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Abstract

Document-level relation extraction (DocRE)
aims to extract the semantic relations among
entity pairs in a document. In DocRE, we
observe that (1) a subset of the sentences in
a document, noted as the evidence sentences,
are often sufficient for predicting the relation
between a specific entity pair; (2) these evi-
dence sentences can be extracted in an effec-
tive and lightweight manner: by multi-task
learning along with the RE model or by heuris-
tic rules. In this paper, we propose a novel
DocRE framework called EIDER that automat-
ically extracts and makes use of evidence. EI-
DER enhances a DocRE model by combining
the inference results from the evidence sen-
tences and the original document through a
blending layer. The performance can be fur-
ther improved by jointly training an RE model
with an evidence extraction model via multi-
task learning. If human-annotated evidence
is not available, we can use the evidence ex-
tracted by this joint model or by several heuris-
tic rules. Extensive experiments show that E1-
DER achieves state-of-the-art performance on
the DocRED, CDR, and GDA datasets. Re-
markably, EIDER outperforms the runner-up
by 1.37/1.26 Ign F1/F1 on DocRED. In par-
ticular, EIDER-ROBERTay,g significantly im-
proves the performance on entity pairs re-
quiring co-reference/multi-hop reasoning by
1.98/2.08 F1, respectively.

1 Introduction

Relation extraction (RE) is the task of extracting se-
mantic relations among entities within a given text,
which has abundant applications such as knowl-
edge graph construction, question answering, and
biomedical text analysis (Yu et al., 2017; Shi et al.,
2019; Trisedya et al., 2019). Prior studies mostly
focus on predicting the relation between entities
in a single sentence. However, in the reality, it is
common that a relation can only be inferred given
multiple sentences as the context. As a result, re-

Head: Tail: Canada
Ground truth evidence: [1,4]

Relation: [Country, Located in]
Extracted evidence: [1,4]

Original document as input: [1] Paul Desmarais Jr. (born July 3,
1954) is a Canadian businessman in his hometown of Montreal. [2]
He is the eldest son of Paul Desmarais Sr. and Jacqueline (Maranger)
Desmarais [3] Currently he is the Chairman and Co-chief Executive
Officer of ... [4] Desmarais was born in Sudbury, .

Pred result (logits): NA: 16.46 Country: 15.41 Located in: 14.64

Extracted evidence as input: [1] Paul Desmarais Jr. (born July 3,
1954) is a Canadian businessman in his hometown of Montreal. [4]
Desmarais was born in Sudbury, .

Pred result (logits): Country: 14.69 Located in: 13.63 NA: 10.93

Final prediction result of our model: Country, Located in

Figure 1: A test sample in the DocRED dataset (Yao
et al., 2019), where the i*" sentence in the document is
marked with [i] at the start. Our model correctly pre-
dicts [1,4] as evidence, and if we only use the extracted
evidence as input, the model can predict the relation
“country” and “located in” correctly.

cent studies have been moving towards the more
realistic setting of document-level relation extrac-
tion (DocRE) (Quirk and Poon, 2017; Peng et al.,
2017; Gupta et al., 2019).

In each document, the sentences are not equally
important for each entity pair and some sentences
could be irrelevant for the relation prediction. For
each entity pair, we refer to the minimal set of sen-
tences required to infer their relation as evidence
sentences (Yao et al., 2019). As shown in Fig-
ure 1, to predict the relation between “Ontario”
and “Canada’, it is sufficient to know Paul Des-
marais is a Canadian from the 1% sentence, and
Paul Desmarais was born in Ontario from the 4"
one. In other words, the 15¢ and 4!" sentences serve
as evidence sentences of this entity pair. Although
the 2" and 3" sentences lie between these two
sentences, they are irrelevant to this specific rela-
tion. Including such irrelevant sentences in input
might sometimes introduce noise to the model and
be more detrimental than beneficial.

In light of the observations above, we propose
two approaches to make better use of evidence
sentences. The first is to combine evidence in in-



ference. One naive way is to directly make pre-
dictions on the evidence sentences, as in (Huang
et al., 2021b). However, other sentences may also
include relevant information, such as the informa-
tion of the involved entities. Discarding all other
sentences may result in loss of coherence and harm
model performance in certain cases. Hence, we
fuse the prediction results of the original document
and evidence to highlighting the most important
sentences while avoiding information loss. Notice
that this method does not need additional training
and can be applied to general DocRE models.

In case evidence sentences are not provided in
inference, they can be extracted by training an
evidence extracted model using multi-task learn-
ing. This also serves as our second approach to
improve DocRE with evidence. Intuitively, both
tasks should focus on the information relevant to
the current entity pair, such as the underlined “Paul
Desmarais” and “Desmarais” in the 4" sentence
of Figure 1. This suggests that the two tasks have
certain commonalities and can provide additional
training signals for each other. To avoid the mas-
sive training time and memory overhead due to
training an additional task, our model adopts a sim-
pler model structure and is trained on only part of
the evidence annotation, which requires only 5%
additional training time and 14% more memory.
When human-annotated evidence sentences are not
available even for training, we find that a simple
set of heuristic rules can serve to construct silver
labels with relatively high quality. Experiment re-
sults show that even the model trained with silver
labels can outperform the baseline significantly.

In this paper, we propose an evidence-enhanced
RE framework EIDER, which automatically ex-
tracts evidence and effectively leverages the ex-
tracted evidence to improve the performance of
DocRE. We first train a relation extraction model
and an evidence extraction model using multi-task
learning. If the human-annotated evidence is not
accessible even in training, we adopt several heuris-
tic rules to construct silver labels instead. To re-
duce memory usage and training time, we use the
same sentence representation across relations and
only train the evidence extraction model on posi-
tive entity pairs with at least one relation. During
inference, we construct a pseudo document by con-
catenating all the evidence (or predicted evidence).
Finally, we fuse the predictions based on the orig-
inal document and the pseudo document using a

blending layer (Wolpert, 1992).

