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ABSTRACT

Large Language Models (LLMs) are widely applied in real world scenarios,
but fine-tuning them comes with significant computational and storage costs.
Parameter-Efficient Fine-Tuning (PEFT) methods such as LoRA mitigate these
costs, but the adapted parameters are dependent on the base model and cannot be
transferred across different backbones. One way to address this issue is through
knowledge distillation, but its effectiveness inherently depends on training data.
Recent work such as TransLoRA avoids this by generating synthetic data, but this
adds complexity because it requires training an additional discriminator model. In
this paper, we propose TITOK, a new framework that enables effective LoRA
Transplantation through Token-level knowledge transfer. Specifically, TITOK
captures task-relevant information through a token-wise contrastive excess be-
tween a source model with and without LoRA. This excess highlights informa-
tive tokens and enables selective filtering of synthetic data, all without additional
models or overhead. Through experiments on three benchmarks across multi-
ple transfer settings, our experiments show that TITOK is consistently effective,
achieving average performance gains of + 4–8% compared to baselines overall.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Vaswani et al., 2023), have made significant
progress in many real-world applications, including chatbots (OpenAI et al., 2024), search engines
(Xiong et al., 2024), and coding assistants (Rozière et al., 2024). While fine-tuning LLMs has been
demonstrated to be a promising way to improve performance on downstream tasks, it incurs substan-
tial computational and storage costs. Parameter-Efficient Fine-Tuning (PEFT) (Houlsby et al., 2019)
methods such as LoRA (Hu et al., 2021) alleviate this burden by updating only a small subset of pa-
rameters while keeping the base model frozen. However, PEFT’s adapted parameters are dependent
to the base model and cannot be transferred across different models. This limitation is increasingly
critical given the rapid release of new LLMs and the growing diversity of available models.

One considerable approach to mitigate this limitation is through Knowledge distillation (KD) (Hin-
ton et al., 2015; Azimi et al., 2024), which transfers the knowledge embedded in a source model’s
PEFT adapters to a target model with new PEFT adapters by aligning the target’s output distributions
with those of the source. However, KD is inherently data-dependent, typically requiring access to
training data from target downstream tasks (Nayak et al., 2019; Liu et al., 2024), which is often un-
available or costly to obtain. To address this limitation, TransLoRA (Wang et al., 2024) has recently
proposed using synthetic data by leveraging the data synthesis capabilities of recent LLMs (Wang
et al., 2023; Kim et al., 2025). This approach enables the target model to acquire domain knowl-
edge without direct access to the original dataset. Nevertheless, TransLoRA requires training an
additional discriminator model to filter low-quality synthetic data, which inevitably introduces extra
complexity and computational overhead. Furthermore, it primarily emphasizes the role of synthetic
data, paying less attention to how the knowledge transfer process itself should be designed.

Contribution. In this paper, we propose a new framework that enables effective LoRA
Transplantation through Token-level knowledge transfer (TITOK). Our high-level idea is to selec-
tively convey task-relevant information from the source model’s LoRA by using token-level signals
to guide the transfer process, rather than relying on the entire token sequence. We specifically cap-
ture this information through a concept we introduce as token-wise contrastive excess, obtained by
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Figure 1: Overview of TITOK: Transplantation through Token-level knowledge transfer. Starting
from a small set of seed prompts, the source expert model (source base model + LoRA) generates
synthetic data. A token-wise contrastive excess filtering mechanism then compares the expert
against its base backbone to compute token-level excess scores. Using these scores, TITOK first per-
forms sample filtering and subsequently token selection, retaining only the most informative samples
and tokens. When tokenizers differ, masks are aligned prior to training. The resulting filtered data
is finally used to train a new LoRA on the target backbone, enabling efficient knowledge transfer.

comparing predictions from a source model with LoRA and the same model without LoRA. Intu-
itively, this token-wise contrastive excess highlights tokens that contain important task knowledge.
This excess signal is further utilized to filter the generated synthetic data for training, thereby en-
abling selective learning on samples that contain richer information. Unlike TransLoRA, which re-
quires training an additional discriminator model for filtering, TITOK requires neither extra models
nor additional training overhead. Moreover, we design an effective mechanism to resolve tokenizer
mismatches between source and target models, which enhances robustness and applicability TITOK.

We demonstrate the effectiveness of TITOK by conducting extensive experiments on three widely
used benchmarks, which cover both reasoning (Big Bench Hard (Suzgun et al., 2022) and MMLU
(Hendrycks et al., 2021)) and personalization tasks (LaMP (Salemi et al., 2024)). In particular,
TITOK improves the performance by +7.96% over the vanilla target model, +6.0% over KD, and
+4.4% over TransLoRA, when averaged across all tasks and transfer settings. We also explored
a variety of transfer settings, including transfers within the same model, across different model
families and sizes, and even across different model versions. In every case, our approach achieves
consistent improvements. Interestingly, TITOK remains effective even when applied to external
data originating from tasks different from the target task, highlighting both robustness and general
applicability. Overall, these empirical results highlight TITOK as a methodologically simple yet
powerful paradigm for efficiently transferring LoRA knowledge across models in diverse scenarios.

2 RELATED WORKS

Transferring PEFT adapters. Parameter-Efficient Fine-Tuning (PEFT) (Houlsby et al., 2019; Li
& Liang, 2021) has emerged as both a practical and popular alternative to full model fine-tuning.
By requiring updates to only a small portion of parameters, it enables efficient adaptation, with
LoRA (Low-Rank Adaptation) (Hu et al., 2021; Dettmers et al., 2023) standing out as one of the
most widely adopted methods. However, a fundamental limitation is that LoRA adapters are tied
to the frozen backbone they were trained on, making them difficult to transfer to other base models.
To address this issue, recent studies such as TransLoRA (Wang et al., 2024) have attempted to
transplant the knowledge of LoRA adapters across models by generating synthetic data (Wang et al.,
2023). While effective to some extent, this approach requires an additional discriminator model to
filter high-quality synthetic data, resulting in a relatively heavy pipeline. In parallel, Knowledge
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Distillation (KD) (Hinton et al., 2015; Azimi et al., 2024) has been widely explored as another
means of knowledge transfer; however, traditional KD typically operates within a teacher–student
framework at the logit or sequence level and requires access to training data close to the original,
in order to use the teacher’s distribution for supervising the student. In contrast, our approach
focuses on token-level selective transfer, offering a more fine-grained yet lightweight alternative
that enables efficient transplantation of LoRA adapters across diverse models for deployment.

Data synthesis with LLMs. Synthetic data generation with LLMs has attracted increasing atten-
tion as a means to reduce reliance on costly or inaccessible datasets (Wang et al., 2023; Kim et al.,
2025). Prior lines of research have leveraged synthetic data for purposes such as privacy preser-
vation (Bu et al., 2025), data augmentation (Kumar et al., 2021), and domain adaptation (Li et al.,
2023). In our framework, synthetic data serves as a core component, enabling the transfer of LoRA
adapters without access to the original training corpus, while simultaneously mitigating privacy con-
cerns and reducing the degree of dependency on external datasets. Moreover, since both queries and
labels are generated directly by the source expert model itself, synthetic data ultimately provides a
self-sufficient mechanism that fits to our objective of lightweight and effective knowledge transfer.

Selective token training. Recent studies (Lin et al., 2025; Gu et al., 2020) demonstrate that not
all tokens contribute equally to model training, motivating research on selective training strategies.
While such approaches have primarily been applied to accelerate optimization or reduce redundancy
(Yeongbin et al., 2024; Bal et al., 2025), our work innovatively extends this concept to the setting
of knowledge transfer. Specifically, our concept of excess scores (Eq. 2) is derived from this idea,
where the contrast between the source backbone and its LoRA adapter yields token-level judgments.
This enables TITOK to transplant LoRA knowledge in a more focused and fine-grained manner,
highlighting the broader applicability of selective training beyond its original scope.

3 TITOK: TRANSPLANTING LORA THROUGH TOKEN-LEVEL KNOWLEDGE

In this section, we introduce TITOK, a framework for LoRA Transplantation through Token-level
knowledge transfer (Fig. 1). The core idea of TITOK is to transfer the knowledge from a source
model’s LoRA adapter into a target model’s LoRA adapter by training specifically on the infor-
mative tokens within synthetic data. Specifically, the framework consists of three components: (1)
Synthetic data generation (Sec. 3.1), where the source expert model produces query–label pairs for
target task; (2) Excess score computation (Sec. 3.2), which calculates token-level importance using
source model; and (3) Target model training with filtering (Sec. 3.3), which trains target model with
newly initialized LoRA adapter on top-ranked samples and tokens. In addition, we propose Excess
score alignment (Sec. 3.4), an algortihm designed to apply TITOK even when tokenizers of the
source and target models differ. The overall algorithm of TITOK is presented in Alg. 1.

3.1 SYNTHETIC DATA GENERATION VIA LLM PROMPTING WITH FEW-SHOT DATA

Let Ms denote the source backbone LLM and As its LoRA adapter on target downstream task,
which forms the source expert model Ms +As. The target model, whose LoRA adapter At will be
trained, is denoted by Mt. Then, TITOK first constructs a synthetic dataset Ds, similar to the idea of
TransLoRA (Wang et al., 2024). This usage of synthetic data allows us to avoid keeping the whole
original dataset for the downstream task, and simultaneously let At learn the knowledge encoded
in the source adapter As. Unlike TransLoRA’s approach of using the untuned target model Mt to
generate synthetic data, we use the source expert model Ms +As to synthesize data (see empirical
comparison in Fig. 2). Concretely, Ms + As synthesizes both the query and the label within a
prompting-based data synthesis framework (Wang et al., 2023) (see details in Appendix R); given a
few-shot data of downstream task, it first generates a query q, and then produces the corresponding
label y conditioned on q. To encourage diversity, we apply ROUGE-L filtering together with dedu-
plication to all tasks, except for exceptional cases where such filtering is infeasible (more details are
in Appendix L). Consequently, the resulting synthetic dataset consists of query–label pairs:

Ds = {(qj , yj)}Nj=1. (1)

In this way, Mt would be trained on the synthetic data Ds generated by the source expert model
Ms +As, thereby enabling knowledge transfer without relying on the entire original dataset.

