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Abstract

Document-level relation extraction (DocRE)001
aims to extract the semantic relations among002
entity pairs in a document. In DocRE, we003
observe that (1) a subset of the sentences in004
a document, noted as the evidence sentences,005
are often sufficient for predicting the relation006
between a specific entity pair; (2) these evi-007
dence sentences can be extracted in an effec-008
tive and lightweight manner: by multi-task009
learning along with the RE model or by heuris-010
tic rules. In this paper, we propose a novel011
DocRE framework called EIDER that automat-012
ically extracts and makes use of evidence. EI-013
DER enhances a DocRE model by combining014
the inference results from the evidence sen-015
tences and the original document through a016
blending layer. The performance can be fur-017
ther improved by jointly training an RE model018
with an evidence extraction model via multi-019
task learning. If human-annotated evidence020
is not available, we can use the evidence ex-021
tracted by this joint model or by several heuris-022
tic rules. Extensive experiments show that EI-023
DER achieves state-of-the-art performance on024
the DocRED, CDR, and GDA datasets. Re-025
markably, EIDER outperforms the runner-up026
by 1.37/1.26 Ign F1/F1 on DocRED. In par-027
ticular, EIDER-RoBERTalarge significantly im-028
proves the performance on entity pairs re-029
quiring co-reference/multi-hop reasoning by030
1.98/2.08 F1, respectively.031

1 Introduction032

Relation extraction (RE) is the task of extracting se-033

mantic relations among entities within a given text,034

which has abundant applications such as knowl-035

edge graph construction, question answering, and036

biomedical text analysis (Yu et al., 2017; Shi et al.,037

2019; Trisedya et al., 2019). Prior studies mostly038

focus on predicting the relation between entities039

in a single sentence. However, in the reality, it is040

common that a relation can only be inferred given041

multiple sentences as the context. As a result, re-042

Head: Ontario       Tail: Canada      Relation: [Country, Located in]
Ground truth evidence: [1,4]                         Extracted evidence: [1,4]
 

Original document as input: [1] Paul Desmarais Jr. (born July 3, 
1954) is a Canadian businessman in his hometown of Montreal. [2] 
He is the eldest son of Paul Desmarais Sr. and Jacqueline (Maranger) 
Desmarais [3] Currently he is the Chairman and Co-chief Executive 
Officer of … [4] Desmarais was born in Sudbury, Ontario.
Pred result (logits): NA: 16.46  Country: 15.41   Located in: 14.64

Extracted evidence as input: [1] Paul Desmarais Jr. (born July 3, 
1954) is a Canadian businessman in his hometown of Montreal. [4] 
Desmarais was born in Sudbury, Ontario.
Pred result (logits): Country: 14.69   Located in: 13.63    NA: 10.93
 

Final prediction result of our model: Country, Located in

Figure 1: A test sample in the DocRED dataset (Yao
et al., 2019), where the ith sentence in the document is
marked with [i] at the start. Our model correctly pre-
dicts [1,4] as evidence, and if we only use the extracted
evidence as input, the model can predict the relation
“country” and “located in” correctly.

cent studies have been moving towards the more 043

realistic setting of document-level relation extrac- 044

tion (DocRE) (Quirk and Poon, 2017; Peng et al., 045

2017; Gupta et al., 2019). 046

In each document, the sentences are not equally 047

important for each entity pair and some sentences 048

could be irrelevant for the relation prediction. For 049

each entity pair, we refer to the minimal set of sen- 050

tences required to infer their relation as evidence 051

sentences (Yao et al., 2019). As shown in Fig- 052

ure 1, to predict the relation between “Ontario” 053

and “Canada”, it is sufficient to know Paul Des- 054

marais is a Canadian from the 1st sentence, and 055

Paul Desmarais was born in Ontario from the 4th 056

one. In other words, the 1st and 4th sentences serve 057

as evidence sentences of this entity pair. Although 058

the 2nd and 3rd sentences lie between these two 059

sentences, they are irrelevant to this specific rela- 060

tion. Including such irrelevant sentences in input 061

might sometimes introduce noise to the model and 062

be more detrimental than beneficial. 063

In light of the observations above, we propose 064

two approaches to make better use of evidence 065

sentences. The first is to combine evidence in in- 066
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ference. One naive way is to directly make pre-067

