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Abstract

PanTS is a large-scale, multi-institutional dataset curated to advance research in
pancreatic CT analysis. It contains 36,390 CT scans from 145 medical centers, with
expert-validated, voxel-wise annotations of over 993,000 anatomical structures,
covering pancreatic tumors, pancreas head, body, and tail, and 24 surrounding
anatomical structures such as vascular/skeletal structures and abdominal/thoracic
organs. Each scan includes metadata such as patient age, sex, diagnosis, contrast
phase, in-plane spacing, slice thickness, etc. Al models trained on PanTS achieve
significantly better performance in pancreatic tumor detection, localization, and
segmentation than those trained on existing public datasets. Our analysis indicates
that these gains are directly attributable to the 16x larger-scale tumor annotations
and indirectly supported by the 24 additional surrounding anatomical structures.
As the largest and most comprehensive resource of its kind, PanTS offers a new
benchmark for developing and evaluating Al models in pancreatic CT analysis.

1 Introduction

Pancreatic cancer is the third leading cause of cancer-related death in the U.S. in both men and women
combined [56, 55, 65]. Yet despite its clinical importance, early detection remains a major challenge
due to the absence of disease-specific symptoms and the incidental nature of abdominal imaging
[48]. Consequently, 80—85% of pancreatic tumors are diagnosed at advanced stages, when treatment
options are limited and prognosis is poor [68]. In contrast, early-stage tumors are associated with
markedly better outcomes, emphasizing the urgent need for earlier identification [71].

Computed tomography (CT), especially with contrast enhancement, is the primary modality for
evaluating pancreatic abnormalities [16]. Retrospective studies have shown that early radiographic
signs—such as ductal dilation or focal atrophy—can appear months before clinical diagnosis, but
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Figure 1: Dataset characteristics and visualization. A. PanTS comprises 36,390 CT scans collected
from 145 medical centers, paired with expert-validated voxel-wise annotations, 16x larger than
the biggest public dataset (i.e., PANORAMA [4]) to date. B-C. The dataset includes detailed
annotations for pancreatic tumors, pancreas, and its head, body, and tail, enabling spatially aware
tumor localization. D. Twenty-four surrounding anatomical structures are voxel-wise annotated to
provide rich spatial context, including key vessels, ducts, and organs critical for tumor detection,
resectability assessment, and radiotherapy planning.

often go undetected [24, 17, 33]. However, these indicators are frequently missed in clinical practice,
particularly when scans are acquired for unrelated reasons [57, 61]. Pancreatic tumors in CT scans
are highly heterogeneous in shape, size, location, and radiologic appearance [50].

Recent advances in Al have shown promise in automating the detection and localization of pancreatic
tumors in CT scans [11, 35, 39]. However, most publicly available models are trained on small,
homogeneous datasets and fail to generalize to diverse clinical settings. This shortcoming reflects a
fundamental data limitation: the pancreas is a small, anatomically intricate organ embedded among
critical vessels, ducts, and adjacent structures, making comprehensive annotation and assessment
particularly challenging [25, 38, 36]. Accurate analysis of pancreatic tumors depends not only on
identifying the tumor itself but also on understanding its anatomical context.

To address this limitation, we present the Pancreatic Tumor Segmentation Dataset (PanTS)—the

largest and most comprehensive dataset to date for pancreatic CT analysis®. PanTS comprises 36,390
CT scans from 145 medical centers. Each scan is paired with metadata, including patient age, sex,
contrast phase, diagnosis, in-plane spacing, and slice thickness. Importantly, PanTS includes over
993,000 expert-validated voxel-wise annotations (examples in Figure 1), covering:

» Pancreatic tumors along with pancreas head, body, and tail, to enable tumor detection,
localization, and segmentation. We find that increasing the number of annotated tumors
directly improves Al performance on out-of-distribution datasets (Figure 5). To this end,
a team of 23 radiologists have produced voxel-wise tumor annotations in each CT scan to
support effective Al training at scale.

» Twenty-four surrounding anatomical structures (e.g., superior mesenteric artery, bile ducts;
full list in §3) are annotated to enable comprehensive tumor analysis. Joint training on
tumors and nearby structures indirectly enhances Al performance by reducing false positives
and providing rich anatomical context (Figure 6). Feature analysis reveals that models
trained with both tumor and anatomical structure labels learn more discriminative and
separable representations, allowing for more precise tumor detection and segmentation.