3
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3.2 TOKEN-WISE CONTRASTIVE EXCESS SCORE FROM SOURCE MODEL WITH LORA

As described in Sec. 3.1, TITOK relies on synthetic data, but synthetic data is often prone to
imperfections (Chen et al., 2024b); thus, sophisticated filtering is essential to retain high-quality
informative samples. TransLoRA (Wang et al., 2024) tackles this challenge with a separate discrimi-
nator to filter useful queries, but this introduces the extra burden of training and maintaining an extra
model. In contrast, we propose a lightweight alternative that only utilizes the already trained source
model. Specifically, we use source model and its LoRA adapter to perform two complementary
roles: (1) the amateur role (Ms) and (2) the expert role (Ms +As). Then, the difference between
the two roles provides an implicit supervision signal where the task information is encoded.

Formally, let y = [y1, ..., yL] denote the synthesized response, where yi is a token of y corresponding
to the synthesized query q. Then, we define the excess score as:

S(yi) = Le(yi)− La(yi), (2)

where the amateur and expert losses on token yi are defined as:

La(yi) = logPMs(yi | q, y< i), Le(yi) = logPMs+As(yi | q, y< i). (3)

The excess score S(yi) quantifies the knowledge discrepancy incurred by equipment of LoRA,
thereby identifying the tokens where the adapter provides a decisive contribution. Intuitively, if
the backbone model is uncertain about predicting a token but the LoRA-enhanced model assigns it
with high confidence, that token will thus obtain a large excess score. This implies that tokens with
higher S(yi) correspond to positions where the LoRA adapter injects task-specific knowledge that
the backbone could not capture on its own. In this way, the excess score functions as a fine-grained
attribution signal, derived entirely from the internal behavior of the model itself, and guides training
toward the specific regions of data that are most enriched with the adapter’s knowledge.

3.3 TARGET MODEL TRAINING WITH SAMPLE FILTERING AND TOKEN SELECTION

After the computation of excess scores S(yi), the newly initialized LoRA adapter At for target
model Mt is trained using the synthetic samples (qj ,yj) ∈ Df with two-level filtering schemes.

First stage: Sample filtering. We begin by filtering the synthetic dataset Ds (Eq. 1) at the sample
level to remove less informative examples. For each synthetic sample, we compute the mean of the
excess scores S(yi) across the tokens in y and retain only M samples with the highest values.

S̄j =
1

|yj |
∑
yi∈yj

S(yi). (4)

Let Df be the set of the M samples in Ds with the largest S̄j :

Df = TopM
{
(qj ,yj) ∈ Ds : S̄j

}
. (5)

Through this step, the synthetic data undergoes a filtering process, ensuring that subsequent training
is concentrated specifically on the remaining examples in Df with richer knowledge signals.

Second stage: Token selection. Next, we consider token selection; that is, At does not learn from
all tokens within the retained samples. Instead, it focuses only on those prioritized by the excess
scores S(yi), which are identified as most important for knowledge transfer. To achieve this, we
select the top k% of tokens ranked by their excess scores using the indicator Ik%(yi):

Ik%(yi) =

{
1, if rankyj

(
S(yi)

)
≤ ⌊k% · |yj |⌋,

0, otherwise,
(6)

where |yj | denotes the number of tokens in yj , and rankyj
(S(yi)) indicates the rank of S(yi) among

the tokens of that response. Based on this selection, the training objective for At is defined as

LTiTok =
∑

(qj ,yj)∈Df

∑
yi∈yj

Ik%(yi) · Lt(yi), (7)

where Lt(yi) is the negative log-likelihood loss assigned by Mt + At on token yi (only At is
learnable). By training only on these filtered tokens (Eq. 7), TITOK enables At to efficiently acquire
the source LoRA’s knowledge without access to the original training data or any external models.
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Algorithm 1: TITOK: Transplanting LoRA through Token-Level Knowledge
Input: source expert Ms +As, target Mt, parameters N,M, k%
Output: trained target LoRA At

1. Construct synthetic dataset Ds = {(qj ,yj)}Nj=1 with Ms +As

2. for (qj ,yj) ∈ Ds do
Compute token excess scores S(yi) = Le(yi)− La(yi)

Calculate mean score S̄j = 1
|yj |

∑
yi∈yj

S(yi)

3. Select top-M samples by S̄j to form Df
4. for (qj ,yj) ∈ Df do

Rank tokens by S(yi) and keep top-k%, represented by mask Ik%(yi)

5. if tokenizer(Ms) ̸= tokenizer(Mt) then
Align masks I(s)k%(yi) → I

(t)

k%(yi)

6. Train At on Mt with masked loss LTiTok =
∑

(qj ,yj)∈Df

∑
yi∈yj

Ik%(yi) · Lt(yi)

return At

3.4 EXCESS SCORE ALIGNMENT ACROSS DIFFERENT TOKENIZERS

In cases of transfer between models with different tokenizers, a direct mapping of token-level
signals is not possible, given that the source and target models may segment text differently. To
address this, we introduce a simple yet robust tokenizer alignment algorithm that propagates token
masks (Eq. 6) from the source token sequence y(s) to the target token sequence y(t). The algorithm
first aligns token sequences using dual pointers that incrementally decode and match text spans.
Masks are then propagated using the following four rules: (1) direct copy for one-to-one mappings,
(2) replication for one-to-many, (3) averaging for many-to-one, and (4) averaging with replication
for many-to-many. Finally, a top-k% selection step retains the most confident target tokens. This
process ensures consistent supervision across tokenizers, enabling reliable transfer even when
models tokenize text differently. The conceptual illustration of this procedure is presented in Fig.4.

4 EXPERIMENT

In this section, we present our experimental results to answer the following research questions:

• RQ1: Can TITOK efficiently transfer knowledge of LoRA in various scenarios? (Table 1)
• RQ2: What is the contribution of each component in TITOK? (Table 2)
• RQ3: How sensitive is token-level selective transfer to the selection ratio? (Figure 3)
• RQ4: How does the choice of model to synthesize query affect the performance? (Figure 2)
• RQ5: Can TITOK transfer knowledge using data from a different or unrelated domain? (Table 3)

4.1 EXPERIMENTAL SETUPS

Models. We mainly present our knowledge transfer experiments using models from the Mistral
and Llama families. Specifically, we designed the following LoRA transfer (source → target) setups.
(1) Mistral-7B-Inst-v0.31 → Mistral-7B-Inst-v0.3: the basic transfer setup, (2) Mistral-7B-Inst-v0.3
→ Llama-3.1-8B-Inst2: the different-family model transfer setup, (3) Llama-3.2-3B-Inst3 →
Llama-3.1-8B-Inst: the different-size model transfer setup, and (4) Llama-2-7b-chat-hf4 → Llama-
3.1-8B-Inst: the different-version model transfer setup. These setups are intended to test whether a
smaller model can effectively transfer knowledge to a larger one, and to explore whether a relatively
weaker model can still influence a newer, stronger model. These various setups realistically reflect
how LLMs develop today, where various models are released and newer, improved versions keep

1https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
2https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
3https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
4https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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emerging. Model names are abbreviated for clarity and are used consistently in all tables and
figures: 1) “Mistral 7B” = Mistral-7B-Instruct-v0.3, 2) “Llama3 8B” = Llama-3.1-8B-Instruct, 3)
“Llama3 3B” = Llama-3.2-3B-Instruct, 4) “Llama2 7B” = Llama-2-7b-chat-hf.

Baselines. To demonstrate the effectiveness of TITOK, we compare it against three baselines: (i)
Vanilla, the target base model without any fine-tuning; (ii) KD(+MinED), knowledge distillation
(KD) from source expert model (Hinton et al., 2015). When the source and target models use dif-
ferent tokenizers, the original KD is not applicable. In this case, we use Minimum-Edit-Distance
(MinED) tokenizer alignment (Wan et al., 2024), which aligns both token sequences and vocabulary
distributions via dynamic-programming sequence alignment for near matches (e.g., “gets” ↔ “get”)
and by mapping probability mass to nearest edit-distance neighbors (e.g., “immediately” ↔ “imme-
diate”). We use the synthesized data by TransLoRA as the training data for KD and MinED ; and
(iii) TransLoRA (Wang et al., 2024), a prior method in which the vanilla target model synthesizes the
queries, while the source model with its LoRA adapter generates the corresponding synthetic labels.
A discriminator is then employed to filter the synthetic data for training the target LoRA adapter.

Datasets. Following prior work in TransLoRA, we first conduct experiments on two representative
benchmarks: (1) Big-Bench Hard (BBH) (Suzgun et al., 2022) and (2) Massive Multitask Language
Understanding (MMLU) (Hendrycks et al., 2021). BBH consists of 27 challenging reasoning tasks
structured as multiple choice or short answer questions, designed to test compositional generaliza-
tion and advanced problem solving abilities of a Language Model. Meanwhile, MMLU covers 57
tasks across diverse academic subjects, presented in multiple choice format to evaluate broad knowl-
edge and reasoning skills of a model. Since both benchmarks only provide test sets, we split the data
into 90% for training the source expert model Ms +As and the remaining 10% for evaluation.

To extend our approach to personalization and text generation, we additionally conduct experiments
on LaMP benchmark (Salemi et al., 2024), focusing exclusively on its generation tasks. In particular,
we experiment with (3) News Headline Generation (LaMP 4) and (4) Scholarly Title Generation
(LaMP 5), as they are the only text generation tasks that are both accessible and reliably evaluable.
The remaining LaMP tasks are excluded, given that LaMP 1-3 are discriminative, and LaMP 6-7
lack gold labels. For LaMP tasks, the source expert model Ms +As is trained on data from the 30
users with the longest activity histories. From each user, we use 200 data points for training and 50
data points for validation, a design choice intended to conduct a more rigorous and robust evaluation.
In total, each LaMP task contains 6,000 training examples and 1,500 evaluation examples.