Extensive experiments show that EIDER out-
performs the state-of-the-art methods on widely-
adopted DocRE benchmarks DocRED (Yao et al.,
2019), CDR (Li et al., 2016) and GDA (Wu et al.,
2019). Further examination shows that the improve-
ment of EIDER is especially large on inter-sentence
entity pairs, where multiple sentences are involved.
Contributions. (1) We propose an evidence-
empowered inference process of DocRE, which
improves the performance without re-training the
RE model. (2) We jointly learn relation and evi-
dence extraction using multi-task learning, where
the two tasks mutually enhance each other. (3) In
the absence of human-annotated evidence labels,
we design a set of rules to construct evidence la-
bels and show that these silver labels can already
improve DocRE performance. (4) We demonstrate
that EIDER outperforms state-of-the-art methods on
three DocRE datasets: DocRED, CDR, and GDA.

2 Problem Formulation

Given a document d comprised of N sentences
{s¢}Y . L tokens {h;}£_ | and a set of entities {e;}
appearing in d, the task of document-level relation
extraction (DocRE) is to predict the set of all possi-
ble relations between all entity pairs (ey,, ;) from
a pre-defined relation set R [ J{NA}. We refer to
en, and e; as the head entity and tail entity, respec-
tively. An entity e; may appear multiple times in
document d, where we denote its corresponding
mentions as {m;} A relation r belongs to the
positive class ngt if it exists between (e, e;) and
otherwise the negative class N, hT ;- For each entity
pair (ep,, e;) that possesses a non-NA relation, we
define its evidence sentences' Vi, = {s,,} X | as
the subset of sentences in the document that are suf-
ficient for human annotators to infer the relation.

3 Methodology

In this section, we will first introduce our base rela-
tion extraction model (Sec. 3.1) and then propose
two methods to improve DocRE by using evidence:
evidence-empowered inference (Sec. 3.2) and ev-
idence extraction as an auxiliary task (Sec. 3.3).
We also provide several heuristic rules (Sec. 3.4)
to construct evidence labels in case the evidence
annotation is not available. An illustration of our
framework is shown in Figure 2.

"We use “evidence sentence” and “evidence” interchange-
ably throughout the paper.



3.1 Base Relation Extraction Model

Base Encoder. Given a document d = [h]L .
we insert a special token “*” before and after each
entity mention and encode the document with a
pre-trained encoder (Devlin et al., 2019) to obtain
the s-dim embedding of each token, aggregated as
amatrix H € RF*:

H = |hy,...,hr] = Encoder([h1,...,hr]). (1)
For each mention of an entity e;, we use the embed-
ding of the start symbol “* as its mention embed-
ding. Then, we obtain the embedding of entity e;
by adopting LogSumExp pooling (Jia et al., 2019;
Zhou et al., 2021) over the embeddings of all its
mentions: e; = log ) _; exp(mji.).

Following Zhou et al. (2021), we capture the
context for each entity pair (ey, e;) by computing
a context embedding cj,; € R® based on the atten-
tion scores from the pre-trained encoder:

Cht = HTah,t
& )
ap; = Normahze(z A} o AY).
k=1

where K is the number of attention heads, and
A} € RL is the attention from e, to each token
under attention head k, computed by averaging the
attention from each of its mentions m? to each to-
ken. Similarly for AF. The intuition is that tokens
with high attention towards both ej, and e; are im-
portant to both entities. Hence, these tokens are
essential to the relation and should contribute more
to the context embedding.

Relation Prediction Head. We first map the em-
beddings of (e, e;) to context-aware representa-
tions (zn, z¢) by combining their entity embed-
dings with the context embedding cj, ;, and then
obtain the probability of relation » € R between
(en, ;) via a bilinear function:

zp, = tanh (Wye, + W, ¢hy),
z; = tanh (Wie, + We e ),
yr = (znWrzt + b,),

P (rlen, er) = oy,

3

where W), Wy, W,, , W,,, W, b, are learnable
parameters. As the model may have different confi-
dence for different entity pairs or classes, we apply
the adaptive-thresholding loss (Zhou et al., 2021),

which learns a dummy relation class TH that serves
as the dynamic threshold for each entity pair:
yru = (z,Wrnz + by) )

During inference, for each tuple (ep, e;,7),7 € R,

we obtain the prediction score: S ,(fz)r =yYr—YyYTH-
Finally, we define our training objective for relation
extraction as follows:

_ . exp (y,)
LrE = Z Z lg(Z )

T ex ’
At rePl, r'ePl U{TH} p(y-)

— log (E

3.2 [Evidence-empowered Inference

exp (yrn)
' eNE U{TH} exp (y)
©)

Suppose we are given the ground truth evidence
and it already contains all the information relevant
to the relation, then there is no need to use the
whole document for relation extraction. Instead,
we can construct a pseudo document d’h,t for each
entity pair by concatenating the evidence sentences
V.t in the order they are presented in the original
document and feed the pseudo document to the
trained model to obtain another set of prediction
scores S ,(lEt)r It may simplify the input, making it
easier for the model to make the correct predictions.

However, the non-evidence sentences in the orig-
inal document may also provide background in-
formation of the entities and possibly contributes
to the prediction. Hence, solely relying on evi-
dence sentences may result in information loss and
lead to sub-optimal performance. As a result, we
combine the prediction results on both the original
documents and the extracted evidence.