With its large scale, diversity, and anatomical detail, PanTS sets a new benchmark for AI development
in pancreatic CT analysis. It includes 9,901 publicly available training scans (non-commercial license)
and 26,489 test scans reserved for third-party evaluation. This setup follows best practices in medical
Al benchmarking [47, 7, 6, 37], ensuring fair and reproducible comparisons. We also release a strong

3PanTS is not intended for direct clinical decision-making or real-time diagnosis.



baseline model, nnU-Net, alongside the dataset. This baseline model ranked Top-1 in the official
Medical Segmentation Decathlon (MSD) Leaderboard.

2 Related Datasets & Our Contribution

2.1 Pancreas and Other Organ Datasets

Several public datasets have advanced multi-organ segmentation in abdominal CT, including BTCV
[34] (50 CTs, 13 classes, 1 center), CHAOS [31] (40 CTs, 4 class, 1 center), AMOS22 [28] (500 CTs,
15 classes, 2 centers), WORD [43] (150 CTs, 16 classes, 1 center), and AbdomenCT-1K [44] (1,112
CTs, 4 classes, 12 centers). These datasets typically target general abdominal structures or liver
segmentation, with limited diversity in institution count (<12 centers) and relatively modest dataset
sizes. TotalSegmentator [64] is one of the most ambitious efforts to date, offering 1,228 CT scans
across 117 classes from a single source. However, its focus remains on broad anatomic structure
segmentation and lacks dedicated design for oncologic applications.

Limitation: While these datasets are useful for general anatomical segmentation, they are not
specifically designed for pancreatic tumor analysis. None of them provides voxel-wise annotations
of important pancreatic substructures, such as the head, body, and tail of the pancreas, the superior
mesenteric artery, pancreatic duct, common bile duct, celiac artery, and duodenum. These annotations
are essential for surgical decision-making, tumor staging, and accurate assessment of tumor invasion
and resectability. Reference organs such as the liver, spleen, kidneys, adrenal glands, aorta, and
postcava are either inconsistently labeled or absent [40, 41, 29, 72, 70, 59]. Furthermore, distal
anatomical landmarks, including the lungs, femurs, bladder, and prostate, which are important for
spatial orientation and radiotherapy planning, are rarely included.

Our Contribution: PanTS addresses these limitations by offering voxel-wise annotations for 27
clinically meaningful structures selected specifically to support pancreatic tumor analysis. These
include voxel-wise annotations of the pancreas head, body, and tail, and 24 surrounding anatomical
structures crucial for spatial reasoning, proximity assessment, and downstream clinical workflows
such as radiotherapy planning and vessel invasion analysis. With 36,390 CT scans from 145 global
medical centers, PanTS is not only the largest organ segmentation dataset available, but also the
most diverse—offering over 3 X more institutional representation and over 7 x more data than leading
datasets like AbdomenCT-1K [44] or AMOS22 [28].

2.2 Pancreatic and Other Tumor Datasets

Tumor segmentation datasets have historically focused on more common cancers and organs. For
instance, liver tumors are supported by datasets like LiTS [10] (201 CTs, 7 centers), HCC-TACE-Seg
[49] (105 CTs), and MSD Liver [6] (201 CTs); colorectal tumors by Stagell-Colorectal-CT [60]
(230 CTs); kidney tumors by TCGA-KIRC [3] (267 CTs) and KiTS23 [21] (599 CTs); and lung
tumors by MSD Lung [6] (96 CTs). Large-scale efforts such as FLARE’23 [46] (4,500 CTs, 14
classes, more than 50 centers) and autoPET [2] (1,214 CTs, 1 class) target pan-cancer analysis but
lack pancreas-specific detail or annotations of relevant anatomical structures.

Limitation: Pancreatic tumor datasets, in comparison, remain scarce and small in scale [8, 14, 9, 15].
NIH Pancreas-CT [1] (82 CTs), Pancreatic-CT-CBCT-SEG [23] (40 CTs), and CPred-Sunitinib-
panNET [13] (38 CTs) are all limited to single centers and focus on narrow tumor types or clinical
scenarios. PANORAMA [4] (2,238 CTs, 6 classes, 7 centers) is a major step forward, offering
voxel-wise annotations for pancreatic ductal adenocarcinoma (PDAC) and associated structures such
as ducts and vessels. However, it does not provide annotations for other types of pancreatic tumors,
which causes issue in evaluation as discussed in §4.