dictions on the evidence sentences, as in (Huang068

et al., 2021b). However, other sentences may also069

include relevant information, such as the informa-070

tion of the involved entities. Discarding all other071

sentences may result in loss of coherence and harm072

model performance in certain cases. Hence, we073

fuse the prediction results of the original document074

and evidence to highlighting the most important075

sentences while avoiding information loss. Notice076

that this method does not need additional training077

and can be applied to general DocRE models.078

In case evidence sentences are not provided in079

inference, they can be extracted by training an080

evidence extracted model using multi-task learn-081

ing. This also serves as our second approach to082

improve DocRE with evidence. Intuitively, both083

tasks should focus on the information relevant to084

the current entity pair, such as the underlined “Paul085

Desmarais” and “Desmarais” in the 4th sentence086

of Figure 1. This suggests that the two tasks have087

certain commonalities and can provide additional088

training signals for each other. To avoid the mas-089

sive training time and memory overhead due to090

training an additional task, our model adopts a sim-091

pler model structure and is trained on only part of092

the evidence annotation, which requires only 5%093

additional training time and 14% more memory.094

When human-annotated evidence sentences are not095

available even for training, we find that a simple096

set of heuristic rules can serve to construct silver097

labels with relatively high quality. Experiment re-098

sults show that even the model trained with silver099

labels can outperform the baseline significantly.100

In this paper, we propose an evidence-enhanced101

RE framework EIDER, which automatically ex-102

tracts evidence and effectively leverages the ex-103

tracted evidence to improve the performance of104

DocRE. We first train a relation extraction model105

and an evidence extraction model using multi-task106

learning. If the human-annotated evidence is not107

accessible even in training, we adopt several heuris-108

tic rules to construct silver labels instead. To re-109

duce memory usage and training time, we use the110

same sentence representation across relations and111

only train the evidence extraction model on posi-112

tive entity pairs with at least one relation. During113

inference, we construct a pseudo document by con-114

catenating all the evidence (or predicted evidence).115

Finally, we fuse the predictions based on the orig-116

inal document and the pseudo document using a117

blending layer (Wolpert, 1992). 118

Extensive experiments show that EIDER out- 119

performs the state-of-the-art methods on widely- 120

adopted DocRE benchmarks DocRED (Yao et al., 121

2019), CDR (Li et al., 2016) and GDA (Wu et al., 122

2019). Further examination shows that the improve- 123

ment of EIDER is especially large on inter-sentence 124

entity pairs, where multiple sentences are involved. 125

Contributions. (1) We propose an evidence- 126

empowered inference process of DocRE, which 127

improves the performance without re-training the 128

RE model. (2) We jointly learn relation and evi- 129

dence extraction using multi-task learning, where 130

the two tasks mutually enhance each other. (3) In 131

the absence of human-annotated evidence labels, 132

we design a set of rules to construct evidence la- 133

bels and show that these silver labels can already 134

improve DocRE performance. (4) We demonstrate 135

that EIDER outperforms state-of-the-art methods on 136

three DocRE datasets: DocRED, CDR, and GDA. 137

2 Problem Formulation 138

Given a document d comprised of N sentences 139

{st}Nt=1, L tokens {hl}Ll=1 and a set of entities {ei} 140

appearing in d, the task of document-level relation 141

extraction (DocRE) is to predict the set of all possi- 142

ble relations between all entity pairs (eh, et) from 143

a pre-defined relation set R
⋃
{NA}. We refer to 144

eh and et as the head entity and tail entity, respec- 145

tively. An entity ei may appear multiple times in 146

document d, where we denote its corresponding 147

mentions as {mi
j}. A relation r belongs to the 148

positive class PT
h,t if it exists between (eh, et) and 149

otherwise the negative class N T
h,t. For each entity 150

pair (eh, et) that possesses a non-NA relation, we 151

define its evidence sentences1 Vh,t = {svi}Ki=1 as 152

the subset of sentences in the document that are suf- 153

ficient for human annotators to infer the relation. 154

3 Methodology 155

In this section, we will first introduce our base rela- 156

tion extraction model (Sec. 3.1) and then propose 157

two methods to improve DocRE by using evidence: 158

evidence-empowered inference (Sec. 3.2) and ev- 159

idence extraction as an auxiliary task (Sec. 3.3). 160

We also provide several heuristic rules (Sec. 3.4) 161

to construct evidence labels in case the evidence 162

annotation is not available. An illustration of our 163

framework is shown in Figure 2. 164

1We use “evidence sentence” and “evidence” interchange-
ably throughout the paper.
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3.1 Base Relation Extraction Model165