To assess performance on the BBH and MMLU, we measure the average accuracy using the
LM-Eval Harness (Gao et al., 2024). Following the setup used in TransLoRA (Wang et al., 2024),
all tasks are conducted in a zero-shot setting. Meanwhile, for the LaMP tasks, we adopt ROUGE-1
and ROUGE-L scores as evaluation metrics, following the benchmark’s primary evaluation metrics.

Implementation details. For training of both source and target models, we use a learning rate
of 5 × 10−5, train for 2 epochs with a batch size of 4, and apply LoRA with rank r = 8, scaling
factor α = 8, and dropout 0.05. Optimization is performed using AdamW with weight decay
1 × 10−2, together with a linear learning rate schedule and a warmup ratio of 0.1. For synthetic
data generation, we provide five samples from the original training data as few-shot exemplars,
and apply top-p sampling (Holtzman et al., 2020) to generate both queries and labels, with sampling
hyperparameters tuned individually for each task. To further encourage diversity, we apply ROUGE-
L filtering with a threshold of 0.7 and deduplication to remove redundant queries, following Wang
et al. (2023). For tasks where ROUGE-based filtering is infeasible, we apply only deduplication (see
Appendix L). For the initial synthetic pool, we generate 2M synthetic samples and, after filtering
with token-wise contrastive excess scores, retain the top M , where M equals the source training set
size (see Appendix K). For token selection, the selection ratio k% is fixed at 70% across all tasks
and transfer settings, except for the Llama3 3B → Llama3 8B transfer setting, where we find that
k% = 30% consistently yields the best performance. When inferencing during the evaluation stage,
we adopt greedy decoding to ensure fully deterministic and reproducible inference results.

4.2 MAIN RESULTS

Table 1 summarizes the experimental results on BBH, MMLU, and LaMP (News Headline and
Scholarly Title generation) across four transfer settings. First, we observe that transfer within
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Table 1: Main results. Experiments on BBH, MMLU, News Headline and Scholarly Title Genera-
tion tasks under four transfer settings. BBH and MMLU are reasoning tasks and are evaluated using
LM-Eval Harness, while News Headline and Scholarly Title Generation represent personalization
tasks and are evaluated with ROUGE-1/L. All evaluations are zero-shot. Best scores are in bold.

Transfer Method BBH MMLU News Headline Scholarly Title
Acc. Acc. ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L

Mistral 7B
→ Mistral 7B

Vanilla 0.397 0.557 0.117 0.101 0.381 0.311
KD 0.426 0.556 0.121 0.107 0.392 0.320
TransLoRA 0.424 0.533 0.155 0.136 0.447 0.382
TITOK (ours) 0.432 0.563 0.160 0.142 0.473 0.414

Mistral 7B
→ Llama3 8B

Vanilla 0.469 0.469 0.125 0.110 0.444 0.378
KD+MinED 0.477 0.484 0.127 0.112 0.455 0.389
TransLoRA 0.471 0.472 0.122 0.108 0.461 0.397
TITOK (ours) 0.482 0.488 0.140 0.124 0.464 0.403

Llama3 3B
→ Llama3 8B

Vanilla 0.469 0.469 0.125 0.110 0.444 0.378
KD 0.470 0.475 0.126 0.111 0.449 0.383
TransLoRA 0.460 0.466 0.121 0.107 0.455 0.387
TITOK (ours) 0.509 0.475 0.127 0.113 0.457 0.392

Llama2 7B
→ Llama3 8B

Vanilla 0.469 0.469 0.125 0.110 0.444 0.378
KD+MinED 0.473 0.478 0.125 0.111 0.450 0.384
TransLoRA 0.472 0.468 0.123 0.109 0.453 0.388
TITOK (ours) 0.510 0.479 0.140 0.122 0.461 0.404

the same model family is highly effective; when transplanting the LoRA adapter trained on the
Mistral 7B into a fresh instance of the same model, TITOK consistently surpasses all baselines. In
particular, TITOK improves the vanilla model by 24.08% on average across all tasks, and further
outperforms the KD and TransLoRA baselines by 19.63% and 4.91%, respectively. Taken together,
the findings show that, as a first step, transfer within the same family is reliably successful.

Beyond same family transfer, we also find that TITOK is highly effective in cross-model transfer
settings. For example, when transferring from Mistral 7B to Llama 8B, TITOK delivers an average
improvement across all tasks of 7.11% over the vanilla model, while outperforming KD by 4.73%
and TransLoRA by 6.24%. This highlights that TITOK is not confined to intra-family knowledge
transfer, but can successfully bridge across architectures. In the case of Llama3 3B to Llama3
8B, TITOK yields average gains of 3.45% against vanilla, 2.49% against KD, and 4.14% against
TransLoRA. These results suggest that TITOK scales effectively with model size, making it useful
when moving from lightweight to larger models without losing efficiency. Finally, when transferring
from Llama2 7B to Llama3 8B, TITOK performs average advantages of 7.43% over vanilla, 6.28%
over KD, and 7.22% over TransLoRA. This indicates that TITOK adapts robustly even across differ-
ent model versions, implying practical relevance when models are upgraded in real-world pipelines.

Collectively, these results provide strong evidence that TITOK not only excels in transfers within
the same model family, but also demonstrates broad effectiveness in cross-model transfers, thereby
highlighting its robustness across a wide spectrum of model scales, versions, and families.

4.3 ADDITIONAL ANALYSES

Ablation study. To validate the contribution of each component in our framework, we conduct ad-
ditional experiments by selectively excluding the sample filtering and token selection mechanisms in
Sec. 3.3. We report the average performance scores across all four transfer settings, and the results
are presented in Table 2. When sample filtering is not applied (1st and 2nd rows), the training data
for the target model is randomly sampled from the full synthetic dataset. Under this setting, apply-
ing only token selection (2nd row) performs noticeably better than the purely random baseline. This
demonstrates the effectiveness of our token selection approach and empirically confirms that token-
wise contrastive excess reliably identifies and selects the most informative tokens. Similarly, when
only sample filtering is applied (1st and 3rd rows), the results improve over pure random sampling,
indicating that selecting high-quality data is essential. This finding further underscores that incorpo-
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Table 2: Ablation study. ”Sample filtering” uses the mean token-wise contrastive excess score
to remove uninformative examples, while “Token selection” further refines the retained data by
selectively keeping only the most informative tokens within each sample. Without sample filtering,
data are randomly sampled. Results are reported as accuracy (Acc.) for BBH and MMLU, averaged
across tasks. Meanwhile, we report ROUGE-1 (R-1) and ROUGE-L (R-L) for LaMP tasks.

Settings BBH MMLU News Headline Scholarly Title

Sample filtering Token selection Acc. Acc. R-1 R-L R-1 R-L

✗ ✗ 0.458 0.485 0.133 0.117 0.456 0.393
✗ ✓ 0.463 0.496 0.137 0.121 0.460 0.397
✓ ✗ 0.470 0.500 0.139 0.122 0.460 0.397
✓ ✓ 0.483 0.501 0.142 0.125 0.464 0.403

(a) BBH (accuracy)
Mistral 7B → Mistral 7B

(b) BBH (accuracy)
Llama2 7B → Llama3 8B

(c) News Headline (ROUGE-L)
Llama2 7B → Llama3 8B

Figure 3: Representative performance trends across k%. Among the three graphs, two come
from the same task (BBH), while two share the same transfer setting (Llama2 7B → Llama3 8B).

rating an effective filtering mechanism for synthetic data is essential. In our framework, token-wise
contrastive excess serves this role by reliably selecting samples with richer and more informative
signals, as demonstrated clearly by the empirical results Finally, the results show that combining
both stages (4th row) achieves the best performance, confirming their complementary roles in filter-
ing high-quality examples and selecting informative tokens for effective knowledge transfer.

Figure 2: Impact of query source. Across
transfer settings, using the source expert
model to synthesize query generally yields
better performance. The accuracy averaged
over all BBH tasks are reported.

Impact of query generation model. We now
move on to examine how the choice of query
generation model influences performance. Prac-
tically, synthetic queries can be generated either
by the source model or by the target model, with
the latter being the approach originally adopted in
TransLoRA’s pipeline (Wang et al., 2024). Figure 2
compares these two options across different trans-
fer settings, with the reported scores averaged over
all BBH tasks. Notably, we observe that using the
source expert model (source backbone + LoRA) for
query generation generally yields stronger perfor-
mance than using the target model. One possible
explanation is that when both the synthetic queries
and the corresponding labels are generated by the
same model, they remain closer to its training distri-
bution. This alignment between queries and labels
likely makes the supervision more coherent and accurate, thereby facilitating more effective trans-
fer. These results suggest that maintaining distributional alignment between queries and labels is a
key factor for improving knowledge transfer, thereby providing empirical justification for our design
choice of using the source model as both the synthetic query and label generator.

Effect of token selection ratio. We now proceed to explore the impact of token selection ratios
(k%) in our framework. Fig. 3 presents three representative curves: one task (BBH) under two
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transfer settings, and another task (News Headline Generation) under the same transfer setting for
comparison. For BBH with the same backbone on source and target (Mistral 7B→Mistral 7B), a
moderate token selection ratio of 40-70% yields the best results. Very low ratios (10-20%) lead
to underfitting, while a 100% ratio is ineffective as it applies no filtering at all. Interestingly, in a
weak-to-strong transfer (Llama2 7B → Llama3 8B) for the same BBH task, performance improves
as k% decreases. This suggests that selecting only the tokens with the highest excess loss effectively
filters out the majority of noisy regions where the weaker model is uncertain. By discarding the
majority of tokens where the weaker model lacks confidence, TITOK can significantly reduce neg-
ative transfer. This trend, however, reverses for the News Headline Generation task under the same
weak-to-strong transfer setting. For this task, a larger k% is generally better, potentially because
even a weaker model can provide valuable lexical and stylistic cues that are useful for personal-
ization. Consequently, unlike reasoning-focused tasks such as BBH, which are sensitive to noisy
supervision, personalization tasks like News Headline Generation benefit more broadly from the
source model’s outputs, even when the source model is relatively weaker than the target model.

