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Abstract
A compositional tree refers to a tree structure on a set of
random variables where each random variable is a node and
composition occurs at each non-leaf node of the tree. As a
generalization of compositional data, compositional trees han-
dle more complex relationships among random variables and
appear in many disciplines, such as brain imaging, genomics
and finance. We consider the problem of sparse regression on
data that are associated with a compositional tree and pro-
pose a transformation-free tree-based regularized regression
method for component selection. The regularization penalty is
designed based on the tree structure and encourages a sparse
tree representation. We prove that our proposed estimator
for regression coefficients is both consistent and model selec-
tion consistent. In the simulation study, our method shows
higher accuracy than competing methods under different sce-
narios. By analysing a brain imaging data set from studies of
Alzheimer’s disease, our method identifies meaningful associ-
ations between memory decline and volume of brain regions
that are consistent with current understanding.
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1 INTRODUCTION

Compositional data refer to a type of data where data points are non-negative and the data vector
of each subject or observational unit sums up to one. Compositional data appear in a wide range of
disciplines, such as econometrics (Mullahy, 2015), geology (Pawlowsky-Glahn & Egozcue, 2006)
and epidemiology (Leite, 2016).

In the area of brain imaging, structural magnetic resonance imaging (MRI) and anatomical
brain segmentation produce compositional data. For example, using three-dimensional images
acquired via structural MRI, a five-level brain segmentation introduced by Mori et al. (2016)
can partition the whole brain into regions at five granularity levels. At the most coarse level,
the whole brain is segmented into telencephalon (left and right), diencephalon (left and right),
metencephalon, mesencephalon and cerebrospinal fluid (CSF). At the finest level of the brain
segmentation, the whole brain is segmented into 236 brain regions. The compositional data
are then the fractional volumes of the 236 brain regions relative to the intracranial volume
(ICV).

In addition to composition, the volumetric data have a tree structure. In the first step of seg-
mentation, the whole brain is partitioned into seven brain regions. In the second step, each of the
seven brain regions created by the first step is further partitioned into smaller regions, which can
be thought of as tree branching. Applied to all brain segmentation steps, this analogy makes a tree
structure that is rooted at the whole brain and has 236 leaves, which are the brain regions at the
finest segmentation. The tree structure has 321 nodes in total, and is shown in Figure 1. A key
feature of this tree structure is that the volume of a brain region is equal to the combined volume
of its subregions (after one segmentation), which introduces extra composition among variables.
We refer to this data structure as ‘compositional tree’. We note that the structure of compositional
data is a special case of compositional trees, which only have leaves and a root.

Compositional trees appear in many applications. For example, Wang and Zhao (2017b) pre-
sented a compositional tree of microbiome data, where the compositional tree is formed by
bacterial taxa at multiple taxonomic levels. Another example is the fractional market capital-
ization of stocks in the S&P 500 index (relative to the total market capitalization of S&P 500),
where all 500 stocks are partitioned into 11 sectors and each sector is further broken down into
industries according to the Global Industry Classification Standard (MSCI, 2020). The fractional
market capitalization of a sector (or industry) is the summation of fractional market capitaliza-
tion of stocks that are categorized into this sector (or industry). Compared with compositional
data, compositional trees provide more information about the relationships among variables and
suggest grouping effects at different levels.

Although methods for analysing compositional data or tree-structured data have been devel-
oped, little is known about how to deal with compositional trees. Our goal is to study the
association between an outcome of interest and covariates, where the covariates have a composi-
tional tree structure and the dimension of covariates is large. In the MRI application, the outcome
is the memory score of subjects from studies of Alzheimer’s disease (AD), and the covariates are
the volumetric MRI data of these subjects. Understanding the association between memory and
volumes of brain regions can help with diagnosis and treatment for the AD. We provide a detailed
description of the data in Section 2.

Lin et al. (2014), Fiksel et al. (2020) and Ma and Zhang (2020) studied regression meth-
ods for compositional data with or without regularization, but their results cannot be directly
generalized to handle compositional trees. Kim and Xing (2012) proposed a tree lasso for esti-
mating a sparse multiresponse regression function, which did not consider compositional data.
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WANG et al. 543

F I G U R E 1 The compositional tree structure of the magnetic resonance imaging data example in a radial
shape. Each blue circle represents a brain region (a node of the tree). The tree is rooted at the whole brain (center
of the figure). Each grey curved segment connects two nodes, where the node closer to root represents the parent
node, and the other is the child node. Each leaf node is connected by only one curved segment. A brain region
with suffix ‘_L’ or ‘_R’ indicates that the region is in the left or right hemisphere of the brain [Colour figure can
be viewed at wileyonlinelibrary.com]

More recently, Yan and Bien (2021) developed a tree-guided regularized regression method
that aggregates rare features to improve the accuracy of prediction; this method, however, also
focused on non-compositional data and cannot directly apply to compositional trees. To the
best of our knowledge, two primary competitive works are Wang and Zhao (2017a, b), which
developed tree-guided regularization methods for predictive feature construction and structured
subcomposition selection, respectively. Both works focused on a tree structure with compo-
sition on leaves, which is different from the compositional tree, where composition exists at
each node of the tree. Furthermore, neither work covered asymptotic properties, and Wang
and Zhao (2017b) cannot handle the issue raised by boundary points (zeros or ones) in the
data.
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544 WANG et al.

In this paper, we propose a regularized regression method to estimate the association between
an outcome and covariates that have a compositional tree structure. The regularization term is
constructed from the tree structure, which is assumed to be known, and designed to achieve spar-
sity in both marginal and conditional effects from covariates. Our model is transformation-free
and able to handle boundary points (zeros or ones) in the data. We also establish consistency and
model selection consistency of our estimators building on results from Lee et al. (2015).

In the next section, we introduce an MRI data example. In Section 3, we define the composi-
tional tree and regression model. In Section 4, we present our proposed method to estimate the
regression coefficients. We evaluate the performance of our proposed method through simula-
tions in Section 5. The MRI data application is provided in Section 6. Section 7 discusses future
directions.

2 DATA EXAMPLE

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and neuropsycholog-
ical assessment can be combined to measure the progression of mild cognitive impairment (MCI)
and early AD. We focus on the data set acquired by Liu et al. (2019) from the ADNI database.

The ADNI data set contains 819 subjects, who were diagnosed at the baseline as cognitive
normal (229 subjects), MCI (402 subjects) or AD (188 subjects). For each subject, the composite
memory score, MRI data, and a wide variety of demographic, behavioural and other non-imaging
covariates were collected at several time points. We focus on the composite memory score and
MRI data. The composite memory score was measured using data from the ADNI neuropsycho-
logical battery and validated by Crane et al. (2012), with higher scores indicating better memory.
The MRI data consist of high-resolution T1-weighted images, which are pre-processed and seg-
mented through MRICloud (https://www.MRICloud.org, Mori et al., 2016), a public platform for
multi-contrast imaging segmentation and quantification. The pre-processing steps included ori-
entation, inhomogeneity correction and histogram matching following with large deformation
diffeomorphic metric mapping (LDDMM), and were described in detail in Glasser et al. (2013).
After pre-processing, segmentations were obtained by fusing the multiatlas labelling method
(Tang et al., 2013).