After obtaining two sets of relation prediction
results from the original documents and the pseudo
documents, we fuse the results by aggregating the
prediction scores from original documents and
pseudo documents, denoting as S(©) and S(F),
through a blending layer (Wolpert, 1992):

Pruse (rlen e) = o(S{) + Sy, — 1), (6)

where T is a learnable parameter. We optimize the
parameter 7 on the development set as follows:

£Fuse = - Z Z Z Yr Pruse (T‘ehnet) +

deD h#t r€R
(1 - y?‘) : log(l — Pruse (’I”|€h, et))a
(7
where y, = 1 if the relation r holds between

(en, et) and y, = 0 otherwise.
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Figure 2: The overall architecture of EIDER. The left part illustrates the first stage (training) and the right shows the

second and third stages (inference) of EIDER. We highlight

3.3 Evidence Extraction as Auxiliary Task

In reality, the annotation of evidence may be avail-
able only in training but not in inference. To au-
tomatically extract evidence, we jointly train the
relation extraction model and evidence extraction
model using multi-task learning. Intuitively, tokens
relevant to the relation are essential in both models.
By sharing the base encoder, the two models can
provide additional training signals for each other
and hence mutually enhance each other (Ruder,
2017; Liu et al., 2019).

The evidence extraction model predicts whether
each sentence s; is an evidence sentence of en-
tity pair (e, €¢). Similar to entity embeddings, to
obtain sentence embedding s;, we apply a Log-
SumExp pooling over all the tokens in s;: s; =
log ), cq, €xp (hy). Intuitively, if s; is an evi-
dence sentence of (ey, e;), the tokens in s; would
be relevant to the relation prediction, and would
contributing more to ¢, ;. Hence, we use a bilinear
function between context embedding ¢, ; and sen-
tence embedding s; to measure the importance of
sentence s; to entity pair (ej, €;):

P (Sileh, et) =0 (Sinch,t + bv) y (8)

where W, and b,, are learnable parameters.

As an entity pair may have more than one evi-
dence sentence, we use the binary cross entropy as
the objective to train the evidence extraction model.

>, D wP

h#t,NAZP], si€D
(1 —i) -log(1 —P

Lpyi = — (silen,er) +

(Silehvet))v

©))

, tail entities and extracted evidences.

where y; is 1 when s; € V}, ; and y; = 0 otherwise.

When training for evidence prediction, we only
use the entity pairs with at least one relation r € R,
which accounts for a small subset (2.97% in Do-
cRED) of the total possible entity pairs. Note that
only such pairs have human-annotated evidence
sentences. While previous work (Huang et al.,
2021a) treated the remaining entity pairs as nega-
tive examples for every sentence and predict on the
(en, e, 1, s;) tuple level, we find this unnecessary
and inefficient in terms of memory and time. We
observe that most of the entity pairs only have one
set of evidence across relations, and hence only
predict for each (ep, e, s;) tuple. Then for this

“relation-agnostic” evidence, a negative entity pair

that does not have a relation € R does not neces-
sarily imply that the entity pair does not have any
relation. Taking such pairs as negative examples
also makes the training set highly unbalanced.

Finally, we optimize our model by the combi-
nation of the relation extraction loss £ rg and evi-
dence extraction loss £ gy;:

L= Lre + LEuvi- (10)

If we do not have access to evidence during infer-
ence, we can use the extracted evidence V}; , instead
of the ground truth evidence V}, ; in the evidence-
empowered inference introduced in Sec. 3.2.

3.4 Heuristic Evidence Label Construction

Both of our methods aim at facilitating relation ex-
traction with evidence. However, human-annotated
evidence is not always available. > In this case,

2If human-annotated evidence sentences are available, then
we do not need to go through this step.



we design several heuristic rules to automatically
construct silver labels for evidence extraction:

Intra. If the head and tail entities co-occur in the
same sentence (e.g., “Desmarais” and “Ontario” co-
occur in the 4*" sentence in Figure 2), we use all
the sentences they co-occur as evidence.

Coref. If the entity mention pairs of the head and
tail entity do not co-occur explicitly, but their coref-
erential mentions co-occur (e.g., “Paul Desmarais”
and “Canadian”, the co-reference of “Canada” co-
occur in the 15! sentence in Figure 2), we use all
the sentences where their coreferential mentions
co-occur. In practice, we may directly apply exist-
ing coreference resolution models such as HOI (Xu
and Choi, 2020) without re-training.

Bridge. If the first two conditions are not satisfied,
but there exists a third bridge entity whose coref-
erential mention co-occurs with both head and tail
(e.g., “Paul Desmarais” co-occurs with both “Cana-
dian” and “Ontario” in Figure 2), we take all the
sentences where the bridge co-occurs with head
or tail as the evidence. If there is more than one
bridge entity, we choose the one with the highest
frequency. This rule can be easily extend to multi-
ple bridges. Empirically, we observe that capturing
one bridge already leads to satisfying results.

4 [Experiments

4.1 Experiment Setup

Dataset. We evaluate the effectiveness of EIDER
on three datasets: DocRED (Yao et al., 2019),
CDR (Li et al., 2016) and GDA (Wu et al., 2019).
The details of the datasets are listed in Appendix A.
DocRED is the only dataset that provides evidence
sentences as part of the annotation, and the evi-
dence annotation is not visible in inference.

Evaluation Metrics. Following prior studies (Yao
etal., 2019; Zhou et al., 2021; Huang et al., 2021a),
we use F1 and Ign F1 as the main evaluation met-
rics for relation extraction and use Evi F1 and
PosEvi F1 as the metric for evidence extraction.
Ign F1 measures the F1 score excluding the rela-
tions shared by the training and development/test
set. PosEvi F1 measures the F1 score of evidence
only on entity pairs with explicit relations (posi-
tive pairs). We also report Intra F1 and Inter F1,
where the former measures the performance on the
co-occurred (intra-sentence) entity pairs and the
latter evaluates the inter-sentence relations where
none of the entity mention pairs co-occurs.