Base Encoder. Given a document d = [hl]
L
l=1,166

we insert a special token “*” before and after each167

entity mention and encode the document with a168

pre-trained encoder (Devlin et al., 2019) to obtain169

the s-dim embedding of each token, aggregated as170

a matrix H ∈ RL×s:171

H = [h1, ...,hL] = Encoder([h1, ..., hL]). (1)172

For each mention of an entity ei, we use the embed-173

ding of the start symbol “*” as its mention embed-174

ding. Then, we obtain the embedding of entity ei175

by adopting LogSumExp pooling (Jia et al., 2019;176

Zhou et al., 2021) over the embeddings of all its177

mentions: ei = log
∑

j exp(m
i
j).178

Following Zhou et al. (2021), we capture the179

context for each entity pair (eh, et) by computing180

a context embedding ch,t ∈ Rs based on the atten-181

tion scores from the pre-trained encoder:182

ch,t = HT ah,t

ah,t = Normalize(
K∑
k=1

Ak
h ◦ Ak

t ).
(2)183

where K is the number of attention heads, and184

Ak
h ∈ RL is the attention from eh to each token185

under attention head k, computed by averaging the186

attention from each of its mentions mh
j to each to-187

ken. Similarly for Ak
t . The intuition is that tokens188

with high attention towards both eh and et are im-189

portant to both entities. Hence, these tokens are190

essential to the relation and should contribute more191

to the context embedding.192

Relation Prediction Head. We first map the em-193

beddings of (eh, et) to context-aware representa-194

tions (zh, zt) by combining their entity embed-195

dings with the context embedding ch,t, and then196

obtain the probability of relation r ∈ R between197

(eh, et) via a bilinear function:198

zh = tanh (Wheh +Wchch,t) ,
zt = tanh (Wtet +Wctch,t) ,
yr = (zhWrzt + br) ,

P (r|eh, et) = σyr

(3)199

where Wh,Wt,Wch ,Wct ,Wr, br are learnable200

parameters. As the model may have different confi-201

dence for different entity pairs or classes, we apply202

the adaptive-thresholding loss (Zhou et al., 2021),203

which learns a dummy relation class TH that serves 204

as the dynamic threshold for each entity pair: 205

yTH = (zhWTHzt + br) (4) 206

During inference, for each tuple (eh, et, r), r ∈ R, 207

we obtain the prediction score: S(O)
h,t,r = yr − yTH . 208

Finally, we define our training objective for relation 209

extraction as follows: 210

LRE = −
∑
h 6=t

∑
r∈PT

h,t

log

(
exp (yr)∑

r′∈PT
h,t

∪{TH} exp (yr′)

)

− log

(
exp (yTH)∑

r′∈NT
h,t

∪{TH} exp (yr′)

)
(5) 211

3.2 Evidence-empowered Inference 212

Suppose we are given the ground truth evidence 213

and it already contains all the information relevant 214

to the relation, then there is no need to use the 215

whole document for relation extraction. Instead, 216

we can construct a pseudo document d′h,t for each 217

entity pair by concatenating the evidence sentences 218

Vh,t in the order they are presented in the original 219

document and feed the pseudo document to the 220

trained model to obtain another set of prediction 221

scores S(E)
h,t,r. It may simplify the input, making it 222

easier for the model to make the correct predictions. 223

However, the non-evidence sentences in the orig- 224

inal document may also provide background in- 225

formation of the entities and possibly contributes 226

to the prediction. Hence, solely relying on evi- 227

dence sentences may result in information loss and 228

lead to sub-optimal performance. As a result, we 229

combine the prediction results on both the original 230

documents and the extracted evidence. 231

After obtaining two sets of relation prediction 232

results from the original documents and the pseudo 233

documents, we fuse the results by aggregating the 234

prediction scores from original documents and 235

pseudo documents, denoting as S(O) and S(E), 236

through a blending layer (Wolpert, 1992): 237

PFuse (r|eh, et) = σ(S
(O)
h,t,r + S

(E)
h,t,r − τ), (6) 238

where τ is a learnable parameter. We optimize the 239

parameter τ on the development set as follows: 240

LFuse = −
∑
d∈D

∑
h6=t

∑
r∈R

yr · PFuse (r|eh, et)+

(1− yr) · log(1− PFuse (r|eh, et)),
(7) 241

where yr = 1 if the relation r holds between 242

(eh, et) and yr = 0 otherwise. 243
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Training: Joint Relation and Evidence Extraction Inference: Evidence-centered RE & Fusion of Results

Original Document: [1] Paul Desmarais is a Canadian businessman in his 
hometown of Montreal. [2] He is the eldest son of Paul Desmarais Sr. and 
Jacqueline … [4] Desmarais was born in Ontario. [5] He was educated at …

…
…

…
Context Emb

…
…

…
…

Sent Embs
[1]
[2]

[4]

Pre-trained Encoder

Attention to head & tail

Weights

…

Paul Desmarais is a Canadian businessman … Desmarais was born in Ontario …

Canada Ontario

…

Evidence Classifier

Extracted Evidence: [1, 4]

Relation Classifier
Head Emb

Tail Emb

Predicted Relation from Orig Doc: NA ( 

❌

 )

Pseudo Document: [1] Paul Desmarais is a 
Canadian businessman in his hometown of 
Montreal. [4] Desmarais was born in Ontario. 

Pre-trained Encoder + Evidence Classifier

Pre-trained Encoder + Relation Classifier

Pred Scores from Orig doc
Country: -1.05

Located in: -1.82
Citizenship: -11.53

… 

Pred Scores from Pseudo doc
Country: 3.76

Located in: 2.70
Citizenship: -5.54

…

Blending Layer

             Final Predicted Relation: Country & Located in ( ✓  )

(Learnt thresh: -0.28)

Figure 2: The overall architecture of EIDER. The left part illustrates the first stage (training) and the right shows the
second and third stages (inference) of EIDER. We highlight head entities, tail entities and extracted evidences.