For the MRI data, the five-level brain segmentation defines 321 brain regions (aggregating
brain regions from all five levels), which form a tree structure. At the first level of brain seg-
mentation, the whole brain is partitioned into seven brain regions. At the second level of brain
segmentation, each of the seven brain regions is further segmented into smaller regions. At the
finest level, there are 236 brain regions. Figure 1 displays the tree structure of the 321 brain
regions. For each brain region, we extracted its volume. Based on the five-level brain segmenta-
tion procedure, the volume of a brain region is equal to the combined volume of its subregions
(after one segmentation). Furthermore, the combined volume of brain regions at the finest level
is equal to the ICV.

Structural MRI data have been commonly used to identify biomarkers of AD (Vemuri & Jack,
2010). For example, the density of neurofibrillary tangles is an established pathological hallmark
of AD, which can be reflected by MRI. We hence focus on the association between memory
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WANG et al. 545

decline, a common symptom of AD, and brain volumes. For each subject, we use the MRI data
acquired at the initial screening, i.e. first time point, and the composite memory score acquired on
the same day as the MRI scan or the first post-imaging measurement. We note that the response
is the memory score measured at the first time point, instead of the change of memory between
two time points.

3 MODEL AND ASSUMPTIONS

3.1 Compositional tree

We first define tree structure using notation from graph theory. Let V = {X1, … ,Xp} be a set of
random variables with 0 ≤ Xj ≤ 1 for j= 1, … , p. Let E be a set of directed edges among X1, … ,Xp
with E ⊂ {(Xj → Xk) ∶ Xj,Xk ∈ V}. For each edge (Xj → Xk) ∈ E, we call Xj the parent of Xk, and
Xk the child of Xj. Xj is a leaf node if it has no child and a root node if it has no parent. Xj is
an ancestor of Xk if the directed edges in E can form a directed path from Xj to Xk, for example,
(Xj → Xs), (Xs → Xk) ∈ E.

Definition 1 (V , E) forms a tree if (1) no Xj is an ancestor of itself (i.e., E not containing any
directed cycle), (2) V contains only one root node and (3) each Xj has at most one parent.

In Definition 1, condition (1) defines a directed acyclic graph, and conditions (2) and (3)
are often made in defining a rooted tree in graph theory. Figure 2 gives an example of tree
structure with V = {X1, … ,X10} and E = {(X10 → X9), (X10 → X8), (X9 → X1), (X9 → X7), (X7 →
X2), (X7 → X3), (X8 → X4), (X8 → X5), (X8 → X6)}.

In our data example, we can define a tree given the hierarchical brain segmentation. Let each
Xj, j = 1, … , 321, represent the volume of a brain region j and let V be the set of all Xj, where 321
is the total number of nodes in the tree structure shown in Figure 1. We regard Xj as the parent
of Xk if brain region k is a subregion of j defined by one-step segmentation (i.e. there is no other
subregion of j that contains k). If Xj is the parent of Xk, we also call brain region j the parent of
brain region k. Then the edge set E is defined as the collection of all parent-child relationships
among brain regions and the (only) root node is the ICV. For the (V , E) defined above, condition
(1) of Definition 1 holds by construction, condition (2) follows because the root node is the ICV
and condition (3) results from the fact that a region cannot be part of two disjoint bigger regions.

F I G U R E 2 An example of a tree with p = 10

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/71/3/541/7067602 by U

TH
SC

-H
ouston School of Public H

ealth user on 12 February 2025



546 WANG et al.

Although we define the tree structure using notations of graph theory, we emphasize that we
do not associate the tree structure with conditional independence or causal diagrams, such as in
graphical probabilistic models (Pearl, 2009). Our tree solely represents the hierarchical structure
among X1, … ,Xp and is used to add compositional constraints, as described below. Our goal is
to study the association between an outcome of interest and covariates Xj, j = 1, … , p, instead of
the relationships among covariates.

Consider compositional constraints on (X1, … ,Xp) complying with the tree structure. Denot-
ing q as the number of leaf nodes, we can arrange the indices of X1, … ,Xp such that the first
q variables (X1, … ,Xq) are the leaf nodes. For each j = 1, … , p, let c(j) = {k ∶ (Xj → Xk) ∈ E}
denote the index set of children of Xj and let |c(j)| denote the cardinality of c(j) (i.e. the number
of children of Xj). We then have the following definition of a compositional tree.

Definition 2 Assume (V , E) forms a tree and X1, … ,Xq are the leaf nodes. Then (V , E) forms a
compositional tree if (1)

∑q
j=1Xj = 1 and (2) Xj =

∑
k∈c(j) Xk for each j > q.

In Definition 2, condition (1) imposes a compositional constraint on the leaf nodes. Condition
(2) requires that each parent node is equal to the summation of its children. Conditions (1) and (2)
together imply that the root node is a constant 1. In the example shown in Figure 2, the constraints
for a compositional tree are X7 = X2 + X3, X8 = X4 + X5 + X6, X9 = X1 + X7 and X10 = X8 +
X9 = 1. For the case that Xj has only one child Xk, Definition 2 implies that Xj = Xk and we hence
drop Xk to avoid any replicate. In this paper, we assume the compositional tree (V ,E) for a column
vector of random variables X = (X1, … ,Xp)t is known.

Compositional trees generalize compositional data by allowing more constraints on X .
Although Xq+1, … ,Xp are linear combinations of leaf nodes, they still provide information on
the structure of X and can help interpret conditional effects (defined in Section 3.2 below). To
simplify notation, we say that X has a compositional tree structure if the associated (V , E) forms
a compositional tree.

In our data example, brain regions X defined above have a compositional tree structure.
Since the summation of all leaf node volumes is the ICV, then condition (1) of Definition 2
requires that the volumetric data are normalized by the ICV such that each person has a total
brain volume 1. This is common practice in MRI analysis, since the ICV is typically only mean-
ingfully related to physical size. Alternative strategies remove ventricular volumes and then
study regional volumes relative to total brain volume (i.e. studying tissue composition). We
include the ventricular volumes and normalize by ICV, since they are an important aspect
of understanding progressive tissue loss in a disorder like AD. Condition (2) of Definition 2
states that the volume of each brain region is equal to the combined volume of all its chil-
dren, since, by definition, each brain region is partitioned into subregions with no volume left
undefined.