4.2 Main Results

We compare our methods with both Graph-based
methods and transformer-based methods. Graph-
based methods explicitly perform inference on
document-level graphs. Transformer-based meth-
ods, including EIDER, model cross-sentence re-
lations by implicitly capturing the long-distance
token dependencies via the transformer. We also
compare to two ablations of our method: EIDER
(Rule), where we use rule-based evidence labels
instead of golden labels, and ATLOP + Fuse, where
we directly apply our evidence-enhance inference
on the checkpoint of ATLOP without re-training.
The evidence is also extracted by rules.

Relation Extraction Results. Table 1 presents the
relation extraction results, where we observe that
EIDER outperforms the baseline methods in all
datasets. For instance, EIDER-BERT}, signifi-
cantly improves ATLOP (Zhou et al., 2021) by
1.47/1.40 F1/Ign F1, which uses the same base re-
lation extraction model as our method.

The experiment results also show that our im-
provement on Inter F1 is much larger than that
on Intra F1. For instance, EIDER outperforms AT-
LOP by 1.21/2.01 Intra/Inter F1 under BERT,q
(0.75/1.52 under ROBERTay,g.). We hypothesize
that the bottleneck of inter-sentence pairs is to
locate the relevant context, which often spreads
through the whole document. EIDER learns to cap-
ture important sentences during training and uses
these important sentences during inference.

Among the baselines, we observe that the Inter
F1 of GAIN (Zeng et al., 2020) is 0.70 higher while
the Intra F1 of ATLOP is 0.16 higher. Such results
indicate that graph-based methods may capture the
long-distance dependency between entities by di-
rectly connecting them on the graph. Although E1-
DER does not involve an explicit multi-hop reason-
ing module, it still notably outperforms the graph-
based models in terms of Inter F1, demonstrat-
ing that the evidence-empowered inference also
relieves long-distance dependency challenge by di-
rectly concatenating important sentences.

Finally, in both DocRED and the two biomedi-
cal datasets which do not have evidence annotation,
EIDER (Rule) also outperforms all baselines. This
shows that EIDER still performs well without evi-
dence annotation. The improvement of ATLOP +
Fuse further shows that our inference approach can
be applied to general DocRE models without re-
training. The improvement on DocRED and CDR



Model Dev Test

Ign F1 F1 Intra F1 Inter F1 IgnF1 F1
LSR-BERT},s (Nan et al., 2020) 52.43 59.00 65.26 52.05 56.97 59.05
GLRE-BERT},s (Wang et al., 2020) - - - - 55.40 57.40
Reconstruct-BERT},5e (Xu et al., 2020) 58.13 60.18 - - 57.12  59.45
GAIN-BERT}se (Zeng et al., 2020) 59.14 61.22 67.10 53.90 59.00 61.24
BERT}ase (Wang et al., 2019) - 54.16 61.61 47.15 - 53.20
BERT-Two-Step (Wang et al., 2019) - 54.42 61.80 47.28 - 53.92
HIN-BERT}qse (Tang et al., 2020) 54.29 56.31 - - 53.70  55.60
E2GRE-BERT}, (Huang et al., 2021a) 55.22 58.72 - - - -
CorefBERT,s. (Ye et al., 2020) 55.32 57.51 - - 54.54  56.96
ATLOP-BERT},s (Zhou et al., 2021) 59.11 £ 0.147  61.01 £0.100 67.26 £0.157 53.20+0.197 5931 61.30
ATLOP-BERT},s. + Fuse 60.01 £0.14 62.09£0.09 68.21 £0.10 54.34+0.15 - -
EIDER (Rule)-BERT}s¢ 60.36 £ 0.13  62.34 £0.08 68.40+0.14 5479 +0.13 - -
EIDER-BERT)),¢ 60.51 +0.11 62.48 +0.13 68.47 £0.08 5521 +0.21 6042 62.47
BERT 4 (Ye et al., 2020) 56.67 58.83 - - 56.47 58.69
CorefBERTyge (Ye et al., 2020) 56.82 59.01 - - 56.40 58.83
RoBERTajyg (Ye et al., 2020) 57.14 59.22 - - 57.51  59.62
CorefRoBERTay,ge (Ye et al., 2020) 57.35 59.43 - - 5790 60.25
GAIN-BERT g (Zeng et al., 2020) 60.87 63.09 - - 60.31 62.76
ATLOP-RoBERTajyge (Zhou et al., 2021)  61.30 & 0227 63.15+ 0217 69.61 £0.257 5501 +0.187 61.39 63.40
ATLOP-RoBERTajg + Fuse 6148 £0.13 63.64 £0.14 69.61 £0.19 56.17 £0.22 - -
EIDER (Rule)-RoBERTajg 61.73 £0.07 6391 £0.07 69.99+0.09 56.27 +£0.11 - -
EIDER-ROBERTay; g, 62.34 +0.14 64.27 £0.10 70.36 £ 0.07 56.53 +0.15 62.85 64.79

Table 1: Relation extraction results on DocRED. We report the mean and standard deviation on the development
set by conducting 5 runs with different random seeds. We report the official test score of the best checkpoint on
the development set. Results with { are based on our implementation. Others are reported in their original papers.
We separate graph-based and transformer-based methods into two groups.

Model CDR GDA
LSR-BERT,ee (Nan et al., 2020) 64.8 82.2
SciBERThase (Zhou et al., 2021) 65.1£06  82.5+03
DHG-BERTyy. (Zhang et al., 2020b) 65.9 83.1
GLRE-SciBER T (Wang et al., 2020) 68.5 -
ATLOP-SciBERThqs (Zhou et al., 2021) 694 +1.1  83.9+02

EIDER (Rule)-SciBERThyse 70.63 +0.49 84.54 +0.22

Table 2: Relation extraction results on CDR and GDA.