3.3 Evidence Extraction as Auxiliary Task244

In reality, the annotation of evidence may be avail-245

able only in training but not in inference. To au-246

tomatically extract evidence, we jointly train the247

relation extraction model and evidence extraction248

model using multi-task learning. Intuitively, tokens249

relevant to the relation are essential in both models.250

By sharing the base encoder, the two models can251

provide additional training signals for each other252

and hence mutually enhance each other (Ruder,253

2017; Liu et al., 2019).254

The evidence extraction model predicts whether255

each sentence si is an evidence sentence of en-256

tity pair (eh, et). Similar to entity embeddings, to257

obtain sentence embedding si, we apply a Log-258

SumExp pooling over all the tokens in si: si =259

log
∑

hl∈si exp (hl). Intuitively, if si is an evi-260

dence sentence of (eh, et), the tokens in si would261

be relevant to the relation prediction, and would262

contributing more to ch,t. Hence, we use a bilinear263

function between context embedding ch,t and sen-264

tence embedding si to measure the importance of265

sentence si to entity pair (eh, et):266

P (si|eh, et) = σ (siWvch,t + bv) , (8)267

where Wv and bv are learnable parameters.268

As an entity pair may have more than one evi-269

dence sentence, we use the binary cross entropy as270

the objective to train the evidence extraction model.271

272

LEvi = −
∑

h6=t,NA/∈PT
h,t

∑
si∈D

yi · P (si|eh, et)+

(1− yi) · log(1− P (si|eh, et)),
(9)273

where yi is 1 when si ∈ Vh,t and yi = 0 otherwise. 274

When training for evidence prediction, we only 275

use the entity pairs with at least one relation r ∈ R, 276

which accounts for a small subset (2.97% in Do- 277

cRED) of the total possible entity pairs. Note that 278

only such pairs have human-annotated evidence 279

sentences. While previous work (Huang et al., 280

2021a) treated the remaining entity pairs as nega- 281

tive examples for every sentence and predict on the 282

(eh, et, r, si) tuple level, we find this unnecessary 283

and inefficient in terms of memory and time. We 284

observe that most of the entity pairs only have one 285

set of evidence across relations, and hence only 286

predict for each (eh, et, si) tuple. Then for this 287

“relation-agnostic” evidence, a negative entity pair 288

that does not have a relation r ∈ R does not neces- 289

sarily imply that the entity pair does not have any 290

relation. Taking such pairs as negative examples 291

also makes the training set highly unbalanced. 292

Finally, we optimize our model by the combi- 293

nation of the relation extraction loss LRE and evi- 294

dence extraction loss LEvi: 295

L = LRE + LEvi. (10) 296

If we do not have access to evidence during infer- 297

ence, we can use the extracted evidence V ′h,t instead 298

of the ground truth evidence Vh,t in the evidence- 299

empowered inference introduced in Sec. 3.2. 300

3.4 Heuristic Evidence Label Construction 301

Both of our methods aim at facilitating relation ex- 302

traction with evidence. However, human-annotated 303

evidence is not always available. 2 In this case, 304

2If human-annotated evidence sentences are available, then
we do not need to go through this step.
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we design several heuristic rules to automatically305