Table 3: Transfer using external data. ROUGE-1 (R-
1) and ROUGE-L (R-L) on News Headline and Schol-
arly Title Generation under three data settings for Mis-
tral 7B→Mistral 7B: (1) other-user, (2) mixed-user, (3)
cross-task. Best scores are in bold.

Data Setting Method News Headline Scholarly Title

R-1 R-L R-1 R-L

Other-user
Vanilla 0.117 0.101 0.381 0.311
KD 0.127 0.113 0.405 0.333
TITOK (ours) 0.151 0.136 0.481 0.425

Mixed-user
Vanilla 0.117 0.101 0.381 0.311
MinED 0.124 0.110 0.409 0.337
TITOK (ours) 0.151 0.137 0.480 0.422

Cross-task
Vanilla 0.117 0.101 0.381 0.311
MinED 0.118 0.106 0.403 0.331
TITOK (ours) 0.133 0.120 0.450 0.383

Effectiveness of transfer through exter-
nal data source. We further examine
whether TITOK can transfer knowledge
effectively in cases where synthetic data
is not preferred, and thus external data
is used as an alternative. To this end,
we evaluate three alternative settings on
LaMP tasks for Mistral 7B→Mistral 7B
transfer setup: (1) using data from a ran-
domly chosen different user, (2) mixing
data from multiple users, and (3) transfer-
ring across tasks, where data of Scholarly
Title Generation is used to train on News
Headline Generation and vice versa (i.e.,
out-of-distribution scenario). The results
are presented in Table 3. Remarkably,
TITOK consistently outperforms all base-
lines across these heterogeneous external
settings. These findings demonstrate that
TITOK is not restricted to synthetic data scenarios, but can also adapt effectively under external or
user-provided data conditions. This highlights the flexibility of TITOK for practical deployment
in diverse real-world application scenarios and further underscores its adaptability across different
data conditions, as it is effective even when external data is used as an alternative to synthetic data.

5 CONCLUSION

In this paper, we propose TITOK, an efficient framework that transfers LoRA knowledge from a
source model to a target model by training only on a selectively chosen set of highly informative
tokens. At its core, TITOK leverages token-level signals to distill task-relevant information from
the source adapter, rather than relying on the entire token sequence. By focusing supervision on the
regions where the adapter contributes most, TITOK achieves stronger and more targeted knowledge
transfer. With this simple yet effective design, TITOK proves robust across tasks and consistently
surpasses existing baselines, making it a practical solution for efficient knowledge transfer.

Limitations and Future Directions While TITOK has shown robustness and clear advantages
over existing methods, there remain opportunities to refine and extend the framework. Firstly, al-
though TITOK is designed to minimize dependence on original data, it still requires a small number
of seed examples to generate synthetic data via prompting. Nevertheless, this reliance is modest, as
we avoid using full datasets. In addition, our experiments confirm that external data can also serve
as an effective alternative, reinforcing the flexibility of the approach. Regarding token selection,
TITOK currently applies a fixed threshold to determine which tokens are retained. While this simple
design is effective and stable across tasks, future work could explore more adaptive or data-driven
thresholding strategies to further enhance efficiency without compromising robustness.
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we rely exclusively on publicly available datasets such as LaMP, MMLU, and BBH and use them
strictly in accordance with their intended purpose for academic research. For the LaMP tasks, which
involve user data, our TITOK framework aligns with ethical considerations by minimizing data
dependence. It does not store or expose raw user data and only updates a small set of task and
user-specific parameters. This helps safeguard privacy while enabling efficient knowledge transfer.

REPRODUCIBILITY STATEMENT

We provide a comprehensive description of our implementation in Section 4, including pipeline
configurations, hyperparameters, models, datasets, and evaluation metrics. The source code for our
implementation and experiments will be made publicly available in a repository upon publication.
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1        0            1           0         1     1          0        0          0.667    0.667      

But   seek    first     his   kingdom   and   his   righteousness

But   seek    first     his   kingdom   and   his   righteousness

select Top k% tokens

keep Top k% tokens

. . .

Target model (+LoRA)
 trains on aligned top k% tokens

Figure 4: Overview of TITOK’s tokenizer alignment algorithm. The algorithm handles cases
where the source and target models use different tokenizers. The binary mask scores assigned by
the source model are averaged within aligned spans and propagated to target tokens, producing
fractional scores that guide top-k% token selection for training the target model’s LoRA adapter.

A TOKENIZER ALIGNMENT ALGORITHM

When the source and target models use different tokenizers, direct token-level transfer is not pos-
sible. To address this, we implement a dual-pointer alignment procedure. The algorithm maintains
two pointers, one for the source tokens and one for the target tokens. At each step, the source pointer
advances by one token, accumulating a decoded segment, while the target pointer incrementally ex-
tends its own segment until the normalized texts match. Once a match is found, the corresponding
spans are recorded as an alignment, and the target pointer jumps forward to that position. After
alignment, we apply masking rules to propagate the source binary mask scores (values that indicate
whether a token should be kept or discarded) to the target tokens. Specifically:

1) One-to-One: binary mask score is directly copied.

2) One-to-Many: score is replicated across all aligned target tokens.

3) Many-to-One: averaged scores of multiple source tokens are assigned to the target token.

4) Many-to-Many: the averaged score of the source tokens is assigned to the corresponding
aligned target tokens.
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Table 4: Average alignment percentage breakdown across BBH and News Headline tasks in the
Mistral 7B → Llama3 8B transfer setting.

BBH News Headline

exceptions 0% 0%
many to many 46.18% 5.00%
many to one 3.47% 17.45%
one to many 0.01% 0.01%
one to one 50.33% 77.52%

Table 5: Performance comparison for Mistral-7B → Llama-3 8B transfer.

BBH News Headline
Acc. R-1 R-L

Mistral-7B → Llama-3 8B
Vanilla 0.397 0.117 0.101
One to one only 0.472 0.138 0.120
TITOK (k=70%) 0.482 0.160 0.142

This process yields fractional mask scores that capture the relative importance of each target token.
Finally, we keep only the top-k% of tokens according to these scores, producing a final binary
selection mask over the target tokens that preserves the most informative regions while discarding
less relevant ones. An overview of this tokenizer alignnment algorithm is presented in Figure 4.

Robustness of the algorithm. The algorithm is conceptually error-free since it simply performs
a deterministic mapping between two tokenizers on the exact same text sequence. Since both to-
kenizations correspond to the identical underlying character string, the mapping cannot introduce
semantic errors; every token in both tokenizers is defined over non-overlapping spans of the same
text, and these spans align uniquely. For instance, in the Mistral 7B → Llama3 8B transfer setting
on BBH and News Headline benchmarks, 100% of tokens are aligned, and there are no exception
cases as shown in Table 4, confirming that alignment errors do not occur in practice.

Furthermore, we additionally construct a degraded setting in which we keep only the one-to-one
aligned token pairs and discard all other alignment cases. We perform the experiment in the Mistral
7B → Llama3 8B transfer setting on BBH and News Headline tasks, and the full results are presented
in Table 5. From these empirical results, we can observe that using all the full alignment cases
outperforms using one-to-one token pairs only. This implies that the many-to-one, one-to-many,
and many-to-many alignments are also correctly aligned, as including them yields the best results.
Together, these results confirm that our alignment method is both accurate and robust.

B THEORETICAL FOUNDATIONS AND EMPIRICAL VALIDATION OF
TOKEN-WISE CONTRASTIVE EXCESS

In this section, we present the theoretical and empirical evidence supporting both our token-wise
contrastive excess scoring and our knowledge transfer mechanism. The proposed token-wise
contrastive excess score is not a heuristic but a token-level log-likelihood ratio (LLR) between the
source expert (backbone + LoRA) and the backbone. LLR is a robust metric widely established
in statistical testing (Li & Babu, 2019) for example, by the Neyman–Pearson lemma (Neyman &
Pearson, 1933), the likelihood ratio is known to be the optimal statistic for identifying differences
between two models. Therefore, high-LLR tokens are exactly the regions where the adapter changes
the predictive distribution, i.e., where task knowledge is injected. Consequently, selecting high-LLR
tokens is theoretically justified as extracting the most informative adapter-specific signals.

In addition, from the perspective of standard knowledge distillation, tokens with near-zero LLR
provide no additional teacher knowledge and offer no benefit for transfer. In contrast, high-LLR
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Transfer Method Subgroup Acc.

Mistral 7B → Llama3 8B

Vanilla – 0.469

TITOK
top 20% 0.482
bottom 20% 0.468
random 20% 0.476

Table 6: Effect of token subgroup selection in Mistral 7B → Llama3 8B transfer setting. Selecting
the top 20% tokens by token-wise contrastive excess scoring yields the best performance in BBH.

tokens correspond to maximal teacher–student divergence, larger gradients, and higher information
contribution to the student. Therefore, emphasizing tokens with high LLR in particular naturally
focuses training on the precise positions where transferable knowledge is concentrated.

We verify this empirically by contrasting token subgroups of the top 20%, bottom 20%, and random
20% on the BBH in the Mistral 7B → Llama3 8B transfer setting. To prevent unintentional overlap
across groups and to extract the most informative region, we employ a comparatively low 20%
threshold for this analysis. The results are presented in Table 6. Analytically, the results show that
the top 20% produces the best transfer performance, thereby clearly validating that tokens with high
token-wise contrastive excess scores indeed contain concentrated task knowledge.

Furthermore, we demonstrate that truly important tokens are consistently selected regardless of
the expert’s model. For example, for BBH datasets, Mistral 7B and Llama2 7B experts agree on
59.76% of the chosen tokens even when we limit the selection to a small top 20% subset to prevent
trivial overlap. This implies that a token will continue to be recognized across models if it is truly
significant for the task, and it can be effectively identified by our token-wise contrastive excess score.