Our Contribution: PanTS is the largest and most comprehensive publicly available dataset for
pancreatic tumor segmentation, offering over 16X more annotated CT scans than PANORAMA
and spanning over 20x more medical centers. In addition to voxel-wise annotations of pancreatic
tumors, PanTS provides segmentation of the pancreas head, body, and tail, enabling precise tumor
localization and region-aware staging. The dataset supports a full pipeline of clinically relevant
tasks—tumor detection, segmentation, staging, resectability assessment, and surgical planning—by
also including 24 surrounding anatomical structures critical for evaluating tumor involvement of
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vessels and adjacent organs. No existing dataset provides this combination of scale, diversity, and
task-aligned anatomical detail.

3 PanTS: The Pancreatic Tumor Segmentation Dataset

PanTS comprises 36,390 CT scans with precise per-voxel annotations of pancreatic tumors, pancreas
head, body, and tail, along with 24 surrounding structures (i.e., pancreas, superior mesenteric artery,
pancreatic duct, celiac artery, common bile duct, veins, aorta, gall bladder, left and right kidneys,
liver, postcava, spleen, stomach, left and right adrenal glands, bladder, colon, duodenum, left and
right femurs, left and right lungs, and prostate). Sourced from 145 centers, this dataset includes
imaging metadata such as patient sex, age, contrast phase, diagnosis, spacing, and scanner details.

We split the PanTS into a training set of 9,901 cases (27%) and a test set of 26,489 cases (73%), both
consisting of abdominal CT scans. For public reproducibility, the training set is further split into
9,000 cases for model development and 901 cases as an official public test set *. Detailed dataset
characteristics are summarized in Table 1. The data and annotation are licensed as CC BY-NC-SA.
We have released the training set to The PanTS Huggingface Website, and the test set is preserved
for third-party evaluation.

3.1 Dataset Diversity

The PanTS dataset comprises a broad spectrum of pancreatic tumor types, including pancreatic ductal
adenocarcinoma, pancreatic neuroendocrine tumors (PNETS), pancreatic cystic neoplasms, and cystic
non-neoplastic lesions. These entities exhibit heterogeneous imaging characteristics in terms of size,
morphology, attenuation, and texture. The CT scans are abdominal images obtained using varying
contrast phases, scanner models, and imaging protocols. The dataset also contains real-world imaging
artifacts, such as metal-induced streaks, contributing to substantial variability in spatial resolution and
image quality. The number of tumors per case ranges from 1 to 6, and tumor sizes range from 4 mm
to 68 mm in diameter. The test set contains a higher frequency of tumor occurrences than the training
set. The average Hounsfield Unit (HU) value of tumors is 57.3 in the training set and 78.2 in the test
set. Dataset statistics are summarized in Table 1. The training and test sets originate from different
data sources. Therefore, PanTS allows thorough evaluation of Al generalization to unseen centers.

3.2 Dataset Contributors

The CT scans for the PanTS dataset come from 145 centers across 20 countries. As summarized in
Figure 2, the CT scans from the training set are assembled from 13 publicly available abdominal CT
datasets; the test set includes scans that are collected from 3 centers—University of California, San
Francisco (UCSF), Polish Hospitals (PH), and Peking University Third Hospital (PUTH)—as well
as the RSNA Abdominal Traumatic Injury CT (RATIC) dataset [54], which spans 23 centers across
14 countries. All data are anonymized, and the CT scans have been reviewed visually to preclude
the presence of personal identifiers. The only processing applied to the CT scans is a transformation
into a unified NIfTI format using NiBabel in Python. All CT scans from the training set can be
downloaded from their official websites; ethics approval was not required. The use of test set has
received IRB approval from Johns Hopkins Medicine under IRB00403268.