construct silver labels for evidence extraction:306

Intra. If the head and tail entities co-occur in the307

same sentence (e.g., “Desmarais” and “Ontario” co-308

occur in the 4th sentence in Figure 2), we use all309

the sentences they co-occur as evidence.310

Coref. If the entity mention pairs of the head and311

tail entity do not co-occur explicitly, but their coref-312

erential mentions co-occur (e.g., “Paul Desmarais”313

and “Canadian”, the co-reference of “Canada” co-314

occur in the 1st sentence in Figure 2), we use all315

the sentences where their coreferential mentions316

co-occur. In practice, we may directly apply exist-317

ing coreference resolution models such as HOI (Xu318

and Choi, 2020) without re-training.319

Bridge. If the first two conditions are not satisfied,320

but there exists a third bridge entity whose coref-321

erential mention co-occurs with both head and tail322

(e.g., “Paul Desmarais” co-occurs with both “Cana-323

dian” and “Ontario” in Figure 2), we take all the324

sentences where the bridge co-occurs with head325

or tail as the evidence. If there is more than one326

bridge entity, we choose the one with the highest327

frequency. This rule can be easily extend to multi-328

ple bridges. Empirically, we observe that capturing329

one bridge already leads to satisfying results.330

4 Experiments331

4.1 Experiment Setup332

Dataset. We evaluate the effectiveness of EIDER333

on three datasets: DocRED (Yao et al., 2019),334

CDR (Li et al., 2016) and GDA (Wu et al., 2019).335

The details of the datasets are listed in Appendix A.336

DocRED is the only dataset that provides evidence337

sentences as part of the annotation, and the evi-338

dence annotation is not visible in inference.339

Evaluation Metrics. Following prior studies (Yao340

et al., 2019; Zhou et al., 2021; Huang et al., 2021a),341

we use F1 and Ign F1 as the main evaluation met-342

rics for relation extraction and use Evi F1 and343

PosEvi F1 as the metric for evidence extraction.344

Ign F1 measures the F1 score excluding the rela-345

tions shared by the training and development/test346

set. PosEvi F1 measures the F1 score of evidence347

only on entity pairs with explicit relations (posi-348

tive pairs). We also report Intra F1 and Inter F1,349

where the former measures the performance on the350

co-occurred (intra-sentence) entity pairs and the351

latter evaluates the inter-sentence relations where352

none of the entity mention pairs co-occurs.353

4.2 Main Results 354

We compare our methods with both Graph-based 355

methods and transformer-based methods. Graph- 356

based methods explicitly perform inference on 357

document-level graphs. Transformer-based meth- 358

ods, including EIDER, model cross-sentence re- 359

lations by implicitly capturing the long-distance 360

token dependencies via the transformer. We also 361

compare to two ablations of our method: EIDER 362

(Rule), where we use rule-based evidence labels 363

instead of golden labels, and ATLOP + Fuse, where 364

we directly apply our evidence-enhance inference 365

on the checkpoint of ATLOP without re-training. 366

The evidence is also extracted by rules. 367

Relation Extraction Results. Table 1 presents the 368

relation extraction results, where we observe that 369

EIDER outperforms the baseline methods in all 370

datasets. For instance, EIDER-BERTbase signifi- 371

cantly improves ATLOP (Zhou et al., 2021) by 372

1.47/1.40 F1/Ign F1, which uses the same base re- 373

lation extraction model as our method. 374

The experiment results also show that our im- 375

provement on Inter F1 is much larger than that 376

on Intra F1. For instance, EIDER outperforms AT- 377

LOP by 1.21/2.01 Intra/Inter F1 under BERTbase 378

(0.75/1.52 under RoBERTalarge). We hypothesize 379

that the bottleneck of inter-sentence pairs is to 380

locate the relevant context, which often spreads 381

through the whole document. EIDER learns to cap- 382

ture important sentences during training and uses 383

these important sentences during inference. 384

Among the baselines, we observe that the Inter 385

F1 of GAIN (Zeng et al., 2020) is 0.70 higher while 386

the Intra F1 of ATLOP is 0.16 higher. Such results 387

indicate that graph-based methods may capture the 388

long-distance dependency between entities by di- 389

rectly connecting them on the graph. Although EI- 390

DER does not involve an explicit multi-hop reason- 391

ing module, it still notably outperforms the graph- 392

based models in terms of Inter F1, demonstrat- 393

ing that the evidence-empowered inference also 394

relieves long-distance dependency challenge by di- 395

rectly concatenating important sentences. 396

Finally, in both DocRED and the two biomedi- 397

cal datasets which do not have evidence annotation, 398

EIDER (Rule) also outperforms all baselines. This 399

shows that EIDER still performs well without evi- 400

dence annotation. The improvement of ATLOP + 401

Fuse further shows that our inference approach can 402

be applied to general DocRE models without re- 403

training. The improvement on DocRED and CDR 404
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Model Dev Test

Ign F1 F1 Intra F1 Inter F1 Ign F1 F1

LSR-BERTbase (Nan et al., 2020) 52.43 59.00 65.26 52.05 56.97 59.05
GLRE-BERTbase (Wang et al., 2020) - - - - 55.40 57.40
Reconstruct-BERTbase (Xu et al., 2020) 58.13 60.18 - - 57.12 59.45
GAIN-BERTbase (Zeng et al., 2020) 59.14 61.22 67.10 53.90 59.00 61.24

BERTbase (Wang et al., 2019) - 54.16 61.61 47.15 - 53.20
BERT-Two-Step (Wang et al., 2019) - 54.42 61.80 47.28 - 53.92
HIN-BERTbase (Tang et al., 2020) 54.29 56.31 - - 53.70 55.60
E2GRE-BERTbase (Huang et al., 2021a) 55.22 58.72 - - - -
CorefBERTbase (Ye et al., 2020) 55.32 57.51 - - 54.54 56.96
ATLOP-BERTbase (Zhou et al., 2021) 59.11 ± 0.14† 61.01 ± 0.10† 67.26 ± 0.15† 53.20 ± 0.19† 59.31 61.30

ATLOP-BERTbase + Fuse 60.01 ± 0.14 62.09 ± 0.09 68.21 ± 0.10 54.34 ± 0.15 - -
EIDER (Rule)-BERTbase 60.36 ± 0.13 62.34 ± 0.08 68.40 ± 0.14 54.79 ± 0.13 - -
EIDER-BERTbase 60.51 ± 0.11 62.48 ± 0.13 68.47 ± 0.08 55.21 ± 0.21 60.42 62.47

BERTlarge (Ye et al., 2020) 56.67 58.83 - - 56.47 58.69
CorefBERTlarge (Ye et al., 2020) 56.82 59.01 - - 56.40 58.83
RoBERTalarge (Ye et al., 2020) 57.14 59.22 - - 57.51 59.62
CorefRoBERTalarge (Ye et al., 2020) 57.35 59.43 - - 57.90 60.25
GAIN-BERTlarge (Zeng et al., 2020) 60.87 63.09 - - 60.31 62.76
ATLOP-RoBERTalarge (Zhou et al., 2021) 61.30 ± 0.22† 63.15 ± 0.21† 69.61 ± 0.25† 55.01 ± 0.18† 61.39 63.40

ATLOP-RoBERTalarge + Fuse 61.48 ± 0.13 63.64 ± 0.14 69.61 ± 0.19 56.17 ± 0.22 - -
EIDER (Rule)-RoBERTalarge 61.73 ± 0.07 63.91 ± 0.07 69.99 ± 0.09 56.27 ± 0.11 - -
EIDER-RoBERTalarge 62.34 ± 0.14 64.27 ± 0.10 70.36 ± 0.07 56.53 ± 0.15 62.85 64.79

Table 1: Relation extraction results on DocRED. We report the mean and standard deviation on the development
set by conducting 5 runs with different random seeds. We report the official test score of the best checkpoint on
the development set. Results with † are based on our implementation. Others are reported in their original papers.
We separate graph-based and transformer-based methods into two groups.