C DETAILS OF DATASETS

C.1 BIG-BENCH HARD (BBH)

Big-Bench Hard (BBH) (Suzgun et al., 2022) is designed as a rigorous benchmark for evaluat-
ing model performance on challenging reasoning problems, including multi-step logical reasoning,
symbolic manipulation, and commonsense inference. The tasks are formatted as multiple choice
questions. Since BBH is originally a test-only benchmark, we split 90% of the data for training the
source expert model and reserved 10% for evaluation. The 27 BBH tasks are categorized in Table 7.

C.2 MASSIVE MULTITASK LANGUAGE UNDERSTANDING (MMLU)

Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021) is a comprehen-
sive benchmark for evaluating model performance across a broad range of knowledge intensive
tasks. The benchmark consists of multiple choice questions and, similarly to BBH, we also apply a
90%/10% split of the original test-only data. All the 57 subtasks are categorized in Table 8.

C.3 LAMP TASKS

We utilize the LaMP benchmark to evaluate whether TITOK is also effective in the personaliza-
tion setting. Among the LaMP tasks, we focus on the two text generation tasks that are suitable,
accessible, and evaluable in our setting:

• News Headline Generation (LaMP 4). Given an author profile consisting of previously written
headlines, the model is asked to generate a headline for a new news article. The task evaluates if
the model can adapt its output to reflect the author’s characteristic style in journalistic writing.

• Scholarly Title Generation (LaMP 5). Using an author profile built from prior titles of aca-
demic publications, the model generates a title for a new given abstract. The task assesses the
model’s ability to capture and reproduce distinctive conventions of academic writing.
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Table 7: Categorization of the 27 Big-Bench Hard (BBH) tasks.

Category Tasks

Logical Reasoning boolean expressions, causal judgement, date understanding,
disambiguation qa, dyck languages, formal fallacies,
logical deduction three objects, logical deduction five objects,
logical deduction seven objects, temporal sequences,
tracking shuffled objects three objects, tracking shuffled objects five objects,
tracking shuffled objects seven objects, web of lies

Linguistic hyperbaton, ruin names, salient translation error detection, snarks,
word sorting

Mathematical / Symbolic geometric shapes, multistep arithmetic two, object counting,
reasoning about colored objects

Applied / Knowledge movie recommendation, navigate, penguins in a table, sports understanding

Table 8: Categorization of the 57 MMLU tasks.

Category Tasks

STEM (29) abstract algebra, anatomy, astronomy, college biology, college chemistry,
college computer science, college mathematics, college medicine,
college physics, computer security, conceptual physics,
electrical engineering, elementary mathematics, formal logic,
high school biology, high school chemistry, high school computer science,
high school mathematics, high school physics, high school statistics,
machine learning, medical genetics, nutrition, professional medicine,
professional psychology, virology, clinical knowledge, human aging,
human sexuality

Humanities (16) business ethics, formal fallacies, jurisprudence, logical fallacies, philosophy,
prehistory, world religions, moral disputes, moral scenarios, professional law,
professional accounting, high school world history, high school us history,
high school european history, global facts, security studies

Social Sciences (10) econometrics, high school macroeconomics, high school microeconomics,
management, marketing, public relations, sociology, us foreign policy,
high school geography, high school government and politics

Other (2) miscellaneous, global facts

D BASELINE DETAILS

To evaluate the effectiveness of TITOK, we compare against several baselines as follows:

D.1 VANILLA

The vanilla baseline corresponds to the standard target base model without any additional training or
knowledge transfer from the source model. This setup reflects the performance of the target model
in its raw initialized state and serves as a lower bound for evaluating transfer methods. Intuitively,
achieving performance that surpasses this baseline provides clear evidence that the target model has
successfully acquired and internalized knowledge transferred from the source model.

D.2 KNOWLEDGE DISTILLATION (KD) (+MINED)

The knowledge distillation (KD) (Hinton et al., 2015; Azimi et al., 2024) baseline trains the student
model to mimic the teacher model’s output distribution. Specifically, the loss is a weighted sum of
the cross entropy objective and the KL divergence between the teacher and student distributions. In
our setup, the KD experiments are conducted using the TransLoRA filtered synthetic datasets.
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For cases where the source and target models use mismatched tokenizers when performing KD,
we apply the Minimal Edit Distance (MinED) alignment method (Wan et al., 2024). In particular,
MinED matches tokens across different vocabularies by minimizing the number of character
level edits. For example, it can align “get” with “gets,” “color” with “colour,” or “analysis” with
“analyses.” This tokenizer alignment approach avoids degeneracy issues in token alignment when
conducting KD, though it is different from our dual-pointer based alignment algorithm.

D.3 TRANSLORA

The TransLoRA baseline (Wang et al., 2024) transfers LoRA knowledge by generating synthetic
data. In this method, the vanilla target model synthesizes queries, and the source model with its
LoRA adapter provides the corresponding labels. Subsequently, a discriminator, separately trained
with the source model as its base, is applied to filter the synthetic data used for fine-tuning the
target model’s LoRA adapter. For the sake of consistency and fair comparison,we adopt the same
hyperparameter settings from our experiments when applying the TransLoRA baseline.

Comparison with TransLoRA. TransLoRA’s core assumption is to transfer entire synthetic se-
quences generated by the teacher. Therefore, its framework is tightly coupled to synthetic data and
is unable to function in the absence of teacher-generated labels. In that sense, this also implies that
TransLoRA cannot be applied to external datasets. Thus, it mainly highlights the role of synthetic
data, giving less thought to the architecture of the knowledge transfer procedure itself.

In contrast, TITOK directly rethinks the mechanism of knowledge transfer itself. TITOK con-
centrates on determining which tokens actually contain expert-specific knowledge (i.e the tokens
where the expert significantly deviates from the basic model) rather than copying entire synthetic
sequences. Our novel token-level contrastive signal fundamentally changes how knowledge is ex-
tracted and aligned. Because this process does not rely on teacher-generated labels, TITOK naturally
extends to external, non-synthetic datasets (See Table 3) and is therefore much more generalizable.

Therefore, despite the fact that the ultimate objective of both approaches is to solve the same
high-level LoRA transfer problem, which inevitably leads to certain overlapping components, the
underlying philosophies are essentially different. TransLoRA focuses on transferring full outputs
and relies entirely on synthetic data, whereas TITOK focuses on transferring the expert’s internal
knowledge signals regardless of the data source, thus being more generalizable and effective.

E USAGE OF AI ASSISTANTS

AI assistants are minimally used in this work, restricted solely to language refinement. such as
grammar correction, punctuation, and sentence structure. All research ideas, methodologies, and
analyses are the original contributions of the authors. Thus, the use of AI is confined to editorial
support and did not influence the originality or intellectual contributions of the work.

F EXTENDED TABLE 1 RESULTS WITH VARIANCE AND STATISTICAL DETAIL

We additionally report the mean ± standard deviation over 3 random seeds of our results in Table
1. The results are presented in Table 9. As shown, the overall trend remains consistent: relative to
the target vanilla baseline, KD improves by 1.25%, TransLoRA by 5.28%, and TITOK by 9.94%.
In fact, these improvements remain substantially larger than the corresponding standard deviations

G COMPARISON WITH ADDITIONAL BASELINE

Here, we introduce an additional baseline that leverages few-shot supervision. In practice, our
synthetic data generation process is seeded with a small set of prompts, which can be regarded
as few-shot data. To be thorough, we therefore establish a baseline trained only on these five
seed prompts, referred to as KD (5-shot), so that our evaluation of TITOK also considers minimal
few-shot supervision. The results of this additional baseline are presented in Table 10.
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Table 9: Main results with variance. Mean ± standard deviation over three random seeds on BBH,
MMLU, News Headline, and Scholarly Title under four transfer settings. BBH and MMLU are eval-
uated by exact-match accuracy, while News Headline and Scholarly Title are evaluated by ROUGE-
1/L. All evaluations are zero-shot. Best scores are in bold, while second highest are underlined.

Transfer Method BBH MMLU News Headline Scholarly Title

Acc. Acc. R-1 R-L R-1 R-L

Mistral 7B
→ Mistral 7B

Vanilla 0.397 0.557 0.117 0.101 0.381 0.311
KD 0.417 ± 0.007 0.560 ± 0.003 0.117 ± 0.004 0.104 ± 0.003 0.385 ± 0.006 0.310 ± 0.005
TransLoRA 0.416 ± 0.006 0.534 ± 0.001 0.156 ± 0.002 0.137 ± 0.001 0.447 ± 0.001 0.382 ± 0.001
TITOK (ours, k=70%) 0.424 ± 0.008 0.561 ± 0.002 0.161 ± 0.001 0.143 ± 0.001 0.473 ± 0 0.413 ± 0.001

Mistral 7B
→ Llama3 8B

Vanilla 0.469 0.469 0.125 0.110 0.444 0.378
KD 0.475 ± 0.004 0.482 ± 0.004 0.127 ± 0 0.112 ± 0.001 0.454 ± 0.001 0.387 ± 0.002
TransLoRA 0.473 ± 0.003 0.473 ± 0.001 0.126 ± 0.003 0.110 ± 0.002 0.461 ± 0.001 0.397 ± 0.001
TITOK (ours, k=70%) 0.484 ± 0.002 0.485 ± 0.003 0.139 ± 0.001 0.123 ± 0.001 0.464 ± 0.001 0.403 ± 0.001

Llama3 3B
→ Llama3 8B

Vanilla 0.469 0.469 0.125 0.110 0.444 0.378
KD 0.474 ± 0.005 0.477 ± 0.002 0.125 ± 0.001 0.110 ± 0.001 0.449 ± 0.001 0.383 ± 0.001
TransLoRA 0.471 ± 0.009 0.467 ± 0.002 0.122 ± 0.001 0.108 ± 0.001 0.454 ± 0.001 0.387 ± 0.001
TITOK (ours, k=30%) 0.496 ± 0.011 0.478 ± 0.004 0.127 ± 0.001 0.113 ± 0.001 0.456 ± 0.001 0.392 ± 0

Llama2 7B
→ Llama3 8B

Vanilla 0.469 0.469 0.125 0.110 0.444 0.378
KD 0.473 ± 0.002 0.476 ± 0.002 0.125 ± 0 0.110 ± 0.001 0.449 ± 0.001 0.382 ± 0.002
TransLoRA 0.472 ± 0.002 0.468 ± 0.002 0.123 ± 0.001 0.109 ± 0.001 0.457 ± 0.003 0.394 ± 0.005
TITOK (ours, k=70%) 0.488 ± 0.019 0.477 ± 0.003 0.138 ± 0.002 0.120 ± 0.002 0.461 ± 0.001 0.403 ± 0.001

Table 10: Comparison with a few-shot KD baseline using five seed prompts. BBH and MMLU
are reported as the average accuracy across tasks, while News Headline and Scholarly Title Gener-
ation tasks are evaluated using ROUGE-1 (R-1) and ROUGE-L (R-L). KD (5-shot) denotes knowl-
edge distillation performed with only five few-shot examples. Best scores are in bold.