When dealing with compositional data, most current models work on a transformed space,
for example isometric log ratio transformations (Egozcue et al., 2003) or log ratio transformations
(Papke & Wooldridge, 1996). Although such transformations provide convenience in estimation,
they cannot handle boundary values in X and add difficulty to interpretation (Fiksel et al., 2020).
We hence work on the original space {X ∶ Xj ≥ 0, j = 1, … , p;

∑q
j=1Xj = 1;Xj =

∑
k∈c(j) Xk, j = q +

1, … , p}.
For a compositional tree, the vector space spanned by X has dimension (at most) q < p,

which causes rank deficiency in many regression models. An alternative way is to model Xj =
∑

k∈c(j) Xk + 𝜀j, where 𝜀j is an independent Gaussian noise, following the method of Shojaie and
Michailidis (2010). Although this method does not have the issue of rank deficiency, as long as the
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WANG et al. 547

covariance matrix of (𝜀1, … , 𝜀p) is positive definite, we have 𝜀j = 0 almost always, which violates
Gaussian modelling assumptions.

3.2 Linear model, parameter identifiability and interpretation

Let Y be the outcome of interest. We assume the following linear model

Y =
p∑

j=1
𝛽jXj + 𝜀 = 𝜷⊤X + 𝜀, (1)

where 𝜷 = (𝛽1, … , 𝛽p)⊤ is a column vector of unknown parameters, X has a compositional tree
structure with q leaf nodes, and 𝜀 ∼ N(0, 𝜎2) is independent of X . Since the root node of a compo-
sitional tree is a constant 1 and included in X , the intercept term is omitted from model (1). For
i = 1, … , n, let (Xi, 𝜀i) be independent, identically distributed samples from the joint distribution
of (X , 𝜀) and let Yi = 𝜷⊤Xi + 𝜀i.

Since X is rank deficient (with rank at most q), 𝜷 is not unique. Due to this fact, each 𝛽j, j =
1, … , p is not interpretable without further assumptions. To overcome this difficulty, we impose
the following p − q linear constraints on 𝜷:

∑

k∈c(j)
𝛽k = 0 for all j > q, (2)

which uniquely define a 𝜷 (as shown in the Supplementary Material). Linear constraints (2)
require that, for each Xj that is not a leaf node, the average effect of its children on Y is 0. Then,
each 𝛽k can be interpreted as the deviation effect of Xk from the effect of its parent, Xj, on Y . To
show this, consider the following derivation using Definition 2:

𝛽jXj +
∑

k∈c(j)
𝛽kXk =

(

𝛽j +
1

|c(j)|
∑

l∈c(j)
𝛽l

)

Xj +
∑

k∈c(j)

(

𝛽k −
1

|c(j)|
∑

l∈c(j)
𝛽l

)

Xk,

which implies that the average coefficient of children of Xj can be absorbed into the coefficient
of Xj and hence the remaining coefficients of Xk, k ∈ c(j) are the deviations from Xj. By repeating
this procedure recursively from leaf nodes to the root node, we get all coefficients satisfying linear
constraints (2) with the desired interpretation. For conciseness, 𝛽k is referred to as the ‘conditional
deviation effect’ throughout, since its interpretation is conditioning on the parent of Xk, that is
the parent of Xk held constant.

Let Xp denote the root node and a(j) be the index set of ancestors of Xj. Then the linear model
(1) with constraints (2) can be formulated as:

Y = 𝛽p +
q∑

j=1
𝛼jXj + 𝜀 = 𝛽p + 𝜶⊤Xleaf + 𝜀, (3)

subject to
q∑

j=1
𝛼j = 0, (4)

where 𝛽p is the regression coefficient of the root node Xp and serves as the intercept, 𝜶 =
(𝛼1, … , 𝛼q)⊤ with 𝛼j = 𝛽j +

∑
k∈a(j)⧵{p} 𝛽k, and Xleaf = (X1, … ,Xq)⊤ is the vector of leaf nodes. We
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assume that the only linear constraint on Xleaf is
∑q

j=1Xj = 1, that is no component of Xleaf being
a linear combination of the others. Model (3) not only provides direct interpretation of marginal
associations between Y and Xleaf (which we introduce below), but is also useful for estimating 𝜷
in Section 4.

Compared to model (1), model (3) only uses the leaf nodes. Each 𝛼j is the aggregation of the
conditional deviation effects of Xj and ancestors of Xj excluding the root node. If Xj is increased by
𝛿 at the expense of another leaf node, Xk, that is Xk decreased by 𝛿, then Y is changed by (𝛼j − 𝛼k)𝛿.
Hence, 𝛼j − 𝛼k is interpreted as the relative effect between Xj and Xk. If Xj is relatively increased by
𝛿 at the expense of all other leaf nodes evenly, that is Xj increased by (1 − 1/q)𝛿 and Xk decreased
by 𝛿/q for all k ≤ q, k ≠ q such that Xj − Xk = 𝛿, then Y is changed by, using the constraint (4),

𝛼j(Xj +
q − 1

q
𝛿) +

∑

1≤k≤q,k≠j
𝛼k(Xk −

1
q
𝛿) −

q∑

k=1
𝛼kXk = 𝛼j𝛿. (5)

This implies that 𝛼j can be interpreted as the effect of Xj relative to all leaf nodes, and we refer to
𝛼j as the ‘marginal deviation effect’ throughout for conciseness. Without the constraint (4), 𝛼j is
not identifiable, since

∑q
j=1Xj = 1. However, 𝛽p + 𝛼j would still be identifiable, a fact that we use

for estimation in Section 4. This statement is formally described in Proposition 1, which is proven
in the Supplementary Material.

Proposition 1 Assume that
∑q

j=1Xj = 1 and no component of Xleaf is a linear combination of the
others. If two sets of parameters (𝛽p, 𝛼1, … , 𝛼q) and (𝛽p, 𝛼1, … , 𝛼q) both satisfy model (3),
then 𝛽p + 𝛼j = 𝛽p + 𝛼j for each j = 1, … , q.

Compared with a classical linear regression model where the design matrix has full rank,
linear models on compositional trees require more careful and subtle interpretation of the coeffi-
cients. The marginal deviation effect, 𝛼j, is not the association between Xj and Y , but the relative
effect of Xj on Y compared with the rest leaf nodes as demonstrated in Equation (5). Such an
interpretation of 𝛼j is common for all linear models on compositional data. The conditional devi-
ation effect 𝛽j is not the association between Xj and Y either, but the relative effect of Xj on Y
compared with the ‘siblings’ of Xj, conditioning on the parent of Xj. In our data example, both
𝜶 and 𝜷 are scientifically meaningful. The marginal deviation effect represents the effect of the
fractional volume of a leaf region on memory, while the conditional deviation effect is the resid-
ual effect of the fractional volume of a brain region on memory after removing the effect of its
ancestors.