Model CDR GDA

LSR-BERTbase (Nan et al., 2020) 64.8 82.2
SciBERTbase (Zhou et al., 2021) 65.1 ± 0.6 82.5 ± 0.3
DHG-BERTbase (Zhang et al., 2020b) 65.9 83.1
GLRE-SciBERTbase (Wang et al., 2020) 68.5 -
ATLOP-SciBERTbase (Zhou et al., 2021) 69.4 ± 1.1 83.9 ± 0.2

EIDER (Rule)-SciBERTbase 70.63 ± 0.49 84.54 ± 0.22

Table 2: Relation extraction results on CDR and GDA.

Model Dev PosEvi F1 Dev Evi F1 Test Evi F1

EIDER-rules 77.43 - -

E2GRE-BERTbase - 47.14 48.35
EIDER-BERTbase 80.33 50.71 51.27

E2GRE-RoBERTalarge - 51.11 50.50
EIDER-RoBERTalarge 81.51 52.54 53.01

Table 3: Evidence extraction results. We compare EI-
DER with E2GRE (Huang et al., 2021a).

is much larger than that on GDA. We hypothesize405

that it is because more than 85% relations in GDA406

are intra-sentence relations, so the model might407

already learn to focus on the important sentences408

without the help of evidence.409

Evidence Extraction Results. To our knowledge,410

E2GRE is the only method that has reported their411

evidence extraction result. The results of evidence412

prediction in Table 3 indicate that EIDER outper-413

forms E2GRE significantly (e.g., by 3.57 Dev Evi 414

F1 under BERTbase). One possible reason is that 415

the incorporation of context vector models the de- 416

pendency between tokens, leading to better perfor- 417

mance in evidence extraction. The results show 418

that it may be sufficient to make predictions on 419

positive pairs only and over each (entity, entity, 420

sentence) tuple (instead of (sentence, relation, en- 421

tity, entity) as in E2GRE). We also observe that our 422

three heuristic rules already capture most of the ev- 423

idence for the positive pairs (77.43 F1). This again 424

demonstrates that our model can perform well even 425

without relying on evidence annotations. 426

4.3 Performance Analysis 427

Ablation Study. We conduct ablation studies to 428

further analyze the utility of each module in EIDER. 429

The results are shown in Table 4. 430

We first train the RE model and the evidence 431

extraction model separately, denoted as NoJoint. 432

We observe that the drop in Inter F1 is more signifi- 433

cant (i.e., 0.50/1.04 Intra F1/Inter F1), which shows 434

that the evidence and relation extraction model mu- 435

tually enhance each other’s ability to identify the 436

related context of each entity pair. 437

Then, we remove the extracted evidence and 438
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Ablation Ign F1 F1 Intra F1 Inter F1

EIDER-RoBERTalarge 62.34 64.27 70.36 56.53
NoJoint 61.56 63.40 69.86 55.49
NoEvi 61.94 63.81 70.10 55.94
NoOrigDoc 60.26 62.68 68.36 55.49
NoBlending 61.09 63.47 69.25 56.27
FinetuneOnEvi 61.84 63.92 69.86 56.40

Table 4: Ablation studies of EIDER.

Intra Coref Bridge Total

Count 6711 984 3212 10,907
Percent 54.46% 7.99% 26.07% 88.52%

Table 5: The statistics of the 12,323 relations in the
DocRED development set.

