retrieval
task [32] for explanation, as illustrated in the Fig. 2} an image is typically paired with multiple textual
descriptions that emphasize on individual relationships and environmental context, respectively. It
requires the model to simultaneously extract the consistent shared representations (central actions)
and unique modality-specific elements (e.g., distinct individual identities and background details) for
holistic multimodal perception. To achieve this, maximizing I(s(*); z(*)) is critical for guaranteeing
that the representations stay consistent with the core semantics of raw modalities, such as people,
kit, background, etc. Besides, comprehensive feature disentanglement is facilitated by maximizing
the mutual information I(s(")|z(*"); 5(*)|2(*)) and minimizing I(0(”")|2(*"); 0(")|2(*)) between
representations from any pair of views v and v* (1 < v # v* < V'), which focuses on capturing the
central characteristics of the actions and preserving unique information embedded in each modality,
respectively. Furthermore, establishing complete representation orthogonality from the same modality,
as indicated by I(s(")|z("); 0(*)|2(*)) = 0, effectively minimizes semantic redundancy, such as the
identification of the individual and their actions.

As mentioned above, feature separation is driven by the following three criteria: (i) prevent informa-
tion shift, (ii) optimize information interaction and (iii) promote information orthogonality. Under



the condition of mutual information constraints, the universal model can be expressed as

v vV Vv
maxZI(s(“); z(v)) +Z Z ([(s(v*) 27, S(v)|z(v)) _ [(O(U*)‘z(v*);o(v)|z(v)))
v=1

v=1 v*#v
information shift information interaction 5)
14
s.t. Zl(s(”)|z(”); oz =0.
v=1

information orthogonality

By employing the Lagrange multiplier method, the equality constraint can be appropriately scaled.
Direct computation of mutual information is impractical due to the challenges of distribution inference
and the complexity of high-dimensional integrals. Thus, stability and feasibility are typically ensured
by refining estimable mutual information bounds [35)]. Regarding the information shift term, its lower
bound is commonly represented through a reconstruction loss[[13]], where the representation s(*) is
decoded via ¢(z(*)|s(*)) to faithfully preserve the original view:

I(s(v);z(v)) > Ep(zw),s(v)) {logq (z(v)‘s(v)ﬂ ) 6)

For the second term, based on the definition expansion and the non-negativity of entropy, we can
derive the following lower bound by introducing another variational distribution g(s(*)|s""):

I(s@*)\z(v*);s<v>|z<v>)2//p(s<v>|z<v>/s<v*>
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Kullback-Leibler divergence

20N p(s)2)) log g(s@)|s¥ s ds®)
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where p(s(")|z(*) /s(v")|2(v")) refers to the conditional distribution between the shared representa-
tions from z(*) and z(*"). Leveraging the non-negativity of Kullback-Leibler divergence between the
distributions p(s(*)|2(") /s(v")|2(v")) and ¢(s(")|s(*")), the tighter lower bound is further obtained.
Similarly, upper bounds for the remaining two negative terms can be derived following the same
rationale. Therefore, the problem (16) is transformed into optimizing the following objective:

Lim == By o) o (21915@)| = [ [ (12,1217 logg(s] s )as* s
lower bound for information shift lower bound for shard information interaction
+ Dici(p(0® ]2 02 [p(0)|2))g(0) o))
upper bound for specific information interaction

+ B Drr(p(s™]2); 0012 |Ip(0™)2()q(s*)|0™)),

upper bound for information orthogonality
®)
where (3 is the Lagrange multiplier. Minimizing £;p promotes effective distinction between shared
and specific feature semantic, with implementation details provided in the Appendix.

2.4 Multi-Label Semantic and Label-Specific Representation Learning

In multi-label classification tasks, binary encoding struggles to capture the underlying label semantics
[19]. To overcome this limitation, we employ a data-driven approach to learn label prototypes [27],
which provides a clear insight into label structures and enhances effective semantic associations with
features. After initializing the one-hot vector b; € R for each category, we utilize two stochastic
encoders to model the prototype distribution i.e., h; ~ N (ui oI ) , where the mean y1; and variance
o; are determined by the encoders g,, (b;) and g,2 (b;). Then, we sample from the distribution with
the reparameterization trick to obtain the prototype representation b = £ 3% | (u; + o; © 67) [,
where 6¢ means the d-th individual sampling and ® denotes the element-wise product.



The prototype representations are independently learned for each label, yet investigating intrinsic label
correlation remains a core challenge in multi-label learning [3]]. For bridging this gap, graph neural
networks are leveraged to propagate prior correlation information and refine the label representations
to encapsulate the inherent relationships of label semantics. Prototypes are regraded as a set of
nodes positioned on the label relation graph, with edge weights reflecting the correlation between
corresponding label pairs. Besides, the label correlation matrix A quantitatively characterized on
the training data serves as the appropriate substitute for the adjacency matrix. Rather than utilizing
co-occurrence frequency to evaluate correlation degree, we use the Jaccard distance [30]] calculated
over positive labels, as we are only concerned with the categories assigned to each instance. By
computing the intersection and union of two classes regarding positive values, we can obtain

o (Y., Y. ;)
i, — )
S (Yii + Yi) — (Yo Yoy)

where A;; is set to 0 to eliminate self-dependency. Given an aggregated matrix H € R¢*?, the
label embeddings corresponding to each row can be updated by passing through the GIN layer
with propagated correlation information [L1]], i.e., E = f[(1 4+ €) H + AH], where f(-) denotes
a fully-connected layer followed by Batch Normalization and Leaky ReL.U activation, and € is a
learnable scalar that controls the influence of node’s own features. To reinforce cohesion between
relevant prototype representations and distinguish unrelated ones, we employ the following objective
that aligns representation similarity with label correlation:

©))

c C
1 N R
Lie=—75 > > " Ajjlog(cos (E;, E;)) + (1 — Ayj)log (1 — cos (Eq, Ej)),  (10)
i=1 j=1

where cos (E;, E;) is the cosine similarity and A=A+TwithI denoting an identity matrix. Multi-
label classification tasks often involve labels with varying sensitivities to different feature subsets [[14].
Consequently, label-specific feature learning has become a widely adopted technique to select the
most relevant features tailored to classifying each label. However, label-specific disentangled feature
learning remains underexplored, despite its potential to boost model performance. For instance, in
image recognition, shared information capture general visual cues, while private features highlight
other distinctive traits tied to each label, such as breed for "dog" and texture for "cat". Thus, we treat
activated label prototypes as feature importance scores and engage them with both shared and private
representations to discern the label-specific view embeddings:

132_@) _ [Us (B ® :nl(-”);as (B2) a;g”); ...;05 (E¢) @scl(-”)} , (11)

where o is the Sigmoid function. According to the Eq. (TI)), we can obtain the label-specific shared
and private features, i.e., {S) — U® e RVXCxd1V_ and {O) — V() g RN*CxdyV_
The interaction between label semantics and view representations supports a bidirectional selection
mechanism, in which discriminative views are assigned to specific labels, while information-related
label subsets are uncovered associated with distinct views. Processing through the linear classifiers,
view-specific predictions U € RV* and V(") € RVN*C are generated. Given the variability
in reconstruction quality, views with higher recovery accuracy should be emphasized in the fusion
process. For this aspect, certain reconstructed views characterized by low attention scores in relation to
their associated samples naturally exhibit reduced confidence [23]]. Thus, we calculate the maximum
original attention for each instance with respect to other instances as its confidence score:

Q:., = max ({Tlog Bi,jwj,v}jzl) , (12)

where B is computed by Eq. and Q € RV*V stores the confidence score for individual
instances. Since @ is tailor-made for the missing samples, the confidence matrix is updated as
Q' =(1-W)®Q + W. During the late fusion, we combine the feature reconstruction efficiency
to obtain the final prediction:

\%4 v \%4 v
ﬁ~ o Ev:l Ui(,:) g,v Zv:l ‘/ZE )Q/i,v 13
v, T US VvV ’ + Vv ’ . ( )
Zv:l Qi,u Zv:l Qi,w
Then, we employ the weighted cross-entropy loss to mitigate the impact of missing labels:
N C
1

ﬁbce = — Z Z (K,j IOg (ﬁq,j) =+ (1 — EJ‘) 10g (1 — ﬁi,j)) Gi,j~ (14)

Zz,j ©I =1 j=1



By incorporating A; and A, to balance the loss effects, our total training loss can be expressed as

L= ACbce + >\1£IB + )\2£le- (]5)

2.5 Theoretical Results

In this subsection, we aim to theoretically explore the fundamental mechanisms that contribute to
the model performance and the generalization capability of TDLSR. Through rigorous derivations
(proofs in the Appendix), we obtain the following theorems:

Theorem 1. (Discriminability of Label-specific Representation.) For label prototypes E; and Ey,
such that k # j for all k, and view representations X ") and X V") such that v* # v for all v*, the
discriminability of pP® for class j necessitates that either of the following conditions be satisfied:

E [X< Vos(E } = Z ) os(B)T > E [X(v)JS(Ek)T} - ]ti;mg”)as(Ek)T
E {X(U)O’S } Z:c os(E TSE [X(” j)q = ;fémgv*)og E)T

Theorem 2. (Effectiveness of Disentangled Representation.) Let the disentangled representation
be denoted as R = (SM,...,8V) 00 ... . OWN)), where the information entropy of each repre-
sentation is assumed to be fixed, i.e., H(S")) = H(O™) = H° (1 < v < V). Then, in the case
where each shared and specific representation is indispensable for prediction, I(R;Y") will attain its
maximum when R = R., with R, being the optimal solution of the problem (I6).