4 ESTIMATION

Let𝜷∗,𝜶∗ denote the true parameters that satisfy model (1) with constraints (2) and model (3) with
constraint (4), respectively. Our goal is to estimate 𝜶∗ and 𝜷∗. Since p and q are potentially large
(p = 321 and q = 236 for our data example), we propose a new regularization term based on lasso
for component selection (Lin et al., 2014) and fused lasso (Tibshirani et al., 2005) and perform
regularized regression to achieve sparsity in both �̂� and ̂𝜷. In the method described below, we first
estimate 𝜶∗ using the generalized lasso (Tibshirani & Taylor, 2011) and then calculate ̂𝜷 based
on �̂� by solving linear systems. We call our method for estimating 𝜷∗ and 𝜶∗ the compositional
tree-guided LASSO (CT-LASSO).
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4.1 Regularization

For any 𝜷 ∈ Rp and 𝜶 ∈ Rq, consider the regularization term

P(𝜶, 𝜷, 𝜂) = 𝜂P1(𝜶) + (1 − 𝜂)P2(𝜷),

where 𝜂 ∈ [0, 1] is a tuning parameter adjusting the weight between P1(𝜶) and P2(𝜷),

P1(𝜶) =
q∑

j=1

|
|
|
|
|

𝛼j −
1
q

q∑

k=1
𝛼k

|
|
|
|
|

,

P2(𝜷) =
p∑

j=q+1

|c(j)|−1∑

s=1
|𝛽js − 𝛽js+1 |,

where c(j) is the index set of children of Xj with the elements in c(j) encoded as j1, … , j|c(j)|.
P1(𝜶) selects leaf nodes with non-zero marginal deviation effects. If 𝛼j = 1

q

∑q
k=1𝛼k, then chang-

ing Xj at the expense of all other leaf nodes evenly will not result in changes of Y . This penalty
is known as the lasso for component selection, and is also seen in Wang and Zhao (2017b)
for dealing with compositional data. In P2(𝜷), for each Xj with j > q, we penalize the differ-
ence among coefficients of its children using the fused lasso penalty. If |𝛽js − 𝛽js+1 | = 0 for all
s = 1, … , |c(j)| − 1, which means all children of Xj have no conditional deviation effect, then
the component

∑
k∈c(j) 𝛽kXk = 𝛽j1 Xj, resulting in a sparse representation of linear model (1). Com-

bined with the linear constraints (2), the above case is also equivalent to 𝛽k = 0 for all k∈ c(j). P2(𝜷)
also shares the expression with the regularization terms of ‘tree-guided fused lasso 2’ (TFL-2) by
Wang and Zhao (2017a), which was designed to construct predictive features for compositional
microbiome data. The following proposition gives some properties of P(𝜶, 𝜷, 𝜂).

Proposition 2 Given linear constraints (2), there exists a matrix D(𝜂) ∈ R(2q−1)×q such that
P(𝜶, 𝜷, 𝜂) = ||D(𝜂)𝜶||1 and D(𝜂)1q = 0q, where || ⋅ ||1 is the L1-norm, 1q, 0q ∈ Rq are column
vectors with all entries 1, 0 respectively.

Proposition 2 implies that the penalty P(𝜶, 𝜷, 𝜂) can be formulated as a function of 𝜶 and 𝜂,
making it possible to perform regularized regression based on model (3), which does not involve
𝜷. Furthermore, this penalty is invariant with respect to constant change of 𝜶 (i.e. ||D(𝜂)𝜶||1 =
||D(𝜂)(𝜶 + C1q)||1 for any C ∈ R), which makes it equivalent to penalize 𝜶 + 𝛽q1q as we do in
Section 4.2 below. We prove Proposition 2 and show how D(𝜂) is constructed in the Supplementary
Material.

For the regularization terms on 𝜷, we also consider the pairwise fused lasso (She, 2008), which
is defined as

̃P2(𝜷) =
p∑

j=q+1

∑

1≤s1<s2≤c(j)

|
|
|
𝛽js1

− 𝛽js2

|
|
|
.

We refer to our method with P2(𝜷) substituted by ̃P2(𝜷) as ‘CT-LASSO-p’. Compared with P2(𝜷),
̃P2(𝜷) adds more terms to penalize the difference of the conditional deviation effects and further
encourages the conditional deviation effects to be identical. Wang and Zhao (2017a), however,
pointed out that the pairwise fused lasso suffers from instability and long computation time due
to the large number of rows in the regularization matrix when using the ‘genlasso’ R package. For
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550 WANG et al.

compositional trees, this could happen when a node has many children. Our simulation study in
Section 5 shows that CT-LASSO and CT-LASSO-p yield similar performance, while CT-LASSO is
twice faster than CT-LASSO-p.

In the regularized regression method by Yan and Bien (2021), the penalty is 𝜂

∑q
j=1wj|𝛼j| +

(1 − 𝜂)
∑p−1

j=q+1wj|𝛽j|, where wj are pre-specified weights. This penalty differs from P(𝜶, 𝜷, 𝜂) on
two aspects. First, our P1(𝜶) penalizes the deviation of 𝛼j from their average, which is designed for
compositional data and different from

∑q
j=1wj|𝛼j|. Second,

∑p−1
j=q+1wj|𝛽j| penalizes the magnitude

of the conditional deviation effects, while our P2(𝜷) encourages the conditional deviation effects to
be equal even when they are non-zero; hence, the latter regularization term has the advantage to
group non-zero conditional deviation effects, which facilitates the interpretation of compositional
tree models.

4.2 Estimating 𝜶∗

We estimate 𝜶∗ by �̂� = ̂�̃� − 1q1⊤q ̂�̃�, where

̂�̃� = arg min
�̃�

1
n

n∑

i=1

(
Yi − �̃�⊤Xleaf ,i

)2 + 𝜆||D(𝜂)�̃�||1 (6)

with Xleaf ,i = (Xi1, … ,Xiq)⊤, �̃� = 𝜶 + 𝛽p1q and 𝜆 > 0 being the tuning parameter. In Equation (6),
̂�̃� is an estimate of �̃�, which is identifiable as discussed in Section 3.2 and does not involve any
linear constraints. Then, �̂� is constructed by imposing the constraint (4), that is centring ̂�̃�. We
note that the regularization term 𝜆||D(𝜂)�̃�||1 imposes the desired sparsity on𝜶, since 𝜆||D(𝜂)�̃�||1 =
𝜆||D(𝜂)𝜶||1 given Proposition 2.

For any 𝜶 ∈ Rq and given 𝜂 ∈ [0, 1], let (𝜶) be the support of D(𝜂)𝜶, i.e., (𝜶) = {j ∈
{1, … , 2q − 1} ∶ e⊤j D(𝜂)𝜶 ≠ 0} with ej ∈ R2q−1 being a column vector with the j-th entry 1 and
the rest 0. Let = {𝜶 ∶ (𝜶) ⊂ (𝜶∗)}denote the model subspace of interest. That is, for𝜶 ∈,
an entry of D(𝜂)𝜶 is non-zero only if the corresponding entry of D(𝜂)𝜶∗ is non-zero. The following
theorem, adapted from Corollary 4.2 of Lee et al. (2015), gives consistency and model selection
consistency of �̂�.