the original document separately, denoted as No-439

Evi and NoOrigDoc, respectively. We observe440

that removing either source will lead to perfor-441

mance drops. Also, the drop of Inter F1 is much442

larger than Intra F1 for NoEvi, indicating that443

the extracted evidence is more effective for cross-444

sentence entity pairs where the important sentences445

may not be consecutive.446

As for NoBlending, we remove the blending447

layer and simply take the union of the two sets of448

results. The sharp drop of performance indicates449

the blending layer can successfully learn a dynamic450

threshold to combine the prediction results.451

Finally, we further finetune the RE model on452

ground truth evidence before feeding it the ex-453

tracted evidence (denoted as FinetuneOnEvi). We454

observe that the performance is not improved, prob-455

ably because the encoded entity representation in456

evidence and original documents are already simi-457

lar to each other. In fact, when performing relation458

extraction on the training set using the ground truth459

evidence alone, the F1 is already over 95%.460

Performance Breakdown. To further analyze the461

performance of EIDER on different types of entity462

pairs, we categorize the relations into three cate-463

gories based on our three heuristic rules in Sec. 3.4:464

Intra, Coref and Bridge. The number and percent-465

age of relations covered by each rule are listed in466

Table 5. We can see that the three categories cover467

over 88% of the relations in the development set.468

The results on each category are shown in Figure 3.469

We can see that our full model has the best per-470

formance in all three categories and our ablations471

also outperform ATLOP. The differences between472

models vary by category. For all our methods, the473

improvements over ATLOP is Bridge > Coref �474

Intra. This reveals that both modules mainly im-475

prove the model’s reasoning ability from multiple 476

sentences, either by coreference reasoning or by 477

multi-hop reasoning over a third entity. 478

Intra Coref Bridge
0.0

0.5

1.0

1.5

2.0

2.5

F
1

+0.75

+0.49

+0.25

69.61

+1.98

+1.01

+0.57

61.61

+2.08

+1.30

+0.85

53.07

Eider­Full
Eider­NoEvi
Eider­NoJoint
ATLOP

Figure 3: Performance gains in F1 by relation cate-
gories. The gains are relative to the second best base-
line (ATLOP).

Model Memory Training time

ATLOP-BERTbase 9,139 MB 5.19 it/s
E2GRE-BERTbase 36,182 MB 0.53 it/s
EIDER-BERTbase 10,933 MB 4.92 it/s

Table 6: Training time and memory usage.

Efficiency Comparison. We benchmark the time 479

and memory usage of EIDER on an RTX A6000 480

GPU. Table 6 show that our joint model incurs only 481

~5% training time and ~14% GPU memory over- 482

head. Experiments also show that EIDER can be 483

trained on a single consumer GPU (e.g., an 11GB 484

GTX 1080 Ti) but E2GRE is not able to. 485

4.4 Case Studies 486

Table 7 shows a few examples of EIDER. In the 487

first example, the head entity is mentioned in the 488

first sentence and the tail entity appears in the sec- 489

ond sentence. We can see that the model correctly 490

extracts these evidence sentences. Since the evi- 491

dence sentences are consecutive, both the predic- 492

tions on the original document and the evidence 493

sentences are correct. In the second example, the 494

2nd sentence is a distracting sentence as it does not 495

contain any useful information involving the target 496

entity pair. The prediction using only the original 497

document is incorrect, possibly because the “King 498

Louie” in the 1st and 3rd sentences are so far away 499

from each other that the model fails to link them. 500

Hence, it also fails to distinguish “King Louie” as 501

a bridge entity in this case. However, these two 502

sentences are consecutive in the extracted evidence, 503

making it easier for the model to find the bridge. 504

In the last example, the 6th sentence is missing in 505

the extracted evidence, so the extracted evidence 506

does not contain enough information for prediction. 507

However, the prediction on the original document 508

is correct, leading to the correct final result. 509
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Ground Truth Relation: Located in Ground Truth Evidence Sentence(s): [1, 2] Extracted Evidence Sentence(s): [1, 2]
Document: [1] The Portland Golf Club is a private golf club in the northwest United States , in suburban Portland, Oregon. [2] It is located
in the unincorporated Raleigh Hills area of eastern Washington County, southwest of downtown Portland and east of Beaverton. [3] The club
was established in the winter of 1914, when a group of nine businessmen assembled to form a new club after leaving their respective clubs ...
Final Prediction: Located in Prediction on Orig. Doc: Located in Prediction on Extracted Evidences: Located in

Ground Truth Relation: Characters Ground Truth Evidence Sentence(s): [1, 3] Extracted Evidence Sentence(s): [1, 3]
Document: [1] King Louie is a fictional character introduced in Walt Disney’s 1967 animated musical film, The Jungle Book. [2] Unlike the
majority of the adapted characters in the film, Louie was not featured in Rudyard Kipling’s original works. [3] King Louie was portrayed as an
orangutan who was the leader of the other jungle primates, and who attempted to gain knowledge of fire from Mowgli, ...
Final Prediction: Characters Prediction on Orig. Doc: NA Prediction on Extracted Evidences: Characters

Ground Truth Relation: Inception Ground Truth Evidence Sentence(s): [5, 6] Extracted Evidence Sentence(s): [5]
Document: [1] Oleg Tinkov (born 25 December 1967 ) is a Russian entrepreneur and cycling sponsor. ... [5] Tinkoff is the founder and
chairman of the Tinkoff Bank board of directors (until 2015 it was called Tinkoff Credit Systems). [6] The bank was founded in 2007 and as of
December 1, 2016, it is ranked 45 in terms of assets and 33 for equity among Russian banks. ...
Final Prediction: Inception Prediction on Orig. Doc: Inception Prediction on Extracted Evidences: NA

Table 7: Case studies of our proposed framework EIDER. We use red, blue and green to color the head entity, tail
entity and relation, respectively. The indices of extracted evidence sentences are highlighted with yellow.