Theorem 3. (Generalization Error Bound.) Our model is designed to learn a vector-valued
function f = (f1,...,fc) : X + RCY.  The expected risk and empirical risk w.r.t. the
training dataset D are denoted as R(f) = Ex y)~xxyll(f*(X,Q),Y)] and Rp(f) =

NLC Zf\il Zle E(ZU 1Qivfe(x (U)))v Y. ), where f®(-) refers to the late fusion of multiple
views. With probability at least 1 — 8, we have the following generalization error bound:

= K K
R(f) —Rp (-f) = = N3/4‘2/1/4 + @rec(Q’ Xa Y)

SO (S HX 80,00y <) + Ky
NC ’
where K1 = K3 = O(C), Ky = O(C), Ky is constant of order O(1) as N,V — oo, and

gen,..(Q, X,Y) is the generalization error related to the view reconstruction quality. Moreover, the
generalization error bound becomes increasingly tighter during the optimization of the problem (16).

+ K3

3 Experiments

3.1 Datasets and metrics

In our experiments, we utilize six popular multi-view multi-label datasets to validate the performance
of our TDLSR, i.e., Corel 5k [5], ESPGame [1]], IAPRTC12 [8], Mirflickr [[16]], Pascal07 [6], OBJECT
[L3]. In accordance with [25| 38]], we select six metrics to construct a comprehensive evaluation
system, i.e., Hamming Loss (HL), Ranking Loss (RL), OneError (OE), Coverage (Cov), Average
Precision (AP), and Area Under Curve (AUC). To facilitate comparison, we present 1-HL, 1-OE,
1-Cov, and 1-RL values in the report, where higher values correspond to better performance.

3.2 Comparison methods

To measure the advancement of our TDLSR, nine state-of-the-art methods are selected for comparison
experiments, i.e., AIMNet [23]], DICNet [25], DIMC [38]], iMVWL [33]], LMVCAT [26], MTD [24],
SIP [27], LVSL [43]], DM2L [28]]. Specifically, the first seven methods can simultaneously address
the issues of missing views and labels. LVSL is a MvMLC method unable to handle missing data.



Thus, we use the mean of available instances to complete the missing views and fill the unknown
labels with "0". DM2L is a kernel-based nonlinear method for incomplete multi-label learning. Then,
we concatenate all views into a single-view representation for the execution of DM2L. All parameters
of compared methods are configured as the recommended values in their original codes.

3.3 Implementation details

Each dataset is divided into training, validation and test sets in the ratio of 7:1:2. To simulate the
partial view setting, a specified proportion of instances based on the Partial Example Ratio (PER), are
randomly marked as unavailable in each view. Additionally, we ensure that each sample contains at
least one complete view to avoid invalid cases. For weak supervision, we introduce label omissions
for both positive and negative tags in each category applying the same proportion determined by the
Label Missing Ratio (LMR). The process of constructing incomplete data is repeated multiple times
to mitigate the impact of experimental randomness. Our model is implemented by PyTorch on one
NVIDIA GeForce RTX 4090 GPU of 24GB memory.

3.4 Experimental results and analysis
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Figure 3: Experimental results on four datasets with PER and LMR changing from 30% to 90%.

To evaluate the effectiveness of our TDLSR in handling absent views and labels, we benchmark it
against nine closely related algorithms across six datasets with varying levels of data sparsity. The
proportion of missing views (PER) and labels (LMR) encompasses values of {30%, 50%, 70%, 90%}.
The mean and standard deviation of the results with PER and LMR fixed at 50% are reported in Table
[} Besides, the average ranking of each algorithm based on the six metrics is calculated to perform a
thorough assessment. Fig. [3|illustrates the variation in AP as PER and LMR changes from 30% to
90%. The other relevant results will be presented in the Appendix.

Drawing from the comparison results, we have the following observations: (i) Our method exhibits
outstanding performance on almost all metrics across all six datasets. As shown in Table[T] despite
the fluctuating rankings of other methods, TDLSR consistently holds the top position. Therefore, our
method effectively addresses the iMvMLC problem and maintains stable outcomes. (ii) SIP and MTD
are top-performing methods that always appear among the top three. The reason our method surpasses
these leading approaches lies in the mutual information optimization, which constrains complex
interactions between representations that are insufficiently addressed by MTD. It also overcomes the
limitations of SIP by accounting for the impact of private features and transmitting label correlation
information to refine label prototypes. Compared to AIMNet that similarly engages in view recovery,
our method achieves an improvement in AP from 0.40 to 0.45 on Corel 5k, which demonstrates
that our proximity-aware strategy can greatly suppress reconstruction noise. Achieving over a 10%
performance gain against traditional multi-label methods like DM2L and deep learning frameworks
such as DIMC and DICNet that disregard label correlation, our approach highlights its strength
in capturing high-level view representations and leveraging label dependencies to enhance overall
performance. (iii) As depicted in Fig. | our method exhibits remarkable performance and strong
robustness across a wide range of missing ratios. Moreover, our method is particularly well-suited
for highly incomplete settings. For instance, when PER reaches 90% on Corel5k and ESPGame, all
baseline methods collapse, while our approach continues to deliver commendable results.



Table 1: Experimental results of nine methods on the six datasets with 50% PER and 50% LMR.
‘Ave.R’ refers to the mean ranking of the corresponding method across all six metrics.
DATA METRIC AIMNet DICNet DIMC DM2L iMVWL  LMVCAT LVSL MTD SIP TDLSR

1-HL 0.9880.000 0.9870.000 0.9870.000 0.9870.000 0.9780.000 0.9860.000 0.9870.000 0.9880.000 0.9880.000 0.9880.000
1-OE 04780011 04600012  0.4460.009 0.3780.014 0.3080.017 04480011  0.3530.017 04920011 04920014 0.541¢.014
1-Cov 0.7660.004  0.7260.007 0.7090.00s 0.6400.007 0.701p.003 0.7200.006  0.7200.005 0.7540.005 0.7800.004 0.801¢.009
COR 1-RL 0.9000.002 0.8810.004 0.8740.004 0.8430p.004 0.8640.002 0.8760.004 0.879%.003 0.8930.004 0.9080.003 0.9170.004
AP 0.4049.005  0.3819.006  0.3700.005 0.3180.005 0.281¢.005  0.379%.006 0.3119.005 0.4100.007 0.4140.006 0.4500.006
AUC 0.9030.002  0.8830.004 0.8770.004 0.8460.004 0.8670.002  0.8790.003  0.8829.002  0.8950.003 0.9100.002  0.919.004
AVE 35 5 7.333 9 9.5 6.833 7.333 3.167 2333 1

1-HL 0.983p.000  0.9830.000 0.9830.000 0.9830.000 0.9720.000 0.9820.000 0.9830.000 0.9830.000 0.983p.000  0.9830.000
1-OE 0.4420.006 0.4400.000 0.4310.000 0.3020.00s 0.343p.010 0.431p.006 0.3650.006 0.4520.007 0.4500.006 0.4770.007
1-Cov 0.621p.003 0.601p.003 0.5860.004 0.5320.003 0.5480.004 0.5870.003 0.5780.002 0.6179.004 0.622p.004 0.646¢.004
ESP |RL 0845002 08360002 08300002 08040002 08070002 0.8270002 0.8290001 08430002 08470002  0.859 g0z
AP 0.3050.003  0.3000.003 0.2940.003 0.2299.003 0.2430.004 0.293p.003  0.2660.003 0.3090.003  0.309.004  0.3280.004
AUC 0.8500.001 0.841p.002 0.8350.002 0.808p.001 0.813p.002 0.8320.001 0.8340.001 0.8470.002 0.851p.002 0.8630.002
AVE 3.833 4.5 5.833 9.667 9.167 7.333 7.167 3.833 2.667 1

1-HL 0.9810.000 0.981p.000 0.981p.000 0.9800.000 0.9699.000 0.9800.000 0.9810.000 0.9810.000 0.981p.000 0.981¢.000
1-OE 0.4570.007 0.4640.00s 0.4540.006 0.3780p.00s 0.351p.00s 04330000 0.3770.007 0.479%.007 0.459.005 0.4910.008
1-Cov 0.6750.004  0.6490.005 0.6300.005 0.5550.005 0.5650.004 0.6460.004 0.6050.004 0.6700.004 0.6780.003 0.7060.005
IAP 1-RL 0.8840.001  0.8740.002 0.8680.002 0.8370.002 0.8330.002  0.8680p.002  0.8570.002 0.8820.002  0.8860.001  0.8999.002
AP 0.3299.003 0.3260.003 0.3180.002 0.2540.002  0.2360.002  0.313g.004 0.2620.002 0.3400.002 0.3310.003 0.3580.004
AUC 0.8850.001  0.8760.002 0.8700.001 0.838p.001 0.8350.001  0.8700.002  0.859%.001 0.8830.002 0.8870.001  0.899.002
AVE 4 4.333 6 8.833 9.833 6.833 8 2.833 2.833 1

1-HL 0.8900.001  0.8900.001 0.8900.001 0.8760.001 0.8400.004 0.8800.004 0.87709.001 0.893p.001  0.8900.001  0.8960.001
1-OE 0.6460.000 0.6470.010 0.6450.00s 0.5330.00s 0.511p.016 0.6399.009  0.6099.007 0.667g.006 0.6540.007  0.6900.009
MIR 1-Cov 0.6730.003 0.6619.004 0.6570.003 0.6150.002 0.5880.013 0.6650.002  0.6249.002  0.681.002  0.6680.006 0.6949.003
1-RL 0.8749.002  0.8690.003 0.8670.003 0.8350.001 0.8090.014 0.8620.003 0.8479.001 0.8780p.001 0.8730.002  0.8880.002
AP 0.5999.003  0.5950.007  0.5920.006 0.5190.003 0.4940.017 0.5899.004 0.5480.003 0.61409.004 0.6030.005 0.631¢.004
AUC 0.8610.001  0.8550.002  0.8540.002 0.8280.001  0.801p.017  0.8520.003 0.8399.001 0.8640.001  0.8590.002  0.875¢.001
AVE 3.833 4.667 6.167 9 10 6.667 8 2 3.667 1