Theorem 1 Given 𝜂 ∈ [0,1], we assume{Xleaf ,i}n
i=1 satisfies restricted strong convexity (RSC) on

and irrepresentability, which we define in the Supplementary Material. For𝜆 = C1𝜎

√
log q

n
, �̂�

is unique and, with probability at least 1 − 2/q,

(a) (consistency) ||�̂� − 𝜶∗||2 ≤ C2𝜎

√
log q

n
,

(b) (model selection consistency) �̂� ∈,

where || ⋅ ||2 is theL2-norm and C1,C2 are known constants given in the Supplementary
Material.

Theorem 1 implies that when q and n/log(q) are large, then, with high probability, our estimate
�̂� is close to the truth and does not contain false positives (non-zero effect of inactive predictors
with respect to D(𝜂)). The RSC assumption is typically satisfied when Xleaf ,i follows a multivari-
ate normal distribution (Raskutti et al., 2010). The irrepresentability assumption requires that
the active predictors (with respect to D(𝜂)) are orthogonal or nearly-orthogonal to the inactive
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WANG et al. 551

predictors (Lee et al., 2015). We provide a detailed description and discussion of these assumptions
in the Supplementary Material.

Given 𝜂, the optimization problem (6) can be solved by the genlasso package (Tibshirani &
Taylor, 2011) in R software. To select the tuning parameter 𝜆, we propose to use the Akaike infor-
mation criterion (AIC, Akaike et al., 1998) or Bayesian information criterion (BIC, Schwarz, 1978).
Let

IC
𝛾
(𝜂, 𝜆) = n log

{ n∑

i=1

(

Yi − ̂�̃�
⊤Xleaf ,i

)2
}

+ 𝛾 df(𝜂, 𝜆),

where 𝛾 is a complexity factor, df(𝜂, 𝜆) is the effective number of parameters in ̂�̃�. IC
𝛾
(𝜂, 𝜆) refers

to AIC if 𝛾 = 2 and BIC if 𝛾 = log (n). For any 𝜂 ∈ [0, 1], define ̂
𝜆(𝜂) = arg min

𝜆≥0 IC
𝛾
(𝜂, 𝜆). We

select the tuning parameters �̂� = arg min
𝜂∈[0,1] IC

𝛾
(𝜂, ̂𝜆(𝜂)) and ̂

𝜆 = ̂
𝜆(�̂�). An alternative method

to tune parameters is cross-validation, but we do not consider it here, since it would dramatically
increase the computation complexity and performs similarly to AIC.

4.3 Estimating 𝜷∗

Given �̂�, we calculate ̂𝜷 as follows. Since 𝛼j = 𝛽j +
∑

k∈a(j) 𝛽k − 𝛽p for j = 1, … , q, we can con-
struct a matrix Q1 ∈ Rq×p such that Q1𝜷 = 𝜶. Since 𝜷 also satisfies linear constraints (2), we can
construct another matrix Q2 ∈ R(q−p)×p such that Q2𝜷 = 0p−q. Denoting Q = (Q⊤

1 ,Q⊤

2 )⊤, then ̂𝜷 is
calculated by solving the linear system

Q𝜷 =

(
�̂�

0p−q

)

. (7)

The following theorem implies that ̂𝜷 is uniquely determined by �̂� (i.e. Q is invertible) and is
consistent and model selection consistent under the same conditions as �̂�.

Theorem 2 Let C1,C2, 𝜆 and be the quantities defined in Theorem 1. Given the same assump-
tions made in Theorem 1, ̂𝜷 is uniquely determined by �̂� and, with probability at least
1 − 2/q,

(a) (consistency) || ̂𝜷 − 𝜷∗||2 ≤ ||Q−1||2C2𝜎

√
log q

n
,

(b) (model selection consistency) Q1 ̂𝜷 ∈.

An alternative method to estimate 𝜷 is solving a constrained optimization problem following
Lin et al. (2014):

̂𝜷 = arg min
𝜷

1
n

n∑

i=1

(
Yi − 𝜷⊤Xi

)2 + 𝜆P(𝛼, 𝜷, 𝜂),

subject to linear constraints (2).

However, this method has to handle the rank deficiency of X and p − q linear constraints. If q is
much smaller than p, then the number of linear constraints can be large, which may cause bias
and increased computational complexity. In our proposed method, these two issues are avoided
by using two steps to estimate 𝜷∗ (first estimating 𝜶∗ and then 𝜷∗).
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552 WANG et al.

To the best of our knowledge, we are the first to study regularized regression on a com-
positional tree and provide consistency and model selection consistency. Kim and Xing (2012)
developed a tree-guided group lasso method, but their goal was to analyse multiresponse data
and they did not consider composition. Lin et al. (2014) used the lasso for component selection in
compositional data and their optimization problem is a special case of ours, setting 𝜂 = 1. Wang
and Zhao (2017a, b) performed penalized regression on compositional data with a hierarchical
tree structure, but they did not consider compositional trees or provide asymptotic results.

5 SIMULATION STUDY

5.1 Simulation settings

In this simulation study, we consider four data generating distributions, which cover combina-
tions of the following settings: a binary compositional tree or the MRI-motivated compositional
tree, and leaf or stem effects. A binary compositional tree is a compositional tree where each
parent has two children, while the MRI-motivated compositional tree represents the same tree
structure as our data example (where a parent node may have more than two children). Leaf
effects stand for linear models where the true effects (non-zero 𝛽j) are only from nodes near the
leaves, while stem effects mean that true effects are only from nodes near the root. Different from
the leaf effects where both 𝜶∗ and 𝜷∗ are sparse, stem effects will lead to non-sparse 𝜶∗.

The first scenario (Scenario 1) has a binary compositional tree and leaf effects. The tree struc-
ture is shown in Cf Figure 3, where p = 255, q = 128 and Xleaf = (X1,X2, … ,Xq). Letting n = 120
(i.e. n < q), we independently generate Xleaf ,i, i = 1, … ,n by first independently sampling ̃Xleaf ,i
from a multivariate log-normal distribution that is ̃Xleaf ,i = exp(Zi)with Zi following a multivari-
ate normal distribution. We assume Zi has mean 0q and variance 𝚺 = (𝜎ij)q×q, where 𝜎ij = 0.2|i−j|

is the (i,j)-th column entry of 𝚺. We then define Xleaf ,i = ̃Xleaf ,i∕1⊤q ̃Xleaf ,i to satisfy the composition
condition. For j > q, we generate Xij following the definition of compositional trees using Xleaf ,i.
We define, for i = 1, … , n,

Yi = 3 + Xi,1 − Xi,2 + Xi,129 − Xi,130 + 𝜀i = 3 + 2Xi,1 − Xi,3 − Xi,4 + 𝜀i,

where 𝜀i is an independent sample from N(0, 𝜎2) and 𝜎

2 is chosen such that Var(X⊤𝜷) = Var(𝜀).
This model only involves the left bottom corner in the tree shown in Figure 3. The non-zero con-
ditional deviation effects are 𝛽

∗
1 = 𝛽

∗
129 = 1, 𝛽∗2 = 𝛽

∗
130 = −1 and the non-zero marginal deviation

effects are 𝛼

∗
1 = 2, 𝛼∗3 = 𝛼

∗
4 = −1.

