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ABSTRACT

Graph foundation models (GFMs), inspired by the success of LL.Ms, are designed
to learn the optimal embedding function from multi-domain text-attributed graphs
(pre-training) for the downstream cross-task generalization capability (fine-tuning).
During our investigation, graph vector quantized-masked autoencoder (gVQ-MAE)
stands out among the increasingly diverse landscape of GFM architectures. This
is attributed to its ability to jointly encode topology and textual attributes from
multiple domains into discrete embedding spaces with clear semantic boundaries.
Despite its potential, domain generalization conflicts cause imperceptible pitfalls.
In this paper, we instantiate two of them, and they are just like two sides of the same
GFM optimization coin - Side 1 Model Degradation: The encoder and codebook
fail to capture the diversity of inputs (e.g., social networks and molecular graphs);
Side 2 Representation Collapse: The hidden embedding and codebook vector fail
to preserve semantic separability due to constraints from narrow representation
subspaces. These two pitfalls (sides) collectively impair the decoder and generate
the low-quality reconstructed supervision, causing the GFM optimization dilemma
during pre-training (coin). Through empirical investigation, we attribute the above
challenges to Information Bottleneck and Regularization Deficit. To address them,
we propose MoT (Mixture-of-Tinkers) - @ Information Tinker for Two Pitfalls,
which utilizes an edge-wise semantic fusion strategy and a mixture-of-codebooks
with domain-aware routing to improve information capacity. @ Regularization
Tinker for Optimization Coin, which utilizes two additional regularizations to
further improve gradient supervision in our proposed Information Tinker. Notably,
as a flexible architecture, MoT adheres to the scaling laws of GFM, offering a
controllable model scale. Compared to SOTA baselines, experiments on 22 datasets
across 6 domains demonstrate that MoT achieves significant improvements in
supervised (1.4%), few-shot (3.1%), and zero-shot (3.3%) scenarios.

1 INTRODUCTION

In recent years, graph neural networks (GNNs) have revolutionized relational data modeling by
capturing structural inductive biases [[7; [28; [10]. However, their reliance on domain- and task-specific
design severely constrains generalization [8} [12]], often requiring costly retraining for new scenarios.
Recent advances in graph foundation models (GFMs) seek to leverage the self-supervised paradigm
to extract semantic consensus (i.e., topology and textual attributes insights) from multi-domain
text-attributed graphs during pre-training for better generalization in various graph downstream tasks.

Why Graph-oriented GFMs and gVQ-MAEs? Reviewing existing GFM frameworks, we provide a
brief summary in Fig. [} The taxonomy is ® Language-oriented methods [39; [11] convert graphs
into flattened textual representations for the token encoder (e.g., transformer-based LL.Ms) and @
Graph-oriented methods [36; 27} 124]] preserve text comprehension and structural integrity through
dedicated architectures (e.g., the frozen LLM combined with trainable GNN). The key insights are
@® Language-oriented GFMs irreversibly disrupt graphs, but graph-oriented GFMs employ tailored
TAG processing and self-supervised paradigms to maintain topology-awareness; @ The available
TAG pre-training corpora are tiny (GB), rendering the utility of the parameter-intensive transformers.
Therefore, considering the GFM scaling law, the model scale of GNN is already sufficient (million).
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Figure 1: The overview of existing GFM studies and prevalent gVQ-MAE architecture.

Nevertheless, we emphasize the necessity of maintaining flexibility for GFM scale-up. Among the
increasingly diverse landscape of graph-oriented GFMs, graph vector quantized-masked autoencoder
(gVQ-MAE) [13} 18 23] is promising, owing to @ Discrete embedding spaces enabled by vector
quantization mitigate representation redundancy while preserving multi-domain graph separabil-
ity [22]]; @ Free-scaled encoder and codebook dynamically aligns model capacity toward flexibility
and optimizes the memory-performance trade-off [I3]. Please refer to Appendix [A.I|for more details.

What are gVQ-MAEs’ Limitations and How to Solve Them? Due to domain generalization conflicts,
two underexplored yet interrelated pitfalls emerge in gVQ-MAESs during GFM pre-training. These
pitfalls are just like two sides of the same optimization coin: Side 1 Model Degradation: The encoder
and codebook often over-suppress domain-specific representations, especially for semantically con-
flicting inputs. Side 2 Representation Collapse: Progressive shrinkage of the latent space constrains
hidden embeddings and codebook vectors to a narrow subspace [37]]. This leads the decoder to
over-utilize the limited embedding subset, generating low-quality reconstructed supervision and
highlighting the optimization dilemma during pre-training (coin). In Sec. [3] we attribute these issues
to the Information Bottlenecks and Regularization Deficits. To address them, we propose Mixture-
of-Tinkers (MoT), which consists of: @ Information Tinker for Two Pitfalls, which utilizes an
edge-wise semantic fusion strategy to enhance the encoder and employs a mixture-of-codebooks
(MoC) with a tailored gated routing network. They jointly improve the information capacity of gVQ-
MAE to maintain domain discriminability and representation diversity; @ Regularization Tinker
for Optimization Coin, which utilizes the contrastive alignment and load-balancing constraint to
improve Information Tinker further. They collaborate and serve as auxiliary gradient supervision.

Our Contributions. (1) New Perspective. We are the first to reveal the pitfalls of gVQ-MAE:s in
GFM optimization during pre-training and link them to Information Bottlenecks and Regularization
Deficits. (2) New Method. We propose MoT for better optimization with a theoretical guarantee,
which introduces edge-wise semantic fusion and MoC-enhanced vector quantization for two pitfalls,
as well as two tailored regularizations for further improvements. (3) SOTA Performance. Extensive
experiments demonstrate the superiority of MoT. In addition, by introducing MoC, we endow the
model scale with flexible expansion, making it better suited for the GFM and showing great potential.
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2 PRELIMINARIES

2.1 NOTATIONS AND PROBLEM FORMULATION

Consider a text-attributed graph (TAG) G = (V, €&, T) with |V| = n nodes and |E| = m edges. T
is the textual description for nodes and edges, and the adjacency matrix is A. To achieve GFM, T
is encoded into feature vectors X’ using a pre-trained text encoder. Now, we have G’ = (V, &, X),
which preserves both the topology and textual attributes. Based on this, GFM aims to learn an optimal
embedding function fy over the multi-domain {G/} using self-supervised paradigms [9; [6; [16; [29].
For cross-task requirements, fy is fine-tuned with task-specific heads for better performance.

2.2 GRAPH FOUNDATION MODELS

Language-oriented GFMs (X). They convert graphs into text sequences that encode nodes and
edges using carefully designed syntactic rules, enabling the direct application of LL.Ms for graph
understanding [4]]. Specifically, during pre-training, they update the trainable embedding function
(LLMs) using NLP optimization objectives, such as next-token prediction [8]. Despite inheriting key
intuitions from LLMs, they suffer from irreversible topology disturbance and scalability concerns.

Graph-oriented GFMs (v'). They preserve text comprehension and structural integrity through
dedicated architectures. Specifically, they typically employ frozen LLMs combined with trainable
GNNs as the embedding function, enabling effective collaboration between topology and textual
attributes [34;|14]. Based on this, during pre-training, they integrate reconstruction or contrastive
self-supervised tasks, enabling the model to capture multi-domain TAG semantic consensus [3; 25]].