1-HL 0.948p.001  0.9480.001 0.947p.001 0.9350.000 0.8999.002 0.9400.003 0.9350.001 0.9499.001 0.9480.001  0.9530.001
1-OE 0.6190.015 0.601g011  0.5940.012  0.5370.011 0.4650.018  0.6040.016  0.4500.00s 0.6270.011  0.6260.009  0.685¢.011
1-Cov 0.8060.006 0.7940.006 0.7930.006 0.7680.005 0.7440.008 0.7960.008 0.759%.006 0.8120.006 0.8090.006 0.8340.007
OBJ 1-RL 0.8880.005 0.8760.004 0.8750.004 0.8600.004 0.8330.006 0.8780.006 0.8500.004 0.8900.005 0.8890.004 0.9100.004
AP 0.6390.010  0.6279.009  0.6230.010  0.5770.009 0.5120.014  0.6300.012  0.5370.008 0.6490.009 0.6490.009  0.6920.009
AUC 0.8970.004  0.8860.004 0.8850.004 0.8720.004 0.8460.006  0.8880.006  0.8640.004 0.9000.005 0.8980.004  0.9180.004
AVE 4 5.833 6.833 8.167 9.833 5.333 9 2 3 1

1-HL 0.931g.001  0.93lgo00 0.931p.001 0.9270.001 0.8829.004 0.9150.005 09289001 0.9330.001  0.9320.001  0.9330.001
1-OE 0.4620.000 0.4430.007 0.4350.010 0.4199.006 0.3660.039 04339017 0.4180.00s 0.4730.00s 0.4680.00s 0.4950.013
. 1-Cov 0.7810.007  0.749.003 0.7380.010 0.7200.004 0.6740.011  0.759%.006 0.7380.003 0.7900.006 0.7780.004  0.8170.004
PAS 1-RL 0.8300.006  0-803p.002  0.7920.008 0.7780.003 0.7360.011  0.8089.006 0.797¢.002 0.8360.005 0.828p.004 0.8620.004
AP 0.5480.007  0.5179.004 0.5100.00s 0.4820.005 0.4380.022  0.5240.009  0.4860.005 0.5620.005 0.5520.006 ~0.5900.008
AUC 0.8510.005 0.8270.002 0.8170.00s 0.8060.003 0.7670.011  0.8300.006 0.823p.002 0.8550.005 0.8480.005 0.8800.003

AVE 35 5.667 7.167 8.667 10 6 7.5 2 35 1

3.5 Ablation Study

The ablation experiments are conducted to deeply investigate the effect of the three crucial modules of
TDLSR, i.e., proximity-aware graph attention recovery mechanism (.S7), information theory-driven
representation extraction framework (.S3), multi-label semantic and label-specific representation
learning (S3). After individually removing 57, S2 and S3, we use mean imputation for missing
samples, rely solely on a single multilayer perceptron (MLP) for feature extraction while discarding
Lrp, and directly employ a classifier based on fully connected layers without exploring label
semantics, respectively. Based on the ablation results provided in Table[2] we have the following
observations: (i) When either module is removed, the performance declines, which indicates the
effectiveness and thoughtful design of our TDLSR. (ii) The recovery mechanism is crucial for
enhancing performance, as it provides downstream modules with rich feature information. Moreover,
feature separation outperforms the single-channel representations and incorporating category semantic
learning enhances performance beyond that of classifier-only approaches. It demonstrates our
thorough consideration of feature extraction and label associations.

4 Application to Comprehensive Potential Prediction of Players

To validate the practical applicability of our TDLSR, we evaluate its ability to predict multiple
attributes of NBA players under partial data missingness. The NBA dataset was collected from
Basketball-Reference [2]], which contains 16,992 player-season records from the 2002-2022 seasons.
Each sample is structured across six principal statistical views including scoring efficiency, rebounding
and physical metrics, technical statistics, advanced efficiency metrics, player background, and season
context. The prediction tasks comprise career stage classification, positional identification and awards
prediction. Career stages are partitioned into early (first 25%), peak (middle 50%), and late (final



Table 2: Ablation study on Pascal07, OBJECT and Mirflickr with PER=50% and LMR=50%. v
and ‘X represent the used and not used corresponding item, respectively.
Pascal07 \ OBJECT \ Mirflickr

S1 S S |

| AP AUC 1-RL 1-OE| AP AUC 1-RL 1-OE | AP AUC 1-RL 1-OE
X VvV vV |0546 0852 0830 0455|0650 0903 0.894 0.633 | 0.594 0859 0.872 0.649
v X V |0576 0874 0853 0478 | 0.687 0914 0906 0.678 | 0.614 0.872 0.881 0.652
vV vV X |0582 0874 0857 0486 | 0.690 0912 0904 0.680 | 0.616 0.870 0.882 0.659
vV vV V059 0882 0864 0.519 | 0.702 0.924 0916 0.688 | 0.631 0.875 0.889 0.687

25%) phases according to each player’s professional timeline. Player positions (PG, SG, SF, PF, C)
are represented using one-hot encoding, and multiple binary indicators corresponding to honors such
as MVP awards and Defensive Player of the Year, are included to provide multi-task objectives and
comprehensive modeling of player achievements.

Across varying levels of data incompleteness, with PER and LMR ranging from 50% to 90%, our
method consistently surpasses baseline approaches, demonstrating superior robustness and reliability
in attribute prediction. Moreover, all comparison methods fail to surpass an AP of 0.6 at 90% missing
ratio, whereas our TDLSR achieves 0.668. Despite incomplete technical statistics and constrained
annotation resources, our method remains effective in predicting player potential, including career
development and honor attainment, which offers considerable promise for real-world applications.

(a) NBA Dataset Description (b) Performance with PER and MLR Changing from 30% to 90%
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Figure 4: Overview of the NBA dataset and performance with missing views and labels.

5 Conclusion

In this paper, we propose a theory-driven label-specific representation (TDLSR) framework for
addressing the iMvMLC problem. Specifically, structural dependencies are modeled through graph
attention mechanism inside each view for recovery, with the reconstruction fidelity adaptively
tailored to enhance classification efficacy. Meanwhile, we construct a universal feature extraction
model, where mutual information optimization serves to regulate information shift, interaction and
orthogonality between representations. On the basis of complete feature semantic separation, we
independently interact each representation with label prototypes that encode correlation semantic,
aiming to extract label-specific discriminative features and uncover representation-sensitive label
subsets. Moreover, we theoretically validate the effectiveness of representation learning and its
influence on the generalization performance. Finally, the superiority of TDLSR are validated through
extensive experiments and application to the NBA dataset. In the future, we will explore leveraging
the prior knowledge embedded in LLM to facilitate label semantic learning.
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A Derivation and Implementation of the Loss Function for the Universal
View Extraction Model

A.1 Derivation of the Loss Function

The universal view extraction model under mutual information constraints is

174 1% 1%
maxZI(s(”);z(“))—i—Z Z( I(s" )lz (1J)|z(v )_I(O(’ Iy
v=1

o™ |z(")))

v=1v*#v
information shift information interaction
v (16)
E I(sW]z0): 0|2y = 0.
v=1

information orthogonality

By incorporating variational derivations from the information theory, we arrive at the following
objective function for optimization:

Lim == By o [l (s@10)| = [ [ (a2, 50120 logg(s] s )as* s

lower bound for information shift lower bound for shard information interaction
+ D (0270 12) (0! ]2 ))g(0!V) 0! )
upper bound for specific information interaction
+B8Drr(p(s™ 200 [2) [p(0!”)2"))q (s o).

upper bound for information orthogonality

7)

Proof. Due to the challenge of distribution inference and the complexity of high-dimensional inte-
gration, directly computing mutual information is impractical. Therefore, it is common to ensure
stability and feasibility by optimizing an estimable bound of mutual information. For the information
shift term, we have the following transformation based on the definitions of mutual information and
information entropy:

I(s™): z())

// (5™ 20 log (Z<U (|S)()))ds(v)dz(v)

// V), 2 log p(z¥)|s))ds™ dz ) +/p(z(”)|s(”))/p(z(”))log e )ds ®) gz
// "N log p(z|s)dsdz) + H(z").
(18)

Since Eq is intractable, we approximate p(z (") |s(”)) using a stochastic variational distribution
q(z®)|s ) Wthh can be reasonably estimated. Combing the fact that entropy H (z(*)) > 0, we
can further obtain the lower bound:

I(s(”)'z(“)) (19)
// s log p(s™|2))ds™) gz )

:/p(z(”))/p(s(”)|z(”))logq(z(”)\s(”))ds(”)dz(”)

) ()
() @)1 2@ 100 PE 1Y) ) @)
+/p(s )/p(z |s'")) log q(z(”)|s(”))d8 dz"".
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The Kullback-Leibler divergence is denoted as

Dicr (p(= s a(=}s) = [ p(x"]5)log

Thus, we have

v
7vdz(”) >0 (20)

I(s™); ()
:/p(z“’))/p(s(v)|z(v))1ogq(z(’v>|s<v>)ds(v)dz(v)
—|—/p(s(”))DKL(p(z(”)\s(“))Hq(z(”)|s(”)))ds(”)dz(”)
2/p(z(”))/p(s(”)|z(”))1ogq(z(”)|s(”))ds(”)dz(”)
_ / (5™, 200 log g(2([s))ds ™) dz®)

8, ot

For the second term, based on the definition and non-negativity of entropy, a lower bound can be

derived by introducing another estimable variational distribution q(s(“) \s(”*)). By expanding the
mutual information in its integral form, we have

(V) |z(®) g(v")]z() .
1(s)]207); 5|2 // (5020, 57|20 og p(s : 12, s ]2(7) s ds®).
P ) (s [0)
. o e (22)
Considering p(s(*7)[z("") s()|2(")) = p(s(")|2(*) /5| 2(v"))p(s(*)| (")), we can get
I(s@W)|z07); s()|2(v)) (23)

(@) |z (v) /g(v™) |z (v7) (CIPIC!
_ W), () /(™). (vF) (I p(S |Z /3 |Z )p(S |Z ) (v*) (V)
—//p(s 287 /s7 |21 D)p(st ]2 ) log (s 2y s

://p(s(v*)|Z(v*)/3(v)|z(v))p(s(v*)|z(v*))10gp(s(v)|z(v)/s(v*)|z(v*))ds(v*)ds(v)

- x 1 x
(0) | () /g(v7) | 5 (¥7) ()| 5(v) I N PP ()]
+//p(s |2 /s |2 Np(s'?|2')) log p(s(“)|z(”))d8 ds'\".