The second scenario (Scenario 2) has a binary compositional tree and stem effects, where the
binary compositional tree and Xi, i = 1, … ,n is the same as in Scenario 1. For the stem effect, we
define

Yi = 3 + Xi,249 − Xi,250 + Xi,253 − Xi,254 + 𝜀i = 3 + 2
32∑

j=1
Xij −

128∑

j=65
Xij + 𝜀i,

where 𝜀i is defined in the same way as in Scenario 1, and the second equality results from the
compositional tree structure (Figure 3) which implies Xi,249 =

∑32
j=1Xij, Xi,250 =

∑64
j=33Xij, Xi,253 =

∑64
j=1Xij, and Xi,254 =

∑128
j=65Xij. Unlike Scenario 1, this model only involves the conditional devi-

ation effects from the top part in the tree (nodes near the root), which are 𝛽

∗
249 = 𝛽

∗
253 = 1,

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/71/3/541/7067602 by U

TH
SC

-H
ouston School of Public H

ealth user on 12 February 2025



WANG et al. 553

F I G U R E 3 The binary compositional tree considered in Scenarios 1 and 2 of the simulation study with
p = 255 and q = 128

𝛽

∗
250 = 𝛽

∗
254 = −1. Furthermore, the marginal deviation effect 𝜶 is no longer sparse because 𝛼∗j = 2

for j = 1, … , 32 and 𝛼

∗
j = −1 for j = 65, … , 128.

In the third scenario (Scenario 3), we consider leaf effects, an MRI-motivated compositional
tree, and covariate data that are re-sampled from the real MRI data. The MRI-motivated compo-
sitional tree is shown in Figure 1, where p = 321 and q = 236. For our MRI data example, n = 819
and we denote the empirical distribution of (̃X1, … ,

̃Xn) as Fn, where ̃Xi contains the fractional
brain volumetric data of participant i. Let Xi, i = 1, … ,n be independent samples from Fn. We
model, for i = 1, … , n,

Yi = 3 + Xi, SFG−L − Xi, SFG−PFC−L + 𝜀i,

where SFG-L and SFG-PFC-L are leaf nodes and subregions of the superior frontal gyrus left
hemisphere and 𝜀 is as defined in Scenario 1. In this model, we have 𝛽

∗
SFG−L = 𝛼

∗
SFG−L = 1 and

𝛽

∗
SFG−PFC−L = 𝛼

∗
SFG−PFC−L = −1.

In the last scenario (Scenario 4), we consider the MRI-motivated compositional tree again but
with stem effects. We use the same compositional tree and Xi, i = 1, … ,n as in Scenario 3. Let

Yi = 3 + Xi, Telencephalon−L − Xi, Telencephalon−R + 𝜀i,

where Telencephalon-L and Telencephalon-R represent the telencephalon located in the left and
right hemisphere, respectively, and both are children of the ICV. Different from Scenario 3, this
model has 𝛽∗Telencephalon−L = −1, 𝛽∗Telencephalon−R = 1 and 200 non-zero entries in 𝜶∗.

For each of the four scenarios, we simulate m=1000 data sets. For each data set, we imple-
ment our proposed methods (CT-LASSO and CT-LASSO-p), TFL-2 (Wang & Zhao, 2017a), TASSO
(Wang & Zhao, 2017b), and lasso for component selection (abbreviated as CLASSO throughout,
Lin et al., 2014). For TASSO, we use their default settings to estimate 𝜶∗ and calculate ̂𝜷TASSO by
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554 WANG et al.

solving Equation (7). The only difference is that the natural log-transformation is not performed,
as described in Section 3. Since CLASSO (without log-transformation as we consider here) and
TFL-2 are special cases of our CT-LASSO, we calculate ̂𝜷CLASSO and ̂𝜷TFL−2 following the same
procedure as CT-LASSO setting 𝜂 = 1 and 0, respectively.

In our simulation, the covariates Xleaf are not log-transformed as in the simulations of Lin et al.
(2014) and Wang and Zhao (2017b) for CLASSO and TASSO. This is because the MRI data, for
example Scenarios 3 and 4, contain zeros due to measurement error. Hence log-transformation is
not implemented when using CLASSO and TASSO. Such modification on the distribution of Xleaf
does not harm the performance of CLASSO or TASSO, since they are implemented to capture
the true relationship between Y and Xleaf. In the simulation results of Scenarios 1 and 3 below,
CLASSO and TASSO have high accuracy when using BIC tuning.

For all five methods, we use AIC or BIC to select the tuning parameters. The following metrics
are used to compare their performances: (1) sensitivity, defined as |{j ∶ ̂

𝛽 j ≠ 0, 𝛽∗j ≠ 0}|∕|{j ∶ 𝛽∗j ≠
0}|, (2) specificity, defined as |{j ∶ ̂

𝛽 j = 𝛽

∗
j = 0}|∕|{j ∶ 𝛽∗j = 0}| and (3) L2-loss, defined as || ̂𝜷 −

𝜷∗||2. For each of the above metrics, we report its average and standard error over the m data
sets. Since Scenarios 1 and 2 have n < q, a small L2-penalty (0.0001) is added when solving the
optimization problem (6).

5.2 Simulation results

Table 1 gives the simulation results for Scenarios 1–4. We first compare CT-LASSO and
CT-LASSO-p, both of which are our proposed methods but with different versions of the fused
lasso. Across all scenarios with BIC tuning, CT-LASSO and CT-LASSO-p have high accuracy and
similar performance. In Scenarios 1 and 2, CT-LASSO and CT-LASSO-p are identical since each
non-leaf node has two children; in Scenarios 3 and 4, the regularization matrix D(𝜂) has 471 rows
for CT-LASSO and 847 rows for CT-LASSO-p, which leads to different selection of the tuning
parameter 𝜂. In addition, for a single model fit on simulated MRI data using a 2.6 GHz CPU,
CT-LASSO uses 7.3 s, while CT-LASSO-p uses 21.9 s. Given that CT-LASSO has comparable per-
formance but shorter computation time than CT-LASSO-p in the MRI-based simulation, we use
CT-LASSO for the MRI data application.