2.3 GRAPH VECTOR QUANTIZED-MASKED AUTOENCODER

Most recent graph-oriented GFMs adopt gVQ-MAE:s as the trainable module [32]]. This architecture
enables the joint encoding of topology and textual attributes into a discrete embedding space [38]].
@G = (V,&,X) — Encoder — Hid. Emb.: To ensure generality, we use an encoder instantiated
as any reasonable GNN capable of incorporating both node and edge features to generate z. @ Hid.
Emb. z — Codebook — Quan. Emb.: To establish clear semantic boundaries, codebook C transforms
continuous z into discrete codebook vectors e via similarity retrieval-based vector quantization:

e —2q, J = argglércl |z —eill2, C={e1,ea,...,ex}, e € RY Zq € R 1)

® Quan. Emb. z, — Decoder — G|. = (V, &,, X,.): To enable self-supervised training, gVQ-MAEs
follow an autoencoder framework, where gradients are computed by the discrepancy between the
reconstructed supervision G. and the original input G’. To construct end-to-end gradient flow, the
straight-through estimator (STE) [2;135] is used to pass the non-differentiable quantization step.

In gVQ-MAEs, the Side 1 Model Degradation comprises a trainable encoder and codebook. The
Side 2 Representation Collapse comprises the hidden embeddings and the codebook vectors. Besides,
the optimization coin captures the overall GFM pre-training convergence, highlighting the role of
gradient-based supervision. Our mask mechanisms and decoder are introduced in Appendix

3  EMPIRICAL INVESTIGATION

To further illustrate the model degradation and representation collapse, we first investigate two pitfalls
(sides) via the embedding landscape (Fig. [(a)-(c)). Then, we present the convergence curves to
illustrate the direct effects of the two pitfalls in optimization (coin) (Fig. d)). Please refer to
Appendix [B] for more details about the experimental setup and analysis.

3.1 Two SIDES: MODEL DEGRADATION AND REPRESENTATION COLLAPSE

@ Questions — Observations — Conclusions. Questions: @ Can encoder and codebook preserve
separability and diversity? @ Can decoder achieve high-quality reconstruction? Observations: @ The
low value in Fig.[2[a) and bimodal distribution in Fig. 2b) exhibit significant semantic entanglement
and suppression; @ The remarkable mismatch of G’ and G, in Fig. c) reveals decoding distortion.
Conclusions: S1 Model Degradation and S2 Representation Collapse exist and are deeply intertwined.
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Figure 2: Empirical results. The accuracy is reported through real-time downstream evaluation.

v¢ Key Insight — Solution: © Key Insight (Sec. @®): In most TAGs, Appendix [C|shows that edge
descriptions are limited (e.g., "These two items are co-purchased" in E-com), and their embeddings
are frozen. This impairs message passing and leads to the notorious over-smoothing issue, where
homogenized representations hinder the encoder. Solution: Edge-wise Semantic Fusion. We propose
an enhanced graph encoder with edge-attributed message passing to achieve collaborative update of
nodes and edges, thereby ensuring domain separability via improved Information Flow in encoder.
@ Key Insight (Sec. @): A single codebook fails to capture the diverse semantics in multi-domain
inputs, leading to sub-optimal vector quantization. Solution: Mixture-of-Codebooks. We propose this
module inspired by the MoE architecture, employing multiple domain-specific codebooks (experts)
alongside a tailored routing mechanism that selects the most appropriate codebook for quantization.
This design enhances representation diversity by extending Information Resource in codebook.

3.2 SAME COIN: OPTIMIZATION DILEMMA IN MULTI-DOMAIN GFM PRE-TRAINING

@ Questions — Observations — Conclusions. Questions: @ Can gVQ-MAEs stand out? @ Can
Information Tinker improve gVQ-MAEs? Observations: Based on the curves in Fig.[2(d), we have
@® Compared to other GFM architectures, gVQ-MAE demonstrates its superiority; @ Compared to
other gVQ-MAEs, Information Tinker (Naive MoT) achieves the best performance but unsatisfactory
convergence. Conclusions: Although Information Tinker is effective, it remains to be improved.

Yt Key Insights — Solutions: © Key Insight (Sec. ®): The conventional gVQ-MAE commitment
loss fails to effectively optimize MoC, as it merely minimizes the pairwise distances between hidden
embeddings and assigned codebook vectors, while neglecting the semantic conflicts among the
codebooks. Solution: Embedding-Vector Contrastive Alignment. We pull hidden embeddings and
assigned codebook vectors closer, while incorporating the repulsion to alleviate overcrowding among
MoC, achieving Adversarial Regularization in encoder and MoC. @ Key Insight (Sec. @): The
conventional MoE load loss fails to constrain MoC, as it only enforces average expert activation
without accounting for the inter-codebook preferences. Solution: MoC Load-balancing Constraint.
We dynamically redistribute MoC toward the domain-optimal load, while preventing individual
codebooks from becoming high-density hubs, achieving Domain-aware Regularization in MoC.

4 MIXTURE-OF-TINKERS
In this section, we present the details of the MoT, and Fig. [3]illustrates its complete workflow.
4.1 INFORMATION TINKER

Motivation. Based on the empirical analysis in Sec.[3.1] the Information Bottlenecks between the
encoder and codebook in gVQ-MAEs lead to S1 Model Degradation. To mitigate this, we design
® Edge-wise Semantic Fusion dynamically updates graph contextual information in the encoder
to enhance Information Flow, and @ Mixture-of-Codebooks utilizes domain-specific codebooks
separately to represent information from different semantic spaces to extend Information Resource.

Edge-wise Semantic Fusion. Existing GNNs for TAGs often naively integrate edge features by
repeatedly aggregate them across layers [25;12], which causes information redundancy when edges
share identical features, mentioned in Sec.[3.TJand Appendix[C] To resolve this, we propose Edge-wise
Semantic Fusion, where each edge e, evolves by assimilating knowledge from its connected nodes
h, and h,,. The detailed operation are described in Appendix |D. 1

ME = ey (sPron, {0, 0}) ol = A (e Prons {4000 }) . @

4
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Figure 3: The overview of vanilla gVQ-MAE and its enhancement by our proposed MoT.

Mixture-of-Codebooks. As previously noted, conventional single-codebook struggles to capture
diverse cross-domain graph semantic patterns. While increasing codebook size naively expands
representation capacity, it fails to fundamentally resolve the semantic conflicts inherent in the multi-
domain GFM pre-training and further hinders optimization. In this context, we propose a sparsely
activated Mixture-of-Codebooks {Cy, . . .,Cxs }, each specializing in distinct domains. Specifically,
for an input node hidden embedding h,,, we compute domain-specific activation scores via a gating
network G(-) and select the Top-k codebooks:

Mactive = Topk; (Su,h ey Su,M) s Suyg = MLPZ (hu) 5 Vi € {17 ceey M} . (3)
The final quantized embedding z,, combines outputs from active codebooks:
Sufm
=Yy, = VQ(hy,Cp), )

meEMactive ZjEMaC“"e Su.j
where VQ(-) denotes vector quantization to the nearest codebook, following the paradigm as Eq. .

This design achieves three critical properties: @ Domain Specialization: Each C,, auto-clusters
semantically similar graph patterns; @ Dynamic Capacity: The capacity of MoC adaptively scales
with the domain diversity and corpus scale of pre-training data, ensuring the optimal expressiveness;
® Gradient Stability: Total codebook size scales as O(M - K) but only O(k - K') active units per
sample. This normalized Top-k weighting mitigates training instability in sparse routing.