Since H (s |2(")) = — [ p(s]2(")) log p(s(*)|2(*))ds() > 0, we obtain
I(s (v*)|z(v*); (v)|z(v))

// (812 /W) | 20N p(s )12 1og (s 2(7) /50|20 ))ds () ds ()
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Based on the definition of Kullback-Leibler divergence, we have
Dicr(p(s |2 /507120 g(s)[s))

()| 5 (v) 1 g(v") | 5 (v™) (25)
_ )] () /(™) ] o (v") p(s™ ]z /s z\")) (v)
_/p(s |21 /s\ 1217 ) log IS ds'"’.

*))||Q(3(v)|s(v*))) > 0, we have

](S(v*)‘z(v*);s(v)|z(v)) Z//p(s(v)|z(v)/3(v*)‘z(v*))p(s(v*”z(v*))10gq(s(v)|3(v*))d8(v*)ds(v)

://p(s<v>|z<v>,s<v*>|z<v*))1ogq(s<v>|s<v*>)ds<v*>ds<v>.

2

Np(s)]27) log g(s) ) ds " ds ™)

Since Dg 1 (p(s

(26)
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For the third term I(o%" |z(""); 0(*)|2(*)), we derive the following upper bound:
I(0%" |2V 0| 2(")

v (v"). (V)] (V) .
// 0¥ |z"); 02" 1og p( |27 0]=() do")do™

p(o)|z(v* )) (0®)[2()
- / / p(o' ®)20) log p(o<>1|;;(><|oz<()> )|z<v*>)
// 0" [2("7);0(")|2(")) log <(O(v)|°(v ))do@*)do(v)

. (W) 2(®) /o) z (") .
://p(ov 1207 0|20 log p(o™|z /o _ |z )do(v )do®)
q(o(v)‘o(“ ))

do(v*)do(v)

= [P [0 =) D (00 2 (0 o) o™

()| 5(v) /o(v™)| 5 (v™)
v* (0%, (v)].(v) p(o'[z'"/ol? V]2V )) (v*) 7. (v)
g//p(o |z ;0\ [z log 0o do'’ 'do

V" | (07). o(0)] 5 (v)
0" 12007, o)) p(o¥ |20 2M) ey )
// |z |z') log T2 T) g (0™ ol )do do

=Drr(p(0” [2); 0|2 |Ip(0! 72" )g(0! 0! ). 27)
Similarly, we can derive the upper bound for the last term, which exhibit structure analogous to that
of Eq. 27):
1(s™2;01|2) < Drer(p(s™[2);00712))|[p(0™|2))q (s [0()).  (28)
Combining Eqs. 1)), 23), and (28), the objective is naturally transformed into minimizing its
upper bound:
L1p = =By 40y [loga (2)]s)] / / (s, 5071207 )) log g(s) |5 )ds " ds ™)
lower bound for information shift lower bound for shard information interaction
+ Dr(p(0)2);0[2) [p(o)]z"))g(0!|0)))
upper bound for specific information interaction
+8 DKL(p(S(”) |z(v); o) \z(”))Hp(o(“) |z(v))q(s(v) |O(v))) ]

upper bound for information orthogonality

(29)

A.2 Implementation of the Loss Function

Data-driven contrastive learning [22] is used to compute various complex distributions. Specifically,
representations are treated as probability vectors over D classes (corresponding to d dimension) via a
Softmax activation function, and the joint distribution matrix is obtained by

N T N T . N T .
P =3 (s7) @ = 3 (o) ol b = 3 () ol
i=1 i= i=1
Due to the strong coupling between s(*) and s(V"), the variational distribution ¢(s(*)|s(*")) can be

effectively estimated by the obtained conditional distribution. In contrast, owing to the extremely
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weak correlation between o(*) and 0(""), as well as 0(*) and s(*), the distributions ¢(o(*) /0(*"))
and q(s(”) / o(“)) can be approximated by the corresponding marginal distribution. Since the first
information shift term is equivalent to the reconstruction loss, we construct a decoder for each view v
to obtain 2", which is used to approximate the original view. Subsequently, by converting the integral
to a summation form, each term in Eq. (29) can be expressed as

plv?)
(U) (U) (’U )|, (v") (v) v*) g.(v) _ (v,0™) dd’
// |z 120" log q(s™)|s"")ds YV ds ZZPdd, log (*)
d=1d'=1
D D ( ) guc,lv*)
(v) |5 (v) * (W) (")) — v,0* _ wdd
Dk (p(o o' 12)|p(o Ja(010M) =3 Y QN log
d=1d'=1 (Q,)*Q,
D D (a7 0") ]\4—d(sdU ,0")
()| 5(©). o) 5(v) 12N (@6 = 570" - Maae
Dicr(p(s™]2);012)|Ip(0)|2)g(s™[0™)) = > > " M, log Tyl
d=1d'=1 (M ")>M,
(30)

where the Lagrange multiplie 3 is fixed to 1, and the marginal distributions Pé”) and Pd(/v ") can be
obtained by summing over the d-th row and the d’-th column of the joint distribution matrix P(*:*"),
with other symbols defined as the same. In this conversion, we let ¢(s”/s") = (¥(Q*)))* and

q(2?/s") = (p(M ")), where 1 is a fully connected layer, and « is a balance factor to preserve
crucial information and ensure model stability [17]. We set the value of « to 10 in our experiments.

B Detailed Proof for the Theoretical Results

In this section, we will provide a rigorous proof of the theoretical results mentioned in the main text.

B.1 Proof of the Theorem 1

Theorem 4. (Discriminability of Label-specific Representation.) For label prototypes E; and Ey,
such that k # j for all k, and view representations X ") and X V") such that v* # v for all v*, the
discriminability of P™") for class j necessitates that either of the following conditions be satisfied:

]E[X(U)Us(Ej)T} :Jifﬁ:lwgv)os(E_)T>E[X( )O'S Ey) } Zib os( Ek
E [X“’)as(Ej)T] 3 Vos(E;)T >E [X(” Jos(E } Z
Z=1 i=1

Proof. Since our training data is multi-view and multi-label, the discriminative power of view v with
respect to label j involves two key considerations. First, among all labels, view v yields the most
accurate prediction for label j; second, across all views, view v provides the prediction for label j
with the highest confidence. Thus, we proceed with the proof from the following two aspects:

(i) For E; and E}, such that k # j for all %, the following inequality regrading view v holds:
E[XWog(E ] Zw os(E;))T >E [X(%—S o) } Zw os(E)T. (31

The j7-th component of I:’i(v) (corresponding to label j) is
P = os(B) 02",

where 15-@) is a vector where each element is the dot product of the corresponding elements of

os(E;) and x; () Since a linear classifier (e.g., fully connected layers) is used for classification, the
prediction score for sample ¢ is

Ui(v) — W}ﬁi(v) + b,
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where W € ROX(Cx4) s the weight matrix and b € R is the bias term. Give that P") € RO*¢,

we can flatten it into C individual vectors for each label. Besides, W has a block-diagonal structure,

i.e., the weights for each label j only act on 131(;)) Then, the prediction score for label j simplifies to

UL =w] B 4 by = w] (os(Ej) 02l +b;,

J g
where w; € R? is the classifier weight for label j. To express discriminability, we need to show
E[0Y] >E[UR)], vk

The expectation is obtained by averaging over all empirical samples:
B U] = Zw (os(E) 02l + 15

E {Uﬂj] = Jb;w,—! (US(Ek) ® mgw) + b

Assuming classifier weights wy, are independent of input data (e.g., optimized during training) and
biases by are constants, the core comparison reduces to

N
(v) @)Y
Z w; ( ) O x; ) Vs. ; w,;r (Us(Ek) Ox; ) (32)

During training, the classifier weights w; tend to align with label prototypes E; since E; captures
the semantic meaning of label j. Thus, we approximate wy, ~ E,I Substituting it into Eq. li the
comparison terms simplify to

N N
ZE' = (Us(Ej)QCCEU)) VS. ZEk (JS(Ek)Q-’BZ(.'U)) .
i=1 i=1

Using properties of dot products:

Ej(US( (v)) ZEJZ os(Ej1) El)’

E;, (as(Ek)Gw”)) ZEkl 05(Bra) -y
=1

Then, the comparison is further refined into

N d N d

Y3 Euos(B)-al vse 30D Eri-os(Bi)-aly).

i=1 I=1 i=1 I=1

Note that og(E;,;) € (0,1) and is monotonically increasing. For positive samples of label ¢, E; and
(v) (v)

x; ’ are better aligned, meaning E;; - x;; has a higher expectation. Thus, if the condition is

E [X(%S(Ejﬂ >E [X@)o—s(Ek)T} .

Then, the following inequality holds:

N d N d
ZZUS(E}CJ) . ,7353) > ZZUS(Ej’l) -3;‘( l)

i=1 [=1 i=1 =1

Assuming E; and E}, have similar scales (|| E;||3 ~ || Ex||3), we conclude
N N
> B (0sE)0al) > B (os(B) 0 al”). (33)
i=1 =1
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Furthermore, we have
E [U(“)] >E [U(”)} Yk £

Therefore, the prediction score for label j exceeds that of all other labels, demonstrating the discrimi-
native capability of view v for class j.

(ii) For view v and v* such that v* # v for all v*, the following inequality regrading label j holds:

(v) (v")
E | X Wos(E } Zw os(E >E[X1 os(E } NZ:B

The prediction score for label j assigned by view v and v*, respectively, is

(34)

Ul =w] B +b; = w] (os(By) o 2") +b,
U = w B b = w] (os(B) 0 al")) + by,
To express discriminability, we need to show
(v) (v™) *
E[UY] >E[US)], vo o
Following the same rationale, we can transform the comparison into

N d N d .
ZZEVZ cos(Ejyp) asgvl) VS. ZZEZ ~os(Ej) - xﬁ ),

i=1 =1 i=1 =1
Thus, if the condition is
E [X@)aS(Ej)T] >E {X(”*)US(EJ')T} .