Model Dev PosEvi F1 Dev Evi F1  Test Evi F1
EIDER-rules 77.43 - -
E2GRE-BERT}e - 47.14 48.35
EIDER-BERT e 80.33 50.71 51.27
E2GRE-RoBERTaj;ge - 51.11 50.50
EIDER-RoBERTay;ge 81.51 52.54 53.01

Table 3: Evidence extraction results. We compare EI-
DER with E2GRE (Huang et al., 2021a).

is much larger than that on GDA. We hypothesize
that it is because more than 85% relations in GDA
are intra-sentence relations, so the model might
already learn to focus on the important sentences
without the help of evidence.

Evidence Extraction Results. To our knowledge,
E2GRE is the only method that has reported their
evidence extraction result. The results of evidence
prediction in Table 3 indicate that EIDER outper-

forms E2GRE significantly (e.g., by 3.57 Dev Evi
F1 under BERT},). One possible reason is that
the incorporation of context vector models the de-
pendency between tokens, leading to better perfor-
mance in evidence extraction. The results show
that it may be sufficient to make predictions on
positive pairs only and over each (entity, entity,
sentence) tuple (instead of (sentence, relation, en-
tity, entity) as in E2GRE). We also observe that our
three heuristic rules already capture most of the ev-
idence for the positive pairs (77.43 F1). This again
demonstrates that our model can perform well even
without relying on evidence annotations.

4.3 Performance Analysis

Ablation Study. We conduct ablation studies to
further analyze the utility of each module in EIDER.
The results are shown in Table 4.

We first train the RE model and the evidence
extraction model separately, denoted as NoJoint.
We observe that the drop in Inter F1 is more signifi-
cant (i.e., 0.50/1.04 Intra F1/Inter F1), which shows
that the evidence and relation extraction model mu-
tually enhance each other’s ability to identify the
related context of each entity pair.

Then, we remove the extracted evidence and



Ablation IgnF1 F1 IntraF1 Inter F1
EIDER-ROBERTajyge  62.34  64.27 70.36 56.53
NoJoint 61.56 63.40 69.86 55.49
NoEvi 61.94 63.81 70.10 55.94
NoOrigDoc 60.26  62.68 68.36 55.49
NoBlending 61.09 63.47 69.25 56.27
FinetuneOnEvi 61.84 63.92 69.86 56.40
Table 4: Ablation studies of EIDER.
Intra  Coref Bridge Total
Count 6711 984 3212 10,907
Percent 54.46% 7.99% 26.07% 88.52%

Table 5: The statistics of the 12,323 relations in the
DocRED development set.

the original document separately, denoted as No-
Evi and NoOrigDoc, respectively. We observe
that removing either source will lead to perfor-
mance drops. Also, the drop of Inter F1 is much
larger than Intra F1 for NoEvi, indicating that
the extracted evidence is more effective for cross-
sentence entity pairs where the important sentences
may not be consecutive.

As for NoBlending, we remove the blending
layer and simply take the union of the two sets of
results. The sharp drop of performance indicates
the blending layer can successfully learn a dynamic
threshold to combine the prediction results.

Finally, we further finetune the RE model on
ground truth evidence before feeding it the ex-
tracted evidence (denoted as FinetuneOnEvi). We
observe that the performance is not improved, prob-
ably because the encoded entity representation in
evidence and original documents are already simi-
lar to each other. In fact, when performing relation
extraction on the training set using the ground truth
evidence alone, the F1 is already over 95%.

Performance Breakdown. To further analyze the
performance of EIDER on different types of entity
pairs, we categorize the relations into three cate-
gories based on our three heuristic rules in Sec. 3.4:
Intra, Coref and Bridge. The number and percent-
age of relations covered by each rule are listed in
Table 5. We can see that the three categories cover
over 88% of the relations in the development set.
The results on each category are shown in Figure 3.
We can see that our full model has the best per-
formance in all three categories and our ablations
also outperform ATLOP. The differences between
models vary by category. For all our methods, the
improvements over ATLOP is Bridge > Coref >>
Intra. This reveals that both modules mainly im-

prove the model’s reasoning ability from multiple
sentences, either by coreference reasoning or by
multi-hop reasoning over a third entity.
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Figure 3: Performance gains in F1 by relation cate-
gories. The gains are relative to the second best base-
line (ATLOP).

0.0

Intra

Model Memory  Training time
ATLOP-BERTpae 9,139 MB 5.19it/s
E2GRE-BERTh,e 36,182 MB 0.53 it/s
EIDER-BERT}h,se 10,933 MB 4.92 it/s

Table 6: Training time and memory usage.

Efficiency Comparison. We benchmark the time
and memory usage of EIDER on an RTX A6000
GPU. Table 6 show that our joint model incurs only
~5% training time and ~14% GPU memory over-
head. Experiments also show that EIDER can be
trained on a single consumer GPU (e.g., an 11GB
GTX 1080 Ti) but E2GRE is not able to.

4.4 Case Studies

Table 7 shows a few examples of EIDER. In the
first example, the head entity is mentioned in the
first sentence and the tail entity appears in the sec-
ond sentence. We can see that the model correctly
extracts these evidence sentences. Since the evi-
dence sentences are consecutive, both the predic-
tions on the original document and the evidence
sentences are correct. In the second example, the
274 sentence is a distracting sentence as it does not
contain any useful information involving the target
entity pair. The prediction using only the original
document is incorrect, possibly because the “King
Louie” in the 15¢ and 3" sentences are so far away
from each other that the model fails to link them.
Hence, it also fails to distinguish “King Louie” as
a bridge entity in this case. However, these two
sentences are consecutive in the extracted evidence,
making it easier for the model to find the bridge.
In the last example, the 6! sentence is missing in
the extracted evidence, so the extracted evidence
does not contain enough information for prediction.
However, the prediction on the original document
is correct, leading to the correct final result.