4.2 REGULARIZATION TINKER

Motivation. As empirically demonstrated in Sec. [3.2] Regularization Deficits in conventional VQ
lead to representation collapse in codebooks (i.e., the sub-optimal performance of naive MoT shown
in Fig. d)). To address this, we introduce two novel regularization objectives: @ Embedding-
Vector Contrastive Alignment which minimizes the InfoNCE loss [[16] for each node w with pre-
quantized embedding h,, and quantized code z,, to achieve Adversarial Regularization; @ Mixture-
of-Codebooks Load-balancing Constraint which aligns codebook usage with domain proportions,
preventing codebook dominance and achieving Domain-aware Regularization.

Embedding-Vector Contrastive Alignment. Traditional gVQ-MAEs employ a commitment loss
(e.g., MSE) to minimize the distance between embeddings h and quantized counterparts z based on
the nearest-neighbor retrieval. Despite its intuitiveness, this weakly constrained mechanism suffers
from biased codebook learning, leading to amplified collapse in GFM pre-training. To address the
dual challenges of codebook collapse and embedding collapse, we propose a Triple-Contrastive Loss
that simultaneously achieves: @ Alignment: Attracts the corresponding h;-z; pairs via positive pairs.
@ Embedding Diversity: Repels distinct hidden embeddings h;-h; to mitigate embedding collapse.
® Codebook Dispersion: Repels quantized codes z;-z; to prevent token redundancy. Formally,

1 exp (S (hy, z;) /7)
Leon == Zbg (o0 (5 (i 2) /7) + oxp (S (e, 1) /1) + oxp (S (v 2g) /7)) O

where S(-) computes cosine similarity, and 7 is a temperature hyper-parameter.
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Mixture-of-Codebooks Load-balancing Constraint. In MoC, a key challenge emerges when a
small subset of codebooks dominates the gating mechanism, resulting in codebook collapse. In
such cases, most inputs activate limited codebooks, significantly restricting the model’s expressive
capacity. This imbalance arises from the absence of explicit constraints to ensure equitable codebook
utilization during training. To address this, we introduce a domain-aware load-balancing constraint,
inspired by MoE but specifically designed for codebook specialization. This constraint encourages
balanced usage by guiding inputs to preferentially activate their domain-specific codebooks:

n M

1 R . Si,
Eload = _; Z Z Yi,m IOg Yim» Yiom = #7 (6)
i=1m=1 j=154,j

where y; ,, € {0, 1} denotes whether the node i belongs the domain m. We ensure balanced corpus
distribution across domains during pre-training, preventing skewed codebook activation.

4.3 THEORETICAL ANALYSIS

4.3.1 WHY INFORMATION TINKER ALLEVIATES SEMANTIC ENTANGLEMENT?

Definition 4.1. Information Bottleneck in GFMs. Let G’ = (V, &£, X) denote an input graph
with domain-specific semantics .S. The Information Bottleneck principle aims to learn compressed
representations Z that maximize the Mutual Information of semantic relevance 1(Z; S) and I(Z; )
while minimizing redundant information I(Z; X'). The optimal trade-off is governed by:

mZin [[(Z;X) —al(Z;8S) — BI(Z;€)], a>0,3>0. 7

Traditional gVQ-MAEs suffer from semantic entanglement due to @ Static Edge Integration: Naive
aggregation schemes constrain edge-aware information flow, limiting I(Z; £). @ Single-Codebook
Quantization: A shared codebook C forces all domains into a single space, causing I(Z; S) < log K
(bounded by codebook size). To break these limitations, we propose Information Tinker and present
the following theoretical foundations to support its effectiveness (proofs are shown in Appendix [E):

Theorem 4.2. Edge-wise Fusion Expands Information Flow. Let Z.,.;11, and Z\ioT denote node
embeddings generated by a vanilla GNN and our Edge-wise Fusion (Eq. ([2))), respectively. Then:

](ZMOT;(S') Z I(Zvanilla;g) +7 Z E |:||Veuvhu||2i| 3 (8)
eyuy€E
where v = ”‘TZ, v is the Lipschitz constant of the activation function o, and Ve, h,, is the gradient of

node embedding h,, w.r.t. edge feature e,,,.

Theorem 4.3. Mixture-of-Codebooks Enhance Information Resource. For M domain-specific

codebooks {C1, . ..,Cu}, each with K vectors, the maximum semantic mutual information scales as:
max [ (Z;5) > log (M - K). “

This strictly dominates the single-codebook upper bound max 1(Z;S) < log K.

4.3.2 How CONTRASTIVE ALIGNMENT MITIGATES REPRESENTATION COLLAPSE?

Definition 4.4. Representation Collapse. Let Z C R? be the latent space of embedding Z € R<.
Representation collapse occurs when dim(span(Z)) < d.

To combat collapse, our proposed Triple-Contrastive Loss L., in Eq. (5) promotes: ® Alignment —
minimizing the distance between positive pairs (h;, z;); @ Uniformity — maximizing the separation
of negative pairs (h;, h;) and (z;, z;). Based on this, we leverage the hypersphere space to analyze
their gradient-level optimization trajectories. It provides geometric intuition into how the optimization
objective promotes alignment and uniformity and elucidates the underlying optimization dynamics
that drive representation dispersion and prevent collapse, thereby enhancing interpretability.

Theorem 4.5. Contrastive Loss Induces Uniformity. Minimizing the contrastive loss L., approxi-
mates maximizing the pairwise angular distances:

h; - h; 2
min L., & max En; b, {arccos (J>} x maxE,;, .. {arccos (zzj)] . (10)
([ ] - [y ] [zl - Nl
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Table 1: Performance on fine-tuning setting. We report accuracy for node/edge-level tasks and AUC
score for graph-level tasks. The best and sub-best results are marked in Bold Red and Bold Blue.

Model Node Classification Link Classification Graph Classification
Cora WikiCS Reddit History WNISRR FBI15K237 HIV MUV
GCN 74.6210.18 74271009 639441014 759041056 73471006 78651012 62.891046 56.724103
GraphMAE 74‘19i0.42 78-77:t[).36 61.40i0_55 75-31i0.87 71~09i0.59 82.16;&0_13 64.84i1_42 65‘91i0_94
GIANT 76.041047 79.824023 61941029 77.891065 82.801033 81441019 61.164787 62.0547.33
GFT 77144173 77764060 76731081 84121062 94.160021 86.841061 70291048 66.0612.79
OFA 75.611087 77724065 73.611090 83451078 97.22.018 95771001 71.894015 70.8141.47

SAMGPT 76291031 73.964026 66401059 80.981010 75461020 86.281031 664041059 69.2410.14
UniGraph 76.43i0_55 79.98i1_21 74.46i0_75 83.27i0_92 85.45i0_34 94‘81i1_32 71~23i1.93 69.12i1_55
MoT-st-tiny  83.774134 80.161178 78471165 79541085 91.041115 921511925 71.864214 68.331187
MoT-st-base 84'31i1.78 82.98i1_31 78.03i0_39 83-7710.78 94.62i0_21 96.24i0_57 72.89i2_04 7]~52i1.23
MoT—st-large 85.05i()_5| 82.94i1_97 78.05i1_47 84.13i0_72 94~01i0.38 96.8810_42 73.45: 1.96 71.18ij 45

Table 2: Performance on few-shot setting. We report accuracy for node/edge-level tasks and AUC
score for graph-level tasks. The best and sub-best results are marked in Bold Red and Bold Blue.