Then, the following inequality holds:

N d
ZZ :EEI; > ZZUS(EN) -xl(.’”l*).

Similarly, we conclude

Z E; (os(B) 0 a”) > f: E; (os(Ej) o al"). (35)

Furthermore, we have
E[09] >E[UG], oz
Therefore, the prediction score of the v-th view for class j is higher than that of all other views,

indicating that view v exhibits discriminative power for label j. Combining (i) and (ii), we complete
the proof.

B.2 Proof of the Theorem 2

Theorem 5. (Effectiveness of Dtsentan,%led Representatwn ) Let the disentangled representation
be denoted as R = (S™,...,8V), 01 ,OW)), where the information entropy of each repre-
sentation is assumed to beﬁxed, ie., H(S(”)) (O(”)) = H° (1 < v < V). Then, in the case
where each shared and specific representation is indispensable for prediction, I(R;Y") will attain its
maximum when R = R, with R, being the optimal solution of the problem (16).

Proof. By integrating core features from the raw data to construct shared representations and lever-
aging classification loss to derive view-specific representations aligned with particular labels, our
approach enables the shared features to encapsulate primary generalization information across mul-
tiple views, while the specific features are designed to capture discriminative information that is
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X(\) X'VV
x® x® x® x® x® X" X X
(a) optimal situation (b) lack of information shift (c) lack of shared information (d) lack of specific information (e) lack of information
interaction interaction orthogonality

Figure 5: Feature extraction visualization. Fig. (a) illustrates the optimal solution obtained by our
model, while the remaining four figures display cases where the constraints of information shift,
interaction, and orthogonality are successively removed. The shaded areas represent the shared
representations, whereas the other colored regions indicate the view-specific representations.

finely attuned to task-specific characteristics. Thus, the assumption that each shared and specific
representation is indispensable for prediction aligns well with our model. Besides, as all represen-
tations are extracted into the same dimensional space, it is reasonable to posit that they encode
equivalent quantities of information, i.e., H(S®")) = H(O")) = H° (1 < v < V). Let define the
optimal solution of the problem as R, = (Sgl), e S,(FV), 05}), e O,(FV)). Then, we specify
that identifying each class Y ¢ requires a corresponding representation setting RY * to be mined, i.e,
H(Y*°) = H(RY"), which indicates that the successful extraction of RY " is sufficient for predicting
Y ¢. Based on this, we establish the following formulation:

H(RY") = H(SY")+ H(OY"), H(SY") = Y1, fv- H(S™"), HOY") =V g - H(O!")

SOV HSY) + 0 SV gy H(OY) = H(R,). (36)

where f and g7 are indicator functions representing the shared and specific information components
that constitute RY *. According to Eq. (36), all information contained in the extracted representations
is essential for predicting the target labels. Next, we demonstrate from three perspectives that our
feature extraction model is capable of maximizing the mutual information between the representations
and the labels, i.e., the representations contain insufficient information for prediction, just enough
information, or redundant information beyond what is necessary for prediction.

(i) (SD,...,8M oW, .. oV)yc RY'JRY .. -|JRY".

In this case, we denote the mutual information between R, and Y as I9, i.e

I(R.Y) = ZI .8 oW o)) v
—ZIRY vo)+ > 18,8 0, . .0 v
cel cel
=N H(y) - HYRY )+ > H(SV,....8". 0D, ...,0M)
ceLl celd

—Hq(SW,..., s oM, . .. .0y
=S m)+ Y H(SY,... .8 00, .. .0l

cel celd
=N H(Ye) +2VIUHO — (V - DU 1(8Y;.. . 8Y)) = 10,
ceLl

where £ and U denote the subsets of labels that are fully predictable and not adequately predictable,
respectively, and |£| 4 |[U/| = C. When the core shared feature information is essential to all labels,

reducing | (Sil); S Siv)) to enhance label-specific information associated with certain labels will
not lead to an increase in I(R,;Y"). Since ) .. H(Y ) is fixed, postulating the existence of
an alternative representation R satisfying I(R;Y) > I(R.;Y ) would inevitably contradict the
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assumption that the information entropy of each representation is fixed at H°. Thus, we can obtain
I(R.;Y) > I(R;Y). Given the insufficiency of prediction information and a fixed amount of
information encoded in the representations, enhancing performance necessitates incorporating usable
content beyond raw information and introducing additional constraints offers no further gain in the
mutual information between representations and labels.

i) (SW,..., 8V, 00, ....0oM)=RY'JRY"---|URY".

In this case, similarly, we have the following equality:

C
I(R;Y) =) 1((8",....88 0V, ... .0");v°)

C
=Y H(R")-HR|Y")

Cz’l 1% cC Vv
=SS S + 303 gr - HOW),
c=1v=1 c=1v=1

If the information shift term is not sufficiently optimized as shown in Fig. Bl(b), there will exist a
shared representation S(™) in the setting R such that

V)= > fO-HESW)+ Y Y frH(SY)

ceTn v=1 c€Ty, v=1,#m
S LIRS » WS T
c€Tp, c=1v=1

where T,,, denotes the set of labels whose prediction processes involve contributions from S(m),
while 77" is the set unaffected by S("™). Since the change in information entropy occurs exclusively
in (™) we have

Seern vy JUH(SO) =3 e S0y f2 - H(SY)
ZCET Ev 1,#m fU (S(U)) ZCET Z'u:l,;ﬁm fé} : H(S*(:U))
Seer, I HS™) <Y fr H(ST™).

Furthermore, we have the following comparison:

1%
I(RY)< > Zf” HSM) + >0 > froHSY)
ceTr v=1 c€Ty, v=1,#m
CcC Vv
+ 3 frHSE) 430N gy H(OY)
c€Tm c=1v=1

= I(R.;Y).

If the shared information interaction term is not sufficiently optimized (Fig. [5](c)), there will exist
a set of shared representations whose task-relevant information is significantly reduced due to
ineffective interactions. Under such circumstances, it similarly follows that I(R;Y) < I(R.;Y).
Moreover, insufficient suppression of interactions among specific representations causes overlap,
thereby reducing the useful information entropy of each representation (Fig. [5}(d)). Additionally,
inadequate optimization of the orthogonality constraint can introduce redundancy between shared
and specific representations, which in turn hinders the extraction of the specific representations (Fig.
[5l(e)). For this two aspects, we also have I(R;Y) < I(R,;Y).

(i) RY URY - -URY " c (SW,....8V 00, .. o),
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In this case, we can obtain

I(R:Y)=S"1((8Y,....s" 0o, ..., 0" v*)

Mo

)
Il
—

I(RY";Y°)

I
Mo

Q
Il
—_

H(Y*®)~ H(Y‘|RY")

1
Mo

a
Il
Ja

Il
Mo

H(Y®).

Q
Il
—

Given that Zle H(Y°) quantifies the total label information, the mutual information I(R;Y")
obtained from any alternative representation is inherently constrained by this upper bound. Therefore,
we conclude that I(R;Y) < I(R.;Y).

Combining (i) (ii) and (iii), we deduce that the maximization of I(R;Y") is attained when R serves as
the optimal solution R, of the problem @[) Moreover, the principles of information shift, interaction,
and orthogonality are all indispensable for achieving this. [

B.3 Proof of the Theorem 3

Theorem 6. (Generalization Error Bound.) Our model is designed to learn a vector-valued
function f = (fi,...,fc) : X +— RC. The expected risk and empirical risk w.r.t. the

training dataset D are denoted as R(f) = Ex,y)~axyll(f*(X,Q),Y)] and Rp(f) =
~ Zi\; 25:1 E(Zv 1(Qs, vfc( )) i), where foU(-) refers to the late fusion of multiple

views. With probability at least 1 — 5 we have the following generalization error bound:

= K K
R(f) —Rp (-f) = = N3/4‘2/1/4 + @rac(Qa Xa Y)

S (S X @ 80,000y ) +Ky)
NC ’
where Ky = K3 = O(C), Ky = O(/C), Ky is constant of order O(1) as N,V — oo, and

gen,...(Q, X,Y) is the generalization error related to the view reconstruction quality. Moreover, the
generalization error bound becomes increasingly tighter during the optimization of the problem ([I6).

+ Ky

Proof. The training dataset denoted as D = {(z;,y;) : ¢ € [N]} is drawn from a probability distri-
bution over X x ). Each ¢; = (ml(-l), e wEV)) consists of V views and y; = (Y5 1,...,Yi ¢). Our
strategy is to learn a vector-valued function f = (fi,..., fc) : X — R and determine relevant la-
bels by applying a thresholding criterion. The goal of learning is to find a hypothesis f € F with good
generalization performance by minimizing the loss ¢ on the dataset D. As missing labels inevitably
degrade generalization, we focus on deriving the tightest generalization error bound under complete la-
beling. Thus, the expected risk and empirical risk w. rt the training dataset D are denoted as R(f) =

av |4 v
Eix y)~axyllf (X, Q). Y)] and Rp(f) = g Sty Sesy (00,1 (Quafe(a)). Vi), re-
spectlvely, where f%V(-) refers to the result fusion of multiple views, @ is the reconstruction quality
score serving as the fusion weights. We define the function class of TDLSR as follows:

F={X" s f(X): f(XO) = (f1(XD),... fo(X®), fo(XW)) = 1hep™ (X @),

00 = (85, 87), e = (wile, wlCo), w € R,
(37
where ¢° and ¢° denote the view-common and view-specific representation extractors, (; is a
nonlinear mapping induced by the label-specific representation construction and w is the classification
head. Besides, the disentangled representation R is expressed by R = ¢(X) = (¢°(X), ¢°(X)) =
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(SW, ..., 8M oM .. OM). Let multi-view data X = {X()1V_, be produced with a hidden
label-specific function 8¢ by X = 0°(Y ¢, V'), where Y € is the randomly generated single label

and V = {V®) = (Vl(v), .. (v))}v 1 € R™*4 are nuisance variables. Denote the conditional
random variables of X and R given the category Y = y° as Xy and Ry, respectively. For

any y°¢ € Y* = {—1, 1}, the sensitivity c © of the representation function ¢ = {¢(")}V_, w.r.t the

nuisance variable Vi(v) is defined as

cg‘ = sup sup | log(py (6™ o Oy. (vgv)7 .. ,vgv), ey ((iu))))
VElV] 4 . 6 ol

- 1Og(p7‘(¢(v) © Gyc (’U§v)7 s 7{)2@)7 s 71]((1v))))|a

where 0, (v(")) = 0(y°,v")) and p,(r) = P(R = r). Based on Eq. , we set the global
sensitivity of ¢ as ¢y = sup.¢(¢ cgc. Let RY = {0yc(v), p 0 0ye(v) : v € V,y° € Y*} denote the
complete set of multi-view data and their corresponding representations. For any v > 0, we construct
the following typical representation subset for each class [39]:

(38)

dlog(v/NV /7)

RZ,\/: X,RER?—logpr‘yc(r)—H(RYp)gc(b 5

(39)

Define the function hj,.(v) = —log pyjye(hye(v)), where hyc(v) = ¢ o (0y:(v)). Let py(v) =
P(V:'u)andhy():{'uev hye(v) = r}, we have
[ Zp'v 1ngr|y (h/ (U))
veV

=Y > pu(v)logpriye (hye(v))

rERL veh (r)

- | X pe@) | logpuye(r)

reRE vehfcl(r)

- Z pr\y Ingr\y ( )
reERE
— H(Ry:).

By applying McDiarmid’s inequality on h;,.(V'), we get

62
P (= logpriy-(r) — H(Ry<) > €) < exp (_ d(2c¢)2> .

Taking § = exp (—11(26712)2) , we have

After setting § = v/vV NV, ie., P (X7 R¢ Rf,y) <9
exp(—H(Ry-) — €) < log ppye(r).

Then, we further derive the following transformation:
|Rff7| exp(—H(Ry:) —¢€) = Z exp(—H(Ry:) —¢€) < Z pr(r) =1,
rERE reERZ
which implies
dlog(vV NV /¥)

|RE| <exp | H(Rye) + ¢y 5

Therefore, regarding the property of the typical subset, the following lemma can be derived:
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Lemma 1. Forany~y > 0and all v € [V], we have

gl dlog(VNV /7)
P(X,R¢R:) < RE | < H(Ry- ——
( ’ ¢ c,’y) = m7 I c,’y| > eXp ( Y ) + Co 2
Besides, we need the following lemma for subsequent proof:
Lemma 2. [I8] The vector X = (X1, ..., X}) is defined to follow the multinomial distribution with

parameters p = (p1,...,pk). Let ay,...,ax > 0 be fixed such that Zle a;p; # 0. Then, for any
€ > 0, the following inequality holds:

k B X; me2
P (;_1 a; (pz' - m> > 6) < exp <_5> ;
where § = 2ZZ Lap

We further define TY° = |R$7| where the typical subset R, consists of elements Ry, =
{(aZ,a8,,0a2,), ..., (a% p, a8 p,alp)}. Besides, we introduce the following label-specific sets

ieNveV]:al oW @) ¢ RE,, Yie =7},

(40)
ieNLve Ve =ap" o (") = (¢, ai") Yie =y .

Then, we conduct an analysis of the classification generalization error:

R(f) - ED(f) == E(X,Y)NXXJ)[ (f (X Q NC ZZE (Z Qz vf('( (1) ))al/;',,c>

i=1c=1 \o=1 G
Since / is a convex function, we can apply Jensen’s inequality to obtain
v v
(O Qi fe(@™)), Vi) < Qi Y €(fe(@™), Vi), 42)
v=1 v=1
Thus, we define a instance-level loss difference term ALS(Q; ., X ., Y; ) such that
14
A = Qi Z U(fel@”), Yie) = 00 (Qinfe(x(")). Vi), 43)
v=1 v=1

Define ¢ = sup;¢[y] Sup,c[v] Qi,» as the maximum view reconstruction quality among all views.
Regarding the cumulative loss calculation for individual views, we have

1 N C 1%
NG 2 (Qi,vZafc( (”’),x,c))

C
=253 4 S oo @), +Z >o o s @),y

c=1lyceY* \ i,velyv® k= 1@716?/{9
Qiv v .9
= NG > > lweosWE).y ”Z > Z D UWelay” o) y)
c=1yceY* jvelv® c=1ycey* k= 121}61/{y
C
ZNicz Z 0(1he 0 o) (U) Jrz Z ZqW’“ c(ay®,ay?),y°).
c=1yceY* jvcldv® c=1yceYy* k=1

(44)
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Furthermore, we can obtain the upper bound for the empirical risk:

N C \4
NlCZZ%ZQMfC( RIS ) NcZZ 3 o (@), y0)

=le=t Aw=l e=1y°eV* jvelfv® 45
ol L NC (45)
+Z > Z oy ay)y) + & STAE(Qi X Y.
c=lycey* k=1 1=1 c=1

The random variables of the quality score of the v-th view and the c-th category are denoted as Q)
and Y °. Similarly, the population risk can be decomposed as

Ex yv)~axy[l(f*(X,Q),Y)]
c

> 3 BT = E e S (XL QLYY = o]

yeeY*

X R) ¢ Rc fy)E(X Y o)~ X Y* [g(fgv(Xv Q)»Yc)|Yc = yc7 (Xv R) ¢ Rg,’y]

X R) € Rc ’y)E(X Y‘)NXxy*[ (ng(XaQ)7Yc)‘YC = yc’ (XaR) € R:cv,'y}'

(46)

Since E(x ye)nxxy- [L(f2 (X, Q), Y) = Ex.yejmaxy- (31— QW) fo(X ™), Y€))], we
can further decompose it based on the convexity of /:

1%
Ex,yeymaxy-[U(fe(X,Q), Y )] = E(x yeynxxy- [E(Z QW f.(X™), v

v=1

47
1%
=Ex ye)naxy- [Z QUL(f( X)), Y)] +Ex yeyurxy- [AL(Q, X, Y,
v=1

where £¢(Q,Y ©) represents the change in loss ¢ associated with class ¢ induced by view fusion.
Then, we can obtain the following transformation combing Eqs. (#6) and @7):

]E(XY ~xxy[l(f(X,Q),Y)]

DI (L R) € RE B oy (30 QUILX), YOIV =, (X,R) ¢ R,
c= ly ey* ot
y
P Y B = i (LR € RE By [ QUK Y)Y =, (X R) € R
c=1ycey* o1
C
30 Y B = y)E vy [AE(Q, X, Y)Y = ]
c=1 yeey~
C ' . ' | | |
< Z ]P(YC = yC, (X(J)7 (bj (X(J))) ¢ Ri,,y)E(X7Yc)NXXy*7XjNX M(wc o (bj (XJ)JJL)‘YC _ yc, (X(J),
c=1ycey*

c Tv°
¢j(X(j))) ¢ Rg,’y] + Z Z ZP(YC _ yC,X(j) — GZ’GC,d)j(X(j)) — (az,s7az,O))f(wc(az,s’a2,0)7yc))

e=1yecey* k=1

+ Z > P YOEx ye)maxy- [A(Q, X, Y)Y = y].
c= 1yc€y*
(48)
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Putting Egs. (58) and (@8) back into Eq. (1)), we have

Ex y)~xxy[l(f* (X, Q) NCZZE(Z Qivfe(x ‘”)>>,Yz,c>

i=1 c=1

< Z > P =y (XD ¢(XD) ¢ REEx yermanyxomx [Ltbe 0 0 (X7),y0)| Y = 47, (X1,
c= 1yLEy*
X)) ERE =D S BV = (XU, (X0 ¢ RE) |uy| >0 oo s ("), y)
c=1ycey* i, vEUY
1 v
+Z Sop X0 /(X >>¢Rz,y>|—c STt 0 6 (@), y°)
c=1ycey* i, vEUY®

C
FEL > O tkeoo @)y

c=1yceY* i veldv®

T
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DD z"'“”' ), 5°)

N C
1
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(49)
Let Sy, = SUPccjo) SUP(X,ye)crx y* Z:}/ LQWU(f(X™®),Y€) denote the maximum attainable

losses among all classes and S; , = Sup.c(c] SUP;epy) Qiv Z (fc( )7 ) represent the
maximum instance-level losses. We consider the results of Eq. @[) as four terms with the upper
bound of the first term as follows:

Z Z (XD, (X)) ¢ RED(Ex,ye)maxy xinx [@(the 0 ¢ (X7),y) Y =y,
c=1ycey*
(X ¢l (X)) ¢ RE)— |L{y‘ Z (e 0 ¢ () () ), y°))
i,vEUY®
o 1%
< Z > P(Y (X R) ¢ REEx vy xinx D QUUS(X W) YOIV =y, (X, R) ¢ RE, )
c=1ycey* v=1
c
‘ Cv
s P(Y* =y°) Ty o

‘ ‘ . (50)
Define p§ = P(Y*® = y°, XU) = ap®, ¢7 (X D) = (a*,ay%)) for k € [TY"], pye | = P(Y° =
Y, (XD, ¢/ (X D)) ¢ RE.) and b = €(ype(a}”,ay %), y¢)) for k € [T¥" + 1]. Then, we can
obtain the following term:
TUC c c
c c ‘uty ‘ c c |Z/{,f | c
Psi = tZZl(Pt T NCq 1 )bi — (pf, — NCq—l)bk' (51)
Applying Lemma forany e > 0 and k € [T¥"], we have

NCq~1e?
2 (0 v ) — g ()°)
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Similarly, we get the following inequality regarding k = T + 1:

‘ NCq 'e?
P plye,, — ot >e> < exp (—C . (53)
( 1 NCg ! 2PGye 4y

Let J be the right-hand side of Eq. and (53), respectively, we can obtain the following variants:

P( S0 > 5T s ()7 — p () 2}%‘(;/?)) <8, Vk € [T¥']

(54)
. uv© 2pc. . log(1/6)
P (pTyc+1 — J\|/'Cq_‘1 > TUN+éq_1 > < 0.
Taking union bounds over all y° € y* (Jy* = 2|) and k € [T"¥'], we have
c ¢ (1.c)\2 log(2T¥¢ /6§ c
P (P2 T 01 00— 00" PRERD ) <6, vk € v
(55

. |uyc\ 207 e, 108(2/9)
P (pTyC-i-l ~ Nog T 2 NCq—T <é.