Transfer Method BBH MMLU News Headline Scholarly Title
Acc. Acc. R-1 R-L R-1 R-L

Mistral 7B → Mistral 7B
Vanilla 0.397 0.557 0.117 0.101 0.381 0.311
KD (5-shot) 0.402 0.558 0.118 0.104 0.383 0.312
TITOK (ours) 0.432 0.563 0.160 0.142 0.473 0.414

Mistral 7B → Llama 8B
Vanilla 0.469 0.469 0.125 0.110 0.444 0.378
KD (5-shot) 0.470 0.477 0.126 0.111 0.446 0.379
TITOK (ours) 0.482 0.488 0.140 0.124 0.464 0.403

Llama3 3B → Llama3 8B
Vanilla 0.469 0.469 0.125 0.110 0.444 0.378
KD (5-shot) 0.470 0.479 0.126 0.111 0.446 0.379
TITOK (ours) 0.509 0.475 0.127 0.113 0.457 0.392

Llama2 7B → Llama3 8B
Vanilla 0.469 0.469 0.125 0.110 0.444 0.378
KD (5-shot) 0.470 0.477 0.126 0.111 0.446 0.380
TITOK (ours) 0.510 0.479 0.140 0.122 0.461 0.404

Across all transfer settings, KD on only 5-shot samples provides only marginal improvements over
the vanilla model, with average gains of 0.9% on reasoning tasks (BBH and MMLU) and 0.6–1.2%
on personalization tasks (News Headline and Scholarly Title Generation). In contrast, TITOK
delivers substantial improvements over this baseline, achieving 4.7% and 2.1% average gains on
reasoning tasks and 8.9–16.6% average gains on personalization tasks. Winning over KD with only
5 few-shot samples shows that TITOK is not simply the result of a few-shot effect. Instead, the
five seed prompts act only as a starting point, which our framework expands into richer and more
effective synthetic training signals. This finding confirms that the true strength of TITOK lies in
how it effectively leverages limited supervision rather than in the few-shot data itself.
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Table 11: TITOK performance across k = 10%–90%. “Vanilla” denotes performance of target
vanilla model. Highlighted columns denote the selected universal k% reported in Table 1. Highest
performance are in bold, while the second best results are underlined.

Transfer Task Metric Vanilla 10% 20% 30% 40% 50% 60% 70% 80% 90%

Mistral 7B → Mistral 7B

BBH Acc 0.397 0.401 0.420 0.444 0.445 0.441 0.432 0.432 0.431 0.431
MMLU Acc 0.557 0.556 0.556 0.558 0.553 0.554 0.560 0.563 0.560 0.558

News Headline
R-1 0.117 0.153 0.159 0.161 0.161 0.160 0.160 0.160 0.160 0.161
R-L 0.101 0.138 0.143 0.144 0.143 0.142 0.142 0.142 0.142 0.142

Scholarly Title
R-1 0.381 0.466 0.475 0.481 0.474 0.473 0.473 0.473 0.473 0.470
R-L 0.311 0.408 0.419 0.424 0.416 0.414 0.414 0.414 0.414 0.411

Mistral 7B → Llama3 8B

BBH Acc 0.469 0.470 0.482 0.471 0.473 0.475 0.476 0.482 0.483 0.478
MMLU Acc 0.469 0.487 0.483 0.500 0.492 0.492 0.488 0.488 0.494 0.500

News Headline
R-1 0.125 0.140 0.141 0.142 0.142 0.141 0.140 0.140 0.138 0.138
R-L 0.110 0.123 0.124 0.125 0.126 0.124 0.123 0.124 0.122 0.121

Scholarly Title
R-1 0.444 0.460 0.458 0.458 0.460 0.467 0.466 0.464 0.465 0.465
R-L 0.378 0.398 0.394 0.395 0.396 0.406 0.405 0.403 0.403 0.406

Llama3 3B → Llama3 8B

BBH Acc 0.469 0.515 0.507 0.509 0.512 0.500 0.492 0.505 0.518 0.509
MMLU Acc 0.469 0.479 0.477 0.475 0.475 0.475 0.474 0.475 0.474 0.472

News Headline
R-1 0.125 0.127 0.127 0.127 0.128 0.122 0.121 0.122 0.121 0.121
R-L 0.110 0.111 0.112 0.113 0.113 0.108 0.107 0.107 0.107 0.107

Scholarly Title
R-1 0.444 0.449 0.456 0.457 0.460 0.462 0.462 0.461 0.462 0.462
R-L 0.378 0.385 0.390 0.392 0.397 0.400 0.400 0.398 0.398 0.397

Llama2 7B → Llama3 8B

BBH Acc 0.469 0.527 0.519 0.531 0.510 0.514 0.514 0.510 0.509 0.509
MMLU Acc 0.469 0.475 0.474 0.477 0.481 0.477 0.482 0.479 0.477 0.479

News Headline
R-1 0.125 0.126 0.129 0.130 0.135 0.138 0.138 0.140 0.139 0.139
R-L 0.110 0.110 0.114 0.115 0.119 0.121 0.120 0.122 0.121 0.121

Scholarly Title
R-1 0.444 0.450 0.455 0.453 0.453 0.458 0.460 0.461 0.461 0.464
R-L 0.378 0.385 0.391 0.389 0.389 0.396 0.402 0.404 0.404 0.406

H COMPREHENSIVE K% SENSITIVITY ANALYSIS

In this section, we conduct an extensive experiment on TITOK’s performance throughout a wide
range of k values, from 10% to 90%. The results are comprehensively presented in Table 11. These
experiments demonstrate that TITOK consistently outperforms the target vanilla baseline throughout
a broad, steady range of values, while the exact performance varies slightly depending on k%. This
clearly indicates that the method is not overly sensitive to the choice of k% and that there exists a
broad range of reasonable k% values where improvements are reliably obtained.

The reason for choosing a universal k% hyperparameter in our study is to keep the presentation of
our paper more coherent and consistent. For this reason, we intentionally avoid task-specific tuning
and report the k% that generally works well across tasks. However, we note that with additional
per-task optimization of k%, further performance improvements are indeed possible.

With regard to the adaptive mechanism, each transfer setting exhibits its own effective k% range.
For instance, same-backbone BBH transfer favors a mid-range k% (40–70%), weak-to-strong BBH
transfer benefits from smaller k%, and weak-to-strong News Headline Generation shows the oppo-
site trend, preferring larger k%. Taken together, these trends suggest that a simple adaptive mecha-
nism can already be practical and effective. In our experiments, even coarse adjustments (i.e using
around 30% for weak-to-strong reasoning transfers and 70% for weak-to-strong stylistic tasks as
denoted in Section 4.3) prove sufficient, without requiring extensive hyperparameter searches.

I COMPUTATIONAL OVERHEAD COMPARISON

Here, we present the computational differences between TITOK and TransLoRA. We conduct an
end-to-end time comparison of TransLoRA and TITOK on the BBH and News Headline Generation
benchmarks in the Mistral 7B → Llama3 8B transfer setting. The results are presented in Table
12 and 13. Across both benchmarks, TITOK achieves roughly a 1.5×–2.5× reduction averagely in

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

BBH (250 data × 27 tasks)

Method Metric discriminator training selecting data training TOTAL

TransLoRA
avg total (sec/num task) 279.33936 31.72915 104.61636 415.68487
avg sample (sec/sample) 0.63251 0.06346 0.41847 1.11444

Method Metric token-wise contrastive excess score selecting tokens (k 0.7) token align training TOTAL

TITOK
avg total (sec/num task) 164.70895 0.01155 0.41080 102.02867 267.15997
avg sample (sec/sample) 0.32942 0.00005 0.00054 0.40811 0.73812

Table 12: Runtime comparison for Mistral 7B → Llama3 8B transfer on BBH.

News Headline (200 data × 30 users)

Method Metric discriminator training selecting data training TOTAL

TransLoRA
avg total (sec/num users) 245.10085 25.39730 58.71148 329.20963
avg sample (sec/sample) 0.61279 0.06358 0.29356 0.96993

Method Metric token-wise contrastive excess score selecting tokens (k 0.7) token align training TOTAL

TITOK
avg total (sec/num users) 81.31437 0.01863 0.89304 49.52768 131.75371
avg sample (sec/sample) 0.20355 0.00005 0.00447 0.24764 0.45570

Table 13: Runtime comparison for Mistral 7B → Llama3 8B transfer on News Headline Generation.

total compute time. Most of the gain comes from the removal of discriminator training, while the
per-token log-likelihood computation produces only a minimal and manageable overhead.

J ADDITIONAL EXPERIMENTS ON LARGER-SCALE MODELS AND
ARCHITECTURES

While we have already considered transfer settings across various model sizes and architectures,
we additionally conduct experiments on larger-scale models and architectures to reinforce TITOK’s
effectiveness even in these expanded settings. Note that all experiments are executed under 4-bit
quantization due to the large model sizes involved. We also evaluate in BBH for this whole section.