3.3 Annotation Protocol

The pancreatic tumors in the PanTS dataset were manually annotated by a team of 23 medical
annotators with varying levels of expertise in pancreatic imaging, as summarized in Table 2. Each
CT scan was annotated slice-by-slice using the MONAI-Label software [12, 19], with annotators
assigning one of the pre-defined anatomical labels or marking the region as Background if it did not
correspond to any defined structure. Initial tumor annotations were performed by annotators with
>3 years of radiology experience. Each annotation was then reviewed by three additional annotators
who were blinded to the initial labels. In cases of disagreement, a specialist served as the final arbiter
to resolve labeling conflicts. Extremely small or ambiguous lesion-like structures were excluded to

“Benchmark results for this split are available at https://github.com/MrGiovanni/PanTs.
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Table 1: Characteristics of the PanTS dataset. The PanTS training and test sets differ significantly
across most clinical and imaging variables, including age, sex distribution, image resolution, and
contrast phases. p-values were computed with the Mann—Whitney U test. Notably, the test set
contains a similar proportion of tumor cases but includes more non-contrast scans, making it a more
challenging and realistic out-of-distribution benchmark. Tumor burden and pancreas size also vary
between sets, reinforcing the need for robust generalization in model evaluation. These differences

justify our dataset split design for assessing model performance under distributional shifts.

Variable Training set (n =9,901) Test set (n = 26,489) p-value
Age, mean (SD) 60.6 (13.0) 58.5(17.0) 1.78 x 1077
Sex 7.87 x 10727

Female, no. (%) 2,358 (23.8) 13,090 (49.4)

Male, no. (%) 2,923 (29.5) 11,714 (44.2)

Unknown, no. (%) 4,620 (46.7) 1,685 (6.4)
In-plane spacing, mm (IQR) 0.81 (0.74, 0.98) 0.75 (0.70, 0.83) 0.00
Slice thickness, mm (IQR) 1.25 (0.80, 2.50) 1.25 (1.25, 2.50) 5.13 x 10~ 169
Contrast phase 0.00

Non-contrast, no. (%) 4,488 (45.3) 3,920 (14.8)

Portal venous, no. (%) 2,895 (29.2) 20,296 (76.6)

Arterial, no. (%) 2,450 (24.7) 2,273 (8.6)

Delayed, no. (%) 68 (0.8) 0(0.0)
Pancreatic tumor

Yes, no. (%) 1077 (10.9) 2,829 (10.7)

No, no. (%) 8,824 (89.1) 23,660 (89.3)
Dilated duct

Yes, no. (%) 3,387 (34.2) 11,180 (42.2)

No, no. (%) 6,514 (65.8) 15,309 (57.8)
Tumors per positive CT, no. (IQR) 1.00 (1.00, 1.00) 1.00 (1.00, 2.00) 1.48 x 1079°
Tumor volume, mm® (IQR) 4,749 (1,658, 11,479) 12,667 (3,347, 32,238) 4.07 x 107°3
Tumor HU value, mean (SD) 57.3(30.7) 78.2 (59.0) 1.54 x 1071
Pancreas volume, mm® (IQR) 74,669 (52,806, 95,892) 74,480 (56,676, 92,892) 8.75 x 1072
Pancreas HU value, mean (SD) 56.8 (36.4) 85.6 (54.8) 0.00
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Figure 2: Geographic diversity of the PanTS dataset. Global distribution of contributing centers
in the PanTS training set (purple circles) and test set (red outlines). Circle size is proportional to the
base-10 logarithm (log;g) of the number of CT scans contributed per country. The training set is
aggregated from diverse public datasets spanning multiple countries, while the much larger test set
is exclusively drawn from three independent centers—UCSF (United States, North America), PH
(Poland, Europe), and PUTH (China, Asia)—not seen during training, as well as the RATIC dataset,
which contributes scans from eight additional countries. This global coverage supports rigorous
cross-institutional and out-of-distribution evaluation.

ensure consistency and quality. This structured multi-annotator annotation process was designed to
ensure consistency, resolve ambiguity, and achieve high-quality voxel-wise annotations.

The PanTS dataset includes public organ and tumor segmentation datasets (Figure 2). However,
these datasets were not fully-annotated for all tumors and structures we have in PanTS. The public
datasets inside the PanTS training set had 191 pancreatic tumor annotations. We annotated 886
additional pancreatic tumors, reaching 1,077 pancreatic tumor annotations in the PanTS training
set. Appendix A compares the number of structure annotations in public datasets and in PanTS. To
efficiently scale voxel-wise annotations across pancreas head, body, tail, and 24 other anatomical
structures, we employed a human-in-the-loop workflow [51, 38, 69]. Specifically, an Al-based



Table 2: Annotator experience. The 23 medical annotators contributing to the PanTS dataset span a
wide range of experience levels, with Specialists averaging 27 years of practice, General radiologists
10 years, and Residents 4 years. Despite this variation, the annotators interpret a high volume of
CT scans annually—Specialists averaging ~10,300/year, Generals ~18,000/year, and Residents
~16,000/year—ensuring both breadth and depth of radiological expertise across annotations. This
mix of senior and junior readers supports consistent, high-quality labeling while enabling scalability
across thousands of cases.