Then, for any § > 0, with probability at least 1 — §, we have the following scaling regrading the
second term of Eq. by using Jensen’s inequality:
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(56)
Similarly, for ng «» With probability at least 1 — 6, we have
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. 2log(2T¥° /4)
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Next, we can derive the constraint result for the third term:

c 79" c
c c J C,T j j c,s _c,0 quy c,s c
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The property of Y is as follows:

dlog(v/NV /v)

5 (59)

=|Ri,| <exp | H(Ry:)+cy

Combining Egs. and (59), we can get the following bound by using Jensen’s inequality:

2 <H(Ryc) + ey LosWNV /) ) + 21og(2/6)
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(60)
By applying the chain rule, we obtain the following conclusion:

H(R|Y®) =I(XW;RlY®) + HR|Y®, XW)
=1(xM.; 80 sV oW oWy +HR|Y, XW)

=1(xW; 80 8V oWye)+ (X, {0V _,ye,sW ... 8V) oWy + H(R|Y®, X

(61)
Since our model achieves complete feature separation, with seamlessly integrated shared represen-
tations, no overlap among special representations, and no redundancy between shared and special
features, we have the following equality:

I(XW {0, |ve,8M, ..., 8 0W) = (XM {oO™})_,) = 0. (62)
Thus, we can further obtain
H(R|Y®) < I(XM; 8 sV oWye) + H(R|Ye, XV)

v (63)
< I(XW{SOY_ 0™ Ye) + H(R|Y*, X))
v=1
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Putting the above back into Eq. [60} we have

C NV I(X®); 80,00 |Ye) + H(R|YE, XV) + ¢4y LEVNV 4 10g(2/5)

Py < 4CS,, ; NCg :
(64)

Regarding the fourth term, as the accuracy of the view reconstruction increases, indicated by a

larger value of @, the loss discrepancy AlS(Q; ., X ., Y; ;) becomes more significant, while the

corresponding generalization error bound becomes tighter. Therefore, we interpret the fourth term as

the generalization error induced by the quality of view reconstruction, i.e.,

Py =gem,..(Q, X,Y) Z P Y)E(x yeyux - [A(Q, X, Y)Y = y]
c=1ycey*

1 L
- TCZZ Z AG(Qi:, X Y . =Y°).

i=1 c=1 ycey~

(65)
Therefore, with probability at least 1 — J, the generalization error bound of our model is
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where _
/Cl = C’}/Sz’y
Ko = 2835 ,v/Cyqlog(2/9)
Ks = 4CS, /4 (67)
~ dlog(v' N
Ki=HR|Y*, XW) 4 ¢4 M + log(2/9).

Since S(*) and O(") are generated by X (), we have the following transformation:

ZI X®. 8 oW|ye)

c=1v=1

C
=S H(SD,..., 8,00, 0y
c=1

=H(SW,...,sM 0V ... .0M)Y)
=H((SY,...,8M oW, .. .oV -1(sV,....sV) . 0W ..., 0M)Y).

Based on Theorem [5] it can be inferred that during the model optimization process,

I((8W,....8M oW .. OWV));Y) continuously approaches its maximum value, leading to a
decrease in ZCCZI ZUV:1 I(X®); 8 O™|Y*), which indicates an improvement in generalization
performance. O
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C Experiment
C.1 Experiment Setup

Table 3: Detailed information of datasets.

View Object VOC 2007 Corel S5k Esp Game TIAPR TC-12 MIR FLICKR

1 CH(64) DenseHue(100)  DenseHue(100)  DenseHue(100)  DenseHue(100)  DenseHue(100)
2 CM(225) DenseSift(1000) DenseSift(1000) DenseSift(1000) DenseSift(1000) DenseSift(1000)
3 CORR(144) GIST(512) GIST(512) GIST(512) GIST(512) GIST(512)

4 EDH(73) HSV(4096) HSV(4096) HSV(4096) HSV(4096) HSV(4096)

5 WT(128) RGB(4096) RGB(4096) RGB(4096) RGB(4096) RGB(4096)

6 - LAB(4096) LAB(4096) LAB(4096) LAB(4096) LAB(4096)
#Label 31 20 260 268 291 38

#Instance 6047 9963 4999 20770 19627 25000

Datasets and Comparison Methods. In our experiments, six public multi-view multi-label datasets
are selected as shown in Table[3] Their specific descriptions are as follows. Corel 5k is composed
of 4999 image samples and 260 words, where each word can be regarded as an annotation or
label. IAPRTC12 comprises 19627 high-quality natural images and each image contains 261 labels,
including sports, actions, animals, cities, and so on. ESPGame is a multi-view multi-label dataset
containing 20770 images with 268 corresponding tags. Pascal07 is a widely utilized dataset for visual
object detection and recognition, which contains 9963 images and 20 kinds of objects. Mirfickr
consists of 25,000 images from the Flickr platform, annotated with a total of 38 tags. OBJECT
has 6047 instances requiring recognition, which are characterized by five distinct perspectives and
annotated with 31 attributes. To validate the effectiveness of TDLSR, we compare it with nine
state-of-the-art approaches, i.e., AIMNet [23], DICNet [25], DIMC [38], iMVWL [33]], LMVCAT
[26], MTD [24]], STP [27], LVSL [43], DM2L [28]]. We also provide a comprehensive overview of
their sources and functions in Table (4]

Construction of the Application NBA Dataset. The NBA dataset crawled from Basketball-
Reference [2]] includes 16,992 player samples from the regular and playoff seasons spanning 2002
to 2022. Each sample comprises six views capturing different aspects of player performance and
background information: 1) Scoring Statistics, 20 features including shooting attempts, shooting
percentages (scaled by 1000), points, and per-minute scoring efficiency, representing scoring ability
and shooting efficiency. 2) Rebounding and Physical Attributes, 14 features such as games played,
rebounds, fouls, and playing time averages, highlighting physical competitiveness and playing
consistency. 3) Technical Statistics, 15 features including assists, steals, blocks, turnovers, and triple-
doubles, reflecting player’s playmaking and defensive contributions. 4) Advanced Efficiency Metrics,
10 features measuring comprehensive performance like true shooting percentage, usage rate, player
efficiency rating, and per-minute rates. 5) Player Background, 41 features encoding age and team
membership via one-hot encoding. 6) Seasonal Context, 22 features encompassing season indicators,
playoff status, also one-hot encoded. Player attributes are structured as an 18-dimensional multi-label
vector per sample, which includes 10 award-related labels (e.g., All-Star selection, AIl-NBA teams,
MVP nomination), 5 positional one-hot labels (PG, SG, SF, PF, C) and 3 career stage one-hot labels
categorizing each player-season into Early Career (first 25%), Prime Career (middle 50%), and Late
Career (last 25%) according to the player’s elapsed and remaining career years.

Implementation Details. We employ Hamming Loss (HL), Ranking Loss (RL), OneError (OE),
Coverage (Cov), Average Precision (AP), and Area Under Curve (AUC) as six metrics to unify the
experimental standards. Higher AP and AUC values indicate better performance, while lower HL, RL,
OE, and Cov values are preferred. Their evaluation contents are described below: 1) ACC measures
the proportion of correctly predicted labels across all samples. 2) RL evaluates the accuracy of the
model’s ranking of predicted labels compared to true labels. 3) AP computes the area under the
precision-recall curve, indicating the average precision achieved across all recall levels. 4) AUC
quantifies the probability that a randomly selected positive instance is ranked higher by the model
than a randomly selected negative instance across all possible threshold values. 5) OE evaluates
whether the top-ranked label predicted by the model is incorrect. 6) Cov computes the number of
labels the model needs to traverse to cover all true labels, reflecting the efficiency of the model’s
predicted label range. The neighbor number £ is fixed to 10 for all datasets. Adam optimizer with
the initial learning rate of 0.0001 is used for optimization of all datasets. All methods use the same
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dataset partition when conducting experiments, while the locations of view missing and label absence
are recorded and kept consistent.

Table 4: Detailed information of comparison methods. v represent the method is able to handle the
corresponding problem.