Ground Truth Relation: Located in Ground Truth Evidence Sentence(s): [1, 2] Extracted Evidence Sentence(s): [1, 2]
Document: [1] The is a private golf club in the northwest United States , in suburban Portland, Oregon. [2] It is located
in the unincorporated Raleigh Hills area of eastern Washington County, southwest of downtown Portland and east of Beaverton. [3] The club
was established in the winter of 1914, when a group of nine businessmen assembled to form a new club after leaving their respective clubs ...
Final Prediction: Located in Prediction on Orig. Doc: Located in Prediction on Extracted Evidences: Located in

Ground Truth Relation: Characters Ground Truth Evidence Sentence(s): [1, 3]
Document: [1] King Louie is a fictional character introduced in Walt Disney’s 1967 animated musical film,

Extracted Evidence Sentence(s): [1, 3]
. [2] Unlike the

majority of the adapted characters in the film, Louie was not featured in Rudyard Kipling’s original works. [3] King Louie was portrayed as an

orangutan who was the leader of the other jungle primates, and who attempted to gain knowledge of fire from Mowgli, ...

Final Prediction: Characters

Prediction on Orig. Doc: NA

Prediction on Extracted Evidences: Characters

Ground Truth Relation: Inception

chairman of the

Ground Truth Evidence Sentence(s): [5, 6]

Document: [1] Oleg Tinkov (born 25 December 1967 ) is a Russian entrepreneur and cycling sponsor. ...
board of directors (until 2015 it was called Tinkoff Credit Systems). [6] The bank was founded in 2007 and as of

Extracted Evidence Sentence(s): [5]
[5] Tinkoff is the founder and

December 1, 2016, it is ranked 45 in terms of assets and 33 for equity among Russian banks. ...

Final Prediction: Inception

Prediction on Orig. Doc: Inception

Prediction on Extracted Evidences: NA

Table 7: Case studies of our proposed framework EIDER. We use red, blue and green to color the

, tail

entity and relation, respectively. The indices of extracted evidence sentences are highlighted with yellow.

5 Related Work

Relation Extraction. Previous research efforts on
relation extraction mainly concentrate on predict-
ing relations within a sentence (Cai et al., 2016;
Zeng et al., 2015; Feng et al., 2018; Zheng et al.,
2021; Zhang et al., 2018, 2019, 2020a). While
these approaches tackle the sentence-level RE task
effectively, in the real world, certain relations can
only be inferred from multiple sentences. Con-
sequently, recent studies (Quirk and Poon, 2017;
Peng et al., 2017; Yao et al., 2019; Wang et al.,
2019; Tang et al., 2020) have proposed to work on
the document-level relation extraction (DocRE).

Graph-based DocRE. Graph-based DocRE meth-
ods generally construct a graph with mentions, en-
tities, sentences, or documents as the nodes, and in-
fer the relations by reasoning on this graph. Specifi-
cally, Nan et al. (2020) constructs a document-level
graph and iteratively updates the node representa-
tions, and refines the graph topological structure.
Zeng et al. (2020) performs multi-hop reasoning
on both a mention-level graph and an entity-level
graph. Xu et al. (2020) extracts a reasoning path
between each entity pair holding at least one rela-
tion and encourages the model to reconstruct the
path during training. These methods simplify the
input document by extracting a graph with entities
and performing explicit graph reasoning. However,
the complicated operations on the graphs lower the
efficiency of the methods.

Transformer-based DocRE. Another line of stud-
ies solely relies on the transformer architecture
(Devlin et al., 2019) to model cross-sentence re-
lations since transformers can implicitly capture
long-distance dependencies. Zhou et al. (2021)

uses attention in the transformers to extract use-
ful context and adopts an adaptive threshold for
each entity pair. Huang et al. (2021b) makes pre-
dictions on the evidence sentences extracted by
several hand-crafted rules, which may suffer from
information loss. Instead, EIDER combines the pre-
dictions on both the evidence and the original doc-
ument. Similar to our method, Huang et al. (2021a)
jointly extracts relation and evidence. However,
our method does not rely on human-annotated ev-
idence and uses a much simpler model structure
and hence reduces time and memory usage. We are
also the first work to fuse the predictions based on
extracted evidence sentences in inference.

6 Conclusion

In this work, we propose EIDER, an evidence-
enhanced RE framework, which improves DocRE
by joint relation and evidence extraction and fu-
sion of extraction results in inference. We also
provide an evidence label construction method so
that our model does not rely heavily on the human
annotation of evidence. In training, the relation
extraction and evidence extraction model provide
additional training signals for each other and mutu-
ally enhance each other. The joint model adopts a
simple model structure and is efficient in time and
memory. During inference, the prediction results
on both the original document and the extracted ev-
idence are combined, which encourages the model
to focus on the important sentences while reducing
information loss. Experiment results demonstrate
that EIDER significantly outperforms existing meth-
ods on three public datasets (DocRED, CDR, and
GDA), especially on inter-sentence relations.



References

Rui Cai, Xiaodong Zhang, and Houfeng Wang. 2016.
Bidirectional recurrent convolutional neural network
for relation classification. In ACL, pages 756-765.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 4171-4186.

Jun Feng, Minlie Huang, Li Zhao, Yang Yang, and Xi-
aoyan Zhu. 2018. Reinforcement learning for rela-
tion classification from noisy data. In AAAI, pages
5779-5786.

Pankaj Gupta, Subburam Rajaram, Hinrich Schiitze,
and Thomas A. Runkler. 2019. Neural relation
extraction within and across sentence boundaries.
In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innova-
tive Applications of Artificial Intelligence Confer-
ence, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2019, pages 6513-6520.

Kevin Huang, Peng Qi, Guangtao Wang, Tengyu Ma,
and Jing Huang. 2021a. Entity and evidence guided
document-level relation extraction. In Proceedings
of the 6th Workshop on Representation Learning for
NLP (RepL4NLP-2021).

Quzhe Huang, Shengqi Zhu, Yansong Feng, Yuan Ye,
Yuxuan Lai, and Dongyan Zhao. 2021b. Three sen-
tences are all you need: Local path enhanced docu-
ment relation extraction.