No. Annotator ID Experience (yr) ~ CT read / year \ No. Annotator ID Experience (yr)  CT read / year
1 Specialist 1 (S1) 24 12,000 2 Specialist 2 (S2) 22 12,000
3 Specialist 3 (S3) 35 8,000 4 Specialist 4 (S4) 30 8,000
5 Specialist 5 (S5) 28 9,000 6 Specialist 6 (S6) 19 13,000
7 Specialist 7 (S7) 23 11,000 8 General 1 (G1) 12 18,000
9 General 2 (G2) 8 18,000 10 General 3 (G3) 9 18,000
11 General 4 (G4) 10 18,000 12 General 5 (G5) 8 18,000
13 General 6 (G6) 13 18,000 14 General 7 (G7) 11 18,000
15 General 8 (G8) 10 18,000 16 General 9 (G9) 10 18,000
17 General 10 (G10) 13 18,000 18 General 11 (G11) 10 18,000
19 Resident 1 (R1) 5 16,000 20 Resident 2 (R2) 3 16,000
21 Resident 3 (R3) 4 16,000 22 Resident 4 (R4) 5 16,000
23 Resident 5 (RS) 5 16,000

anatomy segmentator was used to generate initial organ annotations, which were then manually
verified and corrected by radiologists. This Al-assisted workflow was used only for non-tumor
structures; all pancreatic tumors were annotated and reviewed manually.

3.4 Annotation Standard

Tumor annotations include the entire pancreatic mass, incorporating both solid and cystic components
as well as intralesional necrosis, while excluding adjacent organs, fat, and vasculature. The pancreatic
parenchyma is annotated into head, body, and tail based on anatomical landmarks: the head includes
the uncinate process, and extends up to the mesenteric vessels; the body-tail separation is set at about
the midpoint between the mesenteric vessels and the end of the pancreas tail. Only glandular tissue is
included, excluding surrounding fat, vessels, and the duodenum. The pancreatic duct is annotated as
a low-attenuation tubular structure extending from the tail to the ampulla of Vater, including both the
duct wall and lumen, but excluding adjacent parenchyma and vessels. Related abdominal vessels
are annotated as follows: the celiac artery from its origin to its trifurcation; the superior mesenteric
artery (SMA) from its aortic origin to the first major branch; the portal vein from the confluence
with the splenic vein to its entry into the liver; and the splenic vein from the splenic hilum to its
confluence with the portal vein. For all vessels, both lumen and wall are included, while surrounding
fat, organs, and unrelated tissues are excluded. Annotation standards for other vessels, abdominal
organs, thoracic structures, and skeletal landmarks are detailed in the Appendix C.

3.5 Annotation Quality Control

Large medical image datasets inevitably contain annotation imperfections, particularly in voxel-wise
annotations. While such datasets remain highly valuable, their utility can be further enhanced by
systematically assessing annotation reliability. To evaluate internal consistency and quality of voxel-
wise annotations in our training set, we conducted an inter-annotator agreement study (Figure 3E).

Specifically, we randomly selected 300 CT scans from the training set and had them independently
re-annotated by a second radiologist, blind to the initial annotation. We computed the Dice Similarity
Coefficient (DSC) between the two annotations for each case as a measure of agreement (Figure 4A).
The median inter-annotator agreement was DSC (%) = 86.1%, with an interquartile range (IQR) of
19.6%, indicating high consistency across annotators. However, a small number of cases showed
low agreement (DSC < 20%), often due to small or ambiguous lesions. To ensure the annotation
quality, we define a minimum threshold of DSC =20% and flag all such cases for review and possible
correction by senior radiologists.