First, we run experiments on cross-architecture transfer from a dense model (Mistral 7B) to a
mixture-of-experts (MoE) model (Mixtral-8×7B-Instruct-v0.1). The results are pre-
sented in Table 14. Analytically, TITOK outperforms the MoE target baseline, indicating that TITOK
remains effective in the MoE setting. This result suggests that TITOK can generalize to heteroge-
neous model architectures even when transferring from a dense model to a MoE model.

Furthermore, we test also in the Llama-3.3-70B-Instruct → Llama-3.3-70B-
Instruct transfer setting. As shown in Table 15, TITOK effectively transfers knowledge even
in this 70B transfer setting, with 4.7% improvement. This result shows that TITOK generalizes well
to very large models, preserving its ability to transfer token-level knowledge effectively.

K SYNTHETIC DATA GENERATION WITH 2× POOL AND TOP-M SELECTION

In this section, we provide further details regarding the number of synthetic data samples used. In
generating synthetic data, we first provide five samples from the original training set as few-shot
exemplars to guide the model toward producing outputs in the desired style and format. For each
task, we initially create a synthetic pool containing twice the number of examples used in the
source model’s training. This pool is then filtered using token-wise contrastive excess scores, after
which we retain only the top M samples, where M equals the size of the source training set. To
be specific, we set M = 250 for BBH, M = 90 for MMLU, and M = 200 for LaMP tasks. This
procedure ensures that the target model’s LoRA adapter is trained on a dataset comparable in scale
to that of the source model, while selective filtering enhances the overall quality of the retained data.
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Model Transfer Metric Acc.

Mistral 7B Vanilla 0.454
→ Mixtral-8×7B-Instruct-v0.1 TITOK (k=70%) 0.463

Table 14: BBH results for the Mistral 7B → Mixtral-8×7B-Instruct-v0.1 transfer setting.
TITOK (k=70%) yields an improvement of approximately 2% over the target vanilla model.

Model Transfer Metric Acc.

Llama-3.3-70B-Instruct Vanilla 0.593
→Llama-3.3-70B-Instruct TITOK (k=70%) 0.621

Table 15: BBH results for the Llama-3.3-70B-Instruct→ Llama-3.3-70B-Instruct
transfer setting. TITOK (k=70%) improves over the target vanilla model.

L ROUGE-L FILTERING FOR DIVERSE SYNTHETIC QUERIES

We now proceed to provide the task lists for which we did not apply ROUGE-L filtering when
generating diverse synthetic queries. In general, we use ROUGE-L filtering to encourage diversity
in queries, but for the tasks listed in Table 16, we only applied simple deduplication. In the case of
BBH, tasks such as boolean expressions or temporal sequences already follow highly restricted and
repetitive patterns, making high ROUGE-L scores inevitable. For MMLU, the only tasks without
ROUGE-L filtering are the history-related subjects. This is potentially because history questions
often require long passages that overlap in vocabulary, phrasing, or factual references (e.g., recurring
names, dates, or events). Applying strict ROUGE-L filtering in such cases would make it difficult
to generate the required number of synthetic queries. For all remaining BBH and MMLU tasks, as
well as all LaMP tasks, we applied a ROUGE-L threshold of 0.7 to encourage diversity while still
preserving task fidelity. Table 16 provides the tasks for which ROUGE-L filtering is not applied.

Table 16: Tasks without ROUGE-L filtering.

Category Tasks
BBH bbh boolean expressions, bbh date understanding,

bbh disambiguation qa, bbh geometric shapes,
bbh logical deduction three objects, bbh multistep arithmetic two,
bbh navigate, bbh object counting, bbh penguins in a table,
bbh reasoning about colored objects,
bbh salient translation error detection, bbh snarks,
bbh temporal sequences, bbh tracking shuffled objects three objects,
bbh web of lies

MMLU high school world history, high school us history,
high school european history

M ROBUSTNESS OF TITOK TO SYNTHETIC DATA QUALITY

While TITOK’s primary contribution is token-level transfer and is,thus, not tied to synthetic data,
we provide a detailed analysis on the robustness of our method to synthetic-data variations.

Robustness to low-quality synthetic data. First, we deliberately construct a suboptimal syn-
thetic dataset by selecting only the 250 lowest-scoring synthetic samples, as evaluated by the
GPT-4o-mini grading model and prompt in (scores ∈ {0, 1, 2, 3, 4, 5}) (Chen et al., 2024a). All
training hyperparameters and filtering processes are identical to the original setup. As shown in
Table 17, TITOK still substantially outperforms all baselines in the Mistral 7B → Mistral 7B BBH
transfer setting. This shows that TITOK is still effective even with low-quality synthetic data.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Model Transfer Method BBH (Acc.)

Mistral 7B → Mistral 7B

Vanilla 0.397
KD 0.406
TransLoRA 0.405
TITOK (k=70%) 0.416

Table 17: BBH exact-match performance for the Mistral 7B → Mistral 7B transfer setting using
low-quality synthetic data. TITOK (k=70%) continues to outperform all baselines.

Table 18: Alternative synthetic query prompt template for BBH.

Synthetic query generation prompt for {task name} in BBH.

Generate {task name} questions like these examples:

Example 1:
(few-shot example 1)

Example 2:
(few-shot example 2)

Example 3:
(few-shot example 3)

Example 4:
(few-shot example 4)

Example 5:
(few-shot example 5)

Example 6:

Robustness to data diversity. Our synthetic data generation pipeline already incorporates dedu-
plication and a ROUGE-L diversity threshold. This ensures the exclusion of exact duplicates and
highly similar samples. More details are provided in Appendix L.

Robustness to prompt design. We further conduct an experiment with a different prompt for gen-
erating synthetic data. The alternative prompt template is provided in Table 18. We test this on BBH
tasks in the Mistral 7B → Mistral 7B and Mistral 7B → Llama3 8B transfer settings.

Table 19 shows the results of using the alternative prompt for generating synthetic data. Analytically,
the results show that TITOK achieves consistent improvements, and there are no substantial differ-
ences across prompt choices. This demonstrates that TITOK is not sensitive to prompt formulation,
as long as the generated examples adhere to a reasonable and coherent structural pattern.

Overall, we emphasize that a highly refined or meticulously selected synthetic dataset is not required
for TITOK. As long as the generated samples retain a relatively cohesive task structure, TITOK is
still effective and is not very sensitive to the particular features of the synthetic data.
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Table 19: Effect of prompt variation on TITOK on BBH in the Mistral 7B → Mistral 7B and Mistral
7B → Llama3 8B settings.

Transfer Method Prompt BBH (Acc.)

Mistral 7B → Mistral 7B
Vanilla – 0.397

TITOK (k=70%)
original (Table 23) 0.432
alternative (Table 18) 0.436

Mistral 7B → Llama3 8B
Vanilla – 0.469

TITOK (k=70%)
original (Table 23) 0.482
alternative(Table 18) 0.485

Data Source BBH Scholarly Title

Gold data 2.40 3.68
Mistral 7B synthetic data 2.27 3.89
Llama3 3B synthetic data 2.01 3.74
Llama2 7B synthetic data 2.07 3.15

Table 20: Overall average quality ratings of gold and synthetic datasets across the BBH and Schol-
arly Title Generation tasks. GPT-4o-mini evaluates each data sample on a 1–5 scale.

N ADDRESSING SYNTHETIC DATA QUALITY AND BIAS

We now move on to explain how our pipeline incorporates several components specifically designed
to reduce bias and prevent quality degradation in synthetic data. Specifically, we achieve this by in-
corporating several components, including a length filter that removes malformed or low-informative
samples, a token-wise token-wise contrastive excess mechanism that selects only the most informa-
tive tokens rather than relying on entire synthetic sentences, and diversity filtering ( i.e deduplication
and ROUGE-L thresholding) to prevent mode collapse during synthetic data generation.

Additionally, we further execute an external quality evaluation using a separate model
(GPT-4o-mini), adopting the robust synthetic-data assessment methodology established in prior
work (Chen et al., 2024a). Table 20 reports the average quality scores (scale 1–5) of gold data and
the synthetic data generated by multiple source models used in our experiments.

These results show that the synthetic data used in our experiments is comparable in quality to the
gold dataset, with no evidence of harmful bias dominating the data. Importantly, TITOK performs
consistently well across all synthetic sources, even when the quality varies (e.g., 2.01 vs. 2.40 in
BBH), which further indicates that TITOK does not rely on perfectly clean or unbiased synthetic
data. Taken together, these findings demonstrate that TITOK is robust to imperfections in synthetic
data, and, once again, can be effectively used even in non-synthetic datasets as shown in Table 3.

O ROBUSTNESS OF TITOK UNDER WEAKER SOURCE LORAS

We now discuss scenarios where the source LoRA is weaker than the target model. While it is true
that TITOK uses the source LoRA as a reference, its effectiveness is not strongly dependent on the
source LoRA’s absolute performance. To illustrate this point more clearly, Table 21 summarizes the
subsets of Table 1 in which the source LoRA underperforms the target model’s vanilla version, and
presents these source LoRA scores alongside the corresponding transfer results.

As shown in the table, TITOK still consistently improves the target model even when the source
LoRA is weaker than the target baseline. This shows that TITOK captures domain-specific signals
that are embedded in key tokens rather than inheriting the source LoRA’s full behavior.
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BBH Scholarly Title

Model Transfer Metric Acc. R-1 R-L

Llama3 3b → Llama3 8b
source lora 0.460 0.429 0.363
target base 0.462 0.444 0.378
TITOK (k=30%) 0.509 0.457 0.392

Llama2 7B → Llama3 8B
source lora 0.359 0.431 0.367
target base 0.469 0.444 0.378
TITOK (k=70%) 0.510 0.461 0.404

Table 21: Results on BBH and Scholarly Title Generation for transfer settings where the source
LoRA is weaker than the target baseline.

Table 22: “Initial TITOK” indicates TITOK applied once. “Iterative TITOK: self transfer” applies
TITOK again using synthetic data generated by the learned target LoRA after the initial transfer.