We next compare CT-LASSO with TFL-2, which is a special case of CT-LASSO with 𝜂 = 0. In
Scenarios 2 and 4 where the main effects come from nodes near the root, CT-LASSO and TFL-2
both perform well with BIC tuning, and CT-LASSO almost always selects �̂� = 0, leading to the
similar performance of CT-LASSO and TFL-2. However, when the main effects come from nodes
near the leaves as in Scenarios 1 and 3, TFL-2 fails to achieve sparsity in 𝜶∗ and is hence less
accurate than CT-LASSO. In Scenario 1, TFL-2 has low sensitivity due to the failure of identifying
all the true effects, and, in Scenario 3, TFL-2 has the largest L2-loss because it falsely identifies
noises in order to minimize the difference among 𝛽’s.

Next, we compare the performance of CT-LASSO, TASSO and CLASSO. In Scenarios 1 and
3, the true parameter 𝜶∗ is sparse and all three methods perform well, as expected. CT-LASSO
has slightly better performance than TASSO and CLASSO by penalizing both 𝜶 and 𝜷, compared
with penalization of only 𝜶 in TASSO or CLASSO. In Scenarios 2 and 4, since the true parameter,
𝜶∗, is not sparse, CT-LASSO outperforms the other two methods on all performance metrics. In
such cases, the L1 penalty on 𝜶 does not help. Hence, TASSO and CLASSO tend to over-penalize
(low sensitivity, high specificity) or under-penalize (high sensitivity, low specificity) on 𝜶, either
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WANG et al. 555

T A B L E 1 Simulation results for Scenarios 1–4 comparing CT-LASSO (our proposed method),
CT-LASSO-p (our proposed method with pairwise fused lasso), TFL (Wang & Zhao, 2017a), TASSO (Wang &
Zhao, 2017b) and CLASSO (LASSO for component selection). The numbers for sensitivity, specificity and
L2-loss are the averages and standard errors (in the parenthesis) over 1000 simulated data sets

Method Tuning Sensitivity Specificity L2-loss 𝜼

Scenario 1 CT-LASSO AIC 1.00 (0.02) 0.04 (0.02) 4.47 (0.51) 0.33 (0.38)

BIC 0.98 (0.11) 0.97 (0.06) 0.76 (0.38) 0.50 (0.17)

CT-LASSO-p AIC 1.00 (0.02) 0.04 (0.02) 4.47 (0.51) 0.33 (0.38)

BIC 0.98 (0.11) 0.97 (0.06) 0.76 (0.38) 0.50 (0.17)

TFL-2 AIC 1.00 (0.02) 0.05 (0.02) 4.44 (0.51) –

BIC 0.77 (0.30) 0.95 (0.10) 1.22 (0.51) –

TASSO AIC 1.00 (0.00) 0.04 (0.02) 4.27 (0.49) –

BIC 0.97 (0.17) 0.96 (0.07) 0.98 (0.39) –

CLASSO AIC 1.00 (0.00) 0.04 (0.02) 4.35 (0.51) –

BIC 0.98 (0.12) 0.92 (0.10) 0.96 (0.41) –

Scenario 2 CT-LASSO AIC 1.00 (0.02) 0.01 (0.01) 29.29 (3.57) 0.36 (0.37)

BIC 1.00 (0.00) 0.99 (0.06) 0.54 (1.51) 0.01 (0.03)

CT-LASSO-p AIC 1.00 (0.02) 0.01 (0.01) 29.29 (3.57) 0.36 (0.37)

BIC 1.00 (0.00) 0.99 (0.06) 0.54 (1.51) 0.01 (0.03)

TFL-2 AIC 1.00 (0.02) 0.02 (0.01) 29.1 (3.55) –

BIC 1.00 (0.00) 0.99 (0.06) 0.53 (1.51) –

TASSO AIC 1.00 (0.02) 0.01 (0.01) 28.72 (3.43) –

BIC 0.05 (0.21) 0.95 (0.21) 3.31 (4.99) –

CLASSO AIC 1.00 (0.02) 0.01 (0.01) 29.11 (3.56) –

BIC 0.40 (0.48) 0.88 (0.27) 4.33 (6.45) –

Scenario 3 CT-LASSO AIC 1.00 (0.00) 0.93 (0.07) 0.23 (0.15) 0.86 (0.18)

BIC 1.00 (0.00) 0.98 (0.02) 0.27 (0.14) 0.89 (0.14)

CT-LASSO-p AIC 1.00 (0.00) 0.94 (0.05) 0.22 (0.14) 0.00 (0.00)

BIC 1.00 (0.00) 0.99 (0.02) 0.36 (2.99) 0.00 (0.00)

TFL-2 AIC 0.98 (0.12) 0.78 (0.11) 0.53 (0.17) –

BIC 0.98 (0.12) 0.98 (0.02) 0.73 (0.09) –

TASSO AIC 1.00 (0.00) 0.95 (0.03) 0.54 (0.21) –

BIC 1.00 (0.00) 0.98 (0.01) 0.51 (0.21) –

CLASSO AIC 1.00 (0.00) 0.92 (0.03) 0.57 (0.05) –

BIC 1.00 (0.00) 0.96(0.02) 0.57 (0.05) –

(Continues)
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T A B L E 1 (Continued)

Method Tuning Sensitivity Specificity L2-loss 𝜼

Scenario 4 CT-LASSO AIC 1.00 (0.00) 0.92 (0.08) 0.65 (0.59) 0.00 (0.00)

BIC 1.00 (0.00) 0.98 (0.01) 0.41 (0.34) 0.00 (0.00)

CT-LASSO-p AIC 1.00 (0.00) 0.93 (0.07) 2.95 (32.78) 0.00 (0.00)

BIC 1.00 (0.00) 0.97 (0.01) 0.48 (0.38) 0.00 (0.00)

TFL-2 AIC 1.00 (0.00) 0.92(0.08) 0.64 (0.59) –

BIC 1.00 (0.00) 0.98 (0.01) 0.41(0.34) –

TASSO AIC 0.91 (0.21) 0.35 (0.12) 6.04 (3.27) –

BIC 0.51 (0.46) 0.84 (0.12) 3.36 (1.43) –

CLASSO AIC 1.00 (0.02) 0.25 (0.05) 4.71 (0.31) –

BIC 0.99 (0.10) 0.59 (0.11) 3.73 (0.65) –

leading to high SSEs. In contrast, CT-LASSO always selects 𝜂 = 0 under BIC tuning, implying it
only penalizes differences of conditional deviation effects.

BIC tends to perform as well as AIC does or better. Especially, in Scenarios 1 and 2, BIC is
substantially better than AIC mirroring the simulation results of Wang and Zhao (2017b). This is
due to the well-known fact that AIC tends to identify more variables than the true model leading
to better prediction performance, while BIC is consistent in selecting the true model (Yang, 2005;
Zou et al., 2007). Since our goal is to identify non-zero associations between X and Y instead of
prediction, we only use the metrics of evaluating model selection consistency for comparison of
methods. In Scenario 3, although the L2-loss of BIC is slightly larger than AIC, BIC has higher
specificity, suggesting that AIC will lead to more false positives.