Figure 4B shows representative examples of CT scans annotated by two radiologists. High-agreement
cases are shown on the left, while low-agreement cases—typically more subtle or ambiguous—are
shown on the right. This inter-annotator evaluation not only ensures annotation quality control but also
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Figure 3: Annotation standard and quality control. A—C. Voxel-wise annotations of pancreatic tu-
mors and surrounding anatomical structures shown on axial, sagittal, and coronal planes. Radiologists
provide these annotations following the standard described in §3.4. D. 3D rendering on the coronal
plane highlights detailed annotations of the tumor, pancreas, and key vessels, including the celiac
artery (Celiac AA), superior mesenteric artery (SMA), common bile duct (CBD), and surrounding
veins. E. To assess annotation quality, a subset of 300 CT scans from the PanTS training set was
independently re-annotated by multiple radiologists. Inter-annotator agreement was evaluated using
the Dice Similarity Coefficient (DSC).
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Figure 4: Inter-annotator agreement on the PanTS subset. A. Distribution of DSC (%) values
between two independent radiologists across 300 CT scans from the PanTS training set. Most
annotations demonstrate high agreement, confirming their reliability. A minimum threshold of DSC =
20% (dashed red line) is used to flag low-agreement cases, which are reviewed by senior radiologists
for further quality assurance. B. Representative examples showing the same CT scan annotated by
two different radiologists. High-agreement cases appear in the left columns, while low-agreement
cases—often involving small or ambiguous lesions—appear on the right.

provides a reference for benchmarking automated models: systems that achieve DSCs comparable to
or exceeding this agreement level can be considered human-comparable in segmentation performance.

4 Justification of Annotating Large-Scale Tumor Datasets

A central hypothesis is that scaling up voxel-wise tumor annotations significantly improves Al
performance, particularly under out-of-distribution (OOD) settings—Tlike hospitals not seen in training.
To evaluate this, we trained a standard nnU-Net model on pancreatic tumor datasets of increasing
size—MSD-Pancreas (n = 281), PANORAMA (n = 2,238), and our proposed PanTS dataset (n =
9,901)—and evaluated detection performance on the held-out PanTS test set, which contains CT
scans from medical centers not present in any training data.

As shown in Figure 5A, model performance improves with dataset scale, but not uniformly. The
Area Under the ROC Curve (AUC) increases modestly from 0.810 (MSD) to 0.819 (PANORAMA),



and then substantially to 0.959 when trained on our PanTS dataset”. While this trend partially
aligns with Al scaling laws [30, 67]—which suggest that performance improves logarithmically with
dataset size—the limited gain from MSD to PANORAMA indicates that scale alone is not sufficient.
The significant improvement observed with PanTS is instead attributable to both its larger size and
its high-quality, comprehensive annotations. PanTS includes 9,901 CT scans from 145 centers,
capturing a broad range of pancreatic tumor types, anatomical variations, scan protocols, and noise
distributions—factors essential for building robust, generalizable Al models.

To further assess the benefit of large-scale annotation, we benchmark nnU-Net trained on our PanTS
dataset against leading AI models trained on MSD (Figure 5B). Using the official MSD test set,
and third-party evaluated by the organizers of MSD challenge, our nnU-Net trained on PanTS
outperforms all baseline methods by a margin of at least +4.9% DSC and +3.1% NSD in pancreatic
tumor segmentation, becoming the new top-1 AI model in the public MSD-Pancreas leaderboard.
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Figure 5: Justification of annotating large-scale tumor datasets. A. The Receiver Operating
Characteristic (ROC) curve of standard nnU-Net trained on different scale of pancreatic CT datasets,
i.e., MSD-Pancreas (n = 281), PANORAMA (n = 2,238), and our PanTS dataset (n = 9,901). The
performance is tested on the PanTS test dataset (CT collected different centers from MSD-Pancreas,
PANORAMA, and the PanTS training set, detailed in Figure 2). The observation is the larger training
set, the better pancreatic tumor detection performance on the out-of-distribution test set. B. Barplot
of Al trained on our PanTS vs. Al trained on publicly available dataset (MSD-Pancreas). The
performance is tested on the official MSD-Pancreas test set (third-party evaluation). All metrics can
be found at The MSD Leaderboard.

S Justification of Annotating 24 Surrounding Anatomical Structures

To assess the impact of anatomical context on pancreatic tumor segmentation, we compared the
performance of a standard nnU-Net trained under two labeling schemes: a 2-class setup (tumor and
pancreas) and a 28-class setup (tumor, pancreas subregions—head, body, tail—and 24 surrounding
anatomical structures). Figure 6A shows the 28-class model markedly outperforms the 2-class model
in tumor segmentation, with mean DSC improving +10.3% from 57.4% to 67.7%. Tumor boundary
accuracy, measured by Normalized Surface Dice (NSD), also increases +9.7% from 56.8% to 66.5%.