Model Cora - Sway History - Sway

10-shot 5-shot 3-shot 0-shot 10-shot 5-shot 3-shot 0-shot
GraphMAE 65-2416,87 64.33;{:7_12 60.18i8‘05 51~47i9.14 54.89i7‘33 53.62;{:8.73 48.24i9‘15 39.183:8‘25
GIANT 65.0547.14 63914590 62331908 54624701 563346095 51.241787 50.861844 38.3319.12
GFT 69.331862 68.6719.091 64.001905 61.041764 61331584 60.041916 59334777 44.671653
OFA 70154724 67.334885 05241996 59.184545 60451515 58784789 562441502 43.871778

SAMGPT 67424815 65334904 65184912 58.891945 61.154778 59244515 57.331889 45.624504
UniGraph 74-43i8.55 73.98i7_21 73.46i7_75 65~27i6.92 65.45i4_34 6].8]i8_32 58.23i7_93 44~]2i6.55
MoT—st—tiny 80.5341585 79371550 77.601571 67.071746 63471678 60471414 59.071334 45871470
MoT-st-base 80.93i4_51 78.67i4_87 74-73i4.77 68.73i5_(,‘3 65.68i5_2x 64.60i4_27 62.93i3_17 46.53i5_15
MoT—st—laIge 82.27i3.41 80.80i2_89 79'47i3.53 68.401626 65.2414.95 64.95i4_05 63.86i3‘4; 46.87i4,92

Model WNI18RR - Sway HIV - 2way

10-shot 5-shot 3-shot 0-shot 10-shot 5-shot 3-shot 0-shot
GraphMAE 67.1 5i7,78 65~24i8_15 62-33i8,89 45.47ig_24 52.84i6,g7 52~15i7./15 52-24i8.02 50.33ig_15
GIANT 66.861695 605.191778 63951545 48791889 51.164595 51.861624 51154701 50451778
GFT 73.021943 71.331798 70.671511 50.004993 57.7549.45 57.784:g12 55.061943 52.101776
OFA 72244515 70.861580 68241945 51331412 55.89i778 55244515 54861889 51241945

SAMGPT 69.891924 68.151997 65241745 48234615 56.154g89 54241945 53334812 51.8647.78
UniGraph 76.43i5_55 74.98i4_21 72.46i7_75 52~27i6.92 55~45i5.34 54.81i4_32 54‘23i7.93 51~12i8.55
MoT—st—tiny 75.87i5‘29 73.33;{:5,73 72.80i5‘29 50.73;{:2.52 57.86i5‘25 56.47;{:5‘78 56-O7i6,14 52.873:725
MoT-st-base 76~27i3.64 76.40i;;_g7 74-80i4.18 52~93i7.39 58.80i5_69 57.60i5_24 56.40i5_57 53-53i6.78
MoT-st-large  78.241487 75951524 75151573 53241650 58454512 58861545 56241508 53.8716.45

5 EXPERIMENTS

To validate the superiority of MoT, we conduct comprehensive experiments. We aim to answer: Q1:
Does MoT outperform SOTA baselines in supervised/few-shot/zero-shot scenarios while adhering to
GFM scaling laws? Q2: How do Information and Regularization Tinker alleviate model degradation
and collapse? Q3: Is MoT resilient to data-scale variations and hyper-parameter sensitivity? Q4:
Does MoT achieve practical time-accuracy trade-offs? The implementation details and MoT variants
are introduced in Appendix [FJand[A.2] Additional experimental results and hyper-parameter settings
can be found in Appendix [G|and [H] Unless otherwise specified, MoT refers to the MoT-st-base.

5.1 OVERALL PERFORMANCE

To answer Q1, we conduct systematic evaluations across three fundamental graph learning tasks
(node/edge/graph classifications) under two distinct learning paradigms: (1) supervised fine-tuning
and (2) few-/zero-shot transfer. We compare MoT with three categories of baselines: supervised GNN
(GCN), unsupervised GNNs (GraphMAE, GIANT), and GFMs (GFT, OFA, SAMGPT, UniGraph).

Table [T] demonstrates MoT variants’ strong performance in supervised scenarios, where even the
lightest variant MoT-st-tiny exceeds all baselines. Table[2highlights MoT’s adaptability in data-scarce
scenarios, which consistently outperforms existing methods across few-/zero-shot learning settings.
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Table 3: Ablation on two tinkers for GFM pitfalls and optimization coin.

Model Cora WikiCS Reddit History WN18RR HIV
Information Tinker

w/o. Fusion 81.05i2'31 78-10i1.89 76.91i1'77 80~33i0.98 89.40i0_45 72‘22i3.50
w/o. MoC 83.77i334 80-16i1A78 78-03i165 79-54’iOA85 91-O4i3A47 71.86i214
Regularization Tinker

w/o. ﬁcon 82.1 l:|:4.02 78.90:‘:3‘11 74.20:‘:2'05 77-22:(:1.&() 90.1 1:‘:1‘22 69.90:&3'78
w/o. Cload 83~12i2.89 78-33i1.78 75~11i1,45 77-12i0.89 92-91i0478 68.89i2,67

MoT 8431175 8298.13 78471089 83.774078 94.62.057  72.8949504
7 |, *MeT L GFT ¢ ungrash wofal  Table 4: Impact on pre-training datasets.
kS o : Datasets WikiCS _ FBI5K237  HIV
<4 # MoT + GFT 4 Unigraph % OFA F
§78' Target 80.16i1.78 93.88i0_42 69-29i2.48
<ol e Remaining 81444100 9492035 72.034015

53*% Tar. Dom. 80.98i1.21 94.81i1,32 71-23i1.93
0P.r?e—'rr*ainilng Da'ralgiza ((-}B)Z Oﬁie—‘rmin?ng DaTalgize (GBZ) Rem. Dom.  79.334145 94241057  71.1642.04
All 8298, 5 96.24.057 72.89.504

Figure 4: Perform. on Cora (left) and HIV (right).

Compared to traditional GNNs, MoT benefits from large-scale pre-training. Compared to existing
GFMs, MoT achieves superior generalization through its dual-tinker architecture: @ the Information
Tinker dynamically fuses edge semantics to prevent model degradation, and @ the Regularization
Tinker enforces geometric constraints via contrastive alignment to avert representation collapse. Such
design achieves enhanced generalization by universalizing structural patterns across domains.

Crucially, MoT demonstrates remarkable adherence to GFM scaling laws across all evaluation
dimensions. As model scale increases from tiny to large variants, we observe consistent performance
improvements while maintaining stable variance patterns. MoT-st-large achieves peak performance
on 6 of 8 fine-tuning tasks and 15 of 16 few-shot settings, though notably underperforms MoT-st-base
in certain cases. While MoT variants successfully follow the scaling law, several critical issues remain
unaddressed. For instance, insufficient pre-training data may lead to suboptimal parameter utilization
and diminished performance returns, highlighting substantial room for future research.