Robin Jia, Cliff Wong, and Hoifung Poon. 2019.
Document-level n-ary relation extraction with mul-
tiscale representation learning. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 3693-3704.

Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J. Mattingly, Thomas C. Wiegers,
and Zhiyong Lu. 2016. Biocreative V CDR task cor-
pus: a resource for chemical disease relation extrac-
tion. Database, 2016.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. In ACL.

Guoshun Nan, Zhijiang Guo, Ivan Sekulic, and Wei Lu.
2020. Reasoning with latent structure refinement for
document-level relation extraction. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1546—1557.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence

n-ary relation extraction with graph LSTMs. Trans-
actions of the Association for Computational Lin-
guistics, 5:101-115.

Chris Quirk and Hoifung Poon. 2017. Distant super-
vision for relation extraction beyond the sentence
boundary. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
1171-1182.

Sebastian Ruder. 2017.
task learning in deep neural networks.
abs/1706.05098.

An overview of multi-
ArXiv,

Y. Shi, Jiaming Shen, Yuchen Li, N. Zhang, Xinwei
He, Zhengzhi Lou, Q. Zhu, M. Walker, Myung-
Hwan Kim, and Jiawei Han. 2019. Discovering hy-
pernymy in text-rich heterogeneous information net-
work by exploiting context granularity. In CIKM.

Hengzhu Tang, Yanan Cao, Zhenyu Zhang, Jiangxia
Cao, Fang Fang, Shi Wang, and Pengfei Yin. 2020.
HIN: hierarchical inference network for document-
level relation extraction. In Advances in Knowledge
Discovery and Data Mining - 24th Pacific-Asia Con-
ference, PAKDD 2020, Singapore, May 11-14, 2020,
Proceedings, Part I, volume 12084 of Lecture Notes
in Computer Science, pages 197-209.

Bayu Distiawan Trisedya, Gerhard Weikum, Jianzhong
Qi, and Rui Zhang. 2019. Neural relation extrac-
tion for knowledge base enrichment. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 229-240, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Difeng Wang, Wei Hu, Ermei Cao, and Weijian
Sun. 2020. Global-to-local neural networks for
document-level relation extraction. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
3711-3721.

Hong Wang, Christfried Focke, Rob Sylvester, Nilesh
Mishra, and William Wang. 2019. Fine-tune bert for
docred with two-step process. Computing Research
Repository, arXiv:1909.11898.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2019. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, pages
arXiv—-1910.

David H. Wolpert. 1992. Stacked generalization. Neu-
ral Networks, 5:241-259.

Ye Wu, Ruibang Luo, Henry C. M. Leung, Hing-Fung
Ting, and Tak Wah Lam. 2019. RENET: A deep
learning approach for extracting gene-disease associ-
ations from literature. In Research in Computational
Molecular Biology - 23rd Annual International Con-
ference, RECOMB 2019, Washington, DC, USA,


https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1609/aaai.v33i01.33016513
https://doi.org/10.1609/aaai.v33i01.33016513
https://doi.org/10.1609/aaai.v33i01.33016513
http://arxiv.org/abs/2106.01793
http://arxiv.org/abs/2106.01793
http://arxiv.org/abs/2106.01793
http://arxiv.org/abs/2106.01793
http://arxiv.org/abs/2106.01793
https://doi.org/10.18653/v1/N19-1370
https://doi.org/10.18653/v1/N19-1370
https://doi.org/10.18653/v1/N19-1370
https://doi.org/10.1093/database/baw068
https://doi.org/10.1093/database/baw068
https://doi.org/10.1093/database/baw068
https://doi.org/10.1093/database/baw068
https://doi.org/10.1093/database/baw068
https://doi.org/10.18653/v1/2020.acl-main.141
https://doi.org/10.18653/v1/2020.acl-main.141
https://doi.org/10.18653/v1/2020.acl-main.141
https://www.aclweb.org/anthology/Q17-1008
https://www.aclweb.org/anthology/Q17-1008
https://www.aclweb.org/anthology/Q17-1008
https://www.aclweb.org/anthology/E17-1110
https://www.aclweb.org/anthology/E17-1110
https://www.aclweb.org/anthology/E17-1110
https://www.aclweb.org/anthology/E17-1110
https://www.aclweb.org/anthology/E17-1110
https://doi.org/10.1007/978-3-030-47426-3_16
https://doi.org/10.1007/978-3-030-47426-3_16
https://doi.org/10.1007/978-3-030-47426-3_16
https://doi.org/10.18653/v1/P19-1023
https://doi.org/10.18653/v1/P19-1023
https://doi.org/10.18653/v1/P19-1023
https://doi.org/10.18653/v1/2020.emnlp-main.303
https://doi.org/10.18653/v1/2020.emnlp-main.303
https://doi.org/10.18653/v1/2020.emnlp-main.303
http://arxiv.org/abs/1909.11898
http://arxiv.org/abs/1909.11898
http://arxiv.org/abs/1909.11898
https://doi.org/10.1007/978-3-030-17083-7_17
https://doi.org/10.1007/978-3-030-17083-7_17
https://doi.org/10.1007/978-3-030-17083-7_17
https://doi.org/10.1007/978-3-030-17083-7_17
https://doi.org/10.1007/978-3-030-17083-7_17

May 5-8, 2019, Proceedings, volume 11467, pages
272-284.

Liyan Xu and Jinho D. Choi. 2020. Revealing the
myth of higher-order inference in coreference reso-
lution. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 8527-8533. Association for Com-
putational Linguistics.

Wang Xu, Kehai Chen, and Tiejun Zhao. 2020.
Document-level relation extraction with reconstruc-
tion.

Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin,
Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie Zhou,
and Maosong Sun. 2019. DocRED: A large-scale
document-level relation extraction dataset. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 764-777.