By including structures such as the duodenum, bile duct, and nearby vessels, the 28-class model
leverages additional spatial context to more effectively exclude non-tumorous tissue near ambiguous
boundaries, enhancing spatial reasoning in anatomically complex regions. Annotating adjacent organs
further encourages the model to internalize critical spatial relationships, especially in areas with
low-contrast boundaries [29, 72]. These findings suggest that anatomical annotations function as
implicit regularizers, helping the model structure its latent space more effectively.

>We hypothesize this discrepancy stems from annotation protocol differences: PANORAMA only annotates
pancreatic ductal adenocarcinoma (PDAC), while treating all other tumors and healthy pancreases as Normal.
This conflates distinct conditions under a single label, introducing ambiguity and limiting the model’s ability to
learn fine-grained distinctions between normal and abnormal tissue.
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The addition of 24 surrounding structures provides vital contextual cues, enabling clearer differenti-
ation of tumors from neighboring tissues. This enriched anatomical supervision guides the model
to learn spatial relationships, structural boundaries, and typical organ configurations—particularly
important in the pancreas. These results highlight the importance of comprehensive multi-organ
annotation for training robust and generalizable AI models in medical imaging.

In summary, our results confirm that including spatially related anatomical structures can improve
segmentation of the class of interest. This underscores the importance of extensive anatomical
annotation when designing large-scale, high-performance medical Al datasets.
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Figure 6: Justification of annotating 24 surrounding anatomical structures. We compare nnU-Net
models trained with 2 classes (tumor and pancreas) versus 28 classes (tumor, pancreas head/body/tail,
and 24 surrounding anatomical structures). The 28-class model significantly improves tumor seg-
mentation accuracy (mean DSC +10.3%, p < 0.0001), highlighting the value of anatomical context.
We further analyze the latent features of the two nnU-Net models. A. The 2-class model, trained
to distinguish only pancreatic tumors vs. background, shows overlapping feature clusters in t-SNE
space [63], with substantial false positives. B. The 28-class model, trained with supervision from
27 additional anatomical structures, results in better separation of pancreatic tumor features from
surrounding tissues in t-SNE space.

6 Conclusion and Discussion

Our PanTS dataset marks a major advance in data-driven pancreatic cancer research. It includes
more than 36,000 CT scans from 145 medical centers, enabling Al models that generalize across
patient populations and imaging protocols. This dataset was built through a large collaborative
effort involving 23 radiologists and years of annotation, quality control, and cross-validation. With
nearly one million expert-validated voxel-wise annotations, PanTS is the largest public dataset for
pancreatic tumor analysis to date.

We hope the release of PanTS will encourage more research groups to share medical datasets and
annotations. We highlight two key aspects that we believe are especially important for public datasets
in cancer related research.

Normal CT scans matter. Public tumor datasets often include positive CT scans but contain few or
no normal scans. For example, all the scans in MSD-Pancreas [6] contain pancreas tumors, so we
won’t know if Al trained on it is overly sensitive. No normal scan can be used to test it. Similarly,
KiTS (for kidney tumors) [21], LiTS (for liver tumors) [10] datasets also offer a very limited number
of normal scans. This imbalance makes it difficult to estimate the true negative rate (Specificity) and
positive predictive value (PPV)°—two key metrics that determine whether an algorithm is suitable
for large-scale population screening. For example, in the general-population setting, where the
prevalence of pancreatic tumor is extremely low, even a highly accurate model can yield many false
positives. A simple Bayesian calculation illustrates the point: if 100,000 asymptomatic individuals
are screened at 0.1% prevalence, even the state-of-the-art model (operating at 97% sensitivity and

High PPV means the patient is very likely to have cancer if the AI predicts it.



99% specificity) would produce around 1,096 positive predictions, but only around 97 would be
true positives (PPV = 8.9%). Most positive predictions in practice would be false, causing anxiety,
overdiagnosis, and extra costs.

Our PanTS dataset helps address this evaluation gap by providing a large pool of normal CT scans
(89% of both training and test sets), enabling assessment of number of false positives. We also
provide both contrast-enhanced (e.g., venous, arterial, delayed) and non-contrast CT scans, which
enable opportunistic screening analyses in scans acquired not for cancer detection. The scale (36,390
CT scans from 145 centers) and rich labels allow model assessment beyond sensitivity alone and
under clinically relevant operating points.