5.2 ABLATION STUDY

To address Q2, we conduct ablation studies isolating core components of MoT, as shown in Table E}
We evaluate four critical variations by disabling Information Tinker (w/o. Fusion and w/o. MoC) and
Regularization Tinker (w/o. L., and w/o. Lj,qq). @ Edge Semantic Fusion Ablation. We replace
the edge-wise semantic fusion with a naive message-passing, which causes significant performance
degradation across all domains and tasks, confirming that our dynamic edge feature integration is
essential for addressing model degradation. @ MoC Ablation. We replace the MoC with a single
codebook, which causes performance collapse, confirming its critical role in preventing representation
collapse. MoC preserves domain semantics and captures transferable domain invariances, which
are essential for cross-domain generalization. ® Contrastive Loss Ablation. We substitute the L .,
with standard commitment loss [22] for codebook updates, which results in catastrophic performance
degradation. By enforcing geometric separability among cross-domain representations, L., prevents
representation collapse in codebook and embeddings. @ Load Balancing Ablation. We disable L,
and use the traditional load loss [19], leading to severe routing imbalance. This proves the constraint’s
necessity for balanced resource allocation in MoC, mitigating expert specialization bias.

5.3 ROBUSTNESS ANALYSIS
To answer Q3, we validate MoT’s stability under different pre-training datasets and hyper-parameters.

Data Scaling Law. We investigate the impact of pre-training data scale on model performance. Fig.
reveals a positive correlation between pre-training data scale and performance, where MoT consis-
tently outperforms baselines across all data scales. Crucially, Table[d]reveals that performance exhibits
no significant dependence on whether the target dataset or domain is included during pre-training,
showing MoT’s exceptional transfer learning capabilities and domain-agnostic generalization.
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Figure 6: Pre-training efficiency comparison across multiple datasets and tasks.

Hyper-parameter Sensitivity. We systematically analyze the impact of three key hyper-parameters:
the scale of the codebook, the Top-k value in the MoC, and the temperature coefficient 7 in contrastive
learning. As demonstrated in Fig.[5| MoT maintains robust performance across all configurations.
Regarding the codebook structure, performance improves as both the codebook size and the number
of codebooks increase. However, larger codebooks also introduce higher computational and memory
costs. The routing mechanism and contrastive learning also play critical roles in model behavior.
Excessively large or small Top-k and 7 can lead to performance degradation. We suggest that in the
experiment, the Top-k be set to 2 or 3, the 7 be set to around 0.5, the size of the codebook be set to
16 codebooks of size 256, which achieves an optimal balance between performance and efficiency.

5.4 EFFICIENCY ANALYSIS

To answer Q4, we evaluate MoT’s computational efficiency and report the real-time downstream
evaluation. As shown in Fig. [l MoT achieves superior performance with significantly reduced
pre-training time compared to existing methods. The dual-tinker architecture enables this efficiency
through two key mechanisms: (1) the mixture-of-codebooks reduces redundant computations by
activating domain-specific experts dynamically, and (2) the regularization tinker maintains stable
convergence without expensive hyper-parameter tuning. MoT achieves higher performance even with
shorter pre-training time, indicating faster convergence of our method.

6 CONCLUSION

In this paper, we identify critical optimization dilemmas in GFMs, manifested as model degradation
and representation collapse. To address this, we proposed MoT, a novel framework that integrates an
Information Tinker with edge-wise semantic fusion and mixture-of-codebooks, and a Regularization
Tinker with contrastive alignment and load-balancing constraints. Theoretically, MoT provably
expands information flow and mitigates collapse, as demonstrated by SOTA performances in extensive
experiments across diverse datasets. However, our work has limitations: (1) The scale and diversity
of existing pre-training datasets remain limited and constrain the performance upper bound of MoT,
particularly for large-scale variants. (2) MoT involves multiple hyperparameters that require careful
manual tuning to achieve optimal performance, adding experimentation overhead. To overcome
these, future work will focus on: (1) Promoting the development of larger, higher-quality TAGs to
unlock fuller model potential. (2) Designing more adaptive mechanisms (e.g., self-adjusting routing
networks) to reduce manual tuning costs and enhance robustness. We will also extend MoT to broader
applications, including cross-modal alignment with LLMs. Our work establishes a flexible foundation
for graph pre-training, and these efforts will further strengthen its practicality and generalization.
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Table 5: The statistician of the GFMs. #Num. denotes the number of datasets, #Dom. is the number
of domains, #Size is the dataset scale in GB, and gVQ-MAE* is the simplified version of gVQ-MAE.

Pre-training Datasets

Model #Param. Target Self-Supervised Signal Architecture
#Num. #Dom. #Size
GOFA [8] 10M 2 2 35 Language  Graph & Language Tasks  Tailored GNN
UniGraph [4] 180M 15 5 40 Language Graph Reconstruction gVQ-MAE*
AnyGraph [30] 1™ 15 4 5 Graph Link Prediction gVQ-MAE*
GFSE [3] 20M 12 5 5 Graph Graph Contrastive Learning  Tailored GNN
GIT [26] 4M 8 4 1 Graph Graph Reconstruction gVQ-MAE*
OpenGraph [31] 40M 11 3 5 Graph Supervised Learning Tailored GNN
OFA [12] 29M 8 3 1 Graph Supervised Learning Tailored GNN
GQT [23] M 20 8 5 Graph Graph Reconstruction gVQ-MAE
GFT [25] ™ 9 4 1 Graph Graph Reconstruction gVQ-MAE
GraphCLIP [40] 150M 5 3 1 Graph Graph Contrastive Learning  Tailored GNN
RiemannGFM [20] 40K 6 3 1 Graph Graph Contrastive Learning  Tailored GNN
SAMGPT [33] 280K 7 4 1 Graph Graph Contrastive Learning  Tailored GNN
UniGraph?2 [5] 30M 14 5 40 Graph Graph Reconstruction gVQ-MAE*
MoT-st-tiny M 22 6 2 Graph Graph Reconstruction gVQ-MAE
MoT-st-base 10M 22 6 2 Graph Graph Reconstruction gVQ-MAE
MoT-st-large 60M 22 6 2 Graph Graph Reconstruction gVQ-MAE
MoT-llama7b-tiny 100M 22 6 2 Graph Graph Reconstruction gVQ-MAE
MoT-llama7b-base 170M 22 6 2 Graph Graph Reconstruction gVQ-MAE
MoT-llama7b-large 450M 22 6 2 Graph Graph Reconstruction gVQ-MAE

A STATISTICIAN AND DISCUSSIONS OF GRAPH FOUNDATION MODELS

A.1 DISCUSSION OF EXISTING GFMSs

We summarize key characteristics of most existing GFMs as shown in Table[5] This systematic com-
parison reveals fundamental divergences between language-oriented and graph-oriented GFMs. For
example, language-oriented approaches such as UniGraph require significantly higher computational
resources, with 180 million parameters and 40GB of pre-training data, whereas graph-oriented GFMs
like RiemannGFM attain comparable performance using only 40 thousand parameters and 1GB of
data. This disparity primarily arises from the differences in data and model paradigms. Specifically,
language-oriented approaches rely heavily on text-based corpora, requiring parameter-intensive
transformer variants to capture complex patterns embedded within flattened, topology-infused to-
ken sequences. In contrast, graph-oriented methods store textual information in vectorized form,
significantly reducing storage requirements. Moreover, their explicit utilization of both feature and
topology information enables the use of parameter-efficient GNNs to achieve strong self-supervised
performance. This underscores the inherent efficiency advantages of graph-oriented GFMs.