Deming Ye, Yankai Lin, Jiaju Du, Zhenghao Liu, Peng
Li, Maosong Sun, and Zhiyuan Liu. 2020. Corefer-
ential Reasoning Learning for Language Represen-
tation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 7170-7186.

Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos
Santos, Bing Xiang, and Bowen Zhou. 2017. Im-
proved neural relation detection for knowledge base
question answering. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 571—
581, Vancouver, Canada. Association for Computa-
tional Linguistics.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction
via piecewise convolutional neural networks. In
EMNLP, pages 1753—-1762.

Shuang Zeng, Runxin Xu, Baobao Chang, and Lei Li.
2020. Double graph based reasoning for document-
level relation extraction. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1630-1640.

Ningyu Zhang, Shumin Deng, Zhanlin Sun, Jiaoyan
Chen, Wei Zhang, and Huajun Chen. 2020a. Rela-
tion adversarial network for low resource knowledge
graph completion. In Proceedings of The Web Con-
ference 2020.

Ningyu Zhang, Shumin Deng, Zhanlin Sun, Xi Chen,
Wei Zhang, and Huajun Chen. 2018. Attention-
based capsule networks with dynamic routing for re-
lation extraction. In EMNLP.

Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guany-
ing Wang, Xi Chen, Wei Zhang, and Huajun Chen.
2019. Long-tail relation extraction via knowledge
graph embeddings and graph convolution networks.
In NAACL-HLT.

10

Zhenyu Zhang, Bowen Yu, Xiaobo Shu, Tingwen Liu,
Hengzhu Tang, Wang Yubin, and Li Guo. 2020b.
Document-level relation extraction with dual-tier
heterogeneous graph. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 1630-1641, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Hengyi Zheng, Rui Wen, Xi Chen, Yifan Yang, Yun-
nan Zhang, Ziheng Zhang, Ningyu Zhang, Bin Qin,
Xu Ming, and Yefeng Zheng. 2021. Prgc: Potential
relation and global correpondence based joint rela-
tional triple extraction. In ACL.

Wenxuan Zhou, Kevin Huang, Tengyu Ma, and Jing
Huang. 2021. Document-level relation extraction
with adaptive thresholding and localized context
pooling. In Proceedings of the AAAI Conference on
Artificial Intelligence.


https://www.aclweb.org/anthology/2020.emnlp-main.686
https://www.aclweb.org/anthology/2020.emnlp-main.686
https://www.aclweb.org/anthology/2020.emnlp-main.686
https://www.aclweb.org/anthology/2020.emnlp-main.686
https://www.aclweb.org/anthology/2020.emnlp-main.686
http://arxiv.org/abs/2012.11384
http://arxiv.org/abs/2012.11384
http://arxiv.org/abs/2012.11384
https://doi.org/10.18653/v1/P19-1074
https://doi.org/10.18653/v1/P19-1074
https://doi.org/10.18653/v1/P19-1074
https://doi.org/10.18653/v1/2020.emnlp-main.582
https://doi.org/10.18653/v1/2020.emnlp-main.582
https://doi.org/10.18653/v1/2020.emnlp-main.582
https://doi.org/10.18653/v1/2020.emnlp-main.582
https://doi.org/10.18653/v1/2020.emnlp-main.582
https://doi.org/10.18653/v1/P17-1053
https://doi.org/10.18653/v1/P17-1053
https://doi.org/10.18653/v1/P17-1053
https://doi.org/10.18653/v1/P17-1053
https://doi.org/10.18653/v1/P17-1053
https://doi.org/10.18653/v1/2020.emnlp-main.127
https://doi.org/10.18653/v1/2020.emnlp-main.127
https://doi.org/10.18653/v1/2020.emnlp-main.127
https://doi.org/10.18653/v1/2020.coling-main.143
https://doi.org/10.18653/v1/2020.coling-main.143
https://doi.org/10.18653/v1/2020.coling-main.143

A Dataset Statistics

Our model is evaluated on three benchmark
datasets:

DocRED (Yao et al., 2019) is a large human-
annotated document-level RE dataset, which con-
sists of 3,053/1,000/1,000 documents for train-
ing/development/testing, respectively. DocRED is
constructed from Wikipedia, involving 96 relation
types, 132,275 entities, and 56,354 relations. In
the training set, around 97.03% entity pairs do not
hold any explicit relations. Around 54.2% of the
relations are intra-sentence. The others can only be
extracted by considering multiple sentences.

CDR (Li et al, 2016) is a relation
extraction dataset in the biomedical do-
main, with 500/500/500 documents in the
train/development/test set. The only two entity
types are chemicals and diseases and the only
explicit relation is the causal relation between
chemicals and disease concepts. In the test set,
around 75.7% of the relations are intra-sentence.

GDA (Wu et al., 2019) is also a biomedical
dataset, which consists of 29,192/200/800 docu-
ments for training/development/testing. It also con-
tains two entity types only: diseases and genes, and
one relation type only: the interactions between
disease concepts and genes. In the test set, around
84.7% of the relations are intra-sentence.

B Experimental Details

B.1 Implementation Details

Our model is implemented based on PyTorch and
Huggingface’s Transformers (Wolf et al., 2019).
We use cased-BERT},,s. (Devlin et al., 2019) and
RoBERTa,g as the base encoders and optimize
our model using AdamW with learning rate Se-5
for the encoder and le — 4 for other parameters.
We adopt a linear warmup for the first 6% steps.
The batch size (number of documents per batch) is
set to 4 and the ratio between relation extraction
and evidence extraction losses is set to 0.1. We
perform early stopping based on the F1 score on
the development set, with a maximum of 30 epochs.
Our BERT},,5c models are trained with one GTX
1080 Ti GPU and RoBERTaj,ze models with one
RTX A6000 GPU.

11