5 Related Work510

Relation Extraction. Previous research efforts on511

relation extraction mainly concentrate on predict-512

ing relations within a sentence (Cai et al., 2016;513

Zeng et al., 2015; Feng et al., 2018; Zheng et al.,514

2021; Zhang et al., 2018, 2019, 2020a). While515

these approaches tackle the sentence-level RE task516

effectively, in the real world, certain relations can517

only be inferred from multiple sentences. Con-518

sequently, recent studies (Quirk and Poon, 2017;519

Peng et al., 2017; Yao et al., 2019; Wang et al.,520

2019; Tang et al., 2020) have proposed to work on521

the document-level relation extraction (DocRE).522

Graph-based DocRE. Graph-based DocRE meth-523

ods generally construct a graph with mentions, en-524

tities, sentences, or documents as the nodes, and in-525

fer the relations by reasoning on this graph. Specifi-526

cally, Nan et al. (2020) constructs a document-level527

graph and iteratively updates the node representa-528

tions, and refines the graph topological structure.529

Zeng et al. (2020) performs multi-hop reasoning530

on both a mention-level graph and an entity-level531

graph. Xu et al. (2020) extracts a reasoning path532

between each entity pair holding at least one rela-533

tion and encourages the model to reconstruct the534

path during training. These methods simplify the535

input document by extracting a graph with entities536

and performing explicit graph reasoning. However,537

the complicated operations on the graphs lower the538

efficiency of the methods.539

Transformer-based DocRE. Another line of stud-540

ies solely relies on the transformer architecture541

(Devlin et al., 2019) to model cross-sentence re-542

lations since transformers can implicitly capture543

long-distance dependencies. Zhou et al. (2021)544

uses attention in the transformers to extract use- 545

ful context and adopts an adaptive threshold for 546

each entity pair. Huang et al. (2021b) makes pre- 547

dictions on the evidence sentences extracted by 548

several hand-crafted rules, which may suffer from 549

information loss. Instead, EIDER combines the pre- 550

dictions on both the evidence and the original doc- 551

ument. Similar to our method, Huang et al. (2021a) 552

jointly extracts relation and evidence. However, 553

our method does not rely on human-annotated ev- 554

idence and uses a much simpler model structure 555

and hence reduces time and memory usage. We are 556

also the first work to fuse the predictions based on 557

extracted evidence sentences in inference. 558

6 Conclusion 559

In this work, we propose EIDER, an evidence- 560

enhanced RE framework, which improves DocRE 561

by joint relation and evidence extraction and fu- 562

sion of extraction results in inference. We also 563

provide an evidence label construction method so 564

that our model does not rely heavily on the human 565

annotation of evidence. In training, the relation 566

extraction and evidence extraction model provide 567

additional training signals for each other and mutu- 568

ally enhance each other. The joint model adopts a 569

simple model structure and is efficient in time and 570

memory. During inference, the prediction results 571

on both the original document and the extracted ev- 572

idence are combined, which encourages the model 573

to focus on the important sentences while reducing 574

information loss. Experiment results demonstrate 575

that EIDER significantly outperforms existing meth- 576

ods on three public datasets (DocRED, CDR, and 577

GDA), especially on inter-sentence relations. 578
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A Dataset Statistics761

Our model is evaluated on three benchmark762

datasets:763

DocRED (Yao et al., 2019) is a large human-764

annotated document-level RE dataset, which con-765

sists of 3,053/1,000/1,000 documents for train-766

ing/development/testing, respectively. DocRED is767

constructed from Wikipedia, involving 96 relation768

types, 132,275 entities, and 56,354 relations. In769

the training set, around 97.03% entity pairs do not770

hold any explicit relations. Around 54.2% of the771

relations are intra-sentence. The others can only be772

extracted by considering multiple sentences.773

CDR (Li et al., 2016) is a relation774

extraction dataset in the biomedical do-775

main, with 500/500/500 documents in the776

train/development/test set. The only two entity777

types are chemicals and diseases and the only778

explicit relation is the causal relation between779

chemicals and disease concepts. In the test set,780

around 75.7% of the relations are intra-sentence.781

GDA (Wu et al., 2019) is also a biomedical782

dataset, which consists of 29,192/200/800 docu-783

ments for training/development/testing. It also con-784

tains two entity types only: diseases and genes, and785

one relation type only: the interactions between786

disease concepts and genes. In the test set, around787

84.7% of the relations are intra-sentence.788

B Experimental Details789

B.1 Implementation Details790

Our model is implemented based on PyTorch and791

Huggingface’s Transformers (Wolf et al., 2019).792

We use cased-BERTbase (Devlin et al., 2019) and793

RoBERTalarge as the base encoders and optimize794

our model using AdamW with learning rate 5e-5795

for the encoder and 1e − 4 for other parameters.796

We adopt a linear warmup for the first 6% steps.797

The batch size (number of documents per batch) is798

set to 4 and the ratio between relation extraction799

and evidence extraction losses is set to 0.1. We800

perform early stopping based on the F1 score on801

the development set, with a maximum of 30 epochs.802

Our BERTbase models are trained with one GTX803

1080 Ti GPU and RoBERTalarge models with one804

RTX A6000 GPU.805
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