Based on this, the widespread adoption of gVQ-MAE and its variants (denoted by *) across diverse
domains underscores their effectiveness as a general-purpose framework for graph pre-training.
This architectural preference is largely attributed to two fundamental advantages. First, the discrete
embedding space introduced by vector quantization significantly reduces representational redundancy,
which is especially beneficial in multi-domain graph pre-training where multiple inputs often exhibit
semantic gap (topology and textual features). Second, the decoupled and dynamic design of the
encoder and vector quantization codebook allows for flexible control over the trade-off between
memory efficiency and model expressiveness. The encoder can be tailored to the complexity of
individual domains, while the codebook can scale independently to accommodate the granularity of
learned patterns, enabling effective pre-training on graphs of varying size, density, and semantics.

As for our proposed MoT, we utilize a substantially larger number of datasets-22 spanning 6 distinct
domains-compared to prior methods such as GOFA, which employs only 2 datasets. Despite this
breadth, our total pre-training data size (2GB) remains considerably smaller than that of most baselines.
This discrepancy arises from fundamentally different dataset selection strategies. Specifically, while
GOFA depends on a small number of large-scale datasets (e.g., MAG240M, 33GB), our framework
intentionally emphasizes dataset diversity over size by integrating a wide array of smaller datasets to
achieve comprehensive domain coverage. In our implementation, our weighted pre-training pipeline
automatically subsamples excessively large graphs (e.g., using a 0.1x sampling rate for PCBA),
ensuring balanced representation across domains.
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A.2 MOT VARIANT SPECIFICATIONS

The proposed MoT systematically investigates architectural scaling through six model variants,
differentiated along two primary dimensions: text encoding methodology and vector quantization
complexity. For textual feature extraction, we implement two distinct encoding pipelines: (1) a
sentence transformer [17] generating 768-dimensional node and edge features, and (2) a frozen
LLaMA-7B [21] model producing 4096-dimensional features. The former provides computationally
efficient semantic encoding suitable for resource-constrained deployments, while the latter leverages
large language model capabilities for capturing nuanced linguistic patterns at higher dimensionality.
Due to higher computational demands without proportional performance improvements observed in
MoT-1lama variants under limited dataset scales, we focus experimental reporting on MoT-st.

We also develop three quantization architectures. The tiny variant employs a single codebook with
128 vectors, operating without gating mechanisms. This configuration serves with total capacity of
5M (st) or 100M (llama) parameters. Building upon this foundation, the base configuration introduces
domain-aware processing through 6 dedicated codebooks, each maintaining 128 vectors with gated
routing. This architecture expands representational capacity to 10M (st) or 170M (llama) parameters
while enabling basic cross-domain adaptation. The large variant represents our most sophisticated
quantization scheme, implementing 64 codebooks with 1024 vectors each. With total capacity
reaching 60M (st) and 450M (llama) parameters, this configuration theoretically supports multi-
granular encoding of structural motifs, semantic relations, and cross-domain patterns. The routing
mechanism dynamically activates subsets of codebooks, where the gating network learns to distribute
inputs across specialized quantization subspaces. While the MoT-large is theoretically capable of
comprehensive multi-scale representation through its high-capacity codebooks, it currently faces
implementation constraints due to insufficient training corpus scale. The architecture demonstrates
remarkable scalability potential when future work addresses corpus scaling challenges. For MoT-tiny
and MoT-large, our proposed Load-balancing Constraint (L;,4q) is deactivated. In MoT-tiny, where
the MoC module is omitted, this constraint becomes redundant. In MoT-large, we substitute L;,qq
with conventional MoE balance loss to maintain experts importance equilibrium.

B DETAILED IMPLEMENTATION OF EMPIRICAL STUDY

KL Divergence of Hidden Embedding. Fig. 2(a) visualizes embedding collapse through KL
divergence metrics. To generate this heatmap, we first extract node embeddings from the final
encoder layer of the pre-trained model after convergence. Node embeddings are grouped by their
predefined domains, and the domain-wise mean embedding is computed for each category. Pairwise
KL divergences between all domain embedding pairs are then calculated. Lower KL values (e.g.,
Bio-Web: 0.16) indicate severe distributional overlap, where hidden embeddings fail to distinguish
domain-specific features. This pattern aligns with the hypothesis that existing GFMs struggle to
preserve domain-specific semantics in hidden spaces and suffer from representation collapse.

Codebook Landscape. Fig. 2[b) analyzes the quantized embedding distribution to diagnose model
degradation and representation collapse. We first generate node embeddings by encoding the pre-
training dataset through their frozen encoders. These embeddings are then mapped to discrete latent
codes via their codebooks, followed by PCA projection to 1D space for visualization. The blue
density curve reveals a bimodal distribution (peaks at -0.2 and 0.8), where major of quantized vectors
cluster within narrow ranges. It indicates severe representation collapse, as the model fails to utilize
the latent space effectively, compressing diverse graph structures into repetitive patterns.

Reconstructed Supervision Landscape. Fig. [J[c) evaluates the fidelity of node feature reconstruc-
tion. After mapping quantized codebook embeddings to reconstructed features via the decoder, we
compare their distributions against original node features (blue curve) through shared PCA transfor-
mation to ensure comparable latent space. The reconstructed node features (blue curve) peaks sharply
at -0.4 with a narrow spread, while the blue curve follows a broad bimodal distribution (peaks at 0.2
and 0.75). This mismatch indicates severe reconstruction failure and the degradation severity.

Convergence Validation. Fig. [Jd) benchmarks the downstream task efficiency of GFMs by tracking
real-time validation accuracy on the Cora in node classification task during pre-training. The outcome
validates that MoT’s architectural innovations mitigate model degradation and representation collapse,
enabling efficient knowledge transfer to downstream tasks.
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Table 6: The edge descriptions of experimental text-attributed graphs.

Domain Edge Description

Citation Network | Feature edge. Citation.

Wikipedia Page Feature edge. Wikipedia page link.

. Feature edge. Connected users have replied to each other or are
Social Network ) . ]
following relationships.

Knowledge Graph | Feature edge. Relation between two entities: <relation name>.

E-commerce Feature edge. These two items are frequently co-purchased or co-viewed.

Feature edge. Chemical bond. <bond type> bond, bond stereo is
<bond stereo>, (is/is not) conjugated.

Molecular Network

C EDGE DESCRIPTION LIMITATIONS IN TEXT-ATTRIBUTED GRAPHS

We systematically catalog the raw edge descriptions of all text-attributed graphs used in Table [6] Our
analysis reveals a pervasive limitation: The edge texts exhibit extreme homogeneity, either through
identical descriptions or rigid templates. This uniformity severely constrains the informational
value of edge features, as they fail to capture edge-specific semantic nuances. When processed by
conventional GFMs using standard GNN encoders, these redundant edge descriptions contribute to
over-smoothing phenomenon, where node representations become indistinguishable due to excessive
homogenization of neighborhood information. This fundamental limitation motivates our proposed
edge-wise semantic fusion strategy, which dynamically enriches edge representations by integrating
contextual node information, breaking the representation collapse while preserving structural integrity.

D DETAILED IMPLEMENTATION OF PRE-TRAINING

D.1 GRAPH ENCODER

We proceed with a detailed explanation of Eq. (2) to fully illustrate the operation of our edge-wise
semantic fusion. This method propagates information by integrating both node and edge features,
thereby enhancing graph information flow and effectively alleviating the representation collapse.

WD — o [ WORO 4 1 > owy (hff) + eq(fu) :
W (w)]
vEN (u) (11)

1
e&ﬂ>=o(“§%#3+2“§)Oﬁ>+h9)>,
where {ng)} , ©=1,2,3,4 are learnable transformation matrices and o is the activation function.