Metadata matters. Because PPV depends on disease prevalence, screening will be more effective
when focused on higher-risk groups rather than the general population. Integrating imaging biomark-
ers and clinical metadata (e.g., age, contrast phase, ductal findings, notes) into a knowledge-graph
or risk-score can raise effective prevalence and transform a population-level screener into a tar-
geted detection tool. PanTS is designed for this: each scan includes metadata (age, sex, contrast
phase, spacing, slice thickness), voxel-wise labels for the pancreas and 24 surrounding structures
(e.g., pancreatic duct, common bile duct, SMA, portal vein), and summary variables such as ductal
dilatation—{features that enable principled risk stratification and anatomy-aware modeling. In short,
who we screen (risk stratification) and what we test on (abundant normal scans and diverse protocols)
are as important as how we model. Datasets that pair many normal scans with rich metadata, as our
PanTS does, are essential for developing models whose PPV and clinical value hold up in practice.

Despite its strengths, PanTS highlights the considerable challenges of annotating tumor datasets
compared to normal anatomical structures. Even among experts, inter-annotator agreement can be
modest, especially for small, ambiguous lesions. Our analysis of misclassified cases provides insight:
in false positives, annotators noted subtle texture irregularities in the pancreas but without the hallmark
signs of tumor presence (e.g., ductal dilation or parenchymal atrophy). Conversely, false negatives
often involved subtle or atypical presentations, such as exophytic growths in hard-to-visualize regions
as the pancreas tail or diffuse parenchymal thinning that may indicate underlying malignancy.

These findings underscore a central challenge: even experienced radiologists can miss early or atypical
tumors, emphasizing the potential value of Al models trained on large, richly annotated datasets like
PanTS. At the same time, they highlight the need for caution when interpreting both manual and
automated annotations—especially in edge cases. Future work should explore multimodal learning,
combining imaging, pathology, and clinical data, to further improve accuracy and reduce uncertainty.

Importantly, PanTS is more than a technical benchmark—it has clinical and translational significance.
Pancreatic cancer remains one of the deadliest malignancies due to late-stage diagnoses and the
subtlety of early radiologic signs. While Al holds promise for earlier detection, prior models have
been hampered by small, homogeneous training data. By contrast, PanTS offers unprecedented
scale and diversity, enabling the development of robust, generalizable Al systems. It also provides
a foundation for anatomy-aware evaluation metrics, automated report generation, subpopulation
analysis, and Al-assisted education. To maximize impact, we publicly release the baseline model and
the PanTS training set under the non-commercial license.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions
by summarizing the dataset’s unprecedented scale, rich anatomical annotations, and the
demonstrated performance gains in tumor detection and segmentation, as evidenced by
comprehensive experiments and ablation studies.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 2 and Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not present any theoretical results. Its contributions lie in
the construction of a large-scale pancreatic CT dataset and the empirical validation of its
effectiveness, rather than in formal assumptions or mathematical proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Section 4, Section 5 and Appendix B.
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code, Models & Data:
https://huggingface.co/datasets/MrGiovanni/_PanTSMini

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 4, Section 5, and Appendix B.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Figure 4, Figure 6 and Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix E.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research fully adheres to the NeurIPS Code of Ethics. All patient-
identifiable information was anonymized during preprocessing to ensure privacy protection,
and the released dataset contains no identifiable information.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix F.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The PanTS dataset poses no high risk for misuse. It consists of fully
anonymized medical CT scans from clinical institutions and does not include any personally
identifiable information, internet-scraped content, or generative models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Figure | for the use of existing datasets; Figure 5-6 for the use of existing
code and models. A more detailed description is given in Appendix A, E, B.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have publicly released the training and evaluation code used in our bench-
mark (given in the abstract) and provided the download link of our datasets, i.e., PanTS.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects. All
data were collected retrospectively from existing clinical records at participating institutions,
and patient information was fully anonymized in compliance with ethical standards.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study does not involve direct interaction with human subjects. All CT
scans were retrospectively collected and fully anonymized prior to analysis.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology of this research does not involve the use of LLMs in any
important, original, or non-standard way. LLMs were not used in data processing, model
development, or experimental evaluation.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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