In the Supplementary Material, we provide an additional simulation study, where noisier data
is used to stress-test the method. In particular, 𝜎2 is set such that Var(𝜀) = 10Var(X⊤𝜷) while all
of the other settings of Scenarios 1-4 are kept constant. In this simulation, all methods perform
worse, because of the weaker signal relative to the noise. CT-LASSO, however, still outperforms
TASSO and CLASSO and the findings described in other simulations still hold. In addition, sim-
ulation results for Scenarios 1 and 2 setting n = 1000 are provided, which show similarly good
relative performance.

6 MRI DATA APPLICATION

We applied our proposed method to the data example introduced in Section 2. The outcome Y
is the composite memory score while X is the brain volumes resulting from the five-level brain
segmentation. Since the simulation study shows that BIC outperforms AIC on the compositional
tree of the data example, we used BIC to tune the hyperparameters and obtained �̂� = 0.405.

CT-LASSO identified 77 non-zero marginal deviation effects (�̂�) from the 236 leaf brain
regions. Table 2 displays the 10 largest effects, which account for 48% of ||�̂�||1. Among the 10
largest effects, Hippo-L represents the hippocampus in the left hemisphere, which is a limbic sub-
region and whose atrophy is well established and studied in the progression of AD (Pini et al.,
2016). InferiorLV-R is the inferior pars of the right lateral ventricle (LV). Evidence has shown that
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T A B L E 2 Top 10 regression coefficients (𝛼j) of magnetic resonance imaging (MRI) application

ROI 𝜶j ROI 𝜶j

Hippo-L 518.64 IOG-L 90.32

InferiorLV-R −261.88 Cu-L −70.34

Amyg-R 172.73 LG-L −70.34

SOG-L 90.32 SylParieSul-L 69.06

MOG-L 90.32 MTG-L 62.14

its enlargement is related to MCI and AD (Nestor et al., 2008). Amyg-R stands for the amygdala
in the right hemisphere. A recent study (Poulin et al., 2011) on this region suggested that ‘the
magnitude of amygdala atrophy is comparable to that of the hippocampus in the earliest clinical
stages of AD, and is related to global illness severity’. SOG-L, MOG-L and IOG-L represent the
left superior, middle and inferior occipital gyri, respectively, and are identified as a group (same
marginal deviation effect) by CT-LASSO. Cu-L and LG-L are the cuneus and lingual gyrus in the
left occipital region, respectively, and also have the same marginal deviation effect. Although the
occipital subregions have opposite signs of marginal deviation effects, their conditional deviation
effects (i.e. 𝛽j) cancel off when combined, resulting in a positive marginal deviation effect (25.06)
of the occipital region on memory. Holroyd et al. (2000) showed that occipital atrophy is associ-
ated with visual hallucinations (the most common type of hallucination) in AD. However, less is
known about the different roles of occipital subregions in AD. SylParieSul-L represents the sylvian
parietal sulcus in the left hemisphere. To the best of our knowledge, its enlargement is associ-
ated with progression of AD (Liu et al., 2012), which is contrary to our finding. However, we note
that this region is also identified as a positive marginal deviation effect by TASSO (43.87), which
may suggest a false-positive result of the variable selection methods or a special structure of the
data set. MTG-L stands for the left middle temporal gyrus. Its atrophy has been associated with
AD (Pini et al., 2016). However, it is important to emphasize that these results are exploratory in
nature, since the method investigates a large possible collection of potential relationships and we
did not pre-register any specific hypotheses.

The 77 marginal deviation effects are aggregations of 109 conditional deviation effects (𝛽). For
the 10 largest marginal deviation effects, we decomposed them into conditional deviation effects
using the definition of 𝜶 (Section 3) and displayed the results in Figure 4. All 10 effects are from
CSF and telencephalon. The effects from the ventricle are negative and the effects from the limbic
region are positive, both of which are consistent with existing scientific findings (Nestor et al.,
2008; Pini et al., 2016). Complete results for marginal and conditional deviation effects are given
in the Supplementary Material.

In addition to CT-LASSO, we also run TFL-2, TASSO and CLASSO with BIC tuning. TFL-2
identifies 236 marginal deviation effects and 37 conditional deviation effects, suggesting an
under-penalization of the marginal deviation effects. In addition, TFL-2 fails to identify the effect
from the hippocampus, which is well known to be associated with AD. Twenty non-zero marginal
deviation effects and 73 non-zero conditional deviation effects were identified by CT-LASSO,
TASSO and CLASSO, including brain regions in the ventricles and the temporal lobe, although
the magnitude of these effects differs substantially among methods. Especially, the Amyg-R
(right hemisphere amygdala) region is identified only by CT-LASSO. Compared with CT-LASSO,
TASSO and CLASSO identify fewer marginal effects (40 non-zero entries in �̂�TASSO and 27
non-zero entries in �̂�CLASSO), but they have larger BIC (5114 for CT-LASSO, 5134 for TASSO and
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(a)

(b)

F I G U R E 4 Conditional deviation effects 𝜷 related to the 10 largest marginal deviation effects 𝜶. Suffix ‘-L’
or ‘-R’ refers to the left or right hemisphere of the brain, respectively. The red (blue) colour represents the positive
(negative) sign of 𝛽 with darker colour indicating a larger value of |𝛽|. Panels (a) and (b) show the aggregated
conditional effects in cerebrospinal fluid and telencephalon in three-dimensional template brain space [Colour
figure can be viewed at wileyonlinelibrary.com]

5120 for CLASSO), indicating a larger residual error. In addition, CT-LASSO tends to group effects
together, for example the left hemisphere occipital subregions, which can facilitate the inter-
pretation of marginal and conditional deviation effects. For all three methods, the effects from
left and right hemispheres are generally not equal, potentially suggesting a laterally asymmetric
correlation between volume and memory.

7 DISCUSSION

The linear model in Section 3 also allows for including additional covariates, in addition to covari-
ates associated with the compositional tree. However, when interaction terms are added, the
linear constraints (2) can only handle interactions between additional covariates and the whole
compositional tree.

In our method, for estimating 𝜶∗, we assume that no components of the leaf nodes are linear
combinations of the others such that �̃�∗ is identifiable. This assumption generally holds if no
further linear constraints are made on the leaf nodes. When this assumption is not true, one can
add a small L2-penalty to the right side of Equation (6) and run the model, otherwise unmodified.
In this case, point estimates of 𝜶∗ and 𝜷∗ may be biased because of the L2-penalty.

Our proposed method also assumes that the outcome is continuous. If the outcome is binary
or a count, then relatively minor modifications could use generalized linear models. However,
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since the loss function is no longer linear, how to consistently estimate 𝜶∗ with generalized lasso
penalty remains future research.

We provide the R code for reproducing the simulations and data analyses on Github at https://
github.com/BingkaiWang/compositional-hierarchical-tree-regression.
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