D.2 GRAPH RECONSTRUCTION

To achieve effective pre-training, self-supervised signals are essential. In our implementation, MoT
employs dual masking strategies. Specifically, feature masking randomly obscures p ¢ of dimensions
in the X', while topology masking removes p; of edges from the £. These jointly generate a corrupted
graph G = V,€ © My, X © My), where © denotes element-wise multiplication and M ¢, M, are
binary masking matrices. Based on this, the reconstruction process utilizes two specialized decoders
to recover node features and graph topology from the quantized embeddings. Feature reconstruction
is achieved by minimizing the Euclidean distance between the original and reconstructed features:

1
Lfeat = erzv‘

where zf denotes the linearly projected node embeddings z; and x; represents the original feature.

2
A x|, (12)
2
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Topology reconstruction employs a negative sampling strategy to preserve graph connectivity patterns:
1 T 1 T
Liopo = —elog (o (2 74)) - g (1—0 (24724)), 13
topo Z €] glolz 2 Z|E| g oz z (13)
(i,5)€€ (i,5")€€
with o(-) as the sigmoid function that transforms pairwise embedding similarities into edge existence

probabilities. £ and & denote the existing and non-existing edge sets, respectively. These components
are unified through a weighted multi-task learning framework:

L= )\lﬁfeat + )\QEtOpO + /\3£con + /\4£loada (14)

where hyper-parameters \;-A4 balance the contributions of different optimization objectives.

E PROOF OF THEORETICAL ANALYSIS

E.1 PROOF OF THEOREM [4.7]

Theorem [4.2] establishes a formal connection between edge-wise semantic fusion and information
flow enhancement, providing a theoretical foundation for our architecture design in Sec. @.T}

Proof: Using the variational lower bound for mutual information [[1]:
I(Z;€) = Eg 7 [log q(€|2)] + H(E), (15)
where ¢(£]Z) is a decoder reconstructing edge information.

Define Lodel = E[log ¢(£]Z)]. The mutual information gap is bounded by:

I(ZMOT; 5) - I(Zvani]]a; 5) Z LMOT - Lvanilla~ (16)
Expand Lyjor using the embedding increment AZ from edge fusion:
1
Lytor = E [log ¢ (€] Zyanina + AZ)], AZ = N @) Z Waew, + O ([le]?) . a7
veEN (u)

Taylor expansion reveals the information gain mechanism:
Lytor = Lyanitia + E[Vzlogq- AZ] + %E [AZTVlogq- AZ]. (18)
Replace the unsubstantiated inequality with a rigorous bound using the Lipschitz property of o:
E[AZTV3logq- AZ) > (E[IAZ]], AZ] > o Ve, b (19)

The causal structure of edge reconstruction ensures:

A } R, {(’ﬂogq] > 0. (20)

uv aeuv

Ee,, {Vzlogq' 88

This term quantifies the direct contribution of e,,,, to reconstruction loss.

When edge features are independent of node embeddings, cross-terms vanish:
E[Vzlogqg-AZ] > 0. (21)
Combining these effects yields the final bound:

1
I(Zmor; €) — I Zyanina; €) 2E [V z logq - AZ] + i]E [AZTVQZ log g - AZ]

(22)
E |az)’]
2

>2E [ Ve, ]

This proof establishes a direct information pathway (Ve h,) that amplifies edge-aware signals,
mathematically justifying why our edge-wise fusion outperforms traditional aggregation schemes.
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E.2 PROOF OF THEOREM [4.3]

Theorem [4.3] quantifies the representational advantage of mixture-of-codebooks, explaining the
multi-domain scalability.

Proof: Each domain S, is assigned a dedicated codebook C,,. For codebook C,, and codeword
em,i € Cp,, the probability of correct domain-specific mapping is:

p(em,i,Cm) = % . % (23)
Assuming domain independence, joint entropy across M codebooks:
H(S1,...,8u) = —logp(em,,Cm) =log(M - K). (24)
Mutual information I(Z; S) is bounded by:
I(Z;S)> H(S)— H(S|Z) =log(M - K) — ¢, (25)

where ¢ — 0 under optimal routing.

This demonstrates how MoC overcomes the log K bottleneck of standard gVQ-MAEs. The M - K
scaling explains why adding codebooks improves cross-domain generalization without increasing K.

In a nutshell, the above theorems systematically demonstrate from an information-theoretic per-
spective that MoT transcends the representational capacity limits of conventional methods, while
enhancing the GFM semantic representation space under bounded quantization error.

E.3 PROOF OF THEOREM [4.3]

This lemma connects the contrastive loss geometry with collapse prevention.
Proof: The triple-contrastive loss in Eq. (5)) is:

exp (S (hy, z;) /7)

1 n
Len =3 E 18 ST exp (8 (B, 27) /7) + exp (8 (e, by) /7) + oxp (8 (0 25) /7))

As 7 — 0T, the dominant terms become:
Leon = 1B, h; [||hl — hj||2} + ek, 2, [sz — zj||2] , c¢1,c9 > 0. (26)
Under hyperspherical constraint (||h;|| = 1, ||z;]| = 1):
|[h; — hj||2 =2—2cosb;;, 6;; =arccos(h;-h;). 27

Thus minimizing L.y, is equivalent to maximizing angular distance 6;;.

We employ angular geometry to decode the contrastive loss dynamics, revealing how gradient forces
naturally induce hyperspherical uniformity. This proves why our triple-contrastive design prevents
the representation collapse common in gVQ-MAE:s.

F EXPERIMENTAL SETTING

F.1 PRE-TRAINING DATASETS

Our pre-training corpus encompasses a diverse collection of 22 benchmark datasets spanning 6
distinct domains, as shown in Table[/| This multi-domain collection exhibits substantial variation in
scale, ranging from small-scale academic networks (2,708 nodes in Cora) to massive e-commerce
graphs (316K nodes with 19.3M edges in Products). To address the inherent imbalance in cross-
domain graph dataset scales, we follow [12] and implement a sampling strategy that normalizes
domain contributions during pre-training. The sampling weight can be found in the last column.
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Table 7: The statistician of the pre-training datasets.

Domain \ Dataset Avg. #Nodes  Avg. #Edges #Graphs Task  #Classes #Weight

Cora 2,708 10,556 1 Node 7 10
o CiteSeer 3,186 8,450 1 Node 6 10
Citation Network | 1 ed 19,717 44,324 1 Node 3 10
Arxiv 169,343 2,315,598 1 Node 40 1
Web Link WikiCS 11,701 431,726 1 Node 10 10
Social Network Reddit 33,434 198,448 1 Node 2 10
Instagram 11,339 144,010 1 Node 2 10
Knowledge Graph WNI18RR 40,943 93,003 1 Link 11 10
FB15K237 14,541 310,116 1 Link 237 10

History 41,551 358,574 1 Node 12 1

Computers 87,229 721,081 1 Node 10 1

E-commerce Photo 48,362 500,939 1 Node 12 1
Sportsfit 173,055 1,773,500 1 Node 13 1

Products 316,513 19,337,745 1 Node 39 1

BACE 34.1 73.7 1,513 Graph 1 1

BBBP 24.1 51.9 2,039 Graph 1 1

HIV 25.5 54.9 41,127  Graph 1 1
Molecular Graph PCBA 25.9 56.1 437,929  Graph 128 0.1
MUV 24.2 52.6 93,087  Graph 17 1

cyp450 24.5 53.0 16,896  Graph 5 1

toxcast 18.8 38.5 8,575 Graph 588 1

tox21 18.6 38.6 7,831 Graph 12 1

F.2 DATASET SPLIT

Our split protocol adheres to established standards to ensure reproducibility. Cora employs 10
predefined data partitions with varying random seeds, while WikiCS utilizes 20 distinct training splits
each evaluated with 20 seed variations. For biochemical datasets HIV and MUYV, we strictly follow
their canonical test splits across 5 randomized trials. Knowledge graphs WN18RR and FB15K237
adopt the reference partitioning scheme from prior work, with all experiments repeated 5 times under
different initialization conditions to compute stable performance metrics.