BBH (Acc.)

Mistral 7B → Mistral 7B Vanilla 0.397
Initial TITOK 0.432
Iterative TITOK: self transfer 0.456
Target expert 0.460

Mistral 7B → Llama3 8B Vanilla 0.469
Initial TITOK 0.482
Iterative TITOK: self transfer 0.510
Target expert 0.531

P EXPLORATION ON SELF REFINEMENT

While TITOK primarily focuses on LoRA-to-LoRA knowledge transfer, we explore an intriguing
new direction by examining whether TiTok can also support self-refinement. We perform this ex-
periment on the BBH benchmark in the Mistral 7B → Mistral 7B and the Mistral 7B → Llama3
8B transfer settings. In particular, after the initial transfer step, 1) we generate synthetic data using
the target LoRA that had already learned TITOK’s transferred knowledge, 2) compute contrastive
excess scores on the newly generated synthetic data using the original source LoRA and the its base
model, and 3) train a new target LoRA with the same hyperparameters in the original setting (e.g.,
k=0.7%). The empirical results for self-refinement are summarized above in Table 22.

Interestingly, the results show that the iterative step yields additional improvement, implying that
iterative refining is possible. We hypothesize that this is possible because the initial transfer increases
the target model’s familiarity with the task and partially aligns its internal representations with the
source domain. As a result, the target model generates cleaner, more coherent synthetic data with
fewer irrelevant patterns. This thereby enables the second iteration of TITOK to more accurately
identify domain-informative tokens, which improves token selection and makes excess scoring more
discriminative. However, we emphasize that iterative refining synthetic data cannot surpass a target
model trained on real train data. By creating increasingly better synthetic data, iteration can help
narrow the gap, but it is still far from a fully supervised target model trained on actual data.

Q QUALITATIVE EXAMPLES

In this section, we provide qualitative examples from the News Headline Generation in the Mistral
7B → Mistral 7B transfer setting to illustrate how TITOK identifies the most informative tokens.
The qualitative examples are presented in Figure 5. Analytically, the selected tokens correspond to
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Prompt

You are a news headline generator.

Generate a headline for the following article.

article: With a scalloped hem, it's a show-stopping piece that's both unique and affordable. 
Want more? Be sure to check out Stylelist on….

headline:

Output Stylist': The Perfect White Dress For Your Wedding (PHOTOS) </s>

Prompt

You are a news headline generator.

Generate a headline for the following article.

article: It’s hard to imagine that you would be interested in hearing about my favorite holiday tradition,
but if you are, I’d be happy to share…..

headline:

Output How To Make Your Own DIY Christmas Ornaments (PHOTOS) </s>

Figure 5: Qualitatave examples from News Headline Generation in the Mistral 7B → Mistral
7B setting. Bold and highlighted tokens are part of the selected tokens. Notably, these tokens
exhibit high token-wise contrastive excess scores and thus fall into the top 70% selected for training.

the beginnings of major semantic or structural units in the headline. These tokens carry the highest
information value: they denote transitions, introduce core noun phrase components, or contain root
words. Moreover, since the token-wise contrastive excess score is defined as the difference between
the expert model (source LoRA + base) and the amateur model (base only), it pinpoints the tokens
where the expert and amateur diverge most in their predictions and so include effective learning
signals for target tasks. Taken together, these qualitative examples effectively demonstrate that
TITOK consistently retains the tokens that are most important for providing structure and meaning.

KD-based approaches, however, are highly dependent on the absolute capacity of the source LoRA.
By making the target model follow the teacher’s logits, a weak or poorly tuned source LoRA un-
avoidably transfers certain flaws, resulting in the minimal gains supported by the results in the
above table. Meanwhile, TITOK avoids these deficiencies because it fundamentally differs in how it
leverages the source LoRA. Instead of relying on the source LoRA’s logits globally, TITOK uses the
source only to smartly identify informative token positions. As a result, a poorly tuned source LoRA
does not mislead TITOK since it does not make the target model imitate the source LoRA’s behavior.
Rather, it selectively retrieves the useful tokens using the source LoRA’s domain knowledge.

R PROMPTS FOR SYNTHETIC QUERY GENERATION

In this section, we present the prompts used for generating synthetic queries. Each prompt includes
five examples, which correspond to the seed prompts taken from the original data. For BBH, which
consists of multiple subtasks, we specify task-specific instructions and formatting rules so that the
generated queries and labels are structured according to the expected format. Each BBH subtask is
paired with its corresponding rules and output format to ensure consistency across the benchmark,
and Table 23 illustrates the case of boolean expressions as a representative example.

In contrast, for MMLU a single unified prompt format is sufficient for most subjects, and
the model reliably generates queries that follow the expected structure. The exception is
the history-related tasks, namely, high school us history, high school world history, and
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Table 23: Synthetic query prompt for the BBH boolean expressions task. Each BBH subtask re-
quires task-specific instructions and formatting rules to ensure that generated queries and labels
follow the expected format. We show boolean expressions task here as a representative example.

Synthetic query generation prompt for BBH (boolean expressions) task.
System
You are an expert task generator for boolean expressions tasks. Generate boolean expression
evaluation tasks ending with ‘ is‘ – SINGLE LINE ONLY.

CRITICAL FORMAT REQUIREMENTS:
- Follow the EXACT format structure shown in the examples.
- ABSOLUTELY CRITICAL: Generate ONLY ONE LINE, ONE TASK per response.
- NO multiple lines, NO newlines (\n), NO multiple expressions.
- Must end with ‘ is‘.
- Example of INVALID output: True or False is\n\n False and True is
- Example of VALID output: True or False or not False and ( True or
False ) is

Generate diverse content but maintain the exact same format structure. Only output the task
input, not the solution.

User
Generate new boolean expressions tasks following these exact format examples:
Example 1: [boolean expression ending with ‘ is‘]
Example 2: [boolean expression ending with ‘ is‘]
Example 3: [boolean expression ending with ‘ is‘]
Example 4: [boolean expression ending with ‘ is‘]
Example 5: [boolean expression ending with ‘ is‘]

CRITICAL: Generate ONLY ONE LINE, exactly like the examples above.

Generate a new task following the exact format:

high school european history. For these tasks, it is observed that more specific prompting is
required to obtain better generations. The general MMLU prompt is shown in Table 24, whereas
the history-related tasks make use of the specialized prompt provided in Table 25.

Finally, for LaMP tasks, we apply the same query template uniformly to each user. The detailed
prompt templates for LaMP 4 and 5 are provided in Tables 26 and 27 respectively.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 24: Synthetic query prompt for the MMLU. Applied to all tasks except for history related
tasks.

Synthetic query generation prompt for MMLU (general).
Example 1:
Question: [question snippet]
1. [choice snippet]
2. [choice snippet]
3. [choice snippet]
4. [choice snippet]
Answer: [1–4]

Example 2:
Question: [question snippet]
1. [choice snippet]
2. [choice snippet]
3. [choice snippet]
4. [choice snippet]
Answer: [1–4]

Example 3:
Question: [question snippet]
1. [choice snippet]
2. [choice snippet]
3. [choice snippet]
4. [choice snippet]
Answer: [1–4]

Example 4:
Question: [question snippet]
1. [choice snippet]
2. [choice snippet]
3. [choice snippet]
4. [choice snippet]
Answer: [1–4]

Example 5:
Question: [question snippet]
1. [choice snippet]
2. [choice snippet]
3. [choice snippet]
4. [choice snippet]
Answer: [1–4]

Example 6:
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Table 25: Synthetic query prompt for the MMLU history tasks only. The history tasks are
high school us history, high school world history, and high school european history. These his-
tory tasks required more specific prompting to obtain better results.

Synthetic query generation prompt for MMLU (history related tasks).
Generate [SUBJECT] multiple choice questions following these examples:

Example 1:
Question: [history question snippet]
1. [choice snippet]
2. [choice snippet]
3. [choice snippet]
4. [choice snippet]
Answer: [1–4]

Example 2:
Question: [history question snippet]
1. [choice snippet]
2. [choice snippet]
3. [choice snippet]
4. [choice snippet]
Answer: [1–4]

Example 3:
Question: [history question snippet]
1. [choice snippet]
2. [choice snippet]
3. [choice snippet]
4. [choice snippet]
Answer: [1–4]

Example 4:
Question: [history question snippet]
1. [choice snippet]
2. [choice snippet]
3. [choice snippet]
4. [choice snippet]
Answer: [1–4]

Example 5:
Question: [history question snippet]
1. [choice snippet]
2. [choice snippet]
3. [choice snippet]
4. [choice snippet]
Answer: [1–4]

Now generate a new [SUBJECT] question following the same format:
Question:

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 26: Synthetic query prompt for the News Headline Generation task.

Synthetic query generation prompt for News Headline Generation
You are a news text generator. Generate diverse news article texts that could be used to create
headlines. Only output the raw news text content, not headlines or queries.

Example 1: [article snippet]
Example 2: [article snippet]
Example 3: [article snippet]
Example 4: [article snippet]
Example 5: [article snippet]

Example 6:

Table 27: Synthetic query prompt for the Scholarly Title Generation task.

Synthetic query generation prompt for Scholarly Title Generation
You are a scholarly abstract generator. Generate diverse ONE paragraph abstracts that ask for
creating paper titles from abstracts. The abstract should be ONE paragraph only. Only output
the raw abstract text, not the actual titles.

Example 1: Create a title for this research paper:
Abstract: ”[abstract snippet]”
Title: ”[title]”

Example 2: Create a title for this research paper:
Abstract: ”[abstract snippet]”
Title: ”[title]”

Example 3: Create a title for this research paper:
Abstract: ”[abstract snippet]”
Title: ”[title]”

Example 4: Create a title for this research paper:
Abstract: ”[abstract snippet]”
Title: ”[title]”

Example 5: Create a title for this research paper:
Abstract: ”[abstract snippet]”
Title: ”[title]”

Write a research paper abstract as a single paragraph containing at least 3 sentences.

Example 6:
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