Method Source  Year Multi-label Multi-view  Missing-view  Missing-label
iMVWL IDCAI 2018
DM2L PR 2021
LVLS T™M 2022
DICNet AAAI 2023
DIMC TNNLS 2023
LMVCAT AAAI 2023
AIMNet AAAI 2024
MTD NeurIPS 2024
SIP ICML 2024

NNNNNNNYNYN
NNNNNNNXY YN
NNNNNNYX XN
NNNNNNYXNYN

C.2 Experiment Result

Table 5: Experimental results of nine methods on the six datasets with 90% PER and 90% LMR.
‘Ave.R’ refers to the mean ranking of the corresponding method across all six metrics.
DATA METRIC AIMNet DICNet DIMC DM2L iMVWL  LMVCAT LVSL MTD SIP TDLSR

1-HL 0.9870.000 0.9870.000 0.9870.000 0.9870.000 0.9760.000 0.9879.000 0.9870.000 0.9870.000 0.9860.000 0.9870.000
1-OE 0.2770.007  0.2420.006 0.2390.000 0.171p.010  0.181p.005 0.2299.008 0.2470.006 0.2740.012 0.289.014 0.3740.010
co 1-Cov 0.6050.003 0.5150.000 0.518p.005 0.481p.013 0.5240.004 0.6000.004 0.6080.002 0.573p.005 0.601p.006 0.6920.004
R 1-RL 0.823p.001  0.7740.003 0.7720.005  0.7500.005 0.7620.004 0.817p.003  0.8230.001  0.8090.001  0.821p.001  0.8660.002
AP 0.2400.002  0.2080.001  0.2060.004 0.181p.002 0.163p.004 0.2149.001  0.2280.001 0.2340.005 0.2420.002  0.3230.004
AUC 0.8260.001  0.7760.004 0.7740.005 0.7540.006 0.7660.004  0.8200.003 0.8279.001 0.811p.002 0.823p.001  0.8690.002

AVE 3.167 6.833 7.333 8.333 9 5 3 5.667 4.167 1

1-HL 0.9820.000 0.9820.000 0.9820.000 0.983p.000 0.9699.000 0.9829.000 0.983¢p.000 0.9820.000 0.9820.000 0.9820.000
1-OE 0.3100.007  0.289.012  0.2830p.006 0.2100.001  0.2040.009  0.2660.023  0.2650.004  0.3020.008  0.3270.008  0.3850.010

ESP 1-Cov  0.5080.003 04649000 0.4560.004 0.4470003 0.42lg007 04680003 04899001 0.4920.003 0.5000.004 0.5769.002
1-RL 0.7920.001  0.7730.001  0.7690.002  0.7580.002  0.7299.004  0.7719.001  0.7830.001 0.7860.000 0.7850.001  0.825¢.001
AP 0.2220.003 0.2100.002  0.2079.003 0.1720.002  0.1550.004 0.2019.006 0.2040.001 0.2190.002 0.2250.002  0.271¢.003
AUC 0.7970.001  0.7779.000  0.7720.002  0.7620.002  0.7330.005  0.7750.002  0.7879.000  0.7900.000  0.7900.002  0.8300.001
AVE 3.333 5.333 6.5 7.667 10 6.333 5.167 4.167 4 1.333

1-HL 0.9800.000 0.9800.000 0.9800.000 0.9800.000 0.9660.000 0.9800.000 0.9800.000 0.9800.000 0.9800.000 0.9800.000
1-OE 0.3420.004 03330009 0.318p.002  0.2470.004 0.2450.011  0.2900.007  0.2949.004  0.3440.007  0.3550.005  0.3970.009
1-Cov 0.5219.002 04720004 0.4680.002 0.4430.005 0.438p.000 04719005 0.4960.002 0.5100.006 0.5190.003 0.6160.001
IAP 1-RL 0.8180.003 0.7990.004 0.7950.002 0.7800.003 0.7610.005 0.7930.000 0.8070.001 0.8160.003 0.8170.003 0.8600.001
AP 02290002 0.2229004 0.2150.002  0.1860.003 0.1670.004  0.2020.003  0.2089.001  0.2320.002  0.2350.002  0.2780.003
AUC 0.8220.002  0.8019.003 0.7980.002  0.7830.003 0.7660.005  0.7970.001  0.811g.001  0.819.002  0.8200.002  0.8610.001
AVE 2.5 4.833 5.833 7.667 10 6.667 5 3.167 2333 1

1-HL 0.8750.001  0.8790.001  0.8770.002 0.8760.000 0.8279.004  0.8650.004  0.8749.000 0.8800.001  0.8750.002  0.885¢.002
1-OE 0.5060.023 0.5330.005 0.511p.005 0.4390.005 0.4060.025 0.4700.020 0.4850.006 0.5350.00s 0.5400.000 0.6120.006
1-Cov 0.5980.006 0.5940.003 0.5890.001 0.5720.003 0.5300.012 0.5819.002 0.5840.001 0.6060.006 0.6040.006 0.6450.005
MIR 1-RL 0.8270.005 0.8289.001  0.8230.001  0.8090.002  0.7650.011  0.8170.003 0.8199.001  0.8340.003 0.8300.002 0.8610.003
AP 04940017 05129001 0.5010.002  0.4670.004 0.4150.009 0.4850.010 0.4829.002 0.519.006 0.5190.002  0.5750.002
AUC 0.8200.003 0.8230.001  0.8180.001 0.8050p.000 0.7690.007 0.8089.004 0.8160.000 0.8270p.002 0.8230.001 0.8520.000
AVE 5333 4 5.333 8.333 10 8 7.333 2.167 3.333 1

1-HL 0.937p.001  0.9380.001  0.9380.000 0.9350.000 0.8820.005 0.9279.002  0.9340.000 0.9380.000 0.937p.001  0.9460.001
1-OE 0.4680.005 0.4530.000 0.4390.005 0.4150.009 0.3350.036 0.4050.019 0.3640.004 0.47409.004 0.4850.013 0.6030.020
o 1-Cov 0.7270.009  0.7200.00s  0.7099.010  0.6820.002  0.6570.023 0.7050.017  0.7129.002  0.7400.007  0.7270.006  0.7950.003
BJ 1-RL 0.8290.003 0.8230.006 0.8140.00s  0.8000.000 0.7680.012  0.8060.011  0.811g001  0.8350.003 0.8280.004 0.8819.002
AP 0.5060.010 0.5020.006 0.4890.010 0.4700.002 0.3940.026 0.4760.009 0.4460.001 0.5199.008 0.5220.000 0.624¢.011
AUC 0.8429.003 0.8360.005 0.8280.00s 0.8140.000 0.7840.012 0.821p.011  0.8279.001  0.8480.003 0.8400.004  0.891¢.001

AVE 3.667 4.667 5.833 8.167 10 8 7.667 2.333 3.667 1

1-HL 0.923p.003 0.9270.001  0.9270.001  0.9260.000 0.871p.003 0.9219.003 0.9260.000 0.9260.001 0.9230.003 0.9270.000
1-OE 0.3820.023 0.4020.002 0.403p.002  0.3800.007 0.3060.037  0.376¢.021  0.4150.001 03950011  0.3899.011  0.4150.016
PAS 1-Cov  0.6580.002 0.6360.013 0.6260.013 0.6360.000 0.589%.014 0.6300.015  0.6540.005 0.6740.005 0.6680.015 0.7530.006
1-RL 0.7279.006  0.7100.011  0.7030.010 0.698p.00s 0.6580p.014 0.6930.016  0.7260.004 0.7400.003 0.7290.013 0.8080.007
AP 0.4400.000 0.4400.005 0.4340.004 0.421p.006 0.3680.021 0.4300.005 0.4440.002 0.4540.007 0.4499.006 0.5040.009
AUC 0.7540.003  0.7379.011  0.7270.012  0.7330.007  0.6900.013  0.7270.010  0.7549.003  0.7660.006  0.7610.013  0.831¢.006
AVE 5.333 5.167 6 7.167 10 8.5 4.167 3.167 4.167 1

Comparison Experiment. To validate that our method can adapt to varying degrees of data missing,
we conduct comparison experiments with PER and LMR ranging from {30%, 50%, 70%, 90%}.
Table [5] presents the comparison results and algorithm rankings when PER and LMR are fixed at
90%. Fig. [8 P]and [T0]illustrate the distributional trends of all metrics as PER increases from 30%
to 70%, with LER fixed at 30%, 50%, and 70%, respectively. It can be observed that our method
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outperforms the other nine methods in almost all cases, which demonstrates the robustness of our
TDLSR in handling incomplete multi-view multi-label problems. Moreover, the effectiveness of our
method is especially evident when dealing with high levels of data unavailability. For instance, as
shown in Fig. [8] on Corel 5k, the performance margin of our method over the second-best gradually
widens. Additionally, as reported in Table[5] our method achieves more than a 10% improvement in
the most representative metric AP on both OBJECT and Pascal07.

Parameter Determination and Convergence. The parameters A; and A\ are used to balance the
effects of L7 and L;.. Two parameters are selected from the range of {0.01,0.1,1, 10,100, 1000}
and the joint influence are presented in the heatmap as shown in Fig. From the result, the
performance of TDLSR exhibits variability under different parameter setting. Besides, the optimal
results are typically achieved when A falls within the range of (0.01, 1). Overall, the parameter
sensitivity is relatively low on certain datasets, such as on ESPgame and OBJECT. We also present
the simultaneous evolution of training loss and performance metric on the validation set throughout
the training process in Fig. [7] The results show that our TDLSR demonstrates great convergence and
gradually approaches the optimal network parameters.
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Figure 6: Parameter analysis of the trade-off parameters A; and As.
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Figure 7: The convergence behavior of our TDLSR during training.
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Figure 8: Experimental results of ten methods on five datasets with PER varying from 50% to 90%
while LMR= 50%.
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Figure 9: Experimental results of ten methods on five datasets with PER varying from 50% to 90%
while LMR= 70%.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe the algorithm implementation,
theoretical contributions, and comprehensive experiments presented in this paper, consistent
with the subsequent Sections [2]and 3]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]

Justification: Sections [2] and [5] mention that the model needs to fully separate feature
semantics in order to achieve optimal generalization performance, and the prior semantics
among multiple labels also need to be leveraged, respectively, which are key challenges in
model optimization and design.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provide the full set of assumptions and a complete proof needed for
each theoretical result in Section[Z]and Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The network architecture, datasets, model parameters, and training approaches
involved in the experimental implementation are described in detail in both the main text
and the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We commit to sharing our code upon the acceptance of the paper.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings, including data splits, hyper parameters, optimizer and
learning rate are discussed in both the main text and Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Fig[3]and Table[I] present the results as the mean and standard deviation over
10 random trials, reflecting the statistical variability.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section (3| mentiones that our model is implemented by PyTorch on one
NVIDIA GeForce RTX 4090 GPU of 24GB memory.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research focuses on algorithm design and theoretical analysis. It does not
involve human subjects or ethically sensitive applications. We believe it complies with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:

Justification: The paper properly cites the sources for existing assets, such as baseline
methods and data sources. However, the specific licenses and terms of use for these assets
are not explicitly stated in the main text or Appendix.

Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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