F.3 FINE-TUNING AND FEW-SHOT EXPERIMENTAL IMPLEMENTATIONS

During fine-tuning, we follow [25] and leverage both prototype and linear classifiers. The prototype
classifier constructs class-specific prototypes by averaging quantized embeddings for each category,
then makes predictions through cosine similarity comparisons between embeddings and prototypes. In
parallel, the linear classifier processes the same quantized embeddings through a trainable projection
layer to generate predictions. Both classifiers are optimized using cross-entropy loss. During
inference, we combine predictions from both classifiers to benefit from their complementary strengths.

The molecular graph classification framework accommodates diverse n-way binary classification
scenarios. For instance, the HIV dataset is processed as a conventional binary classification task,
while more complex datasets like MUV require multi-task binary classification across 128 distinct
targets. In our few-shot learning implementation, we adopt an episodic training paradigm where each
task consists of randomly sampled k-shot support sets and arbitrary unlabeled query instances.

Table 8: Additional performance on few-shot and zero-shot settings in Cora.

Model Cora - Tway Cora - 2way

10-shot 5-shot 3-shot 0-shot 10-shot 5-shot 3-shot 0-shot
GraphMAE 55‘25i3.12 53.80i5_22 54-35i6.74 48~15i4,86 70~15i5.42 69‘92i6.23 67.47i7_ 17 60.61i7_28
GIANT 56.43 363 55281487 54.8616928 50.651552 70931495 68.641776 006.781665 61.821677
GFT 63271448 59421565 573315814 51124603 76.161473 75951732 72.381518 66.57+6.26
OFA 62.151337 57231440 55271659 52364578 72241451 731841615 70.7617.92 63.5315097

SAMGPT 60.144520 58374528 57524443 51734553 74324528 72564493 09231664 064.241572
Uanraph 61498i4A11 61-25i4.14 60.52:{:5‘28 5307i5'§1 73'47i4.07 72-72i7f76 72.653:8.41 65.82:{:6‘4{,
MoT 6843458 65241403 66.001545 61.6716090 82501593 82.33.567 81.831926 68.0046 54
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Table 9: Additional performance on few-shot and zero-shot settings in History.

Model History - 10way History - 2way

10-shot 5-shot 3-shot 0-shot 10-shot 5-shot 3-shot 0-shot
GraphMAE 46485i4ﬁg 41-69i8.76 40.98;{:3,78 29.1 1j:9,68 66-391610 65-37151}2 62.933:5,35 55.1 8j:7,56
GIANT 46511409 43951992 38911996 29.7319.03 67.551568 6052841595 63.6316094 56.78+7.16
GFT 56.1816.30 50.291949 50211g32 350941672 73291497 723015785 6895158 58.3646.15
OFA 54314490 49504827 47.174851 34.034841 711541463 69414549 67214648 60.204675

SAMGPT 56.041678 49.821844 48.024906 36431856 72204527 70331559 66.784608 61.5745.94
UniGraph 54~75i7.65 52‘40i8.57 48.94ig_29 34A94i7>02 74~91i4.62 70‘38i5_53 69-53i6.40 60~93i7.67
MoT 57.6016.10 54.551723 S51.28:g82 39.15i766 75164605 72114553 71461671 64211603

Table 10: Additional performance on few-shot and zero-shot settings in WN18RR.

Model WN18RR - 10way WN18RR - 2way

10-shot 5-shot 3-shot 0-shot 10-shot 5-shot 3-shot 0-shot
GraphMAE 52.15;&2412 50.80i3.24 49.3513.15 42-1513.86 76.1515.42 74-9216,23 73-47:t6.17 54.61:&7.28
GIANT 53434363 51284073 50.864428 43.654552 789314095 76.641676 72784765 55824677
GFT 55271348 53424913 53331384 45124403 80.164673 77951732 75384518 62.571g896
OFA 55154437 52231342 52271559 44364578 8124165 77181715 74761692 59.531997

SAMGPT 53144400 513743928 50.524443 45734553 80.321698 78564893 75231764 58244870
UniGraph 56.98i2_11 55~25i3.14 54~52i3.28 47~07i5.31 82.47i5_07 81 -72i7.76 77.65i7_41 60.82i9_45
MoT 64.0713464 62.13i3.25 60.8014.35 50.13:&5.77 84.0016.72 82.6718498 82'00:t6.94 61.33:&9'15

G ADDITIONAL EXPERIMENT RESULTS

We present more extensive few-shot and zero-shot experiments in Table[8] [0]and which reveal
consistent patterns. As classification complexity increases with higher n-way configurations, all
models exhibit performance degradation due to expanding decision boundaries. Similarly, reducing
support samples (k-shot) amplifies performance decay as limited supervision fails to capture class
distinctions. Crucially, MoT consistently outperforms all baselines across these challenging scenarios.
This robustness validates MoT’s effectiveness in preserving semantic separability despite increasing
task difficulty and decreasing supervision.

Table 11: Fine-tuning hyperparameter configurations across datasets.

Dataset Learning rate  Batch size Top-k  Epochs Early stop  Aproto Alin t
Cora 3x1073 0 5 1000 200 1 1 0.1
WikiCS 5x 1073 0 4 1000 200 1 1 0.01
Reddit 3x 1073 0 2 1000 200 1 0.1 0.1
History 3x 1073 0 3 1000 200 0.5 1 0.1
WNI18RR 1x1072 0 2 2000 500 1 1 1
FB15K237 5x 1072 0 4 2000 500 0.5 1 0.5
HIV 1x1073 1024 3 100 20 0.1 1 1
MUV 3x1073 1024 2 100 20 1 05 0.1

H HYPER-PARAMETERS SETTING

The pre-training process employs a carefully designed set of hyperparameters to optimize the self-
supervised learning objective across diverse graph datasets. We utilize the AdamW optimizer with a
learning rate of 1 x 10~ and weight decay of 1 x 10~° for 5 training epochs with batch size 1024.
The model architecture consists of a 2-layer graph encoder with hidden dimension 768 and dropout
rate 0.15, using ReLU activation functions and batch normalization. The masking strategy employs
feature and edge masking probabilities 0.1, while the loss function combines feature reconstruction
(A1 = 100), topology reconstruction (A2 = 0.01), contrastive learning (A3 = 0.001), and domain
alignment (A4 = 0.01) components. All experiments use random seed 42 for reproducibility.

Fine-tuning hyperparameters are specifically optimized for each dataset through extensive grid
search, with key configurations summarized in Table The two loss coefficients Ap;.ot0 and Az,
represent the relative weights of the prototype classifier and linear classifier losses during fine-tuning,
respectively. During inference, the final prediction is obtained by combining outputs from both
classifiers through a weighted fusion mechanism, where the trade-off parameter ¢ determines the
contribution weight of the linear classifier () and the prototype classifier (1 